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ABSTRACT. LetA be a simple unital separable C∗-algebra. Let U(M(A⊗K))
be the unitary group of the multiplier algebra of the stabilization of A, with
the strict topology; and let T be the subgroup of scalar unitaries.

We prove that U(M(A⊗K))/T, given the quotient topology induced by
the strict topology on U(M(A⊗K)), is a simple topological group.

We also give a characterization of nuclearity of A. In particular, we show
that A is nuclear if and only if M(A ⊗ K) has the AF-property in the strict
topology; i.e., there exists a unital AF-C∗-subalgebra C ⊂ M(A ⊗ K) such
that C is strictly dense inM(A⊗K).

We also observe that there are Kaplansky density-type theorems forM(A⊗
K) with the strict topology. This, together with the preceding result, imply
that if A is nuclear then U(M(A⊗K))/T is the topological closure of an in-
creasing union of simple compact topological subgroups.
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1. INTRODUCTION

In this paper we provide results on the structure of the unitary group of the
multiplier algebra of a simple stable nuclear C∗-algebra.

The multiplier algebra M(B) of a C∗-algebra B is the largest unital C∗-
algebra containing B as an essential ideal. M(B) encodes the extension theory
of B and is an important object in K-theory as well as classification theory [1],
[15], [26].

M(B) sits in between B and its second dual von Neumann algebra B∗∗,
and (like a von Neumann algebra) M(B) has more than one interesting natu-
ral topology. In particular, M(B) has another natural topology (other than the
norm topology) called the “strict topology". The strict topology onM(B) is the



550 P.W. NG AND EFREN RUIZ

topology onM(B) induced by the family of seminorms {‖ · ‖b}b∈B , where for all
b ∈ B and m ∈ M(B), ‖m‖b =df ‖mb‖ + ‖bm‖. The strict topology on M(B)
plays a role similar to the strong* topology on the von Neumann algebra B∗∗.
For example, just as B∗∗ is the strong* topology closure of B,M(B) is the strict
topology closure of B. Moreover, like the strong* topology on a von Neumann
algebra, the strict topology on a multiplier algebra is a topology that is often used
to construct many elements (which satisfy various properties) of the multiplier
algebra. (See [1], [15] and [26]. See Exercise 2.K of [26] for an example of the last
remark.)

The first result concerns simplicity. A topological group G is simple if it
has no proper nontrivial closed normal subgroups. Simple topological groups
play a fundamental role in many places. (Some examples are the connected
simple Lie groups with trivial centre, for which there are a complete classifi-
cation as well as much knowledge of the representation theory.) In this paper
we study the simplicity of certain topological groups associated with simple C∗-
algebras. The most basic examples of this are the full matrix algebras Mn(C).
In this case, the unitary group U(Mn(C)) is not simple. However, when we
take the quotient by the scalar unitaries (i.e. the centre), we get the projective
unitary group U(Mn(C))/T which is a simple topological group. The infinite-
dimensional analogues were proven by Kadison who showed that ifM is a von
Neumann factor (any type!) then U(M)/T, given the quotient topology induced
by the strong* topology on U(M), is a simple topological group [9]. (We note
that for a von Neumann algebra, the weak, weak*, strong, σ-strong, strong*, and
σ-strong* topologies all coincide on the unitary group; see [24]. We also note that
Kadison’s (stronger) result was for the norm topology, but implies the presently
stated result in the strong* topology.)

In this paper we firstly prove the following: Let A be a unital separable
simple C∗-algebra. Let U(M(A⊗K)) be the unitary group of the multiplier al-
gebra of the stabilization of A, given the strict topology. Then U(M(A⊗K))/T,
given the quotient topology induced by the strict topology on U(M(A⊗K)), is
a simple topological group; (cf. Corollary 2.9). We note that the above result is
a generalization of the result in [21], which gives a proof in the case where A is
nuclear and has real rank zero. Our new proof (for a more general result) em-
phasizes the use of the theory of absorbing extensions and hence does not rely on
technical computations involving real rank zero. Moreover, since we extensively
use commutative C∗-algebras, the assumption of nuclearity is also unnecessary.

We note that the above result would not be true if we had used the norm
topology instead of the strict topology. For example, there exists a unital simple
AF-algebraA such that U(M(A⊗K))/T, with the quotient topology induced by
the norm topology on U(M(A⊗K)), has (uncountably) infinitely many distinct
proper closed normal subgroups.

Our next result is inspired by the interesting work of Connes and Choi and
Effros. Connes proved that a von Neumman algebraM, with separable predual,
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is injective if and only ifM is the strong* closure of an increasing union of finite-
dimensional C∗-subalgebras [4]. In connection with this, Choi and Effros proved
that a C∗-algebra A is nuclear if and only if A∗∗ is an injective von Neumann
algebra [2], [3]. Inspired by these intriguing results and motivated by the analogy
(mentioned in the third paragraph of this introduction) betweenM(B) with the
strict topology and B∗∗ with the strong* topology, we prove the following: Let A
be a unital separable simple C∗-algebra. Then A is nuclear if and only ifM(A⊗
K) is the strict topology closure of an increasing union of finite-dimensional C∗-
subalgebras; (cf. Theorem 3.3). We note that this result was proven in [20] for the
case where A is quasidiagonal.

