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ABSTRACT. In this paper we study Devinatz’s moment problem: to find a
non-negative Borel measure µ in a strip Π = {(x, ϕ) : x ∈ R, −π 6 ϕ < π},
such that

∫
Π

xmeinϕdµ = sm,n, m ∈ Z+, n ∈ Z, where {sm,n}m∈Z+ ,n∈Z is a

given sequence of complex numbers. We derive a solvability criterion for this
moment problem. We obtain a parametrization of all solutions of Devinatz’s
moment problem. We use an abstract operator approach and results of Godič,
Lucenko and Shtraus.
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1. INTRODUCTION

In this paper we shall analyze the following problem: to find a non-negative
Borel measure µ in a strip

Π = {(x, ϕ) : x ∈ R, −π 6 ϕ < π},
such that

(1.1)
∫
Π

xmeinϕdµ = sm,n, m ∈ Z+, n ∈ Z,

where {sm,n}m∈Z+ ,n∈Z is a prescribed sequence of complex numbers. This prob-
lem is said to be the Devinatz moment problem.

A. Devinatz was the first who introduced and studied the following mo-
ment problem: to find a non-negative Borel measure µ in a strip

Π′ = {(x, ϕ) : x ∈ R, −π 6 ϕ 6 π},
such that

(1.2)
∫

Π′

xmeinϕdµ = sm,n, m ∈ Z+, n ∈ Z,
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where {sm,n}m∈Z+ ,n∈Z is a prescribed sequence of complex numbers.
He obtained necessary and sufficient conditions for the solvability of the

moment problem (1.2) and presented a sufficient condition for the moment prob-
lem to be determinate ([12], Theorem 4).

However, the difference between moment problems (1.1) and (1.2) is not
essential (see Remark 3.7).

The problem of moments has an extensive literature, see classical books [28],
[4], [2], [6], [21] and more recent surveys in [15], [30], [24], [8]. The most important
questions for an arbitrary moment problem are:

(A) What are conditions of the solvability for the moment problem?
(B) What is a description of all solutions for the moment problem?

Consider the one-dimensional case: to find a non-negative Borel measure µ on Γ
such that

(1.3)
∫
Γ

zndµ = sn, n ∈ I,

where {sn}n∈I is a prescribed sequence of complex numbers. Here Γ is a complex
curve and I is an index set. The most widely known cases are:

(1) Γ = R, I = Z+: The Hamburger moment problem.
(2) Γ = [0,+∞), I = Z+: The Stieltjes moment problem.
(3) Γ = [a, b],−∞ < a < b < +∞, I = Z+: The Hausdorff moment problem.
(4) Γ = T, I = Z: The trigonometric moment problem.

For all these problems answers on questions (A), (B) are known and can be found
in the above-mentioned books.

When there appear monomials of several variables under the integral in a
moment problem, the situation becomes more complicated. The classical exam-
ples here are the complex moment problem: to find a non-negative Borel measure
µ in the complex plane such that

(1.4)
∫
C

zmzndµ = sm,n, m, n ∈ Z+,

where {sm,n}m,n∈Z+
is a prescribed sequence of complex numbers; and the d-

dimensional moment problem: to find a non-negative Borel measure τ in the real
Euclidian space Rd such that

(1.5)
∫
Rd

xm1
1 xm2

2 · · · x
md
d dτ = am1,m2,...,md , (m1, m2, . . . , md) ∈ Zd

+,

where {am1,m2,...,md}(m1,m2,...,md)∈Zd
+

is a prescribed sequence of real numbers. The
moment problems (1.4) and (1.5) with d = 2, are closely related (e.g. [32],[38]).
Questions (A), (B) for these moment problems were studied by Kilpi [18], Stochel
and Szafraniec [32], Putinar and Vasilescu [25], in [38], see also the mentioned
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above surveys and books. For operator generalizations see [32], [40]. For the d-
dimensional moment problem on compact and some non-compact semi-algebraic
sets, a deep investigation was done by Schmüdgen in [26], [27]. For the complex
moment problem on algebraic sets, full answers on question (A) can be found
in [32].

Although it is similar to the two-dimensional moment problems, the Dev-
inatz moment problem (1.1) has another structure and it is not a "particular" case
of the above problems. It may be also called a power-trigonometric moment problem.

Answers on question (A) for different moment problem are usually formu-
lated in terms of the positive definiteness of forms defined by moments. In an-
swer to question (B), there often appear different parametrizations of solutions.
The very first such a parameterization was obtained by Nevanlinna for solutions
µ(x) of the Hamburger moment problem (e.g. [2]):

(1.6)
∫
R

dµ(x)
x− z

= − a(z)ϕ(z)− c(z)
b(z)ϕ(z)− d(z)

, z ∈ C\R,

where ϕ(z) runs over the Nevanlinna class of functions or ϕ(z) ≡ ∞. Here
a(z), b(z), c(z), d(z) are some analytic functions in C\R. The solution µ(x) can
be obtained by the Stieltjes inversion formula (e.g. [28]).

For the Stieltjes moment problem a similar parametrization was obtained
by Krein (e.g. [21]). For parametrizations of solutions for the matrix Hamburger
moment problem see a survey and some recent results in [36]. A parametriza-
tion of solutions for the matrix Stieltjes moment problem can be found in [13].
Also, some parametrizations are obtained for various strong moment problems
(see [31], [37] and References therein), for various truncated moment problems
(see [36], [1], [10], [11], [14] and papers cited there).

For the two-dimensional moment problem a parametrization of all solu-
tions was presented by an abstract point set G in [38]. To obtain this set, one
should construct intersections of some sets of solutions of infinite linear systems
of equations. These systems of equations are of the following form:

(1.7) (ak, x)l2 = fk, k = 0, 1, 2, . . . .

Here ak ∈ l2 are known coefficients which may depend on parameters, x ∈ l2

is an unknown vector. By l2 we denote the space of square summable complex
sequences (c1, c2, . . .) and (·, ·)l2 is the usual scalar product in l2. Relation (1.7)
means that the projection of x on a certain subspace is given and therefore the
solution is obvious.

There are different approaches to the moment problem: the operator ap-
proach, the functional approach, the reproducing kernel Hilbert spaces approach
and others. We shall restrict ourselves talking here only about the operator ap-
proach. There are several versions of this approach.
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Probably the very first operator point of view on a moment problem was
presented by Neumark in [22], [23]. Another approach was given by Krein and
Krasnoselskiy in [20]. Different approaches can be found in [2],[6] and [7].

The closest to our investigations is a "pure" operator approach to the
Nevanlinna–Pick problem of Sz.-Nagy and Koranyi in [34], [35]. This approach
allows to see an abstract structure of a problem.

Different operator approaches were proposed by Stochel and Szafraniec
in [32], by Putinar, Vasilescu and Schmüdgen [25], [24].

The aim of our present investigation is threefold. Firstly, we present a solv-
ability criterion for the Devinatz moment problem (it coincides with the solv-
ability criterion for the moment problem (1.2)). Secondly, we describe canonical
solutions of the Devinatz moment problem (see the corresponding definition be-
low). Finally, we parameterize all solutions of the Devinatz moment problem.
We shall use the above-mentioned abstract operator approach (see also [39]) and
results of Godič, Lucenko and Shtraus ([17], [16], Theorem 1, and [29]).

Notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respec-
tively. By Zd

+ we mean a set of vectors (m1, m2, . . . , md), mj ∈ Z+, 1 6 j 6 d. For
a subset S of the complex plane we denote by B(S) the set of all Borel subsets of
S. Everywhere in this paper, all Hilbert spaces are assumed to be separable. By
(·, ·)H and ‖ · ‖H we denote the scalar product and the norm in a Hilbert space
H, respectively. The indices may be omitted in obvious cases. For a set M in
H, by M we mean the closure of M in the norm ‖ · ‖H . For {xk}k∈T , xk ∈ H, we
write Lin{xk}k∈T for the span of vectors {xk}k∈T and span{xk}k∈T = Lin{xk}k∈T .
Here T := Z+ × Z, i.e. T consists of pairs (m, n), m ∈ Z+, n ∈ Z. The identity
operator in H is denoted by E = EH . For an arbitrary linear operator A in H,
the operators A∗, A, A−1 mean its adjoint operator, its closure and its inverse (if
they exist). By D(A) and R(A) we mean the domain and the range of the oper-
ator A. By σ(A), ρ(A) we denote the spectrum of A and the resolvent set of A,
respectively. We denote by Rz(A) the resolvent function of A, z ∈ ρ(A). We set
∆A(z) := (A− zEH)D(A), z ∈ C. The norm of a bounded operator A is denoted
by ‖A‖. By PH

H1
= PH1 we mean the operator of orthogonal projection in H on a

subspace H1 in H. By B(H) we denote the set of all bounded operators in H.

2. SOLVABILITY

Let the moment problem (1.1) be given. Suppose that the moment problem
has a solution µ. Choose an arbitrary power-trigonometric polynomial p(x, ϕ) of
the following form:

(2.1)
∞

∑
m=0

∞

∑
n=−∞

αm,nxmeinϕ, αm,n ∈ C,
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where all but finite number of coefficients αm,n are zeros. We may write

0 6
∫
Π

|p(x, ϕ)|2dµ =
∫
Π

∞

∑
m=0

∞

∑
n=−∞

αm,nxmeinϕ
∞

∑
k=0

∞

∑
l=−∞

αk,l xkeilϕdµ

= ∑
m,n,k,l

αm,nαk,l

∫
Π

xm+kei(n−l)ϕdµ = ∑
m,n,k,l

αm,nαk,lsm+k,n−l .

Thus, for arbitrary complex numbers αm,n (where all but finite numbers are zeros)
we have

(2.2)
∞

∑
m,k=0

∞

∑
n,l=−∞

αm,nαk,lsm+k,n−l > 0.

For arbitrary t, r ∈ T = Z×Z+, t = (m, n), r = (k, l), we set

(2.3) K(t, r) = K((m, n), (k, l)) = sm+k,n−l .

Thus, for arbitrary elements t1, t2, . . . , tn of T and arbitrary complex numbers
α1, α2, . . . , αn, with n ∈ N, the following inequality holds:

(2.4)
n

∑
i,j=1

K(ti, tj)αiαj > 0.

The latter means that K(t, r) is a positive matrix in the sense of E.H. Moore ([5],
p. 344).

On the other hand, suppose that the Devinatz moment problem is given and
conditions (2.2) (or else (2.4)) hold. Let us show that the moment problem has a
solution. We shall use the following important fact (e.g. pp. 361–363 of [3]).

THEOREM 2.1. Let K = K(t, r) be a positive matrix on T = Z× Z+. Then there
exist a separable Hilbert space H with a scalar product (·, ·) and a sequence {xt}t∈T in
H, such that

(2.5) K(t, r) = (xt, xr), t, r ∈ T,

and span{xt}t∈T = H.

Proof. Choose an arbitrary infinite-dimensional linear vector space V (for
instance, we may choose the space of all complex sequences (un)n∈N, un ∈ C).
Let X = {xt}t∈T be an arbitrary infinite sequence of linear independent elements
in V which is indexed by elements of T. Set LX = Lin{xt}t∈T . Introduce the
following functional:

(2.6) [x, y] = ∑
t,r∈T

K(t, r)atbr,

for x, y ∈ LX ,
x = ∑

t∈T
atxt, y = ∑

r∈T
brxr, at, br ∈ C.

Here all but finite number of indices at, br are zeros.
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The set LX with [·, ·] will be a pre-Hilbert space. Factorizing and making the
completion we obtain the desired space H ([6], p. 10–11).

By applying this theorem we get that there exist a Hilbert space H and a
sequence {xm,n}m∈Z+ ,n∈Z, xm,n ∈ H, such that

(2.7) (xm,n, xk,l)H = K((m, n), (k, l)), m, k ∈ Z+, n, l ∈ Z.

Set L = Lin{xm,n}(m,n)∈T . We introduce the following operators

A0x = ∑
(m,n)∈T

αm,nxm+1,n,(2.8)

B0x = ∑
(m,n)∈T

αm,nxm,n+1,(2.9)

where

(2.10) x = ∑
(m,n)∈T

αm,nxm,n ∈ L.

Let us check that these definitions are correct. Indeed, suppose that the element
x in (2.10) has another representation:

(2.11) x = ∑
(k,l)∈T

βk,l xk,l .

We may write(
∑

(m,n)∈T
αm,nxm+1,n, xa,b

)
= ∑
(m,n)∈T

αm,nK((m + 1, n), (a, b))

= ∑
(m,n)∈T

αm,nsm+1+a,n−b = ∑
(m,n)∈T

αm,nK((m, n), (a+1, b))

=
(

∑
(m,n)∈T

αm,nxm,n, xa+1,b

)
= (x, xa+1,b),

for arbitrary (a, b) ∈ T. In the same manner we get(
∑

(k,l)∈T
βk,l xk+1,l , xa,b

)
= (x, xa+1,b).

Since span{xa,b}(a,b)∈T = H, we get

∑
(m,n)∈T

αm,nxm+1,n = ∑
(k,l)∈T

βk,l xk+1,l .

Thus, the operator A0 is correctly defined.
We may write∥∥∥ ∑
(m,n)∈T

(αm,n − βm,n)xm,n+1

∥∥∥2

=
(

∑
(m,n)∈T

(αm,n − βm,n)xm,n+1, ∑
(k,l)∈T

(αk,l − βk,l)xk,l+1

)
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= ∑
(m,n),(k,l)∈T

(αm,n − βm,n)(αk,l − βk,l)K((m, n + 1), (k, l + 1))

= ∑
(m,n),(k,l)∈T

(αm,n − βm,n)(αk,l − βk,l)K((m, n), (k, l))

=
(

∑
(m,n)∈T

(αm,n − βm,n)xm,n, ∑
(k,l)∈T

(αk,l − βk,l)xk,l

)
= 0.

Consequently, the operator B0 is correctly defined, as well.
Choose an arbitrary y = ∑

(a,b)∈T
γa,bxa,b ∈ L. We have

(A0x, y)= ∑
m,n,a,b

αm,nγa,b(xm+1,n, xa,b) = ∑
m,n,a,b

αm,nγa,bK((m + 1, n), (a, b))

= ∑
m,n,a,b

αm,nγa,bK((m, n), (a+1, b))= ∑
m,n,a,b

αm,nγa,b(xm,n, xa+1,b)=(x, A0y).

