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ABSTRACT. We show new examples of Banach spaces X and Y for which the
component PΦ+(X, Y) of the perturbation class for the upper semi-Fredholm
operators coincides with the strictly singular operators, or the component
PΦ−(X, Y) of the perturbation class for the lower semi-Fredholm operators
coincides with the strictly cosingular operators. We also show new examples
for which the equalities fail.
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1. INTRODUCTION

A (continuous linear) operator T ∈ L(X, Y) is upper semi-Fredholm if its ker-
nel N(T) is finite dimensional and its range R(T) is closed; and T is said to
be lower semi-Fredholm if R(T) is finite codimensional in Y (which entails that
R(T) is closed, following Lemma 3.2.4 in [11]). We denote respectively by Φ+

and Φ− the classes of all upper semi-Fredholm and lower semi-Fredholm op-
erators. The class of Fredholm operators is Φ := Φ+ ∩ Φ−. Given a class A of
operators, for each pair X, Y of Banach spaces we have a component given by
A(X, Y) := {T ∈ L(X, Y) : T ∈ A}. We write A(X) in the case X = Y.

Let A be any of the classes Φ+, Φ− or Φ. The perturbation class of A is
defined by its components:

PA(X, Y) := {K ∈ L(X, Y) : K + T ∈ A(X, Y) for all T ∈ A(X, Y)},
when A(X, Y) is non-empty.

The components PA(X, Y) have been studied by many authors, but there
are no good descriptions of them in general. Kato proved that the strictly singular
operators SS are contained in PΦ+ (Theorem 5.2 in [22]) and Vladimirskii proved
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that the strictly cosingular operators SC are contained in PΦ− (Corollary 1 in
[31]). Moreover, the classes PΦ+ and PΦ− are both contained in the ideal In of
inessential operators [7], which coincides with PΦ when this perturbation class
is defined.

Recall that an operator T ∈ L(X, Y) is said to be strictly singular if the restric-
tion T | E to a closed subspace E is an isomorphism only if E is finite dimensional;
T is said to be strictly cosingular if for every closed subspace F of Y the composi-
tion QFT is surjective only if F is finite codimensional, where QF is the quotient
operator onto Y/F; and T is said to be inessential if I − ST ∈ Φ(X) for every
S ∈ L(Y, X).

The perturbation classes problem for semi-Fredholm operators asks whether
the identities PΦ+(X, Y) = SS(X, Y) and PΦ−(X, Y) = SC(X, Y) hold when-
ever Φ+(X, Y) and Φ−(X, Y) are non-empty respectively. Observe that a positive
answer to this problem is interesting because it gives intrinsic characterizations
for the perturbation classes; i.e., characterizations involving the action of an oper-
ator T ∈ L(X, Y) on subspaces or quotients, instead of considering the properties
of the sums T + U with all the operators in Φ+(X, Y) or Φ−(X, Y). It was proved
in [16] that there exists a separable space Z for which PΦ+(Z) 6= SS(Z) and
PΦ−(Z∗) 6= SC(Z∗). Since the space Z is a finite product of the recently con-
structed hereditarily indecomposable spaces [21], the perturbation classes prob-
lem remains open for many classical Banach spaces. This problem was formu-
lated by Gohberg, Markus and Feldman (see page 74 in [14]) for the upper semi-
Fredholm operators. Later, it was explicitly stated in page 101 in [11], 26.6.12 in
[26], Section 3 in [30], [6] and [7].

In Section 2 we give a fairly complete list of examples of spaces X and Y for
which there is a positive answer to the perturbation classes problem. We observe
that the proofs of these results depend on very specific properties of the spaces
considered and that most of the times these properties are not satisfied by the
product of two different spaces.

