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ABSTRACT. An investigation is made of Lp-spaces generated by Fréchet-space
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1. INTRODUCTION

Let X be a Banach space and ν a σ-additive X-valued measure. The Ba-
nach space L1(ν) of all ν-integrable functions is due to Kluvánek and Knowles
[19]. Later, Curbera stressed the role of order and obtained a better understand-
ing of the nature of L1(ν) [6]. The Banach space L1

w(ν) of all scalarly ν-integrable
functions is due to Stefansson [30]. Spaces of the kind L1

w(ν) characterize a broad
class of Banach lattices with the σ-Fatou property [8]. For p > 1 the Banach space
Lp(ν) of p-integrable functions is due to Sánchez-Pérez [28]. The corresponding
Banach spaces Lp

w(ν) were treated by Fernández et al. in [15]; see also [10] and
Chapter 3 of [25]. For further properties and applications of the spaces Lp(ν) and
Lp

w(ν), 1 6 p < ∞, see [9], [25] and the references therein.
For X a (locally convex) Fréchet space, the analogous spaces L1(ν), L1

w(ν)
are more recent. Again L1

w(ν) is a Fréchet lattice containing L1(ν) as a closed
subspace ([4] and [26], Section 4.4). One of our aims is to develop some of the
main properties of Lp(ν) and Lp

w(ν) for p > 1. Beyond the facts that both Lp(ν)

and Lp
w(ν) are Fréchet lattices, with Lp(ν) closed in Lp

w(ν), that the simple func-
tions are dense in Lp(ν), and that both Lp(ν) ⊆ Lr(ν) and Lp

w(ν) ⊆ Lr
w(ν) hold

whenever 1 6 r 6 p ([26], Chapter 4) not much more is known. Let us formulate
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some further facts concerning these spaces which are presented here. For X a
Banach space and p > 1, we always have Lp

w(ν) ⊆ L1(ν) with a continuous (nat-
ural) inclusion map ([15], Proposition 3.1) which is always weakly compact ([15],
Proposition 3.3). For a non-normable Fréchet space X the situation can be differ-
ent. The natural inclusion map Lp

w(ν) ⊆ L1(ν) still exists and is continuous, but
it may fail to be weakly compact. Indeed, we identify Fréchet spaces X for which
there always exists an X-valued measure ν such that the inclusion Lp

w(ν) ⊆ L1(ν)
fails to be weakly compact for every p > 1. The underlying reason is, for X a
Banach space, that the inclusion Lp(ν) ⊆ Lr(ν) is proper for every non-trivial X-
valued measure ν whenever 1 6 r < p ([25], Proposition 3.28). An examination
of the proof in [25] reveals it can be adapted to show that also Lp

w(ν) $ Lr
w(ν)

whenever 1 6 r < p. This fails for Fréchet spaces in general; it can even happen
that Lp

w(ν) = Lp(ν) = L1(ν) for all 1 6 p < ∞. So, differences such as these (and
others) appear in the non-normable setting.

On the positive side, we characterize weak compactness of the integration
map Iν : L1(ν) → X (i.e., Iν( f ) :=

∫
Ω

f dν). In this case we have L1
w(ν) = L1(ν), a

known result in Banach spaces ([7], Corollary 2.3). It is also shown that L1
w(ν) =

L1(ν) whenever Iν is completely continuous (new even for Banach spaces). Con-
cerning lattice properties, there is a good correspondence with Banach space re-
sults. For each p > 1, the Fréchet lattice Lp(ν) has a Lebesgue topology and
Lp

w(ν) has the Fatou property. More precisely, Lp(ν) is the order continuous
part of Lp

w(ν) and Lp
w(ν) is the Fatou completion of Lp(ν). So, the containment

Lp(ν) ⊆ Lp
w(ν) is proper precisely when either Lp(ν) or Lp

w(ν) fails to be weakly
sequentially complete, i.e., whenever either Lp(ν) or Lp

w(ν) contains a copy of the
Banach lattice c0.

2. FRÉCHET SPACES OF p-INTEGRABLE FUNCTIONS

Let X be a (real) metrizable locally convex space (briefly, metrizable lcs) gen-
erated by an increasing fundamental sequence of seminorms (‖ · ‖(n))n∈N and
with continuous dual space X∗. Consider the neighbourhood base of 0 ∈ X gen-
erated by the sets Bn := {x ∈ X : ‖x‖(n) 6 1} and their polars B◦n := {x∗ ∈ X∗ :
|〈x, x∗〉| 6 1, ∀x ∈ Bn}, in which case Bn+1 ⊆ Bn and B◦n ⊆ B◦n+1, for each n ∈ N.

Let (Ω, Σ) be a measurable space, ν : Σ → X be a vector measure (i.e.
σ-additive) and f : Ω → R be a Σ–measurable function. We call f scalarly ν-
integrable if it is integrable for each R-valued measure 〈ν, x∗〉 : A 7→ 〈ν(A), x∗〉,
for x∗ ∈ X∗. A scalarly ν-integrable function f is called ν-integrable if, for each

A ∈ Σ, there exists an element
∫
A

f dν ∈ X such that
〈 ∫

A
f dν, x∗

〉
=
∫
A

f d〈ν, x∗〉,

for x∗ ∈ X∗. The total variation measure of 〈ν, x∗〉 is denoted by |〈ν, x∗〉|.
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Let p > 1. A Σ–measurable function f : Ω → R is called scalarly ν-p-inte-
grable if | f |p is scalarly ν-integrable and ν-p-integrable if | f |p is ν-integrable. The
linear space of all individual scalarly ν-p-integrable (respectively ν-p-integrable)
functions on Ω is denoted by Lp

w(ν) (respectively Lp(ν)). For each n ∈ N, de-
fine a [0, ∞]–valued “seminorm” ‖ · ‖(n)ν,p on the space L0(ν), consisting of all Σ-
measurable functions, by

(2.1) ‖ f ‖(n)ν,p := sup
x∗∈B◦n

( ∫
Ω

| f |pd|〈ν, x∗〉|
)1/p

, f ∈ L0(ν),

and denote ‖ · ‖(n)ν,1 simply by ‖ · ‖(n)ν ; see Section 4.3 of [26].

Observe that f ∈ L0(ν) belongs to Lp
w(ν) if and only if ‖ f ‖(n)ν,p < ∞ for all

n ∈ N; the argument for p = 1 given in Proposition 2.1 of [4] can be adapted to
p > 1. That is, (2.1) is a [0, ∞)-valued seminorm, for each n ∈ N, precisely on
Lp

w(ν) ⊆ L0(ν). The spaces Lp
w(ν) and Lp(ν) are complete lcs’ for the sequence

of seminorms given by (2.1) (provided X is complete in the latter case) ([26], The-
orems 4.4.2 and 4.4.8). Clearly Lp(ν) ⊆ Lp

w(ν) for all p > 1. By Lemma II.1.2 of
[19], for each n ∈ N,

(2.2) sup
E∈Σ

∥∥∥ ∫
E

f dν
∥∥∥(n) 6 ‖ f ‖(n)ν 6 2 sup

E∈Σ

∥∥∥ ∫
E

f dν
∥∥∥(n), f ∈ L1(ν).

Fix n ∈ N. Then Xn is the completion of the quotient normed space X/Mn,
where Mn := {x ∈ X : ‖x‖(n) = 0}, and πn : X → Xn is the corresponding
quotient map. Hence, νn : Σ→ Xn defined by

(2.3) νn(A) := πn(ν(A)), A ∈ Σ,

is a Banach-space-valued vector measure. Its variation measure |νn| : Σ → [0, ∞]
is defined analogous to that for scalar measures ([11], Chapter I, Definition 1.4).

LEMMA 2.1. Let X be a Fréchet space and ν : Σ → X be a vector measure. If
f ∈ L0(ν), then ‖ f ‖(n)ν = ‖ f ‖νn , for n ∈ N. Moreover,

(i) f is scalarly ν-integrable if and only if f is scalarly νn-integrable for each n ∈ N.
(ii) f is ν-integrable if and only if f is νn-integrable for each n ∈ N.

(iii) For n ∈ N, if f is scalarly νn+1-integrable, then f is also scalarly νn-integrable.
(iv) For n ∈ N, if f is νn+1-integrable, then f is also νn-integrable.