Thus, A0 is a symmetric operator. Its closure we denote by A. On the other hand,
we have

(B0x, B0y) = ∑
m,n,a,b

αm,nγa,b(xm,n+1, xa,b+1)

= ∑
m,n,a,b

αm,nγa,bK((m, n + 1), (a, b + 1))

= ∑
m,n,a,b

αm,nγa,bK((m, n), (a, b)) = ∑
m,n,a,b

αm,nγa,b(xm,n, xa,b) = (x, y).

In particular, this means that B0 is bounded. By continuity we extend B0 to a
bounded operator B such that

(Bx, By) = (x, y), x, y ∈ H.

Since R(B0) = L and B0 has a bounded inverse, we have R(B) = H. Thus, B is a
unitary operator in H.

Notice that operators A0 and B0 commute. It is straightforward to check
that A and B commute:

(2.12) ABx = BAx, x ∈ D(A).

Consider the following operator:

(2.13) J0x = ∑
(m,n)∈T

αm,nxm,−n,

where

(2.14) x = ∑
(m,n)∈T

αm,nxm,n ∈ L.
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Let us check that this definition is correct. Consider another representation for x
as in (2.11). Then∥∥∥ ∑

(m,n)∈T
(αm,n − βm,n)xm,−n

∥∥∥2

=
(

∑
(m,n)∈T

(αm,n − βm,n)xm,−n, ∑
(k,l)∈T

(αk,l − βk,l)xk,−l

)
= ∑

(m,n),(k,l)∈T
(αm,n − βm,n)(αk,l − βk,l)K((m,−n), (k,−l))

= ∑
(m,n),(k,l)∈T

(αm,n − βm,n)(αk,l − βk,l)K((m, n), (k, l))

=
(

∑
(m,n)∈T

(αm,n − βm,n)xm,n, ∑
(k,l)∈T

(αk,l − βk,l)xk,l

)
= 0.

Thus, the definition of J0 is correct. For an arbitrary y = ∑
(a,b)∈T

γa,bxa,b ∈ L we

may write

(J0x, J0y) = ∑
m,n,a,b

αm,nγa,b(xm,−n, xa,−b) = ∑
m,n,a,b

αm,nγa,bK((m,−n), (a,−b))

= ∑
m,n,a,b

αm,nγa,bK((a, b), (m, n)) = ∑
m,n,a,b

αm,nγa,b(xa,b, xm,n) = (y, x).

In particular, this implies that J0 is bounded. By continuity we extend J0 to a
bounded antilinear operator J such that

(Jx, Jy) = (y, x), x, y ∈ H.

Moreover, we get J2 = EH . Consequently, J is a conjugation in H [33].
Notice that J0 commutes with A0. It is easy to check that

(2.15) AJx = JAx, x ∈ D(A).

On the other hand, we have J0B0 = B−1
0 J0. By continuity we get

(2.16) JB = B−1 J.

Consider the Cayley transformation of the operator A:

(2.17) VA := (A + iEH)(A− iEH)
−1,

and set

(2.18) H1 := ∆A(i), H2 := H 	 H1, H3 := ∆A(−i), H4 := H 	 H3.

PROPOSITION 2.2. The operator B reduces the subspaces Hi, 1 6 i 6 4:

(2.19) BHi = Hi, 1 6 i 6 4.

Moreover, the following equality holds:

(2.20) BVAx = VABx, x ∈ H1.
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Proof. Choose an arbitrary x ∈ ∆A(z), x = (A− zEH) fA, fA ∈ D(A), z ∈
C\R. By (2.12) we get

Bx = BA fA − zB fA = AB fA − zB fA = (A− zEH)B fA ∈ ∆A(z).

In particular, we have BH1 ⊆ H1, BH3 ⊆ H3. Notice that B−1
0 A0 = A0B−1

0 . It is a
straightforward calculation to check that

(2.21) AB−1x = B−1 Ax, x ∈ D(A).

Repeating the above argument with B−1 instead of B we get B−1H1 ⊆ H1, B−1H3
⊆ H3, and therefore H1 ⊆ BH1, H3 ⊆ BH3. Consequently, the operator B reduces
subspaces H1 and H3. It follows directly that B reduces H2 and H4, as well.

Since
(A− iEH)Bx = B(A− iEH)x, x ∈ D(A),

for arbitrary y ∈ H1, y = (A− iEH)xA, xA ∈ D(A), we have

(A− iEH)B(A− iEH)
−1y = By; B(A− iEH)

−1y = (A− iEH)
−1By, y ∈ H1,

and (2.20) follows.

Our aim here is to construct a unitary operator U in H, U ⊃ VA, which
commutes with B. Choose an arbitrary x ∈ H, x = xH1 + xH2 . For an operator U
of the required type, by Proposition 2.2 we could write:

BUx = BVAxH1 + BUxH2 = VABxH1 + BUxH2 ,

UBx = UBxH1 + UBxH2 = VABxH1 + UBxH2 .

So, it is enough to find an isometric operator U2,4 which maps H2 onto H4, and
commutes with B:

(2.22) BU2,4x = U2,4Bx, x ∈ H2.

Moreover, all operators U of the required type have the following form:

(2.23) U = VA ⊕U2,4,

where U2,4 is an isometric operator which maps H2 onto H4, and commutes
with B.

Denote the operator B restricted to Hi by BHi , 1 6 i 6 4. Notice that

(2.24) A∗ Jx = JA∗x, x ∈ D(A∗).

Indeed, for arbitrary fA ∈ D(A) and gA∗ ∈ D(A∗) we may write

(A fA, JgA∗) = (JA fA, gA∗) = (AJ fA, gA∗) = (J fA, A∗gA∗) = ( fA, JA∗gA∗),

and (2.24) follows.
Choose an arbitrary x ∈ H2. We have

A∗x = −ix,

and therefore
A∗ Jx = JA∗x = ix.
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Thus, we have
JH2 ⊆ H4.

In a similar manner we get
JH4 ⊆ H2,

and therefore

(2.25) JH2 = H4, JH4 = H2.

By the Godič–Lucenko theorem ([17] and [16], Theorem 1) we have a representa-
tion:

(2.26) BH2 = KL,

where K and L are some conjugations in H2. We set

(2.27) U2,4 := JK.

From (2.25) it follows that U2,4 maps isometrically H2 onto H4. Notice that

(2.28) U−1
2,4 := KJ.

Using relation (2.16) we get

U2,4BH2U−1
2,4 x= JKKLKJx= JLKJx= JB−1

H2
Jx= JB−1 Jx=Bx=BH4 x, x ∈ H4.

Therefore relation (2.22) is true.
We define an operator U by (2.23) and define

(2.29) AU := i(U + EH)(U − EH)
−1 = iEH + 2i(U − EH)

−1.

The inverse Cayley transformation AU is correctly defined since 1 is not in the
point spectrum of U. Indeed, VA is the Cayley transformation of a symmetric
operator while eigen subspaces H2 and H4 have the zero intersection. Let

(2.30) AU =
∫
R

sdE(s), B =
∫

[−π,π)

eiϕdF(ϕ),

where E(s) and F(ϕ) are the spectral measures of AU and B, respectively. These
measures are defined on B(R) and B([−π, π)), respectively ([9]). Since U and B
commute, we get that E(s) and F(ϕ) commute, as well. By an induction argument
we get

xm,n = Amx0,n, m ∈ Z+, n ∈ Z, and x0,n = Bnx0,0, n ∈ Z.