In Section 3 we show that, under some conditions, the product of spaces
for which there is a positive answer to the perturbation classes problem provide
new examples. More precisely, given Banach spaces X1, X2, Y1 and Y2 for which
PΦ+(X1, Y1) = SS(X1, Y1) and PΦ+(X2, Y2) = SS(X2, Y2), we find conditions
implying

PΦ+(X1 × X2, Y1 ×Y2) = SS(X1 × X2, Y1 ×Y2);

and we obtain similar results for the components of PΦ− and SC.
We observe that in general the perturbation classes PΦ+ and PΦ− do not

have a good behavior under products. Indeed, it was proved in [16] that:

(i) PΦ+(X)=SS(X) and PΦ+(Y)=SS(Y) ; PΦ+(X×Y)=SS(X×Y);
(ii) PΦ−(X)=SC(X) and PΦ−(Y)=SC(Y) ; PΦ−(X×Y)=SC(X×Y);

and it was proved in [7] that PΦ+(X, Y × C[0, 1]) = SS(X, Y × C[0, 1]) and
PΦ−(X× `1, Y) = SC(X× `1, Y) if X and Y are separable.
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2. PRELIMINARIES

In the following two results we show examples of Banach spaces X and Y
for which there are positive answers for the perturbation classes problem.

THEOREM 2.1. Suppose Φ+(X, Y) 6= ∅. Then PΦ+(X, Y) = SS(X, Y) in the
following cases:

(i) Y subprojective [23], [4];
(ii) X = Y = Lp(µ), 1 6 p 6 ∞ [32];

(iii) X hereditarily indecomposable (Theorem 3.14 in [4]);
(iv) X is separable and Y contains a complemented copy of C[0, 1] [7];
(v) X = Lp(0, 1) when 1 < p < 2 and Y satisfies the Orlicz property [20];

(vi) X = L1(0, 1) and Y is weakly sequentially complete [20];
(vii) X = Lp(0, 1) with 2 6 p 6 ∞ [20];

(viii) X strongly subprojective [19].

THEOREM 2.2. Suppose Φ−(X, Y) 6= ∅. Then PΦ−(X, Y) = SC(X, Y) in the
following cases:

(i) X superprojective [23], [4];
(ii) X = Y = Lp(µ), 1 6 p 6 ∞ [32];

(iii) Y quotient indecomposable (Theorem 3.14 in [4]);
(iv) X contains a complemented copy of `1 and Y is separable [7];
(v) Y = Lp(0, 1) when 2 < p < ∞ and X∗ satisfies the Orlicz property [20];

(vi) Y = Lp(0, 1) with 1 6 p 6 2 [20];
(vii) Y strongly superprojective [19].

Let us recall that a Banach space X is said to be subprojective if each infinite
dimensional closed subspace of X contains an infinite dimensional subspace M
complemented in X; if M can be chosen so that its complement is isomorphic to
X, then X is said to be strongly subprojective.

EXAMPLE 2.3 ([19]). The following spaces are strongly subprojective:
(1) The sequence spaces `p for 1 6 p < ∞ and c0.
(2) The James space J.
(3) The Lorentz sequence spaces d(w, p) for 1 6 p < ∞ and w = (wn) a non-

increasing null sequence with
∞
∑

n=1
wn divergent. In particular, `p,q for 16 p, q<∞.

(4) The Baernstein spaces Bp for 1 < p < ∞.
(5) The Tsirelson space T.
(6) The function spaces Lp(0, 1) for 2 6 p < ∞.
(7) The function spaces Lp(0, ∞) ∩ L2(0, ∞) for 1 6 p 6 2.
(7) The Lorentz spaces ΛW,p(0, 1), Lp,q(0, ∞) and Lp,q(0, 1) for 2 < p < ∞ and

1 6 q < ∞.
(9) The spaces of continuous functions C(K), with K a scattered compact.
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(10) Closed subspaces of the previous examples.

A Banach space X is said to be superprojective if each of its infinite codimen-
sional closed subspaces is contained in some complemented infinite codimen-
sional closed subspace of X; if moreover that subspace can be chosen isomorphic
to X, then X is said to be strongly superprojective.

EXAMPLE 2.4 ([19]). The following spaces are strongly superprojective:
(1) The sequence spaces `p for 1 < p < ∞ and c0.
(2) The dual J∗ of James’ space.
(3) The dual spaces d(w, p)∗ of d(w, p) for 1 6 p < ∞ and w = (wn) a non-

increasing null sequence with
∞
∑

n=1
wn divergent. In particular, `∗p,q for 16 p, q<∞.

