PERTURBATION OF SEMI-FREDHOLM OPERATORS ON PRODUCTS OF BANACH SPACES

JOSÉ GIMÉNEZ, MANUEL GONZÁLEZ and ANTONIO MARTÍNEZ-ABEJÓN
Dedicated to Professor Antonio Martinón on the occasion of his 60th birthday.

Communicated by Florian-Horia Vasilescu

Abstract

We show new examples of Banach spaces X and Y for which the component $P \Phi_{+}(X, Y)$ of the perturbation class for the upper semi-Fredholm operators coincides with the strictly singular operators, or the component $P \Phi_{-}(X, Y)$ of the perturbation class for the lower semi-Fredholm operators coincides with the strictly cosingular operators. We also show new examples for which the equalities fail.

Keywords: Semi-Fredholm operator, strictly singular, strictly cosingular, perturbation class.

MSC (2000): 47A53, 47A55.

1. INTRODUCTION

A (continuous linear) operator $T \in \mathcal{L}(X, Y)$ is upper semi-Fredholm if its kernel $N(T)$ is finite dimensional and its range $R(T)$ is closed; and T is said to be lower semi-Fredholm if $R(T)$ is finite codimensional in Y (which entails that $R(T)$ is closed, following Lemma 3.2.4 in [11]). We denote respectively by Φ_{+} and Φ_{-}the classes of all upper semi-Fredholm and lower semi-Fredholm operators. The class of Fredholm operators is $\Phi:=\Phi_{+} \cap \Phi_{-}$. Given a class \mathcal{A} of operators, for each pair X, Y of Banach spaces we have a component given by $\mathcal{A}(X, Y):=\{T \in \mathcal{L}(X, Y): T \in \mathcal{A}\}$. We write $\mathcal{A}(X)$ in the case $X=Y$.

Let \mathcal{A} be any of the classes Φ_{+}, Φ_{-}or Φ. The perturbation class of \mathcal{A} is defined by its components:

$$
P \mathcal{A}(X, Y):=\{K \in \mathcal{L}(X, Y): K+T \in \mathcal{A}(X, Y) \text { for all } T \in \mathcal{A}(X, Y)\},
$$

when $\mathcal{A}(X, Y)$ is non-empty.
The components $P \mathcal{A}(X, Y)$ have been studied by many authors, but there are no good descriptions of them in general. Kato proved that the strictly singular operators $\mathcal{S S}$ are contained in $P \Phi_{+}$(Theorem 5.2 in [22]) and Vladimirskii proved
that the strictly cosingular operators $\mathcal{S C}$ are contained in $P \Phi_{-}$(Corollary 1 in [31]). Moreover, the classes $P \Phi_{+}$and $P \Phi_{-}$are both contained in the ideal $\mathcal{I} n$ of inessential operators [7], which coincides with $P \Phi$ when this perturbation class is defined.

Recall that an operator $T \in \mathcal{L}(X, Y)$ is said to be strictly singular if the restriction $\left.T\right|_{E}$ to a closed subspace E is an isomorphism only if E is finite dimensional; T is said to be strictly cosingular if for every closed subspace F of Y the composition $Q_{F} T$ is surjective only if F is finite codimensional, where Q_{F} is the quotient operator onto Y / F; and T is said to be inessential if $I-S T \in \Phi(X)$ for every $S \in \mathcal{L}(Y, X)$.

The perturbation classes problem for semi-Fredholm operators asks whether the identities $P \Phi_{+}(X, Y)=\mathcal{S S}(X, Y)$ and $P \Phi_{-}(X, Y)=\mathcal{S C}(X, Y)$ hold whenever $\Phi_{+}(X, Y)$ and $\Phi_{-}(X, Y)$ are non-empty respectively. Observe that a positive answer to this problem is interesting because it gives intrinsic characterizations for the perturbation classes; i.e., characterizations involving the action of an operator $T \in \mathcal{L}(X, Y)$ on subspaces or quotients, instead of considering the properties of the sums $T+U$ with all the operators in $\Phi_{+}(X, Y)$ or $\Phi_{-}(X, Y)$. It was proved in [16] that there exists a separable space Z for which $P \Phi_{+}(Z) \neq \mathcal{S S}(Z)$ and $P \Phi_{-}\left(Z^{*}\right) \neq \mathcal{S C}\left(Z^{*}\right)$. Since the space Z is a finite product of the recently constructed hereditarily indecomposable spaces [21], the perturbation classes problem remains open for many classical Banach spaces. This problem was formulated by Gohberg, Markus and Feldman (see page 74 in [14]) for the upper semiFredholm operators. Later, it was explicitly stated in page 101 in [11], 26.6.12 in [26], Section 3 in [30], [6] and [7].

In Section 2 we give a fairly complete list of examples of spaces X and Y for which there is a positive answer to the perturbation classes problem. We observe that the proofs of these results depend on very specific properties of the spaces considered and that most of the times these properties are not satisfied by the product of two different spaces.

In Section 3 we show that, under some conditions, the product of spaces for which there is a positive answer to the perturbation classes problem provide new examples. More precisely, given Banach spaces X_{1}, X_{2}, Y_{1} and Y_{2} for which $P \Phi_{+}\left(X_{1}, Y_{1}\right)=\mathcal{S S}\left(X_{1}, Y_{1}\right)$ and $P \Phi_{+}\left(X_{2}, Y_{2}\right)=\mathcal{S} \mathcal{S}\left(X_{2}, Y_{2}\right)$, we find conditions implying

$$
P \Phi_{+}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)=\mathcal{S S}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)
$$

and we obtain similar results for the components of $P \Phi_{-}$and $\mathcal{S C}$.
We observe that in general the perturbation classes $P \Phi_{+}$and $P \Phi_{-}$do not have a good behavior under products. Indeed, it was proved in [16] that:
(i) $P \Phi_{+}(X)=\mathcal{S S}(X)$ and $P \Phi_{+}(Y)=\mathcal{S S}(Y) \nRightarrow P \Phi_{+}(X \times Y)=\mathcal{S S}(X \times Y)$;
(ii) $P \Phi_{-}(X)=\mathcal{S C}(X)$ and $P \Phi_{-}(Y)=\mathcal{S C}(Y) \nRightarrow P \Phi_{-}(X \times Y)=\mathcal{S C}(X \times Y)$;
and it was proved in [7] that $P \Phi_{+}(X, Y \times C[0,1])=\mathcal{S S}(X, Y \times C[0,1])$ and $P \Phi_{-}\left(X \times \ell_{1}, Y\right)=\mathcal{S C}\left(X \times \ell_{1}, Y\right)$ if X and Y are separable.