Proof. The first statement and (i) follow from π∗n being a linear isometric
bijection between the Banach spaces X∗n and Lin(B◦n) ([22], Remark 24.5(b)). For
the details we refer to the proof of Proposition 2.1 in [4].

(ii) This is part of Lemma 2 in [24].
(iii) Let f ∈ L1

w(νn+1). Given y∗ ∈ X∗n we have π∗n(y∗) ∈ Lin(B◦n) ⊆
Lin(B◦n+1). So, there is x∗ ∈ X∗n+1 with π∗n(y∗) = π∗n+1(x∗) and

∫
Ω

| f |d|〈νn, y∗〉|
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=
∫
Ω

| f |d|〈ν, π∗n(y∗)〉| =
∫
Ω

| f |d|〈ν, π∗n+1(x∗)〉| =
∫
Ω

| f |d|〈νn+1, x∗〉| < ∞. That is,

f ∈ L1
w(νn).
(iv) Let f ∈ L1(νn+1). Since ‖ · ‖(n) 6 ‖ · ‖(n+1), we have Mn+1 ⊆ Mn and

hence, there is a continuous linear map πn+1,n : Xn+1 → Xn satisfying πn =
πn+1,n ◦ πn+1. Given A ∈ Σ, let xA :=

∫
A

f dνn+1 ∈ Xn+1 in which case uA :=

πn+1,n(xA) ∈ Xn. For each y∗ ∈ X∗n we have π∗n(y∗) = π∗n+1(x∗) for some x∗ ∈
X∗n+1 (see the proof of (iii)) and so

〈uA, y∗〉 = 〈πn+1,n(xA), y∗〉 = 〈xA, π∗n+1,n(y
∗)〉

= 〈xA, (π∗n+1)
−1 ◦ π∗n(y

∗)〉 = 〈xA, (π∗n+1)
−1 ◦ π∗n+1(x∗)〉

= 〈xA, x∗〉 =
∫
A

f d〈νn+1, x∗〉 =
∫
A

f d〈ν, π∗n+1(x∗)〉

=
∫
A

f d〈νn, π∗n(y
∗)〉 =

∫
A

f d〈νn, y∗〉.

It follows that f ∈ L1(νn) and

(2.4)
∫
A

f dνn = uA = πn+1,n

( ∫
A

f dνn+1

)
, A ∈ Σ.

For Banach spaces, the following version of Hölder’s inequality occurs in
Theorem 3.1.13 of [26] for (i) and in Theorem 3.5.1 of [26] for (ii).

PROPOSITION 2.2. Let X be a Fréchet space, ν : Σ → X be a vector measure and
1 < p, q < ∞ satisfy 1/p + 1/q = 1.

(i) If f ∈ Lp
w(ν) and g ∈ Lq

w(ν), then f g ∈ L1
w(ν).

(ii) If f ∈ Lp(ν) and g ∈ Lq(ν), then f g ∈ L1(ν).
In both cases, ‖ f g‖(n)ν 6 ‖ f ‖(n)ν,p‖g‖

(n)
ν,q , for n ∈ N.

Proof. (i) By definition | f |p ∈ L1
w(ν), |g|q ∈ L1

w(ν). Fix x∗ ∈ X∗. Then, both
| f |p, |g|q ∈ L1(|〈ν, x∗〉|). By the classical Hölder inequality for scalar measures,
f g ∈ L1(|〈ν, x∗〉|) and∫

Ω

| f g|d|〈ν, x∗〉| 6
( ∫

Ω

| f |pd|〈ν, x∗〉|
)1/p( ∫

Ω

|g|qd|〈ν, x∗〉|
)1/q

< ∞.

This shows that f g ∈ L1
w(ν).

Fix n ∈ N. For x∗ ∈ B◦n, the previous inequality yields
∫
Ω

| f g|d|〈ν, x∗〉| 6

‖ f ‖(n)ν,p‖g‖
(n)
ν,q and so

‖ f g‖(n)ν = sup
x∗∈B◦n

∫
Ω

| f g|d|〈ν, x∗〉| 6 ‖ f ‖(n)ν,p ‖g‖
(n)
ν,q .
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(ii) Here | f |p ∈ L1(ν), |g|q ∈ L1(ν). By Lemma 2.1, | f |p ∈ L1(νn), |g|q ∈
L1(νn), that is, f ∈ Lp(νn), g ∈ Lq(νn), for all n ∈ N. Applying Theorem 3.5.1 of
[26] to each complete seminormed space L1(νn) we deduce that f g ∈ L1(νn), for
all n ∈ N; see also the proof of Lemma 2.21(i) in [25]. Again Lemma 2.1 ensures
that f g ∈ L1(ν).

Since χ
Ω
∈ Lq(ν) ⊆ Lq

w(ν), the following result is clear from Proposi-
tion 2.2; see also Theorem 4.5.13(v)(a) of [26] for part of the conclusion.

COROLLARY 2.3. Let ν be a Fréchet-space-valued measure and 1 < p, q < ∞
satisfy 1/p + 1/q = 1. Let f ∈ Lp

w(ν). Then

(2.5) ‖ f ‖(n)ν 6 ‖ f ‖(n)ν,p (‖χΩ
‖(n)ν )1/q, n ∈ N.

Also, Lp(ν) ⊆ L1(ν) and Lp
w(ν) ⊆ L1

w(ν) with continuous inclusions.

Scalarly ν-p-integrable functions are more than scalarly ν-integrable. For
Banach spaces the next result is Proposition 3.1 of [15].

PROPOSITION 2.4. Let X be a Fréchet space and ν : Σ → X be a vector measure.
If p > 1, then Lp

w(ν) ⊆ L1(ν) with a continuous inclusion.

Proof. Let f ∈ Lp
w(ν). For any k ∈ N, consider the set Ak := {ω ∈ Ω :

| f (w)| 6 k} and the function fk := f χAk
. Each fk ∈ L1(ν) since it is bounded

([19], p. 26). Moreover, ( fk) converges pointwise to f . To verify that f ∈ L1(ν)
it suffices to show that (

∫
E

fkdν) is Cauchy in X uniformly with respect to E ∈ Σ

([21], Theorem 2.4). Fix n ∈ N. For i > j, by Proposition 2.2 and (2.2) we have, for
E ∈ Σ, that∥∥∥ ∫

E

fidν−
∫
E

f jdν
∥∥∥(n) 6 sup

F∈Σ

∥∥∥ ∫
F

( fi − f j)dν
∥∥∥(n) 6 ‖ fi − f j‖

(n)
ν = ‖| f |χ

(Ai\Aj)
‖(n)ν

6 ‖ f ‖(n)ν,p‖χ(Ω\Aj)
‖(n)ν,q = ‖ f ‖(n)ν,p (‖χ(Ω\Aj)

‖(n)ν )1/q.

Since χ
(Ω\Aj)

↓ 0 pointwise, the dominated convergence theorem ([19], p. 30) im-

plies that ‖χ
(Ω\Aj)

‖(n)ν → 0 as j→ ∞. Thus f ∈ L1(ν).

Continuity of the inclusion Lp
w(ν) ⊆ L1(ν) is clear from (2.5).

A set A ∈ Σ is called ν-null if ν(B) = 0 for every B ∈ Σ with B ⊆ A.
Equivalently, A is νn-null for all n ∈ N. Denote the σ-ideal of all ν-null sets by
N0(ν). Let f ∈ L0(ν). Then f is called ν-null whenever ‖ f ‖(n)ν = 0 for all n ∈ N.
If f−1(R\{0}) ∈ N0(ν), then it is also |〈ν, x∗〉|-null for all x∗ ∈ X∗. Hence, f is a
ν-null function because

‖ f ‖(n)ν = sup
x∗∈B◦n

∫
f−1(R\{0})

| f |d|〈ν, x∗〉| = 0, n ∈ N.
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Conversely, suppose f is a ν-null function. Fix n ∈ N. For the Banach-space-
valued measure νn, Rybakov’s theorem states that there is a unit vector ξ∗ ∈ X∗n
(i.e., π∗n(ξ

∗) ∈ B◦n) such that νn and |〈νn, ξ∗〉| have the same null sets ([11], p. 268).
Since

∫
f−1(R\{0})

| f |d|〈ν, ξ∗〉| 6 ‖ f ‖(n)ν = 0, the set f−1(R\{0}) is |〈νn, ξ∗〉|-null

and hence, also νn-null. But, n ∈ N is arbitrary and so f−1(R\{0}) ∈ N0(ν). So,
the subspaceN (ν) ofL0(ν) consisting of all ν-null functions is the space of all f ∈
L0(ν) such that f−1(R\{0}) ∈ N0(ν) (briefly, we say f is ν-null). Observe that
N (ν) ⊆ L1(ν). Two functions from L0(ν) are ν-equivalent if their difference is a
ν-null function. Noting that N (ν) is a closed ideal in both Lp

w(ν) and Lp(ν), the
quotient spaces Lp

w(ν) := Lp
w(ν)/N (ν) and Lp(ν) := Lp(ν)/N (ν), for 1 6 p <

∞, are then complete Fréchet lattices for the (quotient) seminorms induced via
(2.1) ([26], Theorem 4.5.11). So, Proposition 2.2, Corollary 2.3 and Proposition 2.4
also hold for the corresponding statements with the Fréchet spaces Lp(ν) and
Lp

w(ν) in place of the complete pseudo-metrizable lc-spaces Lp(ν) and Lp
w(ν).