(4) The dual spaces B∗p of Baernstein’s spaces for 1 < p < ∞.
(5) The dual T∗ of Tsirelson’s space.
(6) The function spaces Lp(0, 1) for 1 < p 6 2.
(7) The function spaces Lp(0, ∞) + L2(0, ∞) for 2 6 p < ∞.
(8) The dual spaces ΛW,p(0, 1)∗, Lp,q(0, ∞)∗ and Lp,q(0, 1)∗ for 2 < p < ∞ and

1 < q < ∞.
(9) The spaces of continuous functions C(K), with K a scattered compact.

(10) Quotients of the previous examples.

Recall that a Banach space X is said to be indecomposable if it does not contain
infinite dimensional closed subspaces M and N so that X = M⊕N; equivalently,
for every projection P on X, the range R(P) or the kernel N(P) is finite dimen-
sional.

The space X is said to be hereditarily indecomposable (H.I., for short) if every
closed subspace of X is indecomposable; and X is said to be quotient indecompos-
able (Q.I., for short) if every quotient of X is indecomposable.

3. PERTURBATION CLASSES ON PRODUCTS

The following result, proved in [4], is useful to determine the perturbation
classes on product spaces. Observe that, although PΦ determines the operator
ideal of inessential operators, the examples in [16] show that the classes PΦ+ and
PΦ− do not determine operator ideals.

LEMMA 3.1 (Lemma 3.3 in [4]). Let A be one of the classes Φ+ or Φ−. Suppose
that A(X, Y) 6= ∅ and let K ∈ PA(X, Y), A ∈ L(X) and B ∈ L(Y). Then BKA ∈
PA(X, Y).

We will adopt the following notation: let X1, X2, X, Y1, Y2 and Y be Banach
spaces. Every operator T ∈ L(X1×X2, Y1×Y2) admits a matricial representation

T =

(
A B
C D

)
with A ∈ L(X1, Y1), B ∈ L(X2, Y1), C ∈ L(X1, Y2) and D ∈
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L(X2, Y2). Every operator T ∈ L(X1 × X2, Y) admits a matricial representation

T = (A, B)

with A ∈ L(X1, Y), B ∈ L(X2, Y). Finally, every operator T ∈ L(X, Y1 × Y2)
admits a matricial representation

T =

(
A
C

)
or (A, C) for short, with A ∈ L(X, Y1) and C ∈ L(X, Y2).

PROPOSITION 3.2. Let A denote Φ+ or Φ−.
(i) Suppose A(X1×X2, Y1×Y2) 6=∅ and let T∈L(X1×X2, Y1×Y2). Then T∈PA

if and only if
(

A 0
0 0

)
,
(

0 B
0 0

)
,
(

0 0
C 0

)
and

(
0 0
0 D

)
belong to PA.

(ii) Assume A(X, Y1 × Y2) 6= ∅ and let T ∈ L(X, Y1 × Y2). Then T ∈ PA if and

only if
(

A
0

)
and

(
0
C

)
belong to PA.

(iii) Assume A(X1 × X2, Y) 6= ∅ and let T ∈ L(X1 × X2, Y). Then T ∈ PA if and
only if (A, 0) and (0, B) belong to PA.

Proof. (i) The “only if” implication follows from Lemma 3.1, since these ma-
trices can be written respectively as P1TQ1, P1TQ2, P2TQ1 and P2TQ2, where Pi
is the projection of Y1 ×Y2 onto Yi, and Qi is the projection of X1 × X2 onto Xi.

For the converse, it is enough to observe that PA(X1 × X2, Y1 × Y2) is a
subspace of L(X1 × X2, Y1 ×Y2).

The proofs of statements (ii) and (iii) are similar.

Let A denote one of the classes Φ+ or Φ−. Observe that an operator(
A 0
0 D

)
∈ L(X1 × X2, Y1 ×Y2)

belongs to A if and only if both A and D belong to A. As a consequence, we
obtain the following:

REMARK 3.3. Let A denote Φ+ or Φ− and suppose that both A(X1, Y1) and
A(X2, Y2) are nonempty; then A(X1 × X2, Y1 ×Y2) 6= ∅.