Finally, motivated by the von Neumann algebra case, we observe that there
are Kaplansky density theorems for multiplier algebras with the strict topology.
(The proofs are very similar to those of the von Neumann algebra case.) With this
and the above result, we have the following result: Let A be a unital separable
simple nuclear C∗-algebra. Let U(M(A⊗K)) be the unitary group ofM(A⊗K)
given the strict topology. Then U(M(A ⊗ K)) is the topological closure of an
increasing union of compact topological subgroups. Moreover, the same holds
for U(M(A⊗K))/T but we may also take the compact subgroups to be simple;
(cf. Theorem 4.2).

2. SIMPLICITY OF THE PROJECTIVE UNITARY GROUP

We will use the following notation throughout this section. LetA be a unital

C∗-algebra. Let {ei,j}16i,j<∞ be a system of matrix units for K. Set ek =
k
∑

i=1
1A ⊗

ei,i. Note that {ek}∞
k=1 is an approximate identity consisting of a strictly increasing

sequence of projections.

DEFINITION 2.1. Let C andA be unital separable C∗-algebras such thatA is
simple.

(i) An injective ∗-homomorphism φ : C →M(A⊗K) is said to be purely large
if for every nonzero positive c ∈ C, the hereditary C∗-subalgebra φ(c)(A⊗K)φ(c)
is stable.

(ii) A unitary u ∈ M(A ⊗ K) is said to be purely large if the inclusion map
C∗(u)→M(A⊗K) is an injective purely large ∗-homomorphism, where C∗(u)
is the C∗-subalgebra ofM(A⊗K) generated by u.

The notion of a “purely large" extension is due to Elliott and Kucerovsky [7].
Elliott and Kucerovsky proved that in the presence of nuclearity, every purely
large extension is absorbing [7], a result which is crucially used in this paper.
This result generalizes the earlier Weyl–von Neumann theorems of Voiculescu,
Kasparov, Kirchberg and Lin which are important in classification theory [25],
[10], [11], [16].
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Purely large trivial extensions are automatically full, i.e., the image of ev-
ery nonzero element is a full element of the multiplier algebra [12], [17]. The
property that every full extension is purely large is called the corona factorization
property which has turned out to be a fundamental property for the structure and
classification of C∗-algebras [12], [13], [19], [22], [23], [6].

The next result follows from [16] (see also [7]).

LEMMA 2.2. Let A be a unital separable simple C∗-algebra and let u ∈ A be a
unitary. Then u⊗ 1B(H) is a purely large unitary inM(A⊗K).

DEFINITION 2.3. Let C and A be C∗-algebras. Then φ, ψ : C → M(A) are
said to be approximately unitarily equivalent if there exists a sequence of unitaries
{un}∞

n=1 inM(A) such that

lim
n→∞

‖unφ(c)u∗n − ψ(c)‖ = 0

for all c ∈ C.

Theorem 2.4 crucially uses the result in [7] which says that in the presence
of nuclearity, purely large extensions are absorbing. These results generalize the
earlier Weyl–von Neumann theorems of Voiculescu, Kasparov, Kirchberg and Lin
[25], [10], [11], [16].

THEOREM 2.4. Let C andA be unital separable C∗-algebras such thatA is simple.
Suppose that either A or C is nuclear. If φ, ψ : C → M(A⊗ K) are unital injective
purely large ∗-homomorphisms, then φ and ψ are approximately unitarily equivalent.

Proof. Let π :M(A⊗K)→M(A⊗K)/(A⊗K) be the natural projection.
Let D ⊆ M(A⊗K) be the C∗-subalgebra that is generated by φ(C) and A⊗K.
Then the extension

0→ A⊗K → D → π(D)→ 0

is an essential extension with Busby invariant π◦φ. Hence, π(D)∼=π◦φ(C)
β∼=φ(C).

Let ρ = β ◦ π|D and let φ′ : D → M(A ⊗ K) be the natural inclusion.
Define ψ′ : D →M(A⊗K) by

ψ′ = ψ ◦ φ−1 ◦ ρ.

By Lemmas 10 and 11 of [7], there exists a sequence {xn}∞
n=1 inM(A⊗K)

such that the following hold:
(a) x∗nφ′(a)xn − ψ′(a) ∈ A⊗K for all a ∈ D and all n > 1, and
(b) lim

n→∞
‖x∗nφ′(a)xn − ψ′(a)‖ = 0 for all a ∈ D.

In particular, for a = 1D , we have that lim
n→∞

x∗nxn = 1. Hence, if vn is the partial

isometry in the polar decomposition of xn then for sufficiently large n > 1, vn
is an isometry, vn ∈ M(A⊗K) and lim

n→∞
‖vn − xn‖ = 0. Hence, for sufficiently

large n, vn is an isometry inM(A⊗K) such that lim
n→∞

v∗nφ′(a)vn = ψ′(a) for all
a ∈ D.
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Note that π(xn)∗π(xn)− 1M(A⊗K)/(A⊗K) = 0; i.e., π(xn) is an isometry in
M(A⊗K)/(A⊗K). Hence, for sufficiently large n > 1, π(vn) = π(xn). Hence,
for sufficiently large n > 1, v∗nφ′(a)vn − ψ′(a) ∈ A ⊗ K for all a ∈ D. There-
fore, by removing an initial segment from the sequence {vn}∞

n=1 if necessary, we
may assume that {vn}∞

n=1 is a sequence of isometries inM(A⊗K) such that the
following hold:

(i) v∗nφ′(a)vn − ψ′(a) ∈ A⊗K for all a ∈ D for all n > 1;
(iii) lim

n→∞
‖v∗nφ′(a)vn − ψ′(a)‖ = 0 for all a ∈ D.