Therefore we obtain

(2.31) xm,n = AmBnx0,0, m ∈ Z+, n ∈ Z.

We may write

xm,n =
∫
R

smdE(s)
∫

[−π,π)

einϕdF(ϕ)x0,0 =
∫
Π

smeinϕd(E× F)x0,0,
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where E× F is the product spectral measure on B(Π). Then

(2.32) sm,n = (xm,n, x0,0)H =
∫
Π

smeinϕd((E× F)x0,0, x0,0)H , (m, n) ∈ T.

The measure µ := ((E× F)x0,0, x0,0)H is a non-negative Borel measure on Π and
relation (2.32) shows that µ is a solution of the Devinatz moment problem.

Thus, we obtained a new proof of the following criterion.

THEOREM 2.3. Let the Devinatz moment problem (1.1) be given. This problem
has a solution if and only if conditions (2.2) hold for arbitrary complex numbers αm,n
such that all but finite numbers are zeros.

REMARK 2.4. The original proof of Devinatz used the theory of reproduc-
ing kernel Hilbert spaces (RKHS). In particular, he used properties of RKHS cor-
responding to the product of two positive matrices and the inner structure of
a RKHS corresponding to the moment problem. We used an abstract approach
with the Godič–Lucenko theorem and some basic facts from the standard opera-
tor theory.

3. CANONICAL SOLUTIONS. A SET OF ALL SOLUTIONS

Let the moment problem (1.1) be given. Construct a Hilbert space H and
operators A, B, J as in the previous section. Let Ã ⊇ A be a self-adjoint extension
of A in a Hilbert space H̃ ⊇ H. Let Rz(Ã), z ∈ C\R, be the resolvent function of
Ã, and EÃ be its spectral measure. Recall that the function

(3.1) Rz(A) := PH̃
H Rz(Ã), z ∈ C\R,

is said to be a generalized resolvent of A. The function

(3.2) EA(δ) := PH̃
H EÃ(δ), δ ∈ B(R),

is said to be a spectral measure of A. There exists a one-to-one correspondence be-
tween generalized resolvents and spectral measures established by the following
relation [3]:

(3.3) (Rz(A)x, y)H =
∫
R

1
t− z

d(EAx, y)H , x, y ∈ H.

We shall reduce the Devinatz moment problem to a problem of finding of gener-
alized resolvents of a certain class.

THEOREM 3.1. Let the Devinatz moment problem (1.1) be given and conditions
(2.2) hold. Consider a Hilbert space H and a sequence {xm,n}m∈Z+ ,n∈Z, xm,n ∈ H, such
that relation (2.7) holds where K is defined by (2.3). Consider operators A0,B0 defined
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by (2.8), (2.9) on L = Lin{xm,n}(m,n)∈T . Let A = A0, B = B0. Let µ be an arbitrary
solution of the moment problem. Then it has the following form:

(3.4) µ(δ) = ((E× F)(δ)x0,0, x0,0)H , δ ∈ B(Π),

where F is the spectral measure of B, E is a spectral measure of A which commutes with F.
By ((E× F)(δ)x0,0, x0,0)H we mean the non-negative Borel measure on Π which is ob-
tained by the Lebesgue continuation procedure from the following non-negative measure
on rectangles

(3.5) ((E× F)(Ix × Iϕ)x0,0, x0,0)H := (E(Ix)F(Iϕ)x0,0, x0,0)H ,

where Ix ⊂ R, Iϕ ⊆ [−π, π) are arbitrary intervals.
On the other hand, for an arbitrary spectral measure E of A which commutes with

the spectral measure F of B, by relation (3.4) there corresponds a solution of the moment
problem (1.1).

Moreover, the correspondence between the spectral measures of A which commute
with the spectral measure of B and solutions of the Devinatz moment problem is bijective.

REMARK 3.2. The measure in (3.5) is non-negative. Indeed, for arbitrary
intervals Ix ⊂ R, Iϕ ⊆ [−π, π), we may write

(E(Ix)F(Iϕ)x0,0, x0,0)H = (F(Iϕ)E(Ix)F(Iϕ)x0,0, x0,0)H

= (E(Ix)F(Iϕ)x0,0, F(Iϕ)x0,0)H

= (Ê(Ix)F(Iϕ)x0,0, Ê(Ix)F(Iϕ)x0,0)Ĥ > 0,

where Ê is the spectral measure of a self-adjoint extension Â ⊇ A in a Hilbert
space Ĥ ⊇ H such that E = PĤ

H Ê. The measure in (3.5) is additive. If Iϕ =
I1,ϕ ∪ I2,ϕ, I1,ϕ ∩ I2,ϕ = ∅, then

(E(Ix)F(Iϕ)x0,0, x0,0)H = (F(I1,ϕ ∪ I2,ϕ)E(Ix)x0,0, x0,0)H

= (F(I1,ϕ)E(Ix)x0,0, x0,0)H + (F(I2,ϕ)E(Ix)x0,0, x0,0)H .

The case Ix = I1,x ∪ I2,x is similar. Moreover, repeating the standard arguments
([19], Chapter 5, Theorem 2, pp. 254–255) we conclude that the measure in (3.5)
is σ-additive. Thus, it possesses the (unique) Lebesgue continuation to a (finite)
non-negative Borel measure on Π.

Proof. Consider a Hilbert space H and operators A,B as in the statement of
the theorem. Let F be the spectral measure of B. Let µ be an arbitrary solution
of the moment problem (1.1). Consider the space L2

µ of complex functions on Π

which are square integrable with respect to the measure µ. The scalar product
and the norm are given by

( f , g)µ =
∫
Π

f (x, ϕ)g(x, ϕ)dµ, ‖ f ‖µ = (( f , f )µ)
1/2, f , g ∈ L2

µ.



DEVINATZ’S MOMENT PROBLEM: A DESCRIPTION OF ALL SOLUTIONS 527

Consider the following operators:

Aµ f (x, ϕ) = x f (x, ϕ), D(Aµ) = { f ∈ L2
µ : x f (x, ϕ) ∈ L2

µ},(3.6)

Bµ f (x, ϕ) = eiϕ f (x, ϕ), D(Bµ) = L2
µ.(3.7)

The operator Aµ is self-adjoint and the operator Bµ is unitary. Moreover, these
operators commute and therefore the spectral measure Eµ of Aµ and the spectral
measure Fµ of Bµ commute, as well.

Let p(x, ϕ) be a (power-trigonometric) polynomial of the form (1.1) and
q(x, ϕ) be a (power-trigonometric) polynomial of the form (1.1) with βm,n ∈ C
instead of αm,n. Then

(p, q)µ = ∑
(m,n)∈T,(k,l)∈T

αm,nβk,l

∫
Π

xm+kei(n−l)ϕdµ = ∑
(m,n)∈T,(k,l)∈T

αm,nβk,lsm+k,n−l .

On the other hand, we may write(
∑

(m,n)∈T
αm,nxm,n, ∑

(k,l)∈T
βk,l xk,l

)
H
= ∑

(m,n)∈T,(k,l)∈T
αm,nβk,l(xm,n, xk,l)H

= ∑
(m,n)∈T,(k,l)∈T

αm,nβk,lK((m, n), (k, l))

= ∑
(m,n)∈T,(k,l)∈T

αm,nβk,lsm+k,n−l .