It is not difficult to show that T ∈ PA(X1 × X2, Y1 × Y2) implies A ∈
PA(X1, Y1) and D ∈ PA(X2, Y2). However, the examples in [16] show that we
cannot derive the same result for B and C. Thus, in order to get the result for B
and C we have to impose some restrictions.

PROPOSITION 3.4. Suppose Φ+(X1, Y) 6= ∅ 6= Φ+(X2, Y) and Y ' Y × Y.
Let (A, B) ∈ L(X1 × X2, Y). Then

(A, B) ∈ PΦ+ ⇒ A ∈ PΦ+(X1, Y), B ∈ PΦ+(X2, Y).
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Proof. It follows from Proposition 3.2 that both (A, 0) and (0, B) belong to
PΦ+. By hypothesis, there exist closed subspaces Y1 and Y2 of Y such that Y1 '
Y2 ' Y = Y1 ⊕Y2. Thus, for each i = 1, 2, there exists an isomorphism Ui ∈ L(Y)
with range R(Ui) = Yi; moreover, Φ+(X1 × X2, Y) 6= ∅.

Let Ti ∈ Φ+(Xi, Y) (i = 1, 2). Then (U1T1, U2T2) ∈ Φ+. Since (U1 A, 0) ∈
PΦ+, we have (U1(T1 + A), U2T2) ∈ Φ+. Then U1(T1 + A) ∈ Φ+, hence T1 + A ∈
Φ+(X1, Y) (Proposition A.1.5 in [18]), and therefore, A ∈ PΦ+.

Similarly, it can be proved that B ∈ PΦ+.

In order to see that the hypothesis Y ' Y×Y is necessary in Proposition 3.4,
let X be a complex H.I. Banach space and let M be a closed subspace of X with
dim M = dim X/M = ∞.

We take X1 = M, X2 = X and Y = M × X, we denote by J : M −→ X the
natural inclusion and we consider the operator A ∈ L(M, M × X) defined by
A(m) := (0, Jm). It was proved in [16] that (A, 0) ∈ PΦ+(X1 × X2, Y), but it is
clear that A /∈ PΦ+(X1, Y).

THEOREM 3.5. Suppose that Φ+(X1, Y) 6= ∅ 6= Φ+(X2, Y), Y ' Y × Y and
PΦ+(Xi, Y) = SS(Xi, Y) for i = 1, 2. Then PΦ+(X1 × X2, Y) = SS(X1 × X2, Y).

Proof. Let (A, B) ∈ PΦ+(X1 × X2, Y). Thus, by Proposition 3.4 and the hy-
pothesis, A ∈ PΦ+(X1, Y) = SS(X1, Y) and B ∈ PΦ+(X2, Y) = SS(X2, Y). But
SS is an operator ideal, so (A, B) ∈ SS(X1 × X2, Y).

Observe that if X is a complex H.I. Banach space and M is a closed subspace
of X with dim M = dim X/M = ∞, then PΦ+(M, M× X) = SS(M, M× X) and
PΦ+(X, M× X) = SS(X, M× X) by Theorem 2.1, but it was proved in [16] that
PΦ+(M× X, M× X) 6= SS(M× X, M× X).

PROPOSITION 3.6. Suppose Φ+(X, Y1) 6= ∅ 6= Φ+(X, Y2) and let (A, C) ∈
L(X, Y1 ×Y2). Then(

A
C

)
∈ PΦ+ ⇒ A ∈ PΦ+(X, Y1), C ∈ PΦ+(X, Y2).

Proof. Let T ∈ Φ+(X, Y1). Then (T, 0) ∈ Φ+(X, Y1 × Y2), and by Proposi-
tion 3.2, (A, 0) ∈ PΦ+, so we have (T + A, 0) ∈ Φ+; hence T + A ∈ Φ+(X, Y1),
and we have proved that A ∈ PΦ+.

Similarly, we get C ∈ PΦ+.