2. PRELIMINARIES

In the following two results we show examples of Banach spaces X and Y for which there are positive answers for the perturbation classes problem.

Theorem 2.1. Suppose $\Phi_{+}(X, Y) \neq \varnothing$. Then $P \Phi_{+}(X, Y)=\mathcal{S} \mathcal{S}(X, Y)$ in the following cases:
(i) Y subprojective [23], [4];
(ii) $X=Y=L_{p}(\mu), 1 \leqslant p \leqslant \infty$ [32];
(iii) X hereditarily indecomposable (Theorem 3.14 in [4]);
(iv) X is separable and Y contains a complemented copy of $C[0,1][7]$;
(v) $X=L_{p}(0,1)$ when $1<p<2$ and Y satisfies the Orlicz property [20];
(vi) $X=L_{1}(0,1)$ and Y is weakly sequentially complete [20];
(vii) $X=L_{p}(0,1)$ with $2 \leqslant p \leqslant \infty$ [20];
(viii) X strongly subprojective [19].

Theorem 2.2. Suppose $\Phi_{-}(X, Y) \neq \varnothing$. Then $P \Phi_{-}(X, Y)=\mathcal{S C}(X, Y)$ in the following cases:
(i) X superprojective [23], [4];
(ii) $X=Y=L_{p}(\mu), 1 \leqslant p \leqslant \infty[32]$;
(iii) Y quotient indecomposable (Theorem 3.14 in [4]);
(iv) X contains a complemented copy of ℓ_{1} and Y is separable [7];
(v) $Y=L_{p}(0,1)$ when $2<p<\infty$ and X^{*} satisfies the Orlicz property [20];
(vi) $Y=L_{p}(0,1)$ with $1 \leqslant p \leqslant 2$ [20];
(vii) Y strongly superprojective [19].

Let us recall that a Banach space X is said to be subprojective if each infinite dimensional closed subspace of X contains an infinite dimensional subspace M complemented in X; if M can be chosen so that its complement is isomorphic to X, then X is said to be strongly subprojective.

Example 2.3 ([19]). The following spaces are strongly subprojective:
(1) The sequence spaces ℓ_{p} for $1 \leqslant p<\infty$ and c_{0}.
(2) The James space J.
(3) The Lorentz sequence spaces $d(w, p)$ for $1 \leqslant p<\infty$ and $w=\left(w_{n}\right)$ a nonincreasing null sequence with $\sum_{n=1}^{\infty} w_{n}$ divergent. In particular, $\ell_{p, q}$ for $1 \leqslant p, q<\infty$.
(4) The Baernstein spaces B_{p} for $1<p<\infty$.
(5) The Tsirelson space T.
(6) The function spaces $L_{p}(0,1)$ for $2 \leqslant p<\infty$.
(7) The function spaces $L_{p}(0, \infty) \cap L_{2}(0, \infty)$ for $1 \leqslant p \leqslant 2$.
(7) The Lorentz spaces $\Lambda_{W, p}(0,1), L_{p, q}(0, \infty)$ and $L_{p, q}(0,1)$ for $2<p<\infty$ and $1 \leqslant q<\infty$.
(9) The spaces of continuous functions $C(K)$, with K a scattered compact.
(10) Closed subspaces of the previous examples.

A Banach space X is said to be superprojective if each of its infinite codimensional closed subspaces is contained in some complemented infinite codimensional closed subspace of X; if moreover that subspace can be chosen isomorphic to X, then X is said to be strongly superprojective.

EXAMPLE 2.4 ([19]). The following spaces are strongly superprojective:
(1) The sequence spaces ℓ_{p} for $1<p<\infty$ and c_{0}.
(2) The dual J^{*} of James' space.
(3) The dual spaces $d(w, p)^{*}$ of $d(w, p)$ for $1 \leqslant p<\infty$ and $w=\left(w_{n}\right)$ a nonincreasing null sequence with $\sum_{n=1}^{\infty} w_{n}$ divergent. In particular, $\ell_{p, q}^{*}$ for $1 \leqslant p, q<\infty$.
(4) The dual spaces B_{p}^{*} of Baernstein's spaces for $1<p<\infty$.
(5) The dual T^{*} of Tsirelson's space.
(6) The function spaces $L_{p}(0,1)$ for $1<p \leqslant 2$.
(7) The function spaces $L_{p}(0, \infty)+L_{2}(0, \infty)$ for $2 \leqslant p<\infty$.
(8) The dual spaces $\Lambda_{W, p}(0,1)^{*}, L_{p, q}(0, \infty)^{*}$ and $L_{p, q}(0,1)^{*}$ for $2<p<\infty$ and $1<q<\infty$.
(9) The spaces of continuous functions $C(K)$, with K a scattered compact.
(10) Quotients of the previous examples.

Recall that a Banach space X is said to be indecomposable if it does not contain infinite dimensional closed subspaces M and N so that $X=M \oplus N$; equivalently, for every projection P on X, the range $R(P)$ or the kernel $N(P)$ is finite dimensional.

The space X is said to be hereditarily indecomposable (H.I., for short) if every closed subspace of X is indecomposable; and X is said to be quotient indecomposable (Q.I., for short) if every quotient of X is indecomposable.

3. PERTURBATION CLASSES ON PRODUCTS

The following result, proved in [4], is useful to determine the perturbation classes on product spaces. Observe that, although $P \Phi$ determines the operator ideal of inessential operators, the examples in [16] show that the classes $P \Phi_{+}$and $P \Phi_{-}$do not determine operator ideals.