Therefore

(3.8) (p, q)µ =
(

∑
(m,n)∈T

αm,nxm,n, ∑
(k,l)∈T

βk,l xk,l

)
H

.

Consider the following operator:

(3.9) V[p] = ∑
(m,n)∈T

αm,nxm,n, p = ∑
(m,n)∈T

αm,nxmeinϕ.

Here by [p] we mean the class of equivalence in L2
µ defined by p. If two different

polynomials p and q belong to the same class of equivalence then by (3.8) we get

0=‖p− q‖2
µ =(p−q, p−q)µ =

(
∑

(m,n)∈T
(αm,n−βm,n)xm,n, ∑

(k,l)∈T
(αk,l−βk,l)xk,l

)
=
∥∥∥ ∑
(m,n)∈T

αm,nxm,n − ∑
(m,n)∈T

βm,nxm,n

∥∥∥2

µ
.

Thus, the definition of V is correct. It is not hard to see that V maps the set
of all polynomials P2

0,µ in L2
µ on L. By continuity we extend V to an isometric

transformation from the closure of polynomials P2
µ = P2

0,µ onto H.
Set H0 := L2

µ 	 P2
µ . Introduce the following operator:

(3.10) U := V ⊕ EH0 ,
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which maps isometrically L2
µ onto H̃ := H ⊕ H0. Set

(3.11) Ã := UAµU−1, B̃ := UBµU−1.

Notice that

Ãxm,n = UAµU−1xm,n = UAµxmeinϕ = Uxm+1einϕ = xm+1,n,

B̃xm,n = UBµU−1xm,n = UBµxmeinϕ = Uxmei(n+1)ϕ = xm,n+1.

Therefore Ã ⊇ A and B̃ ⊇ B. Let

(3.12) Ã =
∫
R

sdẼ(s), B̃ =
∫

[−π,π)

eiϕdF̃(ϕ),

where Ẽ(s) and F̃(ϕ) are the spectral measures of Ã and B̃, respectively. Repeat-
ing arguments after relation (2.30) we obtain that

xm,n = Ãm B̃nx0,0, m ∈ Z+, n ∈ Z,(3.13)

sm,n =
∫
Π

smeinϕd((Ẽ× F̃)x0,0, x0,0)H̃ , (m, n) ∈ T,(3.14)

where (Ẽ× F̃) is the product measure of Ẽ and F̃. Thus, the measure µ̃ := ((Ẽ×
F̃)x0,0, x0,0)H̃ is a solution of the Devinatz moment problem.

Let Ix ⊂ R, Iϕ ⊆ [−π, π) be arbitrary intervals. Then

µ̃(Ix × Iϕ) = ((Ẽ× F̃)(Ix × Iϕ)x0,0, x0,0)H̃ = (Ẽ(Ix)F̃(Iϕ)x0,0, x0,0)H̃

= (PH̃
H Ẽ(Ix)F̃(Iϕ)x0,0, x0,0)H̃ = (E(Ix)F(Iϕ)x0,0, x0,0)H ,

where E is the corresponding spectral function of A and F is the spectral function
of B. Thus, the measure µ̃ has the form (3.4) since the Lebesgue continuation is
unique.

Let us show that µ̃ = µ. Consider the following transformation:

(3.15) S : (x, ϕ) ∈ Π 7→
(

Arg
x− i
x + i

, ϕ
)
∈ Π0,

where Π0 = [−π, π) × [−π, π) and Arg eiy = y ∈ [−π, π). By virtue of S we
define the following measures:

(3.16) µ0(SG) := µ(G), µ̃0(SG) := µ̃(G), G ∈ B(Π),

It is not hard to see that µ0 and µ̃0 are non-negative measures on B(Π0). Then∫
Π

( x− i
x + i

)m
einϕdµ =

∫
Π0

eimψeinϕdµ0,(3.17)

∫
Π

( x− i
x + i

)m
einϕdµ̃ =

∫
Π0

eimψeinϕdµ̃0, m, n ∈ Z;(3.18)
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and ∫
Π

( x− i
x + i

)m
einϕdµ̃ =

∫
Π

( x− i
x + i

)m
einϕd((Ẽ× F̃)x0,0, x0,0)H̃

=
( ∫

Π

( x− i
x + i

)m
einϕd(Ẽ× F̃)x0,0, x0,0

)
H̃

=
( ∫
R

( x− i
x + i

)m
dẼ

∫
[−π,π)

einϕdF̃x0,0, x0,0

)
H̃

= (((Ã− iEH̃)(Ã + iEH̃)
−1)m B̃nx0,0, x0,0)H̃

= (U−1((Ã− iEH̃)(Ã + iEH̃)
−1)m B̃nU1, U1)µ

= (((Aµ − iEL2
µ
)(Aµ + iEL2

µ
)−1)mBn

µ1, 1)µ

=
∫
Π

( x− i
x + i

)m
einϕdµ, m, n ∈ Z.(3.19)

By virtue of relations (3.17),(3.18) and (3.19) we get

(3.20)
∫

Π0

eimψeinϕdµ0 =
∫

Π0

eimψeinϕdµ̃0, m, n ∈ Z.

By the Weierstrass theorem we can approximate any continuous function by ex-
ponentials and therefore

(3.21)
∫

Π0

f (ψ)g(ϕ)dµ0 =
∫

Π0

f (ψ)g(ϕ)dµ̃0,

for arbitrary continuous functions on Π0. In particular, we have

(3.22)
∫

Π0

ψn ϕmdµ0 =
∫

Π0

ψn ϕmdµ̃0, n, m ∈ Z+.

However, the two-dimensional Hausdorff moment problem is determinate [28]
and therefore we get µ0 = µ̃0 and µ = µ0. Thus, we have proved that an arbitrary
solution µ of the Devinatz moment problem can be represented in the form (3.4).

Let us check the second assertion of the theorem. For an arbitrary spec-
tral measure E of A which commutes with the spectral measure F of B, by rela-
tion (3.4) we define a non-negative Borel measure µ on Π. Let us show that the
measure µ is a solution of the moment problem (1.1).