THEOREM 3.7. Suppose Φ+(X, Y1) 6= ∅ 6= Φ+(X, Y2) and PΦ+(X, Yi) =
SS(X, Yi) for i = 1, 2. Then PΦ+(X, Y1 ×Y2) = SS(X, Y1 ×Y2).

Proof. Let T ∈ PΦ+(X, Y1×Y2) be an operator with matricial representation(
A
C

)
.
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By Proposition 3.6 and the hypothesis, A belongs to PΦ+(X, Y1) = SS(X, Y1) and
C belongs to PΦ+(X, Y2) = SS(X, Y2). Since SS is an operator ideal, (A, C) ∈
SS(X, Y1 ×Y2).

Let us consider now the perturbation classes for lower semi-Fredholm op-
erators.

PROPOSITION 3.8. Suppose Φ−(X, Y1) 6= ∅ 6= Φ−(X, Y2) and X ' X × X.
Let (A, C) ∈ L(X, Y1 ×Y2). Then

(A, C) ∈ PΦ−(X, Y1 ×Y2)⇒ A ∈ PΦ−(X, Y1), C ∈ PΦ−(X, Y2).

Proof. Assume (A, C) ∈ PΦ−(X, Y1 ×Y2). Then, by Proposition 3.2,(
A
0

)
∈ PΦ−(X, Y1 ×Y2) and

(
0
C

)
∈ PΦ−(X, Y1 ×Y2).

Take any pair of operators T1 ∈ Φ−(X, Y1) and T2 ∈ Φ−(X, Y2). By hypothesis, X
contains two subspaces X1 and X2 isomorphic to X and such that X = X1 ⊕ X2.
Let U1 ∈ L(X) be an operator which is bijective from X1 onto X and has kernel
N(U1) = X2, and let U2 ∈ L(X) be an operator which is bijective from X2 onto X
and has kernel N(U2) = X1. Note that(

T1U1
T2U2

)
∈ Φ−(X, Y1 ×Y2).

Moreover, by Lemma 3.1,(
AU1

0

)
∈ PΦ−(X, Y1 ×Y2).

Therefore, (
(T1 + A)U1

T2U2

)
∈ Φ−(X, Y1 ×Y2),

so (T1 + A)U1 ∈ Φ−(X, Y1); hence T1 + A ∈ Φ−(X, Y1) (see Proposition A.1.5 in
[18]), which proves that A ∈ PΦ−(X, Y1).

With a similar procedure, we prove that C ∈ PΦ−(X, Y2).

In order to see that the hypothesis X ' X×X is necessary in Proposition 3.8,
let Z be a complex reflexive H.I. Banach space and let M be a closed subspace of
Z with dim M = dim Z/M = ∞.

We take X = M∗ × Z∗, Y1 = M∗ and Y2 = Z∗, we denote by J : M −→ Z
the natural inclusion and we consider the operator B ∈ L(M∗ × Z∗, M∗) defined
by B(m∗, x∗) := J∗x∗. It was proved in [16] that (B, 0) ∈ PΦ−(X, Y1 × Y2), but it
is clear that B /∈ PΦ−(X, Y1).

THEOREM 3.9. Suppose that Φ−(X, Y1) 6= ∅ 6= Φ−(X, Y2), PΦ−(X, Yi) =
SC(X, Yi) for i = 1, 2 and X ' X× X. Then PΦ−(X, Y1 ×Y2) = SC(X, Y1 ×Y2).
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Proof. Take an operator (A, C) ∈ PΦ−(X, Y1 ×Y2). By Proposition 3.8,

A ∈ PΦ−(X, Y1) = SC(X, Y1), C ∈ PΦ−(X, Y2) = SC(X, Y2).

Thus, since SC is an operator ideal, (A, C) ∈ SC(X, Y1 ×Y2).

Note that if X is a complex reflexive H.I. space and M is a closed subspace of
X with dim M = dim X/M = ∞, then PΦ−(M∗ × X∗, M∗) = SC(M∗ × X∗, M∗)
and PΦ−(M∗ × X∗, X∗) = SC(M∗ × X∗, X∗) by Theorem 2.2, but it was proved
in [16] that PΦ−(M∗ × X∗, M∗ × X∗) 6= SC(M∗ × X∗, M∗ × X∗).