Thus, for every positive element a ∈ D,

lim
n→∞
‖(φ′(a)vn − vnψ′(a))∗(φ′(a)vn − vnψ′(a))‖

= lim
n→∞

‖(v∗nφ′(a)− ψ′(a)v∗n)(φ
′(a)vn − vnψ′(a))‖

= lim
n→∞

‖v∗nφ′(a2)vn − v∗nφ′(a)vnψ′(a)− ψ′(a)v∗nφ′(a)vn + ψ′(a2)‖

= ‖ψ′(a2)− ψ′(a)2 − ψ′(a)2 + ψ′(a2)‖ = 0.

Hence, lim
n→∞

‖φ′(a)vn − vnψ′(a)‖ = 0 for all a ∈ D. Also note that

‖π(φ′(a)vn − vnψ′(a))‖2

= ‖π(v∗nφ′(a2)vn − v∗nφ′(a)vnψ′(a)− ψ′(a)v∗nφ′(a)vn + ψ′(a2))‖
= ‖π(ψ′(a2)− ψ′(a)ψ′(a)− ψ′(a)ψ′(a) + ψ′(a2))‖ = 0.

So we have that for all a ∈ D,

(a) φ′(a)vn − vnψ′(a) ∈ A⊗ K for all n > 1;
(b) lim

n→∞
‖φ′(a)vn − vnψ′(a)‖ = 0.

Now, using the arguments in Corollary II.5.5 and Corollary II.5.6 in [5], there
exists a sequence {un}∞

n=1 of unitaries inM(A⊗K) such that

lim
n→∞

‖u∗nφ(a)un − ψ(a)‖ = 0

for all a ∈ D, i.e. φ and ψ are approximately unitarily equivalent.

The next result follows from Theorem 15.12.4 of [1] (the so-called “Kasparov
extension" [10]).

LEMMA 2.5. LetA be a unital C∗-algebra. Let X be a compact separable Hausdorff
space and let {t`}∞

`=1 be a dense subset of X such that each term is repeated infinitely
many times. The unital injective ∗-homomorphism φ : C(X)→ 1A⊗B(H) ⊆M(A⊗
K) defined by

φ( f ) = f (t1)e1 +
∞

∑
`=1

f (t`+1)(e`+1 − e`)

is a purely large ∗-homomorphism.
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Let A be a unital separable C∗-algebra. For b ∈ A ⊗ K, set ‖ · ‖b be the
seminorm onM(A⊗K) that is given by ‖m‖b = ‖mb‖+ ‖bm‖. Then the strict
topology onM(A⊗K) is given by the family of seminorms {‖ · ‖b}b∈A⊗K.

LEMMA 2.6. Let A be a unital separable simple C∗-algebra. Let G be a strictly
closed normal subgroup of U(M(A⊗K)) such that T ⊆ G and G contains a purely
large unitary that is not in T. Then G = U(M(A⊗K)).

Proof. Let u ∈ G be a purely large unitary such that u is not in T. Let X
be the spectrum of u. Since u is not in T, X has at least two distinct points. Let
{t`}∞

`=1 be a dense sequence in X such that each term repeats infinitely many
times. Define φ : C(X)→ 1A ⊗B(H) ⊆M(A⊗K) by

φ( f ) = f (t1)e1 +
∞

∑
`=1

f (t`+1)(e`+1 − e`).

By Lemma 2.5, φ is a purely large ∗-homomorphism.
By identifying C∗(u) with C(X), we have a unital injective ∗-homo-

morphism ι : C(X) → M(A ⊗ K) given by ι( f ) = f (u). Since u is a purely
large unitary, ι is a purely large ∗-homomorphism. Therefore, by Theorem 2.4, φ
and ι are approximately unitarily equivalent via a sequence of unitaries {wn}∞

n=1
inM(A⊗K). In particular,

lim
n→∞

‖wnuw∗n − φ(idX)‖ = 0.

Therefore, {wnuw∗n}∞
n=1 converges to φ(idX) in the strict topology. Since G is

a strictly closed normal subgroup of U(M(A ⊗ K)) and u ∈ G, we have that
φ(idX) ∈ G.

Since φ is an injective unital ∗-homomorphism, the spectrum of φ(idX) is
X. Hence, φ(idX) is not an element of T. Note that φ(idX) ∈ 1A ⊗ B(H). Let
D be the smallest strong∗ closed normal subgroup of U(1A ⊗ B(H)) containing
φ(idX) and T. By the results of [9], D = U(1A ⊗B(H)). Since the strict topology
onM(A⊗K) restricts to the strong∗ topology on 1A ⊗B(H),

(2.1) U(1A ⊗B(H)) = D ⊆ G.

Let v be in U(M(A⊗K)) such that v is not an element of T. We claim that
for all ε > 0 and b1, b2, . . . , bn ∈ A⊗K, there exists x ∈ G such that

‖x− v‖bi
< ε.

for all 1 6 i 6 m.
Let ε > 0 and b1, b2, . . . , bn ∈ A⊗K. Note that we may assume that ‖bi‖ 6 1

for all 1 6 i 6 n. Choose an integer N > 1 such that

‖eNbi − bieN‖ <
ε

100
, ‖eNbi − bi‖ <

ε

100
, ‖bieN − bi‖ <

ε

100
.