Lemma 3.1 (Lemma 3.3 in [4]). Let \mathcal{A} be one of the classes Φ_{+}or Φ_{-}. Suppose that $\mathcal{A}(X, Y) \neq \varnothing$ and let $K \in P \mathcal{A}(X, Y), A \in L(X)$ and $B \in L(Y)$. Then $B K A \in$ $P \mathcal{A}(X, Y)$.

We will adopt the following notation: let $X_{1}, X_{2}, X, Y_{1}, Y_{2}$ and Y be Banach spaces. Every operator $T \in \mathcal{L}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)$ admits a matricial representation $T=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with $A \in \mathcal{L}\left(X_{1}, Y_{1}\right), B \in \mathcal{L}\left(X_{2}, Y_{1}\right), C \in \mathcal{L}\left(X_{1}, Y_{2}\right)$ and $D \in$
$\mathcal{L}\left(X_{2}, Y_{2}\right)$. Every operator $T \in \mathcal{L}\left(X_{1} \times X_{2}, Y\right)$ admits a matricial representation

$$
T=(A, B)
$$

with $A \in \mathcal{L}\left(X_{1}, Y\right), B \in \mathcal{L}\left(X_{2}, Y\right)$. Finally, every operator $T \in \mathcal{L}\left(X, Y_{1} \times Y_{2}\right)$ admits a matricial representation

$$
T=\binom{A}{C}
$$

or (A, C) for short, with $A \in \mathcal{L}\left(X, Y_{1}\right)$ and $C \in \mathcal{L}\left(X, Y_{2}\right)$.
Proposition 3.2. Let \mathcal{A} denote Φ_{+}or Φ_{-}.
(i) Suppose $\mathcal{A}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right) \neq \varnothing$ and let $T \in \mathcal{L}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)$. Then $T \in P \mathcal{A}$ if and only if $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & B \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ C & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & D\end{array}\right)$ belong to $P \mathcal{A}$.
(ii) Assume $\mathcal{A}\left(X, Y_{1} \times Y_{2}\right) \neq \varnothing$ and let $T \in \mathcal{L}\left(X, Y_{1} \times Y_{2}\right)$. Then $T \in P \mathcal{A}$ if and only if $\binom{A}{0}$ and $\binom{0}{C}$ belong to $P \mathcal{A}$.
(iii) Assume $\mathcal{A}\left(X_{1} \times X_{2}, Y\right) \neq \varnothing$ and let $T \in \mathcal{L}\left(X_{1} \times X_{2}, Y\right)$. Then $T \in P \mathcal{A}$ if and only if $(A, 0)$ and $(0, B)$ belong to $P \mathcal{A}$.

Proof. (i) The "only if" implication follows from Lemma 3.1, since these matrices can be written respectively as $P_{1} T Q_{1}, P_{1} T Q_{2}, P_{2} T Q_{1}$ and $P_{2} T Q_{2}$, where P_{i} is the projection of $Y_{1} \times Y_{2}$ onto Y_{i}, and Q_{i} is the projection of $X_{1} \times X_{2}$ onto X_{i}.

For the converse, it is enough to observe that $\operatorname{P\mathcal {A}}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)$ is a subspace of $\mathcal{L}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)$.

The proofs of statements (ii) and (iii) are similar.
Let \mathcal{A} denote one of the classes Φ_{+}or Φ_{-}. Observe that an operator

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \in \mathcal{L}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)
$$

belongs to \mathcal{A} if and only if both A and D belong to \mathcal{A}. As a consequence, we obtain the following:

REMARK 3.3. Let \mathcal{A} denote Φ_{+}or Φ_{-}and suppose that both $\mathcal{A}\left(X_{1}, Y_{1}\right)$ and $\mathcal{A}\left(X_{2}, Y_{2}\right)$ are nonempty; then $\mathcal{A}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right) \neq \varnothing$.

It is not difficult to show that $T \in P \mathcal{A}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right)$ implies $A \in$ $P \mathcal{A}\left(X_{1}, Y_{1}\right)$ and $D \in P \mathcal{A}\left(X_{2}, Y_{2}\right)$. However, the examples in [16] show that we cannot derive the same result for B and C. Thus, in order to get the result for B and C we have to impose some restrictions.

Proposition 3.4. Suppose $\Phi_{+}\left(X_{1}, Y\right) \neq \varnothing \neq \Phi_{+}\left(X_{2}, Y\right)$ and $Y \simeq Y \times Y$. Let $(A, B) \in \mathcal{L}\left(X_{1} \times X_{2}, Y\right)$. Then

$$
(A, B) \in P \Phi_{+} \Rightarrow A \in P \Phi_{+}\left(X_{1}, Y\right), B \in P \Phi_{+}\left(X_{2}, Y\right)
$$

Proof. It follows from Proposition 3.2 that both $(A, 0)$ and $(0, B)$ belong to $P \Phi_{+}$. By hypothesis, there exist closed subspaces Y_{1} and Y_{2} of Y such that $Y_{1} \simeq$ $Y_{2} \simeq Y=Y_{1} \oplus Y_{2}$. Thus, for each $i=1,2$, there exists an isomorphism $U_{i} \in \mathcal{L}(Y)$ with range $R\left(U_{i}\right)=Y_{i}$; moreover, $\Phi_{+}\left(X_{1} \times X_{2}, Y\right) \neq \varnothing$.

Let $T_{i} \in \Phi_{+}\left(X_{i}, Y\right)(i=1,2)$. Then $\left(U_{1} T_{1}, U_{2} T_{2}\right) \in \Phi_{+}$. Since $\left(U_{1} A, 0\right) \in$ $P \Phi_{+}$, we have $\left(U_{1}\left(T_{1}+A\right), U_{2} T_{2}\right) \in \Phi_{+}$. Then $U_{1}\left(T_{1}+A\right) \in \Phi_{+}$, hence $T_{1}+A \in$ $\Phi_{+}\left(X_{1}, Y\right)$ (Proposition A.1.5 in [18]), and therefore, $A \in P \Phi_{+}$.

Similarly, it can be proved that $B \in P \Phi_{+}$.
In order to see that the hypothesis $Y \simeq Y \times Y$ is necessary in Proposition 3.4, let X be a complex H.I. Banach space and let M be a closed subspace of X with $\operatorname{dim} M=\operatorname{dim} X / M=\infty$.