PROPOSITION 3.10. Suppose Φ−(X1, Y) 6= ∅ 6= Φ−(X2, Y). If (A, B) ∈
PΦ−(X1 × X2, Y) then A ∈ PΦ−(X1, Y) and B ∈ PΦ−(X2, Y).

Proof. Take T ∈ Φ−(X1, Y). Thus (T, 0) ∈ Φ−(X1 × X2, Y). Besides, as
(A, B) ∈ PΦ−(X1 × X2, Y), Proposition 3.2 yields (A, 0) ∈ PΦ−(X1 × X2, Y),
and therefore, (T + A, 0) ∈ Φ−(X1 × X2, Y), which leads to T + A ∈ Φ−(X1, Y).
We have just proved that A ∈ PΦ−(X1, Y). Analogously, it can be proved that
B ∈ PΦ−(X2, Y).

THEOREM 3.11. Suppose that Φ−(X1, Y) and Φ−(X2, Y) are non-empty and that
PΦ−(Xi, Y) = SC(Xi, Y) for i = 1, 2. Then PΦ−(X1 × X2, Y) = SC(X1 × X2, Y).

Proof. Let (A, B) ∈ PΦ−(X1 × X2, Y). Then, by Proposition 3.10,

A ∈ PΦ−(X1, Y) = SC(X1, Y), B ∈ PΦ−(X2, Y) = SC(X2, Y),

and as SC is an operator ideal, it follows (A, B) ∈ SC(X1 × X2, Y).

4. EXAMPLES AND COUNTEREXAMPLES

In this section we describe a few concrete examples of products of Banach
spaces for which a positive answer to the perturbation classes problem is derived
from the results of the previous section, showing the power and the limitations
of these results. We observe that, using Theorems 2.1 and 2.2, we could easily
show plenty of additional examples. Note that the condition Y ' Y × Y in these
theorems is not very restrictive when we consider classical Banach spaces.

We also describe new counterexamples to the perturbation classes problem
which are different from those obtained in [16]. In particular, in these new coun-
terexamples the semi-Fredholm operators do not coincide with the Fredholm op-
erators.

Let us write Lp = Lp(0, 1) for 1 6 p 6 ∞. Recall that Φ+(Lp, Lq) 6= ∅ for
1 6 q 6 p 6 2 (see Corollary 2.f.5 in [25]).

Let 1 6 q 6 p1 < · · · < pn 6 2. It follows from Theorem 3.5 that

PΦ+(Lp1 × · · · × Lpn , Lq) = SS(Lp1 × · · · × Lpn , Lq).
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Moreover, by Theorem 3.7, for 16q1< · · · <qm6 p1< · · · < pn62 we get

PΦ+(Lp1 × · · · × Lpn , Lq1 × · · · × Lqm)

= SS(Lp1 × · · · × Lpn , Lq1 × · · · × Lqm).
(4.1)

REMARK 4.1. In the case m = n, if we only assume 1 < qi 6 pi < 2 for
i = 1, . . . , n, we cannot derive directly the equality (4.1), although the result is
valid. Indeed, it follows from Theorem 6 in [20] that

PΦ+(Lpi , Lq1 × · · · × Lqm) = SS(Lpi , Lq1 × · · · × Lqm)

for each i = 1, . . . , n, and we can apply Theorem 3.7 to derive (4.1).

Using duality, we can derive similar results for lower semi-Fredholm oper-
ators. Indeed, Φ−(Lp, Lq) 6= ∅ for 2 6 q 6 p 6 ∞. Thus, the arguments given in
the case of Φ+ allow us to show that for 2 6 q1 < · · · < qm 6 p1 < · · · < pn 6 ∞
we have

PΦ−(Lp1 × · · · × Lpn , Lq1 × · · · × Lqm)

= SC(Lp1 × · · · × Lpn , Lq1 × · · · × Lqm),
(4.2)

and we have the same limitation described in Remark 4.1.
Next we describe the counterexamples. Let us denote the semi-Fredholm op-

erators by Φ±(X, Y) := Φ+(X, Y) ∪Φ−(X, Y). For an operator T ∈ Φ±(X, Y), the
index of T is defined by

ind(T) := dim N(T)− dim Y/R(T) ∈ Z∪ {±∞}.