Since A⊗K is a stable C∗-algebra there exist isometries S and T inM(A⊗K)
such that:
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(a) 1M(A⊗K) = SS∗ + TT∗;
(b) eN 6 SS∗;
(c) SeN = eNS = eN ;
(d) ‖SveN − veN‖ < ε/100;
(e) ‖eNvS∗ − eNv‖ < ε/100.

Let Y be the spectrum of v. Let {s`}∞
`=1 be a dense subset of Y such that each

element is repeated infinitely many times. Define ψ : C(Y)→M(A⊗K) by

ψ( f ) = f (s1)e1 +
∞

∑
`=1

f (s`)(e`+1 − e`).

By Lemma 2.5, ψ is a purely large ∗-homomorphism.
By identifying C∗(v) with C(Y), there exists a unital injective ∗-homo-

morphism ι′ : C(Y) → M(A⊗K) defined by ι′( f ) = f (v). Define ψ′ : C(Y) →
M(A⊗K) by

ψ′( f ) = S f (v)S∗ + Tψ( f )T∗.
Note that ψ′ is a unital injective ∗-homomorphism. Since ψ is a purely large
∗-homomorphism, by Lemma 13 of [7], ψ′ is a purely large ∗-homomorphism.
Therefore, by Theorem 2.4, ψ and ψ′ are approximately unitarily equivalent via a
sequence of unitaries {w′n}∞

n=1 inM(A⊗K). In particular,

(2.2) lim
n→∞

‖w′nψ(idY)(w′n)
∗ − ψ′(idY)‖ = 0.

Since ψ′(idY) = SvS∗ + Tψ(idY)T∗, there exists M > 1 such that for all n > M,

‖w′nψ(idY)(w′n)
∗ − (SvS∗ + Tψ(idY)T∗)‖ <

ε

100
.

Note that for 1 6 j 6 m,

‖bjSvS∗ + bjTψ(idY)T∗ − bj‖
6‖(bj − bjeN)SvS∗‖+ ‖bjeNSvS∗ − bjv‖

+ ‖(bj − bjeN)Tψ(idY)T∗‖+ ‖bjeNTψ(idT)T∗‖

6
ε

100
+‖bjeNvS∗−bjv‖+

ε

100
+06

ε

50
+‖bj(eNvS∗−eNv)‖+‖(bjeN−bj)v‖

<
ε

50
+

ε

100
+

ε

100
=

ε

25
.

Hence, by Equation (2.2) and the fact that ‖bi‖ 6 1, for all 1 6 j 6 m

‖bj(w′Mψ(idY)(w′M)∗ − v)‖
6‖bj(w′Mψ(idY)(w′M)∗−(SvS∗+Tψ(idY)T∗))‖+‖bj((SvS∗+Tψ(idY)T∗)−v)‖

<
ε

100
+

ε

25
=

5ε

100
.

Using a similar argument as above, for all 1 6 j 6 m,

‖(w′Mψ(idY)(w′M)∗ − v)bj‖ <
5ε

100
.
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Therefore, for all 1 6 j 6 m

‖w′Mψ(idY)(w′M)∗ − v‖bj
<

ε

10
.

Since U(1A ⊗ B(H)) ⊆ G and ψ(idY) ∈ U(1A ⊗ B(H)), we have that
w′Mψ(idY)(w′M)∗ ∈ G. We have just proved our claim.

By our claim and since G is strictly closed, v ∈ G. Hence, U(M(A ⊗
K)) = G.

LEMMA 2.7. Let ε > 0 and let {εk}∞
k=1 be a strictly decreasing sequence of

positive real numbers such that ε =
∞
∑

k=1
εk. Let A be a unital C∗-algebra and let

u ∈ U(1M(A⊗K) +A⊗K). Then there exist sequences of positive integers {Nk}∞
k=1,

{Lk}∞
k=1, and {Mk}∞

k=1 and there exist a sequence of partial isometries {xk}∞
k=1 in

A⊗K and a sequence of unitaries {wk}∞
k=1 with wk ∈ eNk (A⊗K)eNk such that:

(i) for all k > 1, ‖eNk ueNk − wk‖ < εk/1000.
(ii) for all k > 1,

‖(1M(A⊗K) − eNk ) + eNk ueNk − ((1M(A⊗K) − eNk ) + wk)‖ <
εk

1000
,

‖(1M(A⊗K) − eNk ) + eNk ueNk − u‖ < εk
1000

,

‖1M(A⊗K) − eNk + wk − u‖ < εk
1000

.

(iii) For all k > 1, for every element λ in the spectrum of u, there exists an element β
in the spectrum of eNk ueNk such that

|λ− β| < εk
1000

and vice versa.
(iv) For all k > 1, for every element λ in the spectrum of u, there exists an element β

in the spectrum of wk such that

|λ− β| < εk
1000

and vice versa.
(v) For all k > 1, 1 6 Lk 6 Lk + 2 6 Mk 6 Mk + 2 6 Lk+1.

(vi) For all k > 1, Nk + 2 6 Mk − Lk.
(vii) For all k > 1, Nk + 2 6 Lk.

Set xk =
Nk
∑

i=1
1A ⊗ eLk+i,i, x′k = xk + (xk)

∗ + (1M(A⊗K) − xk(xk)
∗ − (xk)

∗xk), and

uk = x′ku(x′k)
∗ for all k > 1.