We take $X_{1}=M, X_{2}=X$ and $Y=M \times X$, we denote by $J: M \longrightarrow X$ the natural inclusion and we consider the operator $A \in \mathcal{L}(M, M \times X)$ defined by $A(m):=(0, \mathrm{Jm})$. It was proved in [16] that $(A, 0) \in P \Phi_{+}\left(X_{1} \times X_{2}, Y\right)$, but it is clear that $A \notin P \Phi_{+}\left(X_{1}, Y\right)$.

THEOREM 3.5. Suppose that $\Phi_{+}\left(X_{1}, Y\right) \neq \varnothing \neq \Phi_{+}\left(X_{2}, Y\right), Y \simeq Y \times Y$ and $P \Phi_{+}\left(X_{i}, Y\right)=\mathcal{S S}\left(X_{i}, Y\right)$ for $i=1,2$. Then $P \Phi_{+}\left(X_{1} \times X_{2}, Y\right)=\mathcal{S S}\left(X_{1} \times X_{2}, Y\right)$.

Proof. Let $(A, B) \in P \Phi_{+}\left(X_{1} \times X_{2}, Y\right)$. Thus, by Proposition 3.4 and the hypothesis, $A \in P \Phi_{+}\left(X_{1}, Y\right)=\mathcal{S S}\left(X_{1}, Y\right)$ and $B \in P \Phi_{+}\left(X_{2}, Y\right)=\mathcal{S S}\left(X_{2}, Y\right)$. But $\mathcal{S S}$ is an operator ideal, so $(A, B) \in \mathcal{S S}\left(X_{1} \times X_{2}, Y\right)$.

Observe that if X is a complex H.I. Banach space and M is a closed subspace of X with $\operatorname{dim} M=\operatorname{dim} X / M=\infty$, then $P \Phi_{+}(M, M \times X)=\mathcal{S S}(M, M \times X)$ and $P \Phi_{+}(X, M \times X)=\mathcal{S S}(X, M \times X)$ by Theorem 2.1, but it was proved in [16] that $P \Phi_{+}(M \times X, M \times X) \neq \mathcal{S S}(M \times X, M \times X)$.

Proposition 3.6. Suppose $\Phi_{+}\left(X, Y_{1}\right) \neq \varnothing \neq \Phi_{+}\left(X, Y_{2}\right)$ and let $(A, C) \in$ $\mathcal{L}\left(X, Y_{1} \times Y_{2}\right)$. Then

$$
\binom{A}{C} \in P \Phi_{+} \Rightarrow A \in P \Phi_{+}\left(X, Y_{1}\right), C \in P \Phi_{+}\left(X, Y_{2}\right)
$$

Proof. Let $T \in \Phi_{+}\left(X, Y_{1}\right)$. Then $(T, 0) \in \Phi_{+}\left(X, Y_{1} \times Y_{2}\right)$, and by Proposition $3.2,(A, 0) \in P \Phi_{+}$, so we have $(T+A, 0) \in \Phi_{+}$; hence $T+A \in \Phi_{+}\left(X, Y_{1}\right)$, and we have proved that $A \in P \Phi_{+}$.

Similarly, we get $C \in P \Phi_{+}$.
THEOREM 3.7. Suppose $\Phi_{+}\left(X, Y_{1}\right) \neq \varnothing \neq \Phi_{+}\left(X, Y_{2}\right)$ and $P \Phi_{+}\left(X, Y_{i}\right)=$ $\mathcal{S S}\left(X, Y_{i}\right)$ for $i=1,2$. Then $P \Phi_{+}\left(X, Y_{1} \times Y_{2}\right)=\mathcal{S S}\left(X, Y_{1} \times Y_{2}\right)$.

Proof. Let $T \in P \Phi_{+}\left(X, Y_{1} \times Y_{2}\right)$ be an operator with matricial representation

$$
\binom{A}{C}
$$

By Proposition 3.6 and the hypothesis, A belongs to $P \Phi_{+}\left(X, Y_{1}\right)=\mathcal{S S}\left(X, Y_{1}\right)$ and C belongs to $P \Phi_{+}\left(X, Y_{2}\right)=\mathcal{S S}\left(X, Y_{2}\right)$. Since $\mathcal{S S}$ is an operator ideal, $(A, C) \in$ $\mathcal{S S}\left(X, Y_{1} \times Y_{2}\right)$.

Let us consider now the perturbation classes for lower semi-Fredholm operators.

Proposition 3.8. Suppose $\Phi_{-}\left(X, Y_{1}\right) \neq \varnothing \neq \Phi_{-}\left(X, Y_{2}\right)$ and $X \simeq X \times X$. Let $(A, C) \in \mathcal{L}\left(X, Y_{1} \times Y_{2}\right)$. Then

$$
(A, C) \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right) \Rightarrow A \in P \Phi_{-}\left(X, Y_{1}\right), C \in P \Phi_{-}\left(X, Y_{2}\right)
$$

Proof. Assume $(A, C) \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)$. Then, by Proposition 3.2,

$$
\binom{A}{0} \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right) \quad \text { and } \quad\binom{0}{C} \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)
$$

Take any pair of operators $T_{1} \in \Phi_{-}\left(X, Y_{1}\right)$ and $T_{2} \in \Phi_{-}\left(X, Y_{2}\right)$. By hypothesis, X contains two subspaces X_{1} and X_{2} isomorphic to X and such that $X=X_{1} \oplus X_{2}$. Let $U_{1} \in \mathcal{L}(X)$ be an operator which is bijective from X_{1} onto X and has kernel $N\left(U_{1}\right)=X_{2}$, and let $U_{2} \in \mathcal{L}(X)$ be an operator which is bijective from X_{2} onto X and has kernel $N\left(U_{2}\right)=X_{1}$. Note that

$$
\binom{T_{1} U_{1}}{T_{2} U_{2}} \in \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)
$$

Moreover, by Lemma 3.1,

$$
\binom{A U_{1}}{0} \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)
$$

Therefore,

$$
\binom{\left(T_{1}+A\right) U_{1}}{T_{2} U_{2}} \in \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)
$$

so $\left(T_{1}+A\right) U_{1} \in \Phi_{-}\left(X, Y_{1}\right)$; hence $T_{1}+A \in \Phi_{-}\left(X, Y_{1}\right)$ (see Proposition A.1.5 in [18]), which proves that $A \in P \Phi_{-}\left(X, Y_{1}\right)$.