Let Â be a self-adjoint extension of the operator A in a Hilbert space Ĥ ⊇ H,
such that

E = PĤ
H Ê,
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where Ê is the spectral measure of Â. By (2.31) we get

xm,n = AmBnx0,0 = ÂmBnx0,0 = PĤ
H ÂmBnx0,0

= PĤ
H

(
lim

a→+∞

∫
[−a,a)

xmdÊ
) ∫
[−π,π)

einϕdFx0,0 =
(

lim
a→+∞

∫
[−a,a)

xmdE
)

∗
∫

[−π,π)

einϕdFx0,0=
(

lim
a→+∞

( ∫
[−a,a)

xmdE
∫

[−π,π)

einϕdF
))

x0,0, m∈Z+, n∈Z,(3.23)

where the limits are understood in the weak operator topology. We choose arbi-
trary points

− a = x0 < x1 < · · · < xN = a; max
16i6N

|xi − xi−1| =: d, N ∈ N;(3.24)

− π = ϕ0 < ϕ1 < · · · < ϕM = π; max
16j6M

|ϕj − ϕj−1| =: r, M ∈ N.(3.25)

Set

Ca :=
∫

[−a,a)

xmdE
∫

[−π,π)

einϕdF= lim
d→0

N

∑
i=1

xm
i−1E([xi−1, xi)) ∗ lim

r→0

M

∑
j=1

einϕj−1 F([ϕj−1, ϕj)),

where the integral sums converge in the strong operator topology. Then

Ca = lim
d→0

lim
r→0

N

∑
i=1

xm
i−1E([xi−1, xi))

M

∑
j=1

einϕj−1 F([ϕj−1, ϕj))

= lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1einϕj−1 E([xi−1, xi))F([ϕj−1, ϕj)),

where the limits are understood in the strong operator topology. Then

(Cax0,0, x0,0)H =
(

lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1einϕj−1 E([xi−1, xi))F([ϕj−1, ϕj))x0,0, x0,0

)
H

= lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1einϕj−1(E([xi−1, xi))F([ϕj−1, ϕj))x0,0, x0,0)H

= lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1einϕj−1((E×F)([xi−1, xi)×[ϕj−1, ϕj))x0,0, x0,0)H

= lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1einϕj−1(µ([xi−1, xi)× [ϕj−1, ϕj))x0,0, x0,0)H .

Therefore

(Cax0,0, x0,0)H = lim
d→0

lim
r→0

∫
[−a,a)×[−π,π)

fd,r(x, ϕ)dµ,



DEVINATZ’S MOMENT PROBLEM: A DESCRIPTION OF ALL SOLUTIONS 531

where fd,r is equal to xm
i−1einϕj−1 on the rectangular [xi−1, xi)× [ϕj−1, ϕj), 1 6 i 6

N, 1 6 j 6 M.
If r → 0, then the simple function fd,r converges uniformly to a function fd

which is equal to xm
i−1einϕ on the rectangular [xi−1, xi) × [ϕj−1, ϕj), 1 6 i 6 N,

1 6 j 6 M. Then

(Cax0,0, x0,0)H = lim
d→0

∫
[−a,a)×[−π,π)

fd(x, ϕ)dµ.

If d → 0, then the function fd converges uniformly to a function xmeinϕ. Since
| fd| 6 Am, by the Lebesgue theorem we get

(3.26) (Cax0,0, x0,0)H =
∫

[−a,a)×[−π,π)

xmeinϕdµ.

By virtue of relations (3.23) and (3.26) we get

sm,n = (xm,n, x0,0)H = lim
a→+∞

(Cax0,0, x0,0)H

= lim
a→+∞

∫
[−a,a)×[−π,π)

xmeinϕdµ =
∫
Π

xmeinϕdµ.(3.27)

Thus, the measure µ is a solution of the Devinatz moment problem.
Let us prove the last assertion of the theorem. Suppose to the contrary that

two different spectral measures E1 and E1 of A commute with the spectral mea-
sure F of B and produce by relation (3.4) the same solution µ of the Devinatz
moment problem. Choose an arbitrary z ∈ C\R. Then∫
Π

xm

x− z
einϕdµ =

∫
Π

xm

x− z
einϕd((Ek × F)(δ)x0,0, x0,0)H

= lim
a→+∞

∫
[−a,a)×[−π,π)

xm

x− z
einϕd((Ek × F)(δ)x0,0, x0,0)H , k=1, 2.(3.28)

Consider arbitrary partitions of the type (3.24),(3.25). Then

Da :=
∫

[−a,a)×[−π,π)

xm

x− z
einϕd((Ek × F)(δ)x0,0, x0,0)H

= lim
d→0

lim
r→0

∫
[−a,a)×[−π,π)

gz;d,r(x, ϕ)d((Ek × F)(δ)x0,0, x0,0)H .

Here the function gz;d,r(x, ϕ) is equal to
xm

i−1
xi−1−z einϕj−1 on the rectangular [xi−1, xi)

×[ϕj−1, ϕj), 1 6 i 6 N, 1 6 j 6 M. Then

Da = lim
d→0

lim
r→0

N

∑
i=1

M

∑
j=1

xm
i−1

xi−1 − z
einϕj−1(Ek([xi−1, xi))F([ϕj−1, ϕj))x0,0, x0,0)H
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= lim
d→0

lim
r→0

( N

∑
i=1

xm
i−1

xi−1 − z
Ek([xi−1, xi))

M

∑
j=1

einϕj−1 F([ϕj−1, ϕj))x0,0, x0,0

)
H

=
( ∫
[−a,a)

xm

x− z
dEk

∫
[−π,π)

einϕdFx0,0, x0,0

)
H

.

Let n = n1 + n2, n1, n2 ∈ Z. Then we may write:

Da =
(

Bn1

∫
[−a,a)

xm

x− z
dEkBn2 x0,0, x0,0

)
H
=
( ∫
[−a,a)

xm

x− z
dEkx0,n2 , x0,−n1

)
H

.

By (3.28) we get∫
Π

xm

x− z
einϕdµ = lim

a→+∞
Da = lim

a→+∞

( ∫
[−a,a)

xm

x− z
dÊkx0,n2 , x0,−n1

)
Ĥk

=
( ∫
R

xm

x− z
dÊkx0,n2 , x0,−n1

)
Ĥk

= (Âm2 Rz(Âk)Âm1 x0,n2 , x0,−n1)Ĥk

= (Rz(Âk)xm1,n2 , xm2,−n1)H ,(3.29)

where m1, m2 ∈ Z+ : m1 + m2 = m, and Âk is a self-adjoint extension of A in a

Hilbert space Ĥk ⊇ H such that its spectral measure Êk generates Ek: Ek = PĤk
H Êk;

k = 1, 2.
Relation (3.29) shows that the generalized resolvents corresponding to Ek,

k = 1, 2, coincide. This means that the spectral measures E1 and E2 coincide. We
obtained a contradiction. This completes the proof.

DEFINITION 3.3. A solution µ of the Devinatz moment problem (1.1) is said
to be canonical if it is generated by relation (3.4) where E is an orthogonal spectral
measure of A which commutes with the spectral measure of B. Orthogonal spec-
tral measures are those measures which are the spectral measures of self-adjoint
extensions of A inside H.

Let the moment problem (1.1) be given and conditions (2.2) hold. Let us
describe canonical solutions of the Devinatz moment problem. In the proof of
Theorem 2.3 we have constructed one canonical solution, see relation (2.32). Let µ
be an arbitrary canonical solution and E be the corresponding orthogonal spectral
measure of A. Let Ã be the self-adjoint operator in H which corresponds to E.
Consider the Cayley transformation of Ã:

(3.30) UÃ = (Ã + iEH)(Ã− iEH)
−1 ⊇ VA,

where VA is defined by (2.17). Since E commutes with the spectral measure F of
B, then UÃ commutes with B. By relation (2.23) the operator UÃ has the following
form:

(3.31) UÃ = VA ⊕ Ũ2,4,
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where Ũ2,4 is an isometric operator which maps H2 onto H4, and commutes with
B. Let the operator U2,4 be defined by (2.27). Then the following operator

(3.32) U2 = U−1
2,4 Ũ2,4,

is a unitary operator in H2 which commutes with BH2 .
Denote by S(B; H2) a set of all unitary operators in H2 which commute with

BH2 . Choose an arbitrary operator Û2 ∈ S(B; H2). Define Û2,4 by the following
relation:

(3.33) Û2,4 = U2,4Û2.