Define L0(ν) := L0(ν)/N (ν).
A vector measure ν : Σ → X is called σ-decomposable if Σ admits count-

ably infinite many pairwise disjoint non-ν-null sets ([25], p. 129). For X a Banach
space the natural inclusion Lp(ν) ⊆ Lq(ν) is proper whenever 1 6 q < p, ([25],
Proposition 3.28).

PROPOSITION 2.5. Let X be a Fréchet space not admitting a continuous norm.
There exists an X-valued, σ-decomposable measure ν such that

Lp
w(ν) = Lp(ν) = Lq

w(ν) = Lq(ν), 1 6 q 6 p < ∞.

Proof. By a classical result of Bessaga and Pelczynski ([3] and Theorem 7.2.7
of [18]) X contains a complemented subspace isomorphic to the Fréchet sequence
space ω := RN, equipped with the seminorms qn(x) := max

16j6n
|xj|, for x =

(x1, x2, . . .) ∈ ω. So, it suffices to establish the result for X = ω. Let Ω = N
and Σ = 2Ω. Define ν : Σ→ ω by ν(A) = χA , for A ∈ Σ. Then ν is a vector mea-
sure with ∅ as its only ν-null set and L0(ν) = RN. Observe that ω∗ = {ξ ∈ RN :

supp(ξ) is finite}with duality 〈x, ξ〉 =
∞
∑

n=1
xnξn (a finite sum), for each x ∈ ω and

ξ ∈ ω∗. It is routine to check that Lp
w(ν) = Lp(ν) = L0(ν) ' ω, for 1 6 p < ∞,

with equality as vector spaces and topologically.

In Banach spaces X, the continuous inclusion of Lp
w(ν) into L1(ν) is weakly

compact for all p > 1 ([15], Proposition 3.3). So, the restriction to Lp(ν) of the
(continuous) integration map Iν : L1(ν) → X (i.e., f 7→ Iν( f ) :=

∫
Ω

f dν for f ∈

L1(ν)), is also weakly compact. For X a Fréchet space, this may fail. Via (2.2),
Iν : L1(ν)→ X is still continuous and so, by Corollary 2.3, also the restriction Iν :
Lp(ν)→ X is continuous for all p > 1. The problem lies with weak compactness.
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A continuous linear map T from a lc-space Y into a Fréchet space X is weakly
compact (respectively compact) if there is a neighbourhood U of 0 ∈ Y such that
the closure of T(U) is weakly compact (respectively compact) in X.

PROPOSITION 2.6. Let X be any Fréchet space which does not admit a continuous
norm. Then there exists an X-valued measure ν such that:

(i) the continuous inclusion Lp
w(ν) ⊆ L1(ν) is not weakly compact, for every p > 1;

(ii) the continuous integration map Iν : Lp(ν) → X is not weakly compact, for every
p > 1.

Proof. As in the proof of Proposition 2.5 it suffices to consider X = ω and
ν : Σ → ω as given there. Since Lp

w(ν) = L1(ν) ' ω for all p > 1, the natu-
ral inclusion Lp

w(ν) ⊆ L1(ν) is the identity map on ω. If this map was weakly
compact, then ω would have a bounded neighbourhood of 0 and hence, would
be normable (which is not so). This establishes (i). It is also routine to check that
the integration map Iν : Lp(ν) → ω is the identity map on ω and so the same
argument yields (ii).

For a Banach-space-valued measure ν : Σ → X it is known, for each 1 <

p < ∞, that the restriction of the integration map Iν : Lp
w(ν) → X (well de-

fined by Proposition 3.1 of [15]) is a compact operator if and only if the range
R(ν) := {ν(A) : A ∈ Σ} is a relatively compact subset of X ([15], Theorem 3.6
and [25], Proposition 3.56(I)). What if X is a Fréchet space? According to Propo-
sition 2.4 the restriction map Iν : Lp

w(ν) → X is again well defined. If this map
is compact, then there exists n ∈ N such that Iν(Wn) is relatively compact in X,
where Wn := { f ∈ Lp

w(ν) : ‖ f ‖(n)ν,p 6 1} is a basic neighbourhood of 0 in Lp
w(ν).

Since (‖| f |p‖(n)ν )1/p = ‖ f ‖(n)ν,p , for every f ∈ L1
w(ν), we have

‖χA‖
(n)
ν,p = (‖|χA |

p‖(n)ν )1/p = (‖χA‖
(n)
ν )1/p 6 (‖χ

Ω
‖(n)ν )1/p, A ∈ Σ.

Accordingly, R(ν) ⊆ (‖χ
Ω
‖(n)ν )1/p · Iν(Wn), which shows that R(ν) is necessarily

a relatively compact subset of X. Unfortunately, the converse statement does not
hold for general non-normable X.

PROPOSITION 2.7. Let X be any Fréchet space which does not admit a continuous
norm. There exists an X-valued measure ν such that:

(i) R(ν) is a relatively compact subset of X, but
(ii) the restricted integration map Iν : Lp

w(ν) → X fails to be compact for every
1 < p < ∞.

Proof. As in the proof of Proposition 2.5 it suffices to consider X = ω and
ν : Σ → X as given there. Since R(ν) is a bounded subset of ω (being rela-
tively weakly compact ([19], p. 76) and ω is a Montel space, it follows that R(ν)
is a relatively compact subset of ω, i.e., (i) holds. The same argument as in the



470 R. DEL CAMPO, S. OKADA, AND W.J. RICKER

proof of Proposition 2.6, with “compact” in place of “weakly compact” estab-
lishes part (ii).

3. IDEAL PROPERTIES OF THE INTEGRATION MAP Iν

The aim of this section is to investigate how certain ideal properties of Iν

influence the nature of its domain space L1(ν).
Let ν : Σ → X be a Fréchet-space-valued vector measure and νn, for n ∈ N,

be as in (2.3). According to (2.4) we have N (νn+1) ⊆ N (νn) and hence, via
Lemma 2.1(iv), that L1(νn+1) ⊆ L1(νn), n ∈ N, with a continuous inclusion.

We point out that the equality L1(ν) = L1
w(ν) is equivalent to L1(ν) (or

L1
w(ν)) being weakly sequentially complete; see Proposition 3.4 of [5].

THEOREM 3.1. Let ν : Σ → X be a Fréchet-space-valued measure. Then the
integration map Iν : L1(ν)→ X is weakly compact if and only if there exists r ∈ N such
that for all k > r we have:

(i) Iνk : L1(νk)→ Xk is weakly compact, and
(ii) L1(ν) = L1(νk) = L1(νr), with equality as lc-spaces.

In this case, L1(ν) is necessarily a Banach space.

First we require a preliminary lemma. Recall that a convex balanced subset
B of a lc-space X is a Banach disc if XB := span(B), equipped with its Minkowski
functional, is a Banach space ([22], p. 267).

LEMMA 3.2. Let X be a Fréchet space and ν : Σ → X be a vector measure. Then
the integration map Iν : L1(ν)→ X is weakly compact if and only if there exist a Banach
disc B ⊆ X and a vector measure µ : Σ→ XB such that:

(i) XB ↪→ X continuously via the natural injection J;
(ii) L1(µ) = L1(ν) as lc-spaces;

(iii) Iµ : L1(µ)→ XB is weakly compact; and
(iv) Iν = J ◦ Iµ (i.e. ν factors through XB via µ and J).