With a similar procedure, we prove that $C \in P \Phi_{-}\left(X, Y_{2}\right)$.
In order to see that the hypothesis $X \simeq X \times X$ is necessary in Proposition 3.8, let Z be a complex reflexive H.I. Banach space and let M be a closed subspace of Z with $\operatorname{dim} M=\operatorname{dim} Z / M=\infty$.

We take $X=M^{*} \times Z^{*}, Y_{1}=M^{*}$ and $Y_{2}=Z^{*}$, we denote by $J: M \longrightarrow Z$ the natural inclusion and we consider the operator $B \in \mathcal{L}\left(M^{*} \times Z^{*}, M^{*}\right)$ defined by $B\left(m^{*}, x^{*}\right):=J^{*} x^{*}$. It was proved in [16] that $(B, 0) \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)$, but it is clear that $B \notin P \Phi_{-}\left(X, Y_{1}\right)$.

THEOREM 3.9. Suppose that $\Phi_{-}\left(X, Y_{1}\right) \neq \varnothing \neq \Phi_{-}\left(X, Y_{2}\right), P \Phi_{-}\left(X, Y_{i}\right)=$ $\mathcal{S C}\left(X, Y_{i}\right)$ for $i=1,2$ and $X \simeq X \times X$. Then $P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)=\mathcal{S C}\left(X, Y_{1} \times Y_{2}\right)$.

Proof. Take an operator $(A, C) \in P \Phi_{-}\left(X, Y_{1} \times Y_{2}\right)$. By Proposition 3.8,

$$
A \in P \Phi_{-}\left(X, Y_{1}\right)=\mathcal{S C}\left(X, Y_{1}\right), \quad C \in P \Phi_{-}\left(X, Y_{2}\right)=\mathcal{S C}\left(X, Y_{2}\right)
$$

Thus, since $\mathcal{S C}$ is an operator ideal, $(A, C) \in \mathcal{S C}\left(X, Y_{1} \times Y_{2}\right)$.
Note that if X is a complex reflexive H.I. space and M is a closed subspace of X with $\operatorname{dim} M=\operatorname{dim} X / M=\infty$, then $P \Phi_{-}\left(M^{*} \times X^{*}, M^{*}\right)=\mathcal{S C}\left(M^{*} \times X^{*}, M^{*}\right)$ and $P \Phi_{-}\left(M^{*} \times X^{*}, X^{*}\right)=\mathcal{S C}\left(M^{*} \times X^{*}, X^{*}\right)$ by Theorem 2.2, but it was proved in [16] that $P \Phi_{-}\left(M^{*} \times X^{*}, M^{*} \times X^{*}\right) \neq \mathcal{S C}\left(M^{*} \times X^{*}, M^{*} \times X^{*}\right)$.

Proposition 3.10. Suppose $\Phi_{-}\left(X_{1}, Y\right) \neq \varnothing \neq \Phi_{-}\left(X_{2}, Y\right)$. If $(A, B) \in$ $P \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$ then $A \in P \Phi_{-}\left(X_{1}, Y\right)$ and $B \in P \Phi_{-}\left(X_{2}, Y\right)$.

Proof. Take $T \in \Phi_{-}\left(X_{1}, Y\right)$. Thus $(T, 0) \in \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$. Besides, as $(A, B) \in P \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$, Proposition 3.2 yields $(A, 0) \in P \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$, and therefore, $(T+A, 0) \in \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$, which leads to $T+A \in \Phi_{-}\left(X_{1}, Y\right)$. We have just proved that $A \in P \Phi_{-}\left(X_{1}, Y\right)$. Analogously, it can be proved that $B \in P \Phi_{-}\left(X_{2}, Y\right)$.

THEOREM 3.11. Suppose that $\Phi_{-}\left(X_{1}, Y\right)$ and $\Phi_{-}\left(X_{2}, Y\right)$ are non-empty and that $P \Phi_{-}\left(X_{i}, Y\right)=\mathcal{S C}\left(X_{i}, Y\right)$ for $i=1,2$. Then $P \Phi_{-}\left(X_{1} \times X_{2}, Y\right)=\mathcal{S C}\left(X_{1} \times X_{2}, Y\right)$.

Proof. Let $(A, B) \in P \Phi_{-}\left(X_{1} \times X_{2}, Y\right)$. Then, by Proposition 3.10,

$$
A \in P \Phi_{-}\left(X_{1}, Y\right)=\mathcal{S C}\left(X_{1}, Y\right), \quad B \in P \Phi_{-}\left(X_{2}, Y\right)=\mathcal{S C}\left(X_{2}, Y\right)
$$

and as $\mathcal{S C}$ is an operator ideal, it follows $(A, B) \in \mathcal{S C}\left(X_{1} \times X_{2}, Y\right)$.

4. EXAMPLES AND COUNTEREXAMPLES

In this section we describe a few concrete examples of products of Banach spaces for which a positive answer to the perturbation classes problem is derived from the results of the previous section, showing the power and the limitations of these results. We observe that, using Theorems 2.1 and 2.2 , we could easily show plenty of additional examples. Note that the condition $Y \simeq Y \times Y$ in these theorems is not very restrictive when we consider classical Banach spaces.

We also describe new counterexamples to the perturbation classes problem which are different from those obtained in [16]. In particular, in these new counterexamples the semi-Fredholm operators do not coincide with the Fredholm operators.

Let us write $L_{p}=L_{p}(0,1)$ for $1 \leqslant p \leqslant \infty$. Recall that $\Phi_{+}\left(L_{p}, L_{q}\right) \neq \varnothing$ for $1 \leqslant q \leqslant p \leqslant 2$ (see Corollary 2.f.5 in [25]).