For the convenience of the reader, we include a proof for the following re-
sult.

PROPOSITION 4.2. Let X be an H.I. Banach space. Then every operator T ∈
Φ±(X) is Fredholm with ind(T) = 0.

Proof. If X is a complex space, it is not difficult to show that every T ∈
L(X) can be written as T = λI + K, where λ is a complex number and K is a
strictly singular operator. When T is semi-Fredholm, we have λ 6= 0. Thus the
result follows from the stability of the index of a Fredholm operator under strictly
singular perturbations.

Now assume that X is a real space. ThenL(X)/SS(X) is isomorphic to R, C
or the quaternions H (Theorem 2 in [12]); hence dimL(X)/SS(X) 6 4. We con-
sider the complexification X̂ of X. It is not difficult to show (see Proposition 2.8
in [17]) that dimL(X̂)/SS(X̂) 6 dimL(X)/SS(X).

Suppose that there exists T ∈ Φ±(X) with ind(T) 6= 0. Then it is easy to
check that T̂(x + iy) := Tx + iTy defines an operator T̂ ∈ Φ±(X̂) with ind(T̂) =
ind(T). Since ind(T̂) 6= 0,

{λ ∈ C : T̂ − λI /∈ Φ(X̂)}
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is an infinite set. Indeed, it includes the boundary of the open set

{λ ∈ C : ind(T̂ − λI) = ind(T̂)}.

Hence the spectrum of the image of T̂ in the Banach algebra L(X̂)/SS(X̂) would
be an infinite set, which is not possible since the algebra is finite dimensional.

Proposition 4.2 can be restated by saying that an H.I. Banach space is iso-
morphic to no proper subspace or quotient. Moreover, we can find in [13] exam-
ples of real H.I. spaces for which L(X)/SS(X) is isomorphic to R, C or H.

The following result of Argyros and Felouzis will be necessary in our con-
struction.

THEOREM 4.3 (Corollary 3 in [8]). For each 1 < p < ∞ there exists a reflexive
H.I. Banach space Xp with a quotient isomorphic to `p.

Obviously, Xp does not contain copies of `p, and therefore every operator in
L(`p, Xp) or L(Xp, `p) is inessential [15]. We need an improvement of this result.

LEMMA 4.4. Every operator B ∈ L(`p, Xp) is strictly cosingular.

Proof. Suppose that B is not strictly cosingular. Then there exists an infinite
codimensional closed subspace N of Xp such that QN B is surjective. Therefore,
the kernel N(QN B) = B−1(N) is closed and infinite codimensional.

In the case p = 2, we can write `2 = M ⊕ B−1(N), where M is an infinite
dimensional closed subspace of `2. Hence X2 = B(M) ⊕ N with B(M) infinite
dimensional and closed (see Theorem 5.10 in [29]). Since X2 is H.I., we would
conclude that N is finite dimensional; hence X2 isomorphic to `2, which is not
possible.

In the general case, we can do something similar with a more involved
argument. Note that QN B is surjective; hence it induces an isomorphism from
`p/B−1(N) onto Xp/N. As `p is strongly superprojective (Example 2.4), B−1(N)
is contained in an infinite codimensional complemented subspace M0 isomorphic
to `p. Therefore, we can write `p = M⊕M0, where M is an infinite dimensional
closed subspace of `p. Moreover, since QN B is surjective, B(M0) is an infinite
codimensional closed subspace of Xp that contains N and Xp = B(M)⊕ B(M0).
Thus, proceeding like in the case p = 2, we get a contradiction.

Given an operator T ∈ L(Xp × `p) we consider the matricial representation

T =

(
A B
C D

)
.