Proof. Clearly (i)–(iv) imply that Iν is weakly compact.
Conversely, let Iν be weakly compact. We adapt the proof of Lemma 3.2 in

[23]. Take a convex balanced neighbourhood V of 0 in L1(ν) with A := Iν(V)
weakly compact in X. Then choose a weakly compact Banach disc B of X such
that A ⊆ B and A is weakly compact in XB ([27], p. 422 Lemma). Then (i) follows
from Corollary 23.14 of [22]; see also its proof. Since the range R(Iν) ⊆ XB, let
I(B)
ν : L1(ν) → XB denote Iν considered as being XB-valued. Arguing as in [23]

the map I(B)
ν is weakly compact (hence, continuous). Moreover, µ : Σ → XB

defined by E 7→ I(B)
ν (χE), for E ∈ Σ, is a vector measure satisfying (ii), (iv); see

the proof in [23]. Since L1(ν) = L1(µ) as lc-spaces, V is also a 0-neighbourhood
in the Banach space L1(µ) and so, is contained in a multiple of the unit ball in
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L1(µ). Moreover, Iµ(V) = I(B)
ν (V) ⊆ A is relatively weakly compact in XB from

which (iii) follows.

Proof of Theorem 3.1. Suppose that Iν is weakly compact. By Lemma 3.2,
L1(ν) is a Banach space. According to p. 25 of [17] there exists r ∈ N such that (ii)
of Theorem 3.1 holds. Then Iνk = πk ◦ Iν is weakly compact, for all k > r, after
noting that the domain D(Iνk ) = L1(νk) = L1(ν) = D(Iν) by (ii). Hence, (i) is
valid.

Suppose that (i), (ii) of Theorem 3.1 hold. By (ii), L1(ν) is a Banach space.
Then apply the version of Lemma 2.3 of [23] with “compact” replaced throughout
by “weakly compact” (the “same” proof applies), together with (i), to conclude
that Iν is weakly compact.

A version of Theorem 3.1 is known for compactness of the integration map Iν

([23], Theorem 2).
For Banach spaces the following result occurs in Corollary 2.3 of [7].

COROLLARY 3.3. The Fréchet space L1(ν) is weakly sequentially complete when-
ever the integration map Iν : L1(ν)→ X is weakly compact.

Proof. Let r ∈ N be as in Theorem 3.1. Then Iνr : L1(νr) → Xr is weakly
compact. Since Xr is a Banach space, L1(νr) is weakly sequentially complete ([7],
Corollary 2.3). By (ii) of Theorem 3.1, L1(ν) is also weakly sequentially complete
(and a Banach space).

COROLLARY 3.4. Let X be a Fréchet space such that each Banach space Xk, for
k ∈ N, is reflexive. Then an X-valued measure ν satisfies Iν is weakly compact if and
only if L1(ν) is a Banach space.

Proof. If Iν is weakly compact, then Theorem 3.1 implies that L1(ν) is a Ba-
nach space. Conversely, suppose L1(ν) is a Banach space. Then πk ◦ Iν : L1(ν)→
Xk is weakly compact from the Banach space L1(ν) into the Banach space Xk, for
k ∈ N. By the “weakly compact” version of Lemma 2.3 in [23] it follows that Iν is
weakly compact.

We point out that if each Banach space Xk, k ∈ N, is reflexive, then X itself
is necessarily reflexive ([22], Proposition 25.15).

For Y, Z Fréchet spaces, a continuous linear map T : Y → Z is called com-
pletely continuous (or Dunford–Pettis) if it maps weakly convergent sequences in
Y to convergent sequences in Z. For Banach spaces, such operators form a clas-
sical operator ideal. If Z is a Fréchet–Montel space, then every continuous linear
map T : Y → Z is completely continuous. The same is true whenever Z has the
Schur property.

LEMMA 3.5. For a continuous linear operator T : Y → Z between Fréchet spaces
Y, Z the following assertions are equivalent:
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(i) T maps weakly compact subsets of Y to compact subsets of Z;
(ii) T is completely continuous;

(iii) T maps weakly Cauchy sequences in Y to convergent sequences in Z.

Proof. (i) ⇔ (ii) is known ([16], p. 43), and depends on the fact that a sub-
set of a Fréchet space is weakly compact if and only if it is weakly sequentially
compact ([16], pp. 30-31 and (1) p. 39; [20], (9) p. 318).

(iii)⇒ (ii). Immediate.
(ii) ⇒ (iii). For Banach spaces, see p. 333 of [2]. Suppose there is a weak

Cauchy sequence {yn}∞
n=1 ⊆ Y such that {T(yn)}∞

n=1 is not convergent in Z. With
d denoting a translation invariant metric in Z which determines its given Fréchet
space topology, there is ε>0 and positive integers p(1)<q(1)<p(2)<q(2)< · · ·
such that d(T(yp(n)), T(yq(n))) > ε for n ∈ N. It is routine to check that {yp(n) −
yq(n)}∞

n=1 is weakly convergent to 0 ∈ Y. Since T is also continuous when Y, Z
have their weak topology, it follows that T(yp(n) − yq(n))→ 0 weakly in Z. Now,
(ii) implies that {T(yp(n) − yq(n))}∞

n=1 is convergent in Z (to 0 by the previous
sentence). This contradicts d(T(yp(n)), T(yq(n))) > ε for n ∈ N. So, no such weak
Cauchy sequence {yn}∞

n=1 exists.

Corollary 3.3 shows that compactness/weak compactness of Iν has a strong
influence on L1(ν), i.e., it is weakly sequentially complete. We will see in Section 4
that this, in turn, forces all spaces Lp(ν) and Lp

w(ν), for 1 6 p < ∞, to be weakly
sequentially complete. The complete continuity of Iν has the same effect on L1(ν).

THEOREM 3.6. Let X be a Fréchet space and ν be an X-valued measure. If the
integration map Iν : L1(ν)→ X is completely continuous, then L1

w(ν) = L1(ν).

The proof proceeds via a series of lemmata, using the notation of Theo-
rem 3.6. In particular, X is always a Fréchet space and ν : Σ → X a (fixed) vector
measure with Σ a σ-algebra of subsets of Ω.

Let L1(ν)σ denote L1(ν) with its weak topology σ(L1(ν), L1(ν)∗). The strong
bidual L1(ν)∗∗ is a Fréchet space which contains L1(ν) as a closed subspace via
the canonical embedding J : L1(ν) → L1(ν)∗∗ ([22], Corollary 25.10). The space
L1(ν)∗∗ equipped with its weak-* topology σ(L1(ν)∗∗, L1(ν)∗) is denoted by
L1(ν)∗∗σ∗ ; it is a sequentially complete Hausdorff lcs ([20], (3) p. 396). The follow-
ing fact is routine to establish.

LEMMA 3.7. The embedding J : L1(ν)σ → L1(ν)∗∗σ∗ is a topological isomorphism
onto its range J(L1(ν)).

Given f ∈ L1(ν), define m f : Σ → L1(ν) by m f (A) := f χA , for A ∈ Σ. If
An ↓ ∅ in Σ, then f χAn

→ 0 pointwise ν-a.e. on Ω and | f χAn
| 6 | f | ∈ L1(ν), for

n ∈ N. By the dominated convergence theorem ([19], p. 30), m f (An) = f χAn
→ 0

in L1(ν) as n→ ∞, i.e., m f is σ-additive in the Fréchet space L1(ν).
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LEMMA 3.8. Let { fn}∞
n=1 ⊆ L1(ν) be a weak Cauchy sequence, i.e., Cauchy in

the lcs L1(ν)σ.
(i) For each A ∈ Σ, the following limit exists in the Hausdorff lcs L1(ν)∗∗σ∗ :

(3.1) ξ(A) := lim
n→∞

J( fnχA).

(ii) The set function ξ : Σ→ L1(ν)∗∗σ∗ defined by (3.1) is a vector measure and satisfies
N0(ν) ⊆ N0(ξ).

Proof. (i) Fix A ∈ Σ. It is clear from (2.1), with p = 1, that the operator of
multiplication by χA is continuous from L1(ν) to itself. It is then also continuous
from L1(ν)σ to itself and hence, { fnχA}∞

n=1 is a weak Cauchy sequence in L1(ν).
By Lemma 3.7 the limit (3.1) exists in the sequentially complete lcs L1(ν)∗∗σ∗ .