Let $1 \leqslant q \leqslant p_{1}<\cdots<p_{n} \leqslant 2$. It follows from Theorem 3.5 that

$$
P \Phi_{+}\left(L_{p_{1}} \times \cdots \times L_{p_{n}}, L_{q}\right)=\mathcal{S} \mathcal{S}\left(L_{p_{1}} \times \cdots \times L_{p_{n}}, L_{q}\right)
$$

Moreover, by Theorem 3.7 , for $1 \leqslant q_{1}<\cdots<q_{m} \leqslant p_{1}<\cdots<p_{n} \leqslant 2$ we get

$$
\begin{align*}
P \Phi_{+}\left(L_{p_{1}} \times \cdots\right. & \left.\times L_{p_{n}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right) \tag{4.1}\\
& =\mathcal{S S}\left(L_{p_{1}} \times \cdots \times L_{p_{n}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right) .
\end{align*}
$$

Remark 4.1. In the case $m=n$, if we only assume $1<q_{i} \leqslant p_{i}<2$ for $i=1, \ldots, n$, we cannot derive directly the equality (4.1), although the result is valid. Indeed, it follows from Theorem 6 in [20] that

$$
P \Phi_{+}\left(L_{p_{i}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right)=\mathcal{S} \mathcal{S}\left(L_{p_{i}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right)
$$

for each $i=1, \ldots, n$, and we can apply Theorem 3.7 to derive (4.1).
Using duality, we can derive similar results for lower semi-Fredholm operators. Indeed, $\Phi_{-}\left(L_{p}, L_{q}\right) \neq \varnothing$ for $2 \leqslant q \leqslant p \leqslant \infty$. Thus, the arguments given in the case of Φ_{+}allow us to show that for $2 \leqslant q_{1}<\cdots<q_{m} \leqslant p_{1}<\cdots<p_{n} \leqslant \infty$ we have

$$
\begin{align*}
P \Phi_{-}\left(L_{p_{1}} \times \cdots\right. & \left.\times L_{p_{n}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right) \\
& =\mathcal{S C}\left(L_{p_{1}} \times \cdots \times L_{p_{n}}, L_{q_{1}} \times \cdots \times L_{q_{m}}\right) \tag{4.2}
\end{align*}
$$

and we have the same limitation described in Remark 4.1.
Next we describe the counterexamples. Let us denote the semi-Fredholm operators by $\Phi_{ \pm}(X, Y):=\Phi_{+}(X, Y) \cup \Phi_{-}(X, Y)$. For an operator $T \in \Phi_{ \pm}(X, Y)$, the index of T is defined by

$$
\operatorname{ind}(T):=\operatorname{dim} N(T)-\operatorname{dim} Y / R(T) \in \mathbb{Z} \cup\{ \pm \infty\} .
$$

For the convenience of the reader, we include a proof for the following result.

Proposition 4.2. Let X be an H.I. Banach space. Then every operator $T \in$ $\Phi_{ \pm}(X)$ is Fredholm with $\operatorname{ind}(T)=0$.

Proof. If X is a complex space, it is not difficult to show that every $T \in$ $\mathcal{L}(X)$ can be written as $T=\lambda I+K$, where λ is a complex number and K is a strictly singular operator. When T is semi-Fredholm, we have $\lambda \neq 0$. Thus the result follows from the stability of the index of a Fredholm operator under strictly singular perturbations.

Now assume that X is a real space. Then $\mathcal{L}(X) / \mathcal{S S}(X)$ is isomorphic to \mathbb{R}, \mathbb{C} or the quaternions \mathbb{H} (Theorem 2 in [12]); hence $\operatorname{dim} \mathcal{L}(X) / \mathcal{S S}(X) \leqslant 4$. We consider the complexification \widehat{X} of X. It is not difficult to show (see Proposition 2.8 in [17]) that $\operatorname{dim} \mathcal{L}(\widehat{X}) / \mathcal{S S}(\widehat{X}) \leqslant \operatorname{dim} \mathcal{L}(X) / \mathcal{S} \mathcal{S}(X)$.

Suppose that there exists $T \in \Phi_{ \pm}(X)$ with $\operatorname{ind}(T) \neq 0$. Then it is easy to check that $\widehat{T}(x+\mathrm{i} y):=T x+\mathrm{i} T y$ defines an operator $\widehat{T} \in \Phi_{ \pm}(\widehat{X})$ with ind $(\widehat{T})=$ $\operatorname{ind}(T)$. Since ind $(\widehat{T}) \neq 0$,

$$
\{\lambda \in \mathbb{C}: \widehat{T}-\lambda I \notin \Phi(\widehat{X})\}
$$

is an infinite set. Indeed, it includes the boundary of the open set

$$
\{\lambda \in \mathbb{C}: \operatorname{ind}(\widehat{T}-\lambda I)=\operatorname{ind}(\widehat{T})\}
$$

Hence the spectrum of the image of \widehat{T} in the Banach algebra $\mathcal{L}(\widehat{X}) / \mathcal{S S}(\widehat{X})$ would be an infinite set, which is not possible since the algebra is finite dimensional.

Proposition 4.2 can be restated by saying that an H.I. Banach space is isomorphic to no proper subspace or quotient. Moreover, we can find in [13] examples of real H.I. spaces for which $\mathcal{L}(X) / \mathcal{S S}(X)$ is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H}.

The following result of Argyros and Felouzis will be necessary in our construction.

THEOREM 4.3 (Corollary 3 in [8]). For each $1<p<\infty$ there exists a reflexive H.I. Banach space X_{p} with a quotient isomorphic to ℓ_{p}.

Obviously, X_{p} does not contain copies of ℓ_{p}, and therefore every operator in $\mathcal{L}\left(\ell_{p}, X_{p}\right)$ or $\mathcal{L}\left(X_{p}, \ell_{p}\right)$ is inessential [15]. We need an improvement of this result.

Lemma 4.4. Every operator $B \in \mathcal{L}\left(\ell_{p}, X_{p}\right)$ is strictly cosingular.
Proof. Suppose that B is not strictly cosingular. Then there exists an infinite codimensional closed subspace N of X_{p} such that $Q_{N} B$ is surjective. Therefore, the kernel $N\left(Q_{N} B\right)=B^{-1}(N)$ is closed and infinite codimensional.