Notice that Û2,4 commutes with BH2 . Then we define a unitary operator U =

VA ⊕ Û2,4 and its Cayley transformation Â which commute with the operator B.
Repeating arguments before (2.32) we get a canonical solution of the Devinatz
moment problem.

Thus, all canonical solutions of the Devinatz moment problem are generated
by operators Û2 ∈ S(B; H2). Notice that different operators U′, U′′ ∈ S(B; H2)
produce different orthogonal spectral measures E′, E. By Theorem 3.1, these spec-
tral measures produce different solutions of the moment problem.

Recall some definitions from [9]. A pair (Y,A), where Y is an arbitrary set
and A is a fixed σ-algebra of subsets of Y is said to be a measurable space. A triple
(Y,A, µ), where (Y,A) is a measurable space and µ is a measure on A is said to
be a space with a measure.

Let (Y,A) be a measurable space, H be a Hilbert space and P = P(H) be a
set of all orthogonal projectors in H. A countably additive mapping E : A → P ,
E(Y) = EH, is said to be a spectral measure in H. A set (Y,A, H, E) is said to be a
space with a spectral measure. By S(Y, E) one means a set of all E-measurable E-a.e.
finite complex-valued functions on Y.

Let (Y,A, µ) be a separable space with a σ-finite measure and assume that
for µ-almost all y ∈ Y there corresponds a Hilbert space G(y). A function N(y) =
dim G(y) is called the dimension function. It is supposed to be µ-measurable. Let
Ω be a set of vector-valued functions g(y) with values in G(y) which are defined
µ-everywhere and are measurable with respect to some base of measurability. A
set of (classes of equivalence) of such functions with the finite norm

(3.34) ‖g‖2
H =

∫
|g(y)|2G(y)dµ(y) < ∞

form a Hilbert spaceH with the scalar product given by

(3.35) (g1, g2)H =
∫
(g1, g2)G(y)dµ(y).

The space H = Hµ,N =
∫
Y
⊕G(y)dµ(y) is said to be a direct integral of Hilbert

spaces. Consider the following operator

(3.36) X(δ)g = χδg, g ∈ H, δ ∈ A,
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where χδ is the characteristic function of the set δ. The operator X is a spectral
measure inH.

Let t(y) be a measurable operator-valued function with values in B(G(y))
which is µ-a.e. defined and µ-sup ‖t(y)‖G(y) < ∞. The operator

(3.37) T : g(y) 7→ t(y)g(y),

is said to be decomposable. It is a bounded operator in H which commutes with
X(δ), ∀δ ∈ A. Moreover, every bounded operator in H which commutes with
X(δ), ∀δ ∈ A, is decomposable [9]. In the case t(y) = ϕ(y)EG(y), where ϕ ∈
S(Y, µ), we set T =: Qϕ. The decomposable operator is unitary if and only if
µ-a.e. the operator t(y) is unitary.

Return to the study of canonical solutions. Consider the spectral measure
F2 of the operator BH2 in H2. There exists an element h ∈ H2 of the maximal type,
i.e. the non-negative Borel measure

(3.38) µ(δ) := (F2(δ)h, h), δ ∈ B([−π, π)),

has the maximal type between all such measures (generated by other elements of
H2). This type is said to be the spectral type of the measure F2. Let N2 be the mul-
tiplicity function of the measure F2. Then there exists a unitary transformation W
of the space H2 onH = Hµ,N2 such that

(3.39) WBH2W−1 = Qeiy , WF2(δ)W−1 = X(δ).

Notice that Û2 ∈ S(B; H2) if and only if the operator

(3.40) V2 := WÛ2W−1,

is unitary and commutes with X(δ), ∀δ ∈ [−, ). The latter is equivalent to the
condition that V2 is decomposable and the values of the corresponding operator-
valued function t(y) are µ-a.e. unitary operators. A set of all decomposable op-
erators in H such that the values of the corresponding operator-valued function
t(y) are µ-a.e. unitary operators we denote by D(B; H2).

THEOREM 3.4. Let the Devinatz moment problem (1.1) be given. In the conditions
of Theorem 3.1 all canonical solutions of the moment problem have the form (3.4) where
the spectral measures E of the operator A are constructed by operators from D(B; H2).
Namely, for an arbitrary V2 ∈ D(B; H2) we set Û2 = W−1V2W, Û2,4 = U2,4Û2,
U = VA ⊕ Û2,4, Â = i(U + EH)(U − EH)

−1, and then E is the spectral measure of Â.
Moreover, the correspondence between D(B; H2) and a set of all canonical solutions

of the Devinatz moment problem is bijective.

The proof follows from the previous considerations.
Consider the Devinatz moment problem (1.1) and suppose that conditions

(2.2) hold. Let us turn to a parametrization of all solutions of the moment prob-
lem. We shall use Theorem 3.1. Consider relation (3.4). The spectral measure
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E commutes with the operator B. Choose an arbitrary z ∈ C\R. By virtue of
relation (3.3) we may write:

(BRz(A)x, y)H = (Rz(A)x, B∗y)H =
∫
R

1
t− z

d(E(t)x, B∗y)H ;

∫
R

1
t− z

d(BE(t)x, y)H =
∫
R

1
t− z

d(E(t)Bx, y)H , x, y ∈ H;(3.41)

(Rz(A)Bx, y)H =
∫
R

1
t− z

d(E(t)Bx, y)H , x, y ∈ H;(3.42)

where Rz(A) is the generalized resolvent which corresponds to E. Therefore we
get

(3.43) Rz(A)B = BRz(A), z ∈ C\R.

On the other hand, if relation (3.43) holds, then

(3.44)
∫
R

1
t− z

d(EBx, y)H =
∫
R

1
t− z

d(BEx, y)H , x, y ∈ H, z ∈ C\R.

By the Stieltjes inversion formula [28], we obtain that E commutes with B.
We denote by M(A, B) a set of all generalized resolvents Rz(A) of A which

satisfy relation (3.43).
Recall some known facts from [29] which we shall need here. Let K be a

closed symmetric operator in a Hilbert space H, with the domain D(K), D(K) =
H. Set Nλ = Nλ(K) = H	∆K(λ), λ ∈ C\R.

Consider an arbitrary bounded linear operator C, which maps Ni into N−i.
For

(3.45) g = f + Cψ− ψ, f ∈ D(K), ψ ∈ Ni,

we set

(3.46) KCg = K f + iCψ + iψ.

Since an intersection of D(K), Ni and N−i consists only of the zero element, this
definition is correct. Notice that KC is a part of the operator K∗. The operator KC
is said to be a quasiself-adjoint extension of the operator K, defined by the operator K.

The following theorem can be found in Theorem 7 of [29]:

THEOREM 3.5. Let K be a closed symmetric operator in a Hilbert space H with
the domain D(K), D(K) = H. All generalized resolvents of the operator K have the
following form:

(3.47) Rλ(K) =

{
(KF(λ) − λEH)−1 Im λ > 0,
(KF∗(λ) − λEH)−1 Im λ < 0,
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where F(λ) is an analytic in C+ operator-valued function, which values are contractions
which map Ni(A) = H2 into N−i(A) = H4 (‖F(λ)‖ 6 1), and KF(λ) is the quasiself-
adjoint extension of K defined by F(λ).