(ii) For k ∈ N fixed the discussion prior to Lemma 3.8 ensures that the set
function m fk

: Σ → L1(ν) is a vector measure and hence, is also σ-additive when
considered to be L1(ν)σ-valued. Lemma 3.7 implies that J ◦m fk

: Σ → L1(ν)∗∗σ∗ is
also σ-additive. Given u ∈ L1(ν)∗ we have via (3.1) that 〈u, ξ〉(A) = lim

n→∞
〈u, (J ◦

m fn)(A)〉, for each A ∈ Σ. Since 〈u, J ◦m fn〉 is a scalar measure, for each n ∈ N,
the Vitali–Hahn–Saks theorem ensures that 〈u, ξ〉 is σ-additive. But, the contin-
uous seminorms generating the topology of L1(ν)∗∗σ∗ are given by η 7→ |〈u, η〉|,
for η ∈ L1(ν)∗∗σ∗ , as u varies in L1(ν)∗. Accordingly, ξ is σ-additive as an L1(ν)∗∗σ∗ -
valued set function.

To see that N0(ν) ⊆ N0(ξ), let A ∈ N0(ν). For each B ∈ Σ with B ⊆ A the
functions { fnχB : n ∈ N} are ν-null. Hence, J( fnχB) = 0 for n ∈ N. Then (3.1)
implies that ξ(B) = 0. So, A ∈ N0(ξ).

LEMMA 3.9. Let Iν be completely continuous and { fn}∞
n=1 ⊆ L1(ν)σ be Cauchy.

(i) For each A ∈ Σ, the following limit exists in X:

(3.2) m(A) := lim
n→∞

Iν( fnχA).

(ii) The set function m : Σ → X defined by (3.2) is a vector measure and satisfies
N0(ν) ⊆ N0(m).

Proof. (i) For A ∈ Σ, the sequence { fnχA}∞
n=1 is Cauchy in L1(ν)σ (c.f. proof

of Lemma 3.8(i)). So, by complete continuity the limit (3.2) exists.
(ii) Since fn ∈ L1(ν), the Orlicz–Pettis theorem ensures that un : A 7→∫

A
fndν = Iν( fnχA) is a σ-additive, X-valued measure on Σ for each n ∈ N. In

particular, for each x∗ ∈ X∗, the scalar valued set functions 〈un, x∗〉, for n ∈ N, are
σ-additive. By the Vitali–Hahn–Saks theorem, also 〈m, x∗〉(A) := 〈m(A), x∗〉 =
lim

n→∞
〈un(A), x∗〉, for A ∈ Σ, is σ-additive. By the Orlicz–Pettis theorem m is σ-

additive in X.
To verify that N0(ν) ⊆ N0(m), adapt that part of the argument in the proof

of Lemma 3.8(ii) showing that N0(ν) ⊆ N0(ξ).
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Since X is a Fréchet space, there exists a sequence {x∗j }∞
j=1 ⊆ X∗ (fixed from

now on) which satisfies N0(ν) =
∞⋂

j=1
N0(〈ν, x∗j 〉); see the proof of Theorem 2.5

in [4], for example. Fix j ∈ N. It is clear from (2.1), with p = 1, and the fact
that x∗j ∈ αB◦m for some α > 0 and m ∈ N, that the natural identity map from

L1(ν) into the Banach space L1(〈ν, x∗j 〉) is continuous and hence, also continuous

from L1(ν)σ into L1(〈ν, x∗j 〉)σ. So given a Cauchy sequence { fn}∞
n=1 ⊆ L1(ν)σ

(fixed henceforth), it is also Cauchy in the sequentially complete lcs L1(〈ν, x∗j 〉)σ.

Accordingly, there exists ϕj ∈ L1(〈ν, x∗j 〉) such that fn → ϕj weakly in L1(〈ν, x∗j 〉)
as n → ∞. By the weak Banach–Saks property of L1(〈ν, x∗j 〉) ([29]) there exists a

subsequence { f (j)
n(k)}

∞
k=1 of { fn}∞

n=1 whose arithmetic means N−1
N
∑

k=1
f (j)
n(k) → ϕj in

the norm of L1(〈ν, x∗j 〉) as N → ∞. These arithmetic means admit a subsequence

(3.3) g(j)
N(`)

:=
1

N(`)

N(`)

∑
k=1

f (j)
n(k), ` ∈ N,

converging 〈ν, x∗j 〉-a.e. to ϕj. So, there exists Bj ∈ Σ with (Ω\Bj) ∈ N0(〈ν, x∗j 〉)

and g(j)
N(`)
→ ϕj pointwise on Bj as ` → ∞. Set A1 := B1 and Ak := Bk\

⋃k−1
j=1 Bj,

for k > 2. Then
k⋃

j=1
Aj =

k⋃
j=1

Bj, for k ∈ N, and

(3.4) lim
`→∞

g(j)
N(`)

χAj
= ϕjχAj

, pointwise on Ω, ∀j ∈ N.

LEMMA 3.10. In the setting of the above construction and with Iν assumed to be
completely continuous we have the following facts:

(i) The sets {Ak}∞
k=1 are pairwise disjoint with (Ω\⋃∞

k=1 Ak) ∈ N0(ν).
(ii) For each j ∈ N the function ϕjχAj

belongs to L1(ν) with

∫
A

ϕjχAj
dν = m(A ∩ Aj), A ∈ Σ, and(3.5)

J(ϕjχAj
) = ξ(Aj), as elements of L1(ν)∗∗σ∗ .(3.6)

Proof. (i) The sets {Ak}∞
k=1 are pairwise disjoint by construction. Also

|〈ν, x∗j 〉|(Ω\
⋃∞

k=1 Ak) 6 |〈ν, x∗j 〉|(Ω\Bj) = 0, ∀j ∈ N,

and so (Ω\⋃∞
k=1 Ak) ∈

∞⋂
j=1
N0(〈ν, x∗j 〉) = N0(ν).
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(ii) Fix j ∈ N. For each A ∈ Σ it follows from (3.2) that m(A ∩ Aj) =

lim
N→∞

Iν

(
N−1

N
∑

k=1
f (j)
n(k)χAj

χA

)
in X and hence, from (3.3), that also

(3.7) lim
`→∞

∫
A

g(j)
N(`)

χAj
dν = lim

`→∞
Iν(g(j)

N(`)
χAj

χA) = m(A ∩ Aj).

Fix x∗ ∈ X∗. As a consequence of (3.7) the scalar measures λ`(A) :=∫
A

g(j)
N(`)

χAj
d〈ν, x∗〉 (recall that g(j)

N(`)
χAj
∈ L1(ν), for ` ∈ N) have a limit for each

A ∈ Σ namely, lim
`→∞

λ`(A) = 〈m(A∩ Aj), x∗〉. It follows from (3.4) and Lemma 2.3

of [21] that ϕjχAj
∈ L1(〈ν, x∗〉) and

(3.8)
∫
A

ϕjχAj
d〈ν, x∗〉 = 〈m(A ∩ Aj), x∗〉, A ∈ Σ.

Since x∗ ∈ X∗ is arbitrary, we have ϕjχAj
∈ L1

w(ν). Moreover, for each A ∈ Σ it

follows from (3.8) that the vector m(A ∩ Aj) ∈ X satisfies

〈m(A ∩ Aj), x∗〉 =
∫
A

ϕjχAj
d〈ν, x∗〉, x∗ ∈ X∗.

According to the definition of ν-integrability we can conclude that ϕjχAj
∈ L1(ν),

for each j ∈ N, and that (3.5) is valid.
Again fix j ∈ N. Since {g(j)

N(`)
χAj
}∞
`=1 ⊆ L1(ν), Lemma 2.1(ii) yields that

{g(j)
N(`)

χAj
}∞
`=1⊆L1(νn), for all n∈N. Moreover, (3.7) implies that lim

`→∞

∫
A

g(j)
N(`)

χAj
dνn

= πn(m(A∩ Aj)) exists in Xn, for each A ∈ Σ and n ∈ N. Via (3.4) it follows from
Theorem 2.2.8 of [26] that

lim
`→∞

∫
A

g(j)
N(`)

χAj
dνn =

∫
A

ϕjχAj
dνn, A ∈ Σ,

with the limit in Xn existing uniformly for A ∈ Σ. Hence, (2.2) and the identities
‖ f ‖(n)ν = ‖ f ‖νn , valid for all n ∈ N and f ∈ L1(ν), imply

(3.9) lim
`→∞

g(j)
N(`)

χAj
= ϕjχAj

, in the Fréchet space L1(ν).