THEOREM 4.5. The operator T ∈ L(Xp × `p) is lower semi-Fredholm if and only
if the operators A ∈ L(Xp) and D ∈ L(`p) are lower semi-Fredholm. Consequently,

PΦ−(Xp × `p) 6= SC(Xp × `p) and PΦ+(X∗p × `∗p) 6= SS(X∗p × `∗p).
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Proof. Suppose T ∈ Φ−(Xp × `p). By Lemma 4.4, the entry B ∈ L(`p, Xp) is
strictly cosingular. Hence the operator

T0 :=
(

A 0
C D

)
is lower semi-Fredholm. This fact implies A ∈ Φ−(Xp), and as Xp is H.I., Propo-
sition 4.2 yields A ∈ Φ.

Observe that R(T0) ∩ ({0} × `p) is finite codimensional in {0} × `p. Let
(0, z) ∈ R(T0). Then

(0, z) = (Ax, Cx) + (0, Dy) with x ∈ N(A) and y ∈ `p.

Since N(A) is finite dimensional, we conclude that R(D) is finite codimensional;
hence D ∈ Φ−(`p) (Theorem 5.10 in [29]).

Conversely, suppose that A ∈ Φ−(Xp) and D ∈ Φ−(`p); hence A is a Fred-
holm operator.

In the case p = 2, D is a right Atkinson operator (lower semi-Fredholm with
complemented kernel); hence (

A 0
0 D

)
is a right Atkinson operator. Since B ∈ L(`p, Xp) and C ∈ L(Xp, `p) are inessen-
tial, T is right Atkinson (Theorem 7.23 in [1]); in particular, T ∈ Φ−.

In the general case, we consider the operators S1 ∈ L(Xp, Xp × `p) and
S2 ∈ L(`p, Xp × `p) given by S1x := (Ax, Cx) and S2y := (0, Dy).

Since A is Fredholm and C is inessential, the operators (A, 0) and (0, C)
are respectively left Atkinson (upper semi-Fredholm with complemented range)
and inessential, so S1 is left Atkinson (Theorem 7.23 in [1]). In particular, R(S1)
is isomorphic to a subspace of Xp. Also, R(S2) is isomorphic to a subspace of
`p. Since Xp and `p are totally incomparable, R(T0) = R(S1) + R(S2) is a closed
subspace of Xp × `p [27].

It remains to show that R(T0) is finite codimensional. Since M := C−1R(D)
is finite codimensional in Xp, it is enough to show that R(T0) contains the sub-
spaces {0} × R(D) and A(M)× {0}. Obviously, it contains the first one. More-
over, given m ∈ M we can write Cm = −Dz for some z ∈ `p. Hence (Am, 0) =
(Am, Cm) + (0, Dz) = T0(m, z); thus it also contains the second one.

For the second part, let Q ∈ L(Xp, `p) be a surjective operator, whose exis-
tence is guaranteed by Theorem 4.3. The first part shows that

K :=
(

0 0
Q 0

)
defines an operator K ∈ PΦ−(Xp × `p) which is not strictly cosingular.

Since the space Xp × `p is reflexive, the conjugate operator K∗ belongs to
PΦ+(X∗p × `∗p) but K∗ /∈ SS(X∗p × `∗p).
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REMARK 4.6. One interesting difference between the counterexamples in
[16] and those in Theorem 4.5 is that in the former ones all semi-Fredholm opera-
tors are Fredholm. However, in these new examples Φ−(Xp × `p) and Φ+(X∗p ×
`∗p) are both different from the corresponding sets of Fredholm operators.

In the case 1 < p < ∞, p 6= 2, there are operators in Φ−(`p) which are not
right Atkinson. This can be derived from the fact that, taken q so that 1/p+ 1/q =
1, `q contains non-complemented subspaces isomorphic to `q (see Corollary 3.2 in
[10] for 1 < q < 2 and Theorem 6 in [28] for 2 < q < ∞); hence `p contains closed
non-complemented subspaces M with `p/M isomorphic to `p. As a consequence,
there are operators in Φ−(Xp × `p) which are not right Atkinson.

In the case p = 2, the operators in Φ−(X2 × `2) are right Atkinson because
every closed subspace in `2 is complemented.
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