In the case $p=2$, we can write $\ell_{2}=M \oplus B^{-1}(N)$, where M is an infinite dimensional closed subspace of ℓ_{2}. Hence $X_{2}=B(M) \oplus N$ with $B(M)$ infinite dimensional and closed (see Theorem 5.10 in [29]). Since X_{2} is H.I., we would conclude that N is finite dimensional; hence X_{2} isomorphic to ℓ_{2}, which is not possible.

In the general case, we can do something similar with a more involved argument. Note that $Q_{N} B$ is surjective; hence it induces an isomorphism from $\ell_{p} / B^{-1}(N)$ onto X_{p} / N. As ℓ_{p} is strongly superprojective (Example 2.4), $B^{-1}(N)$ is contained in an infinite codimensional complemented subspace M_{0} isomorphic to ℓ_{p}. Therefore, we can write $\ell_{p}=M \oplus M_{0}$, where M is an infinite dimensional closed subspace of ℓ_{p}. Moreover, since $Q_{N} B$ is surjective, $B\left(M_{0}\right)$ is an infinite codimensional closed subspace of X_{p} that contains N and $X_{p}=B(M) \oplus B\left(M_{0}\right)$. Thus, proceeding like in the case $p=2$, we get a contradiction.

Given an operator $T \in \mathcal{L}\left(X_{p} \times \ell_{p}\right)$ we consider the matricial representation

$$
T=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

THEOREM 4.5. The operator $T \in \mathcal{L}\left(X_{p} \times \ell_{p}\right)$ is lower semi-Fredholm if and only if the operators $A \in \mathcal{L}\left(X_{p}\right)$ and $D \in \mathcal{L}\left(\ell_{p}\right)$ are lower semi-Fredholm. Consequently,

$$
P \Phi_{-}\left(X_{p} \times \ell_{p}\right) \neq \mathcal{S C}\left(X_{p} \times \ell_{p}\right) \quad \text { and } \quad P \Phi_{+}\left(X_{p}^{*} \times \ell_{p}^{*}\right) \neq \mathcal{S S}\left(X_{p}^{*} \times \ell_{p}^{*}\right)
$$

Proof. Suppose $T \in \Phi_{-}\left(X_{p} \times \ell_{p}\right)$. By Lemma 4.4, the entry $B \in \mathcal{L}\left(\ell_{p}, X_{p}\right)$ is strictly cosingular. Hence the operator

$$
T_{0}:=\left(\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right)
$$

is lower semi-Fredholm. This fact implies $A \in \Phi_{-}\left(X_{p}\right)$, and as X_{p} is H.I., Proposition 4.2 yields $A \in \Phi$.

Observe that $R\left(T_{0}\right) \cap\left(\{0\} \times \ell_{p}\right)$ is finite codimensional in $\{0\} \times \ell_{p}$. Let $(0, z) \in R\left(T_{0}\right)$. Then

$$
(0, z)=(A x, C x)+(0, D y) \quad \text { with } x \in N(A) \text { and } y \in \ell_{p}
$$

Since $N(A)$ is finite dimensional, we conclude that $R(D)$ is finite codimensional; hence $D \in \Phi_{-}\left(\ell_{p}\right)$ (Theorem 5.10 in [29]).

Conversely, suppose that $A \in \Phi_{-}\left(X_{p}\right)$ and $D \in \Phi_{-}\left(\ell_{p}\right)$; hence A is a Fredholm operator.

In the case $p=2, D$ is a right Atkinson operator (lower semi-Fredholm with complemented kernel); hence

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)
$$

is a right Atkinson operator. Since $B \in \mathcal{L}\left(\ell_{p}, X_{p}\right)$ and $C \in \mathcal{L}\left(X_{p}, \ell_{p}\right)$ are inessential, T is right Atkinson (Theorem 7.23 in [1]); in particular, $T \in \Phi_{-}$.

In the general case, we consider the operators $S_{1} \in \mathcal{L}\left(X_{p}, X_{p} \times \ell_{p}\right)$ and $S_{2} \in \mathcal{L}\left(\ell_{p}, X_{p} \times \ell_{p}\right)$ given by $S_{1} x:=(A x, C x)$ and $S_{2} y:=(0, D y)$.

Since A is Fredholm and C is inessential, the operators $(A, 0)$ and $(0, C)$ are respectively left Atkinson (upper semi-Fredholm with complemented range) and inessential, so S_{1} is left Atkinson (Theorem 7.23 in [1]). In particular, $R\left(S_{1}\right)$ is isomorphic to a subspace of X_{p}. Also, $R\left(S_{2}\right)$ is isomorphic to a subspace of ℓ_{p}. Since X_{p} and ℓ_{p} are totally incomparable, $R\left(T_{0}\right)=R\left(S_{1}\right)+R\left(S_{2}\right)$ is a closed subspace of $X_{p} \times \ell_{p}$ [27].

It remains to show that $R\left(T_{0}\right)$ is finite codimensional. Since $M:=C^{-1} R(D)$ is finite codimensional in X_{p}, it is enough to show that $R\left(T_{0}\right)$ contains the subspaces $\{0\} \times R(D)$ and $A(M) \times\{0\}$. Obviously, it contains the first one. Moreover, given $m \in M$ we can write $C m=-D z$ for some $z \in \ell_{p}$. Hence $(A m, 0)=$ $(A m, C m)+(0, D z)=T_{0}(m, z)$; thus it also contains the second one.

For the second part, let $Q \in \mathcal{L}\left(X_{p}, \ell_{p}\right)$ be a surjective operator, whose existence is guaranteed by Theorem 4.3. The first part shows that

$$
K:=\left(\begin{array}{ll}
0 & 0 \\
Q & 0
\end{array}\right)
$$

defines an operator $K \in P \Phi_{-}\left(X_{p} \times \ell_{p}\right)$ which is not strictly cosingular.
Since the space $X_{p} \times \ell_{p}$ is reflexive, the conjugate operator K^{*} belongs to $P \Phi_{+}\left(X_{p}^{*} \times \ell_{p}^{*}\right)$ but $K^{*} \notin \mathcal{S S}\left(X_{p}^{*} \times \ell_{p}^{*}\right)$.