To establish (3.6), note that (3.9) implies g(j)
N(`)

χAj
→ ϕjχAj

in L1(ν)σ as ` →

∞ and hence, by Lemma 3.7, that J(g(j)
N(`)

χAj
)→ J(ϕjχAj

) in L1(ν)∗∗σ∗ as `→ ∞. On

the other hand, it follows from (3.1) that J
(

N−1
N
∑

k=1
f (j)
n(k)χAj

)
→ ξ(Aj) in L1(ν)∗∗σ∗

as N → ∞. Via (3.3), also J(g(j)
N(`)

χAj
) → ξ(Aj) in L1(ν)∗∗σ∗ as ` → ∞. So, (3.6) is

valid.
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Proof of Theorem 3.6. To show L1(ν) is weakly sequentially complete (equiv-
alent to L1(ν) = L1

w(ν)) let { fn}∞
n=1 be a weak Cauchy sequence in L1(ν). In the

notation of the above construction, define f :=
∞
∑

j=1
ϕjχAj

pointwise on Ω (recall

the sets Aj, j ∈ N, are pairwise disjoint). The aim is to show that f ∈ L1(ν) and
fn → f in L1(ν)σ.

By Lemma 3.10(ii), each function ψr :=
r
∑

j=1
ϕjχAj

∈ L1(ν), for r ∈ N. More-

over, ψr → f pointwise on Ω as r → ∞. By Lemma 3.9(ii) and Lemma 3.10(i) the
set Ω\(⋃∞

j=1 Aj) is m-null. Due to (3.5), the σ-additivity of m (c.f. Lemma 3.9(ii)),
and the fact that Ω\(⋃∞

j=1 Aj) ∈ N0(m), we can conclude, for each A ∈ Σ, that
the sequence∫

A

ψrdν =
r

∑
j=1

∫
A

ϕjχAj
dν =

r

∑
j=1

m(A ∩ Aj) = m(A ∩ (
⋃r

j=1 Aj)), r ∈ N,

converges in X to m(A ∩ (
⋃∞

j=1 Aj)) = m(A) as r → ∞. Repeating the argument
used to establish (3.9) it follows that f ∈ L1(ν) with

∫
A

f dν = m(A), for A ∈ Σ

and that ψr → f in L1(ν) as r → ∞. In particular, ψr → f in L1(ν)σ and so, by
Lemma 3.7, J(ψr) → J( f ) in L1(ν)∗∗σ∗ . On the other hand, applying Lemma 3.8(ii)
and (3.6) yields

ξ(Ω) =
∞

∑
j=1

ξ(Aj) =
∞

∑
j=1

J(ϕjχAj
) = lim

r→∞
J(ψr) = J( f )

with the limit existing in L1(ν)∗∗σ∗ . In view of (3.1), with A := Ω, we conclude that
J( fn − f ) → 0 in L1(ν)∗∗σ∗ which, by Lemma 3.7, implies that fn → f in L1(ν)σ as
n→ ∞.

REMARK 3.11. (i) If there is a single (Rybakov) functional x∗1 ∈ X∗ such that
N0(ν) = N0(〈ν, x∗1〉), then clearly the proof of Theorem 3.6 can be simplified.
For Fréchet spaces X which admit a continuous norm (i.e., all Banach spaces and
many non-normable Fréchet spaces), every X-valued measure has such a Rybakov
functional, [12].

(ii) By Corollary 3.3 and Theorem 3.6, any one of compactness, weak com-
pactness or complete continuity of Iν force L1(ν) to be weakly sequentially com-
plete. The converse fails. The following example is over C rather than R. But, via
the usual complexification of Banach (and Fréchet) lattices and function spaces
over R (cf. [14], Chapters 2 and 3 of [25] and [26]), this causes no difficulties in
passing to spaces over C. If G is any infinite compact abelian group and λ any C-
valued, regular Borel measure on G, then the convolution operator Cλ : L1(G)→
L1(G), i.e., f 7→ λ ∗ f , for f ∈ L1(G), is continuous and induces the L1(G)-valued
measure mλ : A 7→ Cλ(χA). For every such λ the space L1(mλ) = L1(G) and
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so L1(mλ) is weakly sequentially complete ([25], Proposition 7.35). But, Imλ
is

compact (= weakly compact) if and only if λ is absolutely continuous with re-
spect to Haar measure whereas Imλ

is completely continuous if and only if the
Fourier–Stieltjes transform λ̂ of λ belongs to c0(Γ), with Γ the dual group of G
([25], Remark 7.36). Since there always exist λ with λ̂ /∈ c0(Γ), for such λ we see
that L1(mλ) is weakly sequentially complete, but Imλ

is neither compact, weakly
compact or completely continuous.

The Fréchet space L1(ν) can also be weakly sequentially complete for a dif-
ferent reason. A Fréchet-space-valued measure ν is said to have finite variation if
|νn|(Ω) < ∞ for each n ∈ N, where νn, for n ∈ N, is given by (2.3).

We have seen that L1(νn+1) ⊆ L1(νn), for n ∈ N, with a continuous inclu-
sion. Similarly, L1(|νn+1|) ⊆ L1(|νn|) continuously, for each n ∈ N. Then L1(ν) :=

L1(ν)/N (ν) is the Fréchet space
∞⋂

n=1
L1(νn) with the increasing sequence of norms

{‖ · ‖νn}∞
n=1. Define L1(|ν|) :=

∞⋂
n=1

L1(|νn|) = (
⋂∞

n=1 L1(|νn|)/N (ν), equipped

with the increasing sequence of norms

(3.10) ||| f |||(n)ν :=
∫
Ω

| f |d|νn|, f ∈
∞⋂

k=1

L1(|νk|), n ∈ N.

Then L1(|ν|) is also a Fréchet space ([17], p. 17) and is continuously included in
L1(ν) ([23], Lemma 2.4; [24], Lemma 2).

PROPOSITION 3.12. Let ν be any Fréchet-space-valued measure with finite varia-
tion. Then L1(|ν|) is weakly sequentially complete.

Proof. Since each lc-space L1(|νn|)σ, n ∈ N, is sequentially complete, the

product lc-space
∞
∏

n=1
L1(|νn|)σ is also sequentially complete ([20], (2) p. 296). More-

over, we have (∏∞
n=1 L1(|νn|))σ =

∞
∏

n=1
L1(|νn|)σ ([20], (3) p. 285) and so

∞
∏

n=1
L1(|νn|)

is weakly sequentially complete. But, L1(|ν|) is topologically isomorphic to a

closed (hence, also weakly closed) subspace of
∞
∏

n=1
L1(|νn|); Lemma 25.4 of [22]

or see the proof of (7) p. 208 in [20] as applied to L1(|ν|) and recall (3.10). Accord-
ingly, L1(|ν|) is weakly sequentially complete.

COROLLARY 3.13. Let ν be any Fréchet-space-valued measure such that L1(ν) =
L1(|ν|) as vector spaces. Then L1(ν) is weakly sequentially complete. In particular,
L1(ν) = L1

w(ν).
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Proof. Since χ
Ω
∈ L1(ν), also χ

Ω
∈ L1(|ν|) =

∞⋂
k=1

L1(|νk|) and hence, ν has

finite variation. As already noted, the natural inclusion of L1(|ν|) into L1(ν) is
always continuous and injective. So, as it is also surjective, the open mapping
theorem ensures that L1(ν) and L1(|ν|) are topologically isomorphic. Then apply
Proposition 3.12.

Whenever Iν is a compact map the vector measure ν necessarily satisfies
L1(ν) = L1(|ν|) ([23], Theorems 1 and 2). The converse is false, even for Banach
spaces; see Remark 3.11(ii).

Since L1(|ν|) is a Fréchet AL-space, we point out that Corollary 3.13 also
follows from Corollary 2.6 of [13].

It is instructive to analyze some non-trivial examples of vector measures ν
in non-normable Fréchet spaces and the ideal properties of Iν. So, let us consider
Examples 4.1–4.4 in [23]; the vector measures presented there, all denoted by m,
will here be denoted by ν.

For Examples 4.1 and 4.2 the Fréchet space X is, respectively, ω and s (rapidly
decreasing sequences). In both examples it is shown that L1(ν) is non-normable,
satisfies L1(ν) = L1(|ν|) but, Iν is not compact. So, Iν cannot be weakly com-
pact either (ω and s are Montel). As already noted, whenever X is a Montel, Iν is
completely continuous.