(viii) For all k > 2,

‖eku1u2 · · · uk − eku1u2 · · · uk−1‖ <
εk

100
,

‖eku1u2 · · · uk−1 − eku1u2 · · · uk−1eNk‖ <
εk

1000
,
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‖uk − (xkwk(xk)
∗ + 1M(A⊗K) − xk(xk)

∗)‖ < εk
1000

.

Proof. We will induct on k. Suppose k = 1. It follows immediately that N1,
L1, M1, x1 and w1 can be constructed to satisfy statements (i)–(vii). (Note that
N1 can be chosen to satisfy (i) since u ∈ U(1M(A⊗K) +A ⊗ K). Note also that
statement (viii) is for k > 2.)

Induction step. Suppose that N`, L`, M`, x` and w` have been constructed for
` 6 k. We now construct Nk+1, Lk+1, Mk+1, xk+1 and wk+1. Note that for ` 6 k,
x′` ∈ U(1M(A⊗K)+A⊗K). Hence, for ` 6 k, u` ∈ U(1M(A⊗K)+A⊗K). Hence,
u1u2 · · · uk ∈ U(1M(A⊗K) + A ⊗ K). We can choose a positive integer Nk+1 >
Nk + 2 and wk+1 such that Nk+1 and wk+1 satisfy statements (i), (ii), (iii), and (iv)
(with k + 1 replacing k). Moreover, since {ej}∞

j=1 is an approximate identity for
A⊗K, increasing Nk+1 if necessary, we may assume that ek+1u1u2 · · · uk is within
εk+1/1000 of ek+1u1u2 · · · ukeNk+1 .

Now choose strictly positive integers Mk+1 and Lk+1 so that Mk+1 > Lk+1 +
2 > Lk+1 > Mk + 2 and Mk+1 − Lk+1 > Nk+1 + 2. Now define xk+1, x′k+1, uk+1
as in the lemma. Note that since u, xk+1 ∈ U(1M(A⊗K) +A⊗K), we have that
uk+1 ∈ U(1M(A⊗K) +A⊗K). By (ii), we have that

‖uk+1 − (xk+1wk+1(xk+1)
∗ + (1− xk+1(xk+1)

∗)‖ < εk+1
1000

.

Since eNk+1 is orthogonal to xk+1x∗k+1,

‖ek+1u1u2 · · · ukuk+1 − ek+1u1u2 · · · uk‖
6 ‖ek+1u1u2 · · · uk‖‖uk+1 − (xk+1wk+1(xk+1)

∗ + (1− xk+1(xk+1)
∗)‖

+ ‖ek+1u1u2 · · · uk(xk+1wk+1(xk+1)
∗ + (1− xk+1(xk+1)

∗)− ek+1u1u2 · · · uk‖

<
εk+1
1000

+ ‖ek+1u1u2 · · · ukxk+1wk+1(xk+1)
∗‖

+ ‖ek+1u1u2 · · · uk(1− xk+1(xk+1)
∗)− ek+1u1u2 · · · uk‖

<
εk+1
1000

+
εk+1
1000

+
εk+1
1000

<
εk+1
100

.

The induction is complete.

THEOREM 2.8. Let A be a unital separable simple C∗-algebra. Let G be a strictly
closed normal subgroup of U(M(A⊗K)) that contains T. If G contains an element in
U(C1M(A⊗K) +A⊗K) which is not in T, then G = U(M(A⊗K)).

Proof. Let u ∈ U(C1M(A⊗K) + A ⊗ K) ∩ G \ T. Since T ⊆ G, we may
assume that u ∈ U(1M(A⊗K) +A⊗K) ∩ G \ T. Let {t`}∞

`=1 be a dense subset of
the spectrum of u such that each term is repeated infinitely many times. Define
v by

v = t1e1 +
∞

∑
`=1

t`+1(e`+1 − e`).
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Note that v is a unitary in 1A ⊗B(H) ⊆M(A⊗K), v is a purely large unitary in
M(A⊗K), and the spectrum of v is equal to the spectrum of u.

Since u ∈ U(1M(A⊗K) +A⊗K), by Lemma 2.7, there exist a sequence of
positive integers {Nk}∞

k=1, {Lk}∞
k=1, and {Mk}∞

k=1 and there exist a sequence of
partial isometries {xk}∞

k=1 in A ⊗ K and a sequence of unitaries {wk}∞
k=1 with

wk ∈ eNk (A⊗K)eNk satisfying all the properties in Lemma 2.7.

Set xk =
Nk
∑

i=1
1A ⊗ eLk+i,i, x′k = xk + (xk)

∗ + 1M(A⊗K) − xk(xk)
∗ − (xk)

∗xk,

and uk = x′ku(x′k)
∗ as in Lemma 2.7.

Note that uk ∈ G for all k > 1. By Lemma 2.7, for all k > 1, {∏`
i=1 uk+i−1}∞

`=1
converges to a unitary ũk ∈ M(A⊗ K). Since uk ∈ G for all k > 1 and G is a
strictly closed subset ofM(A⊗K), ũk ∈ G.

By inspection, for all k > 1

{∏`

i=1(xk+i−1wk+i−1(xk+i−1)
∗ + (1M(A⊗K) − xk+i−1(xk+i−1)

∗))}∞
`=1

converges to a unitary w′k ∈ M(A⊗K). Also,

(2.3) ‖ũk − w′k‖ <
∞

∑
`=k

ε`
1000

.