REMARK 4.6. One interesting difference between the counterexamples in [16] and those in Theorem 4.5 is that in the former ones all semi-Fredholm operators are Fredholm. However, in these new examples $\Phi_{-}\left(X_{p} \times \ell_{p}\right)$ and $\Phi_{+}\left(X_{p}^{*} \times\right.$ $\left.\ell_{p}^{*}\right)$ are both different from the corresponding sets of Fredholm operators.

In the case $1<p<\infty, p \neq 2$, there are operators in $\Phi_{-}\left(\ell_{p}\right)$ which are not right Atkinson. This can be derived from the fact that, taken q so that $1 / p+1 / q=$ $1, \ell_{q}$ contains non-complemented subspaces isomorphic to ℓ_{q} (see Corollary 3.2 in [10] for $1<q<2$ and Theorem 6 in [28] for $2<q<\infty$); hence ℓ_{p} contains closed non-complemented subspaces M with ℓ_{p} / M isomorphic to ℓ_{p}. As a consequence, there are operators in $\Phi_{-}\left(X_{p} \times \ell_{p}\right)$ which are not right Atkinson.

In the case $p=2$, the operators in $\Phi_{-}\left(X_{2} \times \ell_{2}\right)$ are right Atkinson because every closed subspace in ℓ_{2} is complemented.

Acknowledgements. Supported in part by MICINN (Spain), Grant MTM2010-20190.

REFERENCES

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, Dordrecht 2004.
[2] P. Aiena, M. GonzÁlez, On inessential and improjective operators, Studia Math. 131(1998), 271-287.
[3] P. Aiena, M. GonZÁlez, Examples of improjective operators, Math. Z. 233(2000), 471-479.
[4] P. Aiena, M. GonzÁlez, Inessential operators between Banach spaces, Rend. Circ. Mat. Palermo II Suppl. 68(2002), 3-26.
[5] P. AIENA, M. GonZÁLEZ, Intrinsic characterizations of perturbation classes on some Banach spaces, Arch. Math. 94(2010), 373-381.
[6] P. Aiena, M. González, A. Martínez-Abejón, Operator semigroups in Banach space theory, Boll. Un. Mat. Ital. (8) 4(2001), 157-205.
[7] P. Aiena, M. González, A. Martinón, On the perturbation classes of continuous semi-Fredholm operators, Glasgow Math. J. 45(2003), 91-95.
[8] S.A. Argyros, V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13(2000), 243-294.
[9] F. Albiac, N. Kalton, Topics in Banach Space Theory, Springer, New York 2006.
[10] G. Bennett, L.E. Dor, V. Goodman, W.B. Johnson, C.M. Newman, On uncomplemented subspaces of $L_{p}, 1<p<2$, Israel J. Math. 26(1977), 178-187.
[11] S. Caradus, W. Pfaffenberger, B. Yood, Calkin Algebras and Algebras of Operators in Banach Spaces, Lecture Notes in Pure and Appl. Math., M. Dekker, New York 1974.
[12] V. Ferenczi, Hereditarily finitely decomposable Banach spaces, Studia Math. 123(1997), 135-149.
[13] V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213(2007), 462-488.
[14] I.C. Gohberg, A.S. Markus, I.A. Feldman, Normally solvable operators and ideals associated with them, Bul. Akad. Šti. RSS Moldoven 10(76)(1960), 51-70; Amer. Math. Soc. Transl. (2) 61(1967), 63-84.
[15] M. GonZÁLEZ, On essentially incomparable Banach spaces, Math. Z. 215(1994), 621629.
[16] M. GonZÁlez, The perturbation classes problem in Fredholm theory, J. Funct. Anal. 200(2003), 65-70.
[17] M. González, J.M. Herrera, Decompositions for real Banach spaces with small spaces of operators, Studia Math. 183(2007), 1-14.
[18] M. GonZÁlez, A. Martínez-Abejón, Tauberian Operators, Oper. Theory Adv. appl., vol. 194, Birkhäuser, Basel 2010.
[19] M. GonZález, A. Martínez-Abejón, M. Salas-Brown, Perturbation classes for semi-Fredholm operators on subprojective and superprojective spaces, Ann. Acad. Sci. Fenn. Math. 36(2011), 481-491.
[20] M. GonZÁlez, M. Salas-Brown, Perturbation classes for semi-Fredholm operators on $L_{p}(\mu)$-spaces, J. Math. Anal. Appl. 370(2010), 11-17.
[21] W.T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6(1993), 851-874.
[22] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6(1958), 261-322.
[23] A. Lebow, M. SChechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7(1971), 1-26.
[24] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977.
[25] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979.
[26] A. Pietsch, Operator Ideals, North-Holland, Amsterdam 1980.
[27] H.P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4(1969), 167-175.
[28] H.P. Rosenthal, On the subspaces of $L^{p} p>2$ spanned by sequences of independent random variables, Israel J. Math. 8(1970), 273-303.
[29] A.E. TAYLOR, D.C. LAY, Introduction to Functional Analysis, Wiley, New York 1980.
[30] H.-O. Tylli, Lifting non-topological divisors of zero modulo the compact operators, J. Funct. Anal. 125(1994), 389-415.
[31] J.I. VLADIMIRSKII, Strictly cosingular operators, Soviet Math. Dokl. 8(1967), 739-740.
[32] L. Weis, On perturbation of Fredholm operators in $L_{p}(\mu)$-spaces, Proc. Amer. Math. Soc. 67(1977), 287-292.
[33] R.J. Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113(1964), 252-261.

JOSÉ GIMÉNEZ, Departamento de Matemáticas, Universidad de los Andes, Mérida, 5101, Venezuela

E-mail address: jgimenez@ula.ve
MANUEL GONZÁLEZ, Departamento de Matemáticas, Universidad de CANTABRIA, SANTANDER, E-39071, Spain

E-mail address: gonzalem@unican.es
ANTONIO MARTÍNEZ-ABEJÓN, DEPARTAMENTO de MATEMÁticas, UniVERsidad de Oviedo, Oviedo, E-33007, Spain

E-mail address: ama@uniovi.es