In the case of Example 4.4 in [23], where X is the reflexive Fréchet space
`p+ =

⋂
q>p

`q, 1 < p < ∞, it is shown that L1(ν) is a Banach space, satisfies

L1(ν) = L1(|ν|) but, Iν is not compact. Since each Banach space Xk = `pk for some
p < pk < ∞, it is reflexive. By Corollary 3.4, Iν is weakly compact. The claim is
that Iν is also completely continuous. To see this, let { fn}∞

n=1 be a null sequence in
L1(ν)σ and observe that Iν( fn)→ 0 in X if and only if (πk ◦ Iν)( fn) = Iνk ( fn)→ 0
in the Banach space Xk as n→ ∞, for each k ∈ N. Fix k ∈ N. Since L1(ν) = L1(νk)
as lc spaces ([23], p. 226) also fn → 0 in L1(νk)σ as n → ∞. Moreover, it follows
from p. 225 of [23] that Iνk : L1(νk) = L1(|νk|)→ Xk is Bochner representable. So,
by Corollary 9(c) in p. 56 of [11], νk has relatively compact range in Xk. Hence,
Iνk is completely continuous ([25], Corollary 2.43) and so Iνk ( fn) → 0 in Xk as
n→ ∞. This shows that Iν( fn)→ 0 in X, i.e., Iν is completely continuous.

For Example 4.3 of [23], where X = `p+, 1 < p < ∞, the inclusion L1(|ν|) ⊆
L1(ν) is proper with L1(|ν|) a Banach space whereas L1(ν) is non-normable. Since
the Xk, k ∈ N, are all reflexive, Corollary 3.4 yields that Iν is not weakly compact
(hence, not compact). To show Iν is not completely continuous is more involved.
The notation below is as in [23] except that m there is here denoted by ν.

Set hn := (n + 1)nα−1
n χF(n) > 0, for n ∈ N. With {en}∞

n=1 being the standard

basis vectors of X, fix x =
∞
∑

n=1
x(n)en. Since νk : Σ → Xk := `pk is a positive

vector measure, for each k ∈ N, it follows from Lemma 3.13 of [25] and pairwise
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disjointness of the sets {F(n)}∞
n=1 that∥∥∥ N

∑
n=1

x(n)hn −
M

∑
n=1

x(n)hn

∥∥∥
νk

=
∥∥∥ N

∑
n=M+1

x(n)hn

∥∥∥
νk
=
∥∥∥ ∫

Ω

∣∣∣ N

∑
n=M+1

x(n)hn

∣∣∣dνk

∥∥∥
Xk

(3.11)

=
∥∥∥ N

∑
n=M+1

|x(n)|
∫
Ω

hndνk

∥∥∥
Xk

=
∥∥∥ N

∑
n=M+1

|x(n)|en

∥∥∥
Xk

=
∥∥∥ N

∑
n=M+1

x(n)en

∥∥∥
Xk

,

for all M < N in N. So, {∑N
n=1 x(n)hn}∞

N=1 is Cauchy in L1(ν), with limit h, say.
For each j ∈ N, multiplication by χF(j) is a continuous operator from L1(ν) into
itself, which implies that

hχF(j) = lim
N→∞

N

∑
n=1

x(n)hnχF(j) = x(j)hj (in L1(ν)).

Accordingly, h =
∞
∑

n=1
x(n)hn pointwise on Ω and with the series converging in

L1(ν). By continuity of Iν we can conclude that

(3.12) Iν(h) =
∞

∑
n=1

x(n)Iν(hn) =
∞

∑
n=1

x(n)en = x (in X).

Moreover, since also
∞
∑

n=1
x(n)hn = h in L1(νk) and x =

∞
∑

n=1
x(n)en in Xk = `pk ,

for each k ∈ N, where we now interpret {en}∞
n=1 as the canonical basis in Xk, it

follows from (3.12) that

(3.13) ‖h‖νk = lim
N→∞

∥∥∥ N

∑
n=1

x(n)hn

∥∥∥
νk
= lim

N→∞

∥∥∥ N

∑
n=1

x(n)en

∥∥∥
Xk

= ‖x‖Xk ;

here we have used
∥∥∥ N

∑
n=1

x(n)hn

∥∥∥
νk

=
∥∥∥ N

∑
n=1

x(n)en

∥∥∥
Xk

for each N ∈ N, which can

be verified as in (3.11).

Define Φ : X → L1(ν) by Φ(x) :=
∞
∑

n=1
x(n)hn, for x ∈ X. Then Φ is injective

and, by (3.13) continuous since, for each k ∈ N, we have

(3.14) ‖Φ(x)‖νk = ‖x‖Xk , x ∈ X.

The range of Φ is precisely the subspace W ⊆ L1(ν) given by

W :=
{

h ∈ L1(ν) : h =
∞

∑
n=1

x(n)hn pointwise, for some x ∈ X
}

.

From (3.14) we see that ‖h‖νk = ‖Φ−1(h)‖Xk , h ∈W, for k ∈ N, that is, Φ−1 : W →
X is continuous when W is equipped with the relative topology from L1(ν). So,
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Φ is a topological isomorphism of X onto W, i.e., the restriction Iν|W = Φ−1 is
a surjective isomorphism of W onto X. Since hn → 0 in Wσ (as en → 0 in Xσ

and hn = Φ−1(en), n ∈ N), but Iν|W(hn) = en 9 0 in the Fréchet topology of X,
the operator Iν|W is not completely continuous. So, if H : W → L1(ν) denotes
the canonical inclusion, then the identity Iν|W = Iν ◦ H : W → X implies that Iν

cannot be completely continuous either.
Accordingly, for Example 4.3 of [23] the integration map Iν is neither com-

pact, weakly compact or completely continuous and it fails to satisfy L1(ν) =
L1(|ν|). Nevertheless, since the reflexive space X cannot contain an isomorphic
copy of c0 we still have L1(ν) = L1

w(ν) ([19], p. 31 Theorem 1) that is, L1(ν) is
weakly sequentially complete. For a Banach space example exhibiting these fea-
tures (i.e., those of Example 4.3 in [23]) we refer to Example 3.26(ii) of [25].

4. LATTICE PROPERTIES OF Lp
w(ν) AND Lp(ν)

Let (F, τ) be a metrizable lc-solid Riesz space with a fundamental sequence
of Riesz seminorms {qn}n∈N ([1], Chapter 2, Section 6). Recall that τ is called
a Lebesgue (respectively σ-Lebesgue) topology, if uα ↓ 0 implies uα

τ→ 0 in F (re-
spectively uk ↓ 0 implies uk

τ→ 0 in F) ([1], Chapter 3). The space F has the Fa-
tou (respectively σ-Fatou) property if, for every increasing net {uα}α (respectively
increasing sequence {uk}k) in the positive cone F+ of F which is topologically
bounded in F, the element u := sup uα exists in F+ and qn(uα) ↑α qn(u) (respec-
tively u := sup uk exists in F+ and qn(uk) ↑k qn(u)), for n ∈ N.

Let (Ω, Σ, µ) be a σ-finite measure space, M := L0(µ), and {ρn}n∈N be
a fundamental (i.e.

⋂
n∈N

ρ−1
n ({0}) = {0}) increasing sequence of function semi-

norms on M (see Chapter 15 of [31] for the definition of a function seminorm).
The metrizable function space induced by {ρn}n∈N is the locally solid, metrizable lcs

L{ρn} := { f ∈ M : ρn( f ) < ∞, ∀n ∈ N}

equipped with the topology induced by {ρn}n∈N; see Lemma 22.5 of [22]. If L{ρn}
is also complete, then it is called a Fréchet function space (briefly, F.f.s.). Given
a F.f.s. there is no distinction between using nets or sequences when specifying
either a Lebesgue topology or the Fatou property ([5], Section 2). A function
seminorm ρ in M is said to have the Fatou property if ρ(uk) ↑ ρ(u) whenever
0 6 uk ↑ u inM.

Let X be a Fréchet space and ν : Σ → X be a measure. It was noted in
Theorem 4.5.11(ii) of [26] that Lp(ν), Lp

w(ν) are Fréchet lattices for the pointwise
order. Actually, they are “better” than just being Fréchet lattices. Let µ be any
control measure for ν (e.g., the one in the proof of Theorem 2.5 in [4]). It was
shown in Example 1 of [5] that both L1

w(ν), L1(ν) are F.f.s.’ relative to (Ω, Σ, µ).
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The next result shows the same is true of Lp
w(ν) Lp(ν) and that they have special

properties.