On the other hand, for any operator function F(λ) having the above properties there
corresponds by relation (3.47) a generalized resolvent of K.

Observe that the correspondence between all generalized resolvents and
functions F(λ) in Theorem 3.5 is bijective [29].

Return to the study of the Devinatz moment problem. Let us describe the
set M(A, B). Choose an arbitrary Rλ ∈ M(A, B). By (3.47) we get

(3.48) Rλ = (AF(λ) − λEH)
−1, Im λ > 0,

where F(λ) is an analytic in C+ operator-valued function, which values are con-
tractions which map H2 into H4, and AF(λ) is the quasiself-adjoint extension of A
defined by F(λ). Then

AF(λ) = R−1
λ + λEH , Im λ > 0.

By virtue of relation (3.43) we obtain

(3.49) BAF(λ)h = AF(λ)Bh, h ∈ D(AF(λ)), λ ∈ C+.

Consider the following operators

Wλ := (AF(λ) + iEH)(AF(λ) − iEH)
−1 = EH + 2i(AF(λ) − iEH)

−1,(3.50)

VA = (A + iEH)(A− iEH)
−1 = EH + 2i(A− iEH)

−1,(3.51)

where λ ∈ C+. Notice that ([29])

(3.52) Wλ = VA ⊕ F(λ), λ ∈ C+.

The operator (AF(λ) − iEH)
−1 is defined on the whole H, see p. 79 of [29]. By

relation (3.49) we obtain

(3.53) B(AF(λ) − iEH)
−1h = (AF(λ) − iEH)

−1Bh, h ∈ H, λ ∈ C+.

Then

(3.54) BWλ = WλB, λ ∈ C+.

Recall that by Proposition 2.2 the operator B reduces the subspaces Hj, 1 6 j 6
4, and BVAh = VABh, h ∈ H1. If we choose an arbitrary h ∈ H2 and apply
relations (3.54), (3.52), we get

(3.55) BF(λ)h = F(λ)Bh, h ∈ H2, λ ∈ C+.

By F(A, B) we denote the set of all functions F(λ), analytic in C+, whose values
are operators F(λ) : H2 → H4, ‖F(λ)‖ 6 1, and such that relation (3.55) holds.
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Thus, for an arbitrary Rλ ∈ M(A, B) the corresponding function F(λ) ∈
F(A, B). On the other hand, choose an arbitrary F(λ) ∈ F(A, B). Then we de-
rive (3.54) with Wλ defined by (3.50). Then we get (3.53), (3.49) and therefore

(3.56) BRλ = RλB, λ ∈ C+.

Calculating the conjugate operators for the both sides of the last equality we con-
clude that this relation holds for all λ ∈ C.

Consider the spectral measure F2 of the operator BH2 in H2. We have ob-
tained relation (3.39) which we shall use one more time. Notice that F(λ) ∈
F(A, B) if and only if the operator-valued function

(3.57) G(λ) := WU−1
2,4 F(λ)W−1, λ ∈ C+,

is analytic in C+ and has values which are contractions in H which commute
with X(δ), ∀δ ∈ B([−π, π)).

This means that for an arbitrary λ ∈ C+ the operator G(λ) is decompos-
able and the values of the corresponding operator-valued function t(y) are µ-a.e.
contractions. A set of all decomposable operators inH such that the values of the
corresponding operator-valued function t(y) are µ-a.e. contractions we denote by
T(B; H2). A set of all analytic in C+ operator-valued functions G(λ) with values
in T(B; H2) we denote by G(A, B).

THEOREM 3.6. Let the Devinatz moment problem (1.1) be given. In the conditions
of Theorem 3.1 all solutions of the moment problem have the form (3.4) where the spectral
measures E of the operator A are defined by the corresponding generalized resolvents Rλ

which are constructed by the following relation:

(3.58) Rλ = (AF(λ) − λEH)
−1, Im λ > 0,

where F(λ) = U2,4W−1G(λ)W, G(λ) ∈ G(A, B).
Moreover, the correspondence between G(A, B) and a set of all solutions of the

Devinatz moment problem is bijective.

The proof follows from the previous considerations.

REMARK 3.7. Let µ be a solution of the Devinatz moment problem (1.1).
Choose an arbitrary non-negative Borel measure ν on the Borel subsets of an in-
terval

I−π := {(x,−π) : x ∈ R},
such that

(3.59) ν(δ) 6 µ(δ), ∀δ ∈ B(I−π).

Set

(3.60) τ(δ) = µ(δ)− ν(δ), δ ∈ B(I−π).

Consider the following transformation:

(3.61) T(x,−π) = (x, π),
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which maps I−π onto Iπ := {(x, π) : x ∈ R}. Set

(3.62) τ̃(∆) = τ(T−1∆), ∆ ∈ B(Iπ).

Finally, we set

(3.63) µ̃(∆) = µ̃(∆∩ I−π) + µ̃(∆∩ (Π\I−π)) + µ̃(∆∩ Iπ), ∆ ∈ B(Π′);

where

µ̃(∆) = τ̃(∆), ∆ ∈ B(Iπ);(3.64)

µ̃(∆) = µ(∆), ∆ ∈ B(Π\I−π);(3.65)

µ̃(∆) = ν(∆), ∆ ∈ B(I−π).(3.66)

It is a direct calculation to check that µ̃ is a solution of the moment problem (1.2).
On the other hand, if µ̃ is an arbitrary solution of the moment problem (1.2),

we can define measures τ̃, µ, ν by relations (3.64)–(3.66). Then we set

(3.67) µ̂(∆) = ν(∆∩ I−π) + τ̃(T(∆∩ I−π)) + µ(∆∩ (Π\I−π)), ∆ ∈ B(Π).

Then µ̂ is a solution of the moment problem (1.1).
If we repeat for µ̂ and ν the considerations from the very beginning of this

remark, we shall come to the same measure µ̃ as above. Therefore, all solu-
tions of the moment problem (1.2) can be obtained from solutions of the moment
problem (1.1) by the above procedure. Moreover, the correspondence between
pairs (µ, ν), where µ is a solution of the moment problem (1.1) and ν is a non-
negative measure on B(I−π) satisfying (3.59), and solutions µ̃ of the moment
problem (1.2), defined by (3.63), is bijective.

Let us turn to some density questions. Consider an arbitrary non-negative
Borel measure µ in the strip Π which has all finite moments (1.1). What can
be said about the density of power-trigonometric polynomials (2.1) in the corre-
sponding space L2

µ? The measure µ is a solution of the corresponding moment
problem (1.1). Thus, µ admits a representation (3.4) where F is the spectral mea-
sure of B and E is a spectral measure of A which commutes with F (the operators
A and B in a Hilbert space H are defined as above).

Suppose that (power-trigonometric) polynomials are dense in L2
µ. Repeat-

ing arguments from the beginning of the proof of Theorem 3.1 we see that in
our case H0 = {0} and Ã, B̃ are operators in H. Moreover, we have µ = ((Ẽ×
F̃)x0,0, x0,0)H , where Ẽ is the spectral measure of Ã, F̃ = F. Consequently, µ is a
canonical solution of the Devinatz moment problem.

The converse assertion is more complicated and will be studied elsewhere.
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