By (ii) of Lemma 2.7, for all k > 1 and k′ > k,

(2.4) ‖wk′ − (wk + (eNk′
− eNk ))‖ <

εk
100

.

For all k > 1, define w′′k ∈ U(M(A⊗K)) by

w′′k =
∞

∏
i=1

(xk+i−1(wk + (eNk+i−1 − eNk ))(xk+i−1)
∗ + 1M(A⊗K) − xk+i−1(xk+i−1)

∗).

Note that w′k and w′′k are block-diagonal unitaries. By equation (2.4), for all k > 1

‖w′k − w′′k ‖ <
εk

100
.

Hence, using Equation (2.3), for all k > 1

(2.5) ‖ũk − w′′k ‖ <
εk

100
+

∞

∑
`=k

ε`
1000

.

Let k > 1. By the construction of w′′k and by Lemma 2.7, for every λ in the
spectrum of v there exists a β in the spectrum of w′′k such that |λ− β| < εk/1000
and vice versa. Let X be the spectrum of w′′k . Let {s`}∞

`=1 be a dense subset
of X such that each term is repeated infinitely many times and for each ` > 1,
|s` − t`| < εk/100.

By identifying C∗(w′′k ) with C(X), there exists an injective unital ∗-homo-
morphism ι : C(X) →M(A⊗K) defined by ι( f ) = f (w′′k ). Since w′′k is a purely
large unitary, ι is a purely large ∗-homomorphism.
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Define φ : C(X)→ 1A ⊗B(H) ⊆M(A⊗K) by

φ( f ) = f (s1)e1 +
∞

∑
`=1

f (s`+1)(e`+1 − e`).

By Lemma 2.5, φ is a purely large unital injective ∗-homomorphism. Therefore,
by Theorem 2.4, ι and φ are approximately unitarily equivalent via a sequence of
unitaries {yn}∞

n=1 inM(A⊗K). In particular,

lim
n→∞

‖ynw′′k (yn)
∗ − φ(idX)‖ = 0.

So, there exists an integer dk > 1 such that for all n > dk,

‖ynw′′k (yn)
∗ − φ(idX)‖ <

εk
1000

.

Hence, by equation (2.5)

(2.6) ‖ydk
ũk(ydk

)∗ − φ(idX)‖ <
εk
50

+
∞

∑
`=k

ε`
1000

.

Since φ(idX) = s1e1 +
∞
∑
`=1

s`+1(e`+1 − e`), by the choice of {s`}∞
`=1,

‖φ(idX)− v‖ < εk
100

.

Thus, by equation (2.6),

‖ydk
ũk(ydk

)∗ − v‖ < 3εk
100

+
∞

∑
`=k

e`
100

.

We have just shown that

lim
k→∞
‖ydk

ũk(ydk
)∗ − v‖ 6 lim

k→∞

3εk
100

+
∞

∑
`=k

e`
100

= 0.

Since ũk ∈ G, ydk
ũk(ydk

)∗ ∈ G. Therefore, v ∈ G since G is strictly closed. There-
fore, by Lemma 2.6, G = U(M(A⊗K)).

COROLLARY 2.9. LetA be a unital separable simple C∗-algebra. Then U(M(A⊗
K))/T, given the quotient topology induced by the strict topology on U(M(A⊗K)),
is simple.

Proof. Note that it is enough to show that if G is a strictly closed normal
subgroup of U(M(A⊗K)) such that G properly contains T, then G=U(M(A⊗K)).

Let G be a strictly closed normal subgroup of U(M(A ⊗ K)) such that G
properly contains T. Let u ∈ G such that u is not an element of T. Then there
exists N > 1 such that eNueN is not an element of CeN . Since eNueN is not in
CeN , there exists a unitary v in eN(A⊗K)eN such that veNueNv∗ 6= λeNueN for
all λ ∈ C.
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Define w ∈ U(1M(A⊗K)+A⊗K) by w = v+ 1M(A⊗K)− eN . Then wuw∗ 6=
λu for all λ ∈ C. Hence, wuw∗u∗ is not an element of T. Since u ∈ G and G is a
normal subgroup of U(M(A⊗K)), wuw∗u∗ ∈ G.

Let π : M(A⊗ K) → M(A⊗ K)/(A⊗ K) be the natural quotient map.
Then π(wuw∗u∗) = π(uu∗) = 1M(A⊗K). Thus, wuw∗u∗ ∈ U(1M(A⊗K) +A⊗
K). Also, wuw∗u∗ is not in T. Hence, by Theorem 2.8, G = U(M(A⊗K)).

3. MULTIPLIER ALGEBRAS WITH THE AF-PROPERTY IN THE STRICT TOPOLOGY

The first result is a slight modification of the proof of Theorem 2.2 in [18].

THEOREM 3.1. Let A be a unital simple separable nuclear C∗-algebra, and let
F ⊆M(A⊗K) be a finite subset.

Then for every ε > 0, for finitely many elements b1, b2, . . . , bn ∈ A ⊗ K, there
exists D ⊆M(A⊗K) C∗-subalgebra such that the following conditions hold:

(i) D is a unital C∗-subalgebra ofM(A⊗K); i.e., 1M(A⊗K) = 1D .
(ii) There exists an integer k > 1 such thatD is a simple finite-dimensional C∗-algebra

with rank 2k; i.e., D ∼= M2k .
(iii) Every minimal projection in D is Murray–von Neumann equivalent to 1M(A⊗K)

= 1D inM(A⊗K).
(iv) For every x ∈ F , there exists y ∈ D such that ‖(x − y)bi‖ < ε and ‖bi(x −

y)‖ < ε for 1 6 i 6 n.