THEOREM 4.1. Let X be a metrizable lcs, ν : Σ→ X be a vector measure and µ be
a control measure for ν. Then, for each 1 6 p < ∞, the increasing sequence of functions
seminorms {(ρν)

(p)
n }n∈N defined, relative to (Ω, Σ, µ), by

(ρν)
(p)
n ( f ) := ‖ f ‖(n)ν,p f ∈ L0(µ) = L0(ν), n ∈ N,

makes Lp
w(ν) a F.f.s. with the Fatou property.

Moreover, if X is a Fréchet space, then Lp(ν) is a F.f.s. for the topology τ(p) in-
duced by the increasing sequence of function seminorms {(ρ̃ν)

(p)
n }n∈N defined, relative

to (Ω, Σ, µ), by

(ρ̃ν)
(p)
n ( f ) :=

{
(ρν)

(p)
n ( f ) if f ∈ Lp(ν),

∞ if f ∈ L0(µ)\Lp(ν) = L0(ν)\Lp(ν),

and τ(p) is a Lebesgue topology.

Proof. By Example 1 of [5] we know that L1
w(ν) = L

{(ρν)
(1)
n }

and that L1(ν) =

L
{(ρ̃ν)

(1)
n }

. Hence, Lp
w(ν) = L

{(ρν)
(p)
n }

and Lp(ν) = L
{(ρ̃ν)

(p)
n }

.

According to Section 65, Theorem 4 of [31] and the formula (2.1), the func-
tion seminorm (ρν)

(p)
n has the Fatou property for each n ∈ N (since the norm of

the Lp-space of any positive measure has the Fatou property). Then L{ρn} is a
F.f.s. with the Fatou property ([5], Theorem 2.4).

To check that τ(p) is a Lebesgue topology, let {uk}k be a sequence in Lp(ν)+

with uk ↓ 0. Then each up
k ∈ L1(ν)+ and up

k ↓ 0. Fix n ∈ N. As τ(1) is a Lebesgue

topology ([4], Section 3) it follows that (ρ̃ν)
(1)
n (up

k ) → 0 as k → ∞. Hence, also

(ρ̃ν)
(p)
n (uk)→ 0 as k→ ∞. As n ∈ N is arbitrary, this shows that τ(p) is a Lebesgue

topology.

For ν a Banach-space-valued measure, Theorem 4.1 is known. Indeed, that
Lp

w(ν) has the Fatou property occurs in Proposition 1 of [10], Proposition 2.1 and
Lemma 3.8 of [15], and for τ(p) being a Lebesgue topology (i.e., the norm is order
continuous) we refer to p. 291 of [10], and Proposition 2.1 of [15].

The Lorentz function seminorm ρL, associated to any function seminorm ρ :
M→ [0, ∞], is defined by

ρL(u) := inf
{

lim
k

ρ(uk) : uk ∈ M+, uk ↑ u
}

, u ∈ M+,

in which case ρL 6 ρ. Moreover, ρL is the largest function seminorm with the Fa-
tou property which is majorized by ρ ([31], Chapter 15, Section 66). Let {ρn}n∈N
be any increasing fundamental sequence of function seminorms onM. Accord-
ing to Definition 2.6 of [5] the Fatou completion of the metrizable function space
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L{ρn} is defined as the F.f.s. (L{ρn})
F := L{(ρn)L} (i.e., the minimal F.f.s. in L0(µ)

with the Fatou property and containing L{ρn} continuously, as (ρn)L 6 ρn, ∀n ∈
N). It is known that (L1(ν))F = L1

w(ν) ([5], Theorem 3.1); see p. 191 of [8] for Ba-
nach spaces. For the notion of the σ-order continuous part (L{ρn})a of L{ρn} see pp.
331–332 of [32]. It is known that (L1

w(ν))a = L1(ν) ([4], Theorem 3.2); for Banach
spaces see p. 192 of [8]. The above relationships remain valid for all Lp-spaces;
for Banach spaces see p. 289 and p. 291 of [10].

THEOREM 4.2. Let ν be a Fréchet space-valued measure and p > 1. Then we have
(Lp(ν))F = Lp

w(ν) and (Lp
w(ν))a = Lp(ν).

Proof. Let µ be any control measure for ν. Fix n ∈ N. Clearly (ρν)
(p)
n 6

(ρ̃ν)
(p)
n in L0(µ) with the function seminorms (ρν)

(p)
n , n ∈ N, having the Fatou

property; see Theorem 4.1. By maximality of the Lorentz seminorm ((ρ̃ν)
(p)
n )L

it follows that (ρν)
(p)
n 6 ((ρ̃ν)

(p)
n )L in L0(µ). Hence, (Lp(ν))F ⊆ Lp

w(ν). On the
other hand, given f ∈ Lp

w(ν)
+, choose Σ-simple functions 0 6 sk ↑ f . Since

((ρ̃ν)
(p)
n )L 6 (ρ̃ν)

(p)
n with {sk}k ⊆ Lp(ν), we have, for each n ∈ N, that

((ρ̃ν)
(p)
n )L(sk) 6 (ρ̃ν)

(p)
n (sk) = (ρν)

(p)
n (sk) 6 (ρν)

(p)
n ( f ) < ∞, k ∈ N.

Accordingly, {sk}k is topologically bounded in (Lp(ν))F with sk ↑ f . By the
Fatou property of (Lp(ν))F we conclude that f ∈ (Lp(ν))F. This shows that
(Lp(ν))F = Lp

w(ν), with equality as vector spaces and also topologically (by the
open mapping theorem).

As already noted, τ(p) is a Lebesgue topology for Lp(ν). Since Lp(ν) has
the relative topology from Lp

w(ν), we have Lp(ν) ⊆ (Lp
w(ν))a. Conversely, let

f ∈ (Lp
w(ν))a and assume f > 0. Choose Σ-simple functions {sk}k, with 0 6

sk ↑ f (ν-a.e.). Then 0 6 ( f − sk) 6 f for all k with ( f − sk) ↓ 0. By definition
of f ∈ (Lp

w(ν))a this implies that { f − sk}k converges to 0 in Lp
w(ν), i.e., {sk}k

converges to f in Lp
w(ν). But, {sk}k ⊆ Lp(ν) with Lp(ν) closed in L1

w(ν). So,
f ∈ Lp(ν). Since every f ∈ (Lp

w(ν))a has a decomposition f = f+ − f− with
f+, f− ∈ (Lp

w(ν))a, we have (Lp
w(ν))a ⊆ Lp(ν). Thus, (Lp

w(ν))a = Lp(ν).

The previous results yield information about Lp(ν), Lp
w(ν); for p = 1 see

Proposition 3.4 of [5]. For the Banach space version of the following result see
Proposition 3 of [10], Corollary 3.10 of [15]. A Fréchet lattice F is a KB-space if
every topologically bounded, increasing sequence in F+ is convergent.

COROLLARY 4.3. Let ν be a Fréchet-space-valued measure and p > 1. Then the
following statements are equivalent:

(i) L1
w(ν) = L1(ν).

(ii) Lp
w(ν) = Lp(ν).

(iii) The topology of Lp
w(ν) is Lebesgue.

(iv) Lp(ν) has the Fatou property.
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(v) Lp
w(ν) is a KB-space.

(vi) Lp(ν) is a KB-space.
(vii) Lp

w(ν) contains no lattice copy of c0.
(viii) Lp(ν) contains no lattice copy of c0.

(ix) Lp
w(ν) is weakly sequentially complete.

(x) Lp(ν) is weakly sequentially complete.

Proof. (i)⇔ (ii) Evident from the definitions.
(ii)⇔ (iii) Theorem 4.1 and the second equality in Theorem 4.2.
(ii)⇔ (iv) Theorem 4.1 and the first equality in Theorem 4.2.
(iii)⇔ (v)⇔ (vii)⇔ (ix) are inmediate from Lemma 3.3 of [5] since Lp

w(ν)
always has the Fatou property; see Theorem 4.1.

(iv)⇔ (vi)⇔ (viii)⇔ (x) follow from Lemma 3.3 of [5] since τ(p) is always
a Lebesgue topology for Lp(ν); see Theorem 4.1.
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