Proof. The proof is very similar to that of the “only if" direction of Theo-
rem 2.2 in [18]. One needs only to note that for A = C,M(A⊗K) = B(H) and
the conclusion of the Theorem 3.1 is certainly true for B(H).

We give the following definition taken from [18]. In [18], this property is
referred to as the “strong AFD-type property".

DEFINITION 3.2. Let B be a separable stable C∗-algebra. Then M(B) has
the AF-property in the strict topology if there exists a unital AF-subalgebra C ⊆
M(B) such that C is strictly dense inM(B).

In [18] and [20], it was proven that if A is a unital separable simple nuclear
quasidiagonal C∗-algebra thenM(A⊗K) as the AF-property in the strict topol-
ogy. We now remove the quasidiagonality assumption.

THEOREM 3.3. Let A be a unital separable simple C∗-algebra. Then A is nuclear
if and only ifM(A⊗K) has the AF-property in the strict topology.

Proof. Throughout the proof i will denote
√
−1. The “if" direction follows

immediately from Theorem 2.2 of [18].
We now prove the “only if" direction. We follow the argument of Elliott and

Woods [8], using Theorem 3.1. Let b ∈ A ⊗ K be a strictly positive element of
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A⊗K. For simplicity, we may assume that ‖b‖ 6 1. Let {xn}∞
n=1 be a countable

dense set in the self-adjoint part of the closed unit ball of A⊗K.
We now construct an increasing sequence {Dn}∞

n=1 of simple finite-
dimensional unital C∗-subalgebras ofM(A⊗K). The construction is by induc-
tion on n.

Basis step n = 1. By Theorem 3.1, let D1 ⊂ M(A⊗K) be a C∗-subalgebra
such that the following statements are true:

(i) 1D1 = 1M(A⊗K).
(ii) There exists an integer k1 > 1 such that D1

∼= M2k1 .
(iii) Every minimal projection in D1 is Murray–von Neumann equivalent to

1M(A⊗K) = 1D1 inM(A⊗K).
(iv) There exists y1,1 ∈ D1 such that ‖(x1− y1,1)(x1 + i)−1b‖ < 1/2 and ‖b(x1 +

i)−1(x1 − y1,1)‖ < 1/2.

Induction step. Suppose that for n > 1, Dn has been chosen. Let kn > 1 be
the integer such that Dn ∼= M2kn . Let {es,t}16s,t62kn be a system of matrix units
for Dn. By our inductive hypothesis, es,s ∼ 1M(A⊗K) = 1Dn in M(A ⊗ K) for
1 6 s 6 2kn . Hence, we have that es,s(A ⊗ K)es,s ∼= A ⊗ K and es,sM(A ⊗
K)es,s =M(es,s(A⊗K)es,s) ∼=M(A⊗K).

By Theorem 3.1, there exists a C∗-subalgebra D ⊂ e1,1M(A⊗ K)e1,1 such
that the following statements are true:

(i) 1D = e1,1.
(ii) There exists an integer l > 1 such that D ∼= M2l .

(iii) Every minimal projection ofD is Murray–von Neumman equivalent to e1,1
(and hence Murray–von Neumann equivalent to 1M(A⊗K)) inM(A⊗K).

(iv) For 1 6 s, t 6 2kn and 1 6 m 6 n + 1, let ym,s,t ∈ D be an element
such that ‖(e1,sxmet,1 − ym,s,t)e1,t(xm + i)−1b‖ < (1/2n+1)(1/22kn) and ‖b(xm +

i)−1es,1(e1,sxmet,1 − ym,s,t)‖ < (1/2n+1)(1/22kn).

Let Dn+1 ⊆M(A⊗K) be the unital C∗-subalgebra that is generated by Dn
and D. Note that we have the following:

(i) 1Dn+1 = 1M(A⊗K).
(ii) Dn+1

∼= M2kn+l .
(iii) Every minimal projection in Dn+1 is Murray–von Neumann equivalent to

1M(A⊗K) = 1Dn+1 inM(A⊗K).
For 1 6 m 6 n + 1, let yn+1,m =df ∑

16s,t62kn
es,1ym,s,te1,t ∈ Dn+1. By statement

(iv) above, we have that for 1 6 m 6 n + 1,

‖(xm − yn+1,m)(xm + i)−1b‖

6 ∑
16s,t62kn

‖(es,sxmet,t − es,1ym,s,te1,t)(xm + i)−1b‖
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= ∑
16s,t62kn

‖es,1(e1,sxmet,1 − ym,s,t)e1,t(xm + i)−1b‖

6 ∑
16s,t62kn

‖(e1,sxmet,1 − ym,s,t)e1,t(xm + i)−1b‖ < 1
2n+1 .

By a similar argument we have that for 1 6 m 6 n + 1,

‖b(xm + i)−1(xm − yn+1,m)‖ <
1

2n+1 .

The inductive construction is complete.
Now let C ⊆ M(A⊗K) be the unital C∗-subalgebra that is given by

C =df

∞⋃
n=1

Dn+1.

Since C is a unital UHF-algebra, C is a simple AF-algebra. Also, 1C = 1M(A⊗K).
By construction and since xm is self-adjoint, we see that for each m > 1, there
exists a sequence {yn,m}∞

n=1 in C such that

lim
n→∞

‖(xm − yn+1,m)(xm + i)−1b‖ = 0,(3.1)

lim
n→∞

‖(xm − y∗n+1,m)(xm + i)−1b‖ = lim
n→∞

‖b(xm + i)−1(xm − yn+1,m)‖ = 0.(3.2)

By (3.1) and (3.2) and since xm is self-adjoint, we may assume that each
yn+1,m is self-adjoint. With this assumption and by (3.1) and (3.2) (and using that
if y is self-adjoint then ‖(y + i)−1‖ 6 1), we have that for m > 1,

lim
n→∞
‖((yn+1,m+i)−1−(xm+i)−1)b‖= lim

n→∞
‖(yn+1,m+i)−1(xm−yn+1,m)(xm+i)−1b‖

6 lim
n→∞

‖(xm − yn+1,m)(xm + i)−1b‖ = 0.

By a similar argument,

lim
n→∞

‖b((yn+1,m + i)−1 − (xm + i)−1)‖ = 0.

Since {(yn+1,m + i)−1}∞
n=1 is a (norm) bounded sequence in C and since b ∈ A⊗

K is a strictly positive element, we have that {(yn+1,m + i)−1}∞
n=1 converges to

(xm + i)−1 in the strict topology inM(A⊗K). Hence, (xm + i)−1 is in the strict
closure of C. Since (xm + i)−1 = (1M(A⊗K) + x2

m)
−1xm − i(1M(A⊗K) + x2

m)
−1, we

have that (1M(A⊗K) + x2
m)
−1 is in the strict closure of C. Hence, xm is in the strict

closure of C. Since m > 1 is arbitrary and since {xn}∞
n=1 is (norm) dense in the

self-adjoint elements of the closed unit ball of A⊗ K, we have that M(A⊗ K)
is the strict closure of C. In other words,M(A⊗K) has the AF-property in the
strict topology, as required.
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4. KAPLANSKY DENSITY THEOREM

In this short section we clean up the theory by observing that the Kaplansky
density theorem works for the strict topology in multiplier algebras. The proof
follows along the lines of the Kaplansky density theorem in the von Neumann
algebra case; (see Proposition 1.4. of [14]).

PROPOSITION 4.1. Let B be a separable stable C∗-algebra. Suppose that C ⊂
M(B) is a strictly dense C∗-subalgebra. Then we have the following:

(i) The unit ball of C is strictly dense in the unit ball ofM(B).
(ii) The self-adjoint elements of C are strictly dense in the set of self-adjoint elements

ofM(B).
(iii) The self-adjoint contractions of C are strictly dense in the set of self-adjoint con-

tractions ofM(B).
(iv) The positive elements of C are strictly dense in the set of positive elements of
M(B).

(v) The positive contractions in C are strictly dense in the set of positive contractions
ofM(B).

(vi) Suppose that C is unital. Then the unitaries in C are strictly dense in the set of
unitaries ofM(B).

Proof. (i) and (iii) are proven in Proposition 1.4 of [14].
(ii) and (iv) follow from the fact that for elements xα and x in M(B), if

xα → x strictly then (1/2)(xα + x∗α) → (1/2)(x + x∗) strictly and x∗αxα → x∗x
strictly.

(v) follows from (iv) and the same argument as that for (i) (i.e., Proposi-
tion 1.4 of [14]).

We now sketch to proof of (vi). Let u ∈ M(B) be a unitary. Since every
unitary inM(B) is (norm) path-connected to 1M(B), let a1, a2, . . . , an ∈ M(B) be
self-adjoint elements such that u = eia1eia2 · · · eian . Now by a variation on (iii), for
1 6 j 6 n, let {aj,α} be a net of self-adjoint elements of C such that ‖aj,α‖ 6 aj for
all α and aj,α → aj in the strict topology onM(B).

Hence, since that map d 7→ eid is strictly continuous on bounded subsets
of the self-adjoint elements ofM(B), we have that the eia1,α eia2,α · · · eian,α are uni-
taries in C such that eia1,α eia2,α · · · eian,α → eia1eia2 · · · eian = u strictly inM(B), as
required.

From Theorem 3.3, Proposition 4.1 and Corollary 2.9, we have the following
structure theorem for the projective unitary group of the multiplier algebra of a
nuclear C∗-algebra.

THEOREM 4.2. Let A be a unital separable simple nuclear C∗-algebra, and let
U(M(A⊗K)) be the unitary group of the multiplier algebra ofA⊗K, given the strict
topology. Give U(M(A⊗K))/T the quotient topology. Then we have the following:
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(i) U(M(A⊗K))/T is a simple topological group.
(ii) U(M(A⊗ K))/T is the topological closure of an increasing union of compact

topological subgroups.

QUESTION 4.3. Let A be a unital separable simple nuclear C∗-algebra.
(1) Consider the unitary group U(A) of A, given the topology induced by the

relative weak topology of A. Is U(A) the topological closure of an increasing
sequence of compact subgroups?

(2) SupposeA is quasidiagonal. Consider the unitary group U(A) ofA, given
the topology induced by the norm topology ofA. Is U(A) the topological closure
of an increasing sequence of compact subgroups?

A positive answer to (2) implies that U(A), given the topology induced by
the norm topology of A, is an amenable topological group.
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