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ABSTRACT. In this paper we compute the entire cyclic cohomology of non-
commutative 3-spheres. First of all, we verify the Mayer–Vietoris exact se-
quence of entire cyclic cohomology in the framework of Fréchet ∗-algebras.
Applying it to their noncommutative Heegaard decomposition, we deduce
that their entire cyclic cohomology is isomorphic to the d’Rham homology of
the ordinary 3-sphere with the complex coefficients.
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INTRODUCTION

Since Connes [5] constructed a generalization of periodic cyclic cohomol-
ogy which is called entire cyclic cohomology, its explicit computation is executed
only for few examples (cf. [3], [5], [12]). As a matter of fact, their entire cyclic
cohomologies are nothing but their periodic ones. Recently, the first named au-
thor [16] computed that of smooth noncommutative 2-tori, which have the same
property cited above.

In this paper, we firstly formulate the Mayer–Vietoris exact sequence for en-
tire cyclic cohomology, then we apply it to compute for smooth noncommutative
3-spheres. The key idea is based on Meyer’s excision [14], [15] concerning the
short exact sequences of Fréchet ∗-algebras to obtain a noncommutative Mayer–
Vietoris exact sequence for entire cyclic cohomology. To use his excision, we need
to construct a bounded linear section for a short exact sequence of Fréchet ∗-
algebras. To ensure it, we reformulate the notion of metric approximation prop-
erty in the framework of Fréchet ∗-algebras to solve the lifting problem (see [4]).
We then use Baum, Hajac, Matthes and Szymańskis’ method [1] for a Heegaard
decomposition of smooth noncommutative 3-spheres since they pointed out an
insufficient part of Matsumoto’s construction [13] in the case of C∗-algebras.
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Under this circumstance, we conclude that the entire cyclic cohomology of
noncommutative 3-spheres is the same as their periodic one.

Throughout this paper, θ is an irrational number in the open unit interval
(0, 1) and we use the notation Z>0 for the set of all nonnegative integers.

1. PRELIMINARIES

We prepare some notations and basic properties used throughout the paper.
Let A be a Fréchet ∗-algebra or F∗-algebra and denote by C∞([0, 1],A) the set of
all A-valued smooth functions on the closed unit interval [0, 1] with respect to
Fréchet topology. Given an element f ∈ C∞([0, 1],A) and an integer n > 1, we
write by f (n) its n-th derivative of f at t (0 < t < 1) and denote by f (n)+ (0), f (n)− (1)
the n-th derivatives at 0 or 1 as follows:

f (n)+ (0) = lim
t→0+

f (n)(t), f (n)− (1) = lim
t→1−0

f (n)(t).

For n = 0, we write f (0)+ (0) = f (0), f (0)− (1) = f (1).

DEFINITION 1.1. For a F∗-algebra A, we define the suspension S∞A of A by

S∞A = { f ∈ C∞([0, 1],A) : f (n)+ (0) = f (n)− (1) = 0 (n > 0)}

and we also define the cone C∞A of A by

C∞A = { f ∈ C∞([0, 1],A) : f (n)− (1) = 0 (n > 0)}.
Then we have the following short exact sequence:

0 −−−−→ I
i−−−−→ C∞A

q−−−−→ A −−−−→ 0,

where q is defined by q( f ) = f (0),

I = { f ∈ C∞A : f (0) = 0}

and i is the canonical inclusion. The map s : A→ C∞A defined by

s(a)(t) = (1− t)a (a ∈ A, t ∈ [0, 1])

is a bounded linear section of q with respect to Fréchet topology. We need to know
the entire cyclic cohomologies of C∞A and I. We say that given two F∗-algebras
A and B, the map

Φ : A→ C∞([0, 1],B)

is called a smooth homotopy if it is a bounded homomorphism with respect to
Fréchet topology and two bounded homomorphisms f , g : A → B are smoothly
homotopic if there exists a smooth homotopy Φ from A to B with Φ0 = f , Φ1 = g.
A Fréchet algebra A is smoothly homotopic to another one B if there are two
homomorphisms f : A → B and g : B → A such that g ◦ f (respectively f ◦
g) is smoothly homotopic to the identity on A (respectively B). According to
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Meyer [14], we know the homotopy invariance of entire cyclic cohomology in the
framework of F∗-algebras:

PROPOSITION 1.2 ([14]). If two bounded homomorphisms are smoothly homo-
topic, then they induce the same map on the entire cyclic cohomology.

We also mention the following lemma:

LEMMA 1.3. Let S∞A, C∞A and I be defined above, we then have that

HE∗(C∞A) = 0, HE∗(I) ' HE∗(S∞A).

Proof. By Proposition 1.2, it suffices to show that C∞A is smoothly homo-
topic to 0 to obtain the former isomorphism. The map

F : C∞A→ C∞([0, 1], C∞A)

defined by

Fs( f )(t) = f (s + (1− s)t) ( f ∈ C∞A, s, t ∈ [0, 1])

gives a smooth homotopy on C∞A. Since F0 is the identity on C∞A and for any
f ∈ C∞A,

F1( f )(t) = f (1) = 0.

We know that C∞A is smoothly homotopic to 0. For the latter one, we in-
troduce the map t 7→ f (e1−1/t) ( f ∈ C∞A, t ∈ [0, 1]), which belongs to S∞A.
Indeed, we note that for any n > 1, dn

dtn f (e1−1/t) is a linear combination of some
functions such as

f (k)(e1−1/t)
el(1−1/t)

tm (k, l, m > 1).

In fact, for n = 1, we have that

d
dt

f (e1−1/t) = f (1)(e1−1/t)
e1−1/t

t2 .

Suppose that the function dn

dtn f (e1−1/t) is a linear combination of functions

f (k)(e1−1/t)
el(1−1/t)

tm (k, l, m > 1),

then we deduce that

d
dt

(
f (k)(e1−1/t)

el(1−1/t)

tm

)
= f (k+1)(e1−1/t)

e(l+1)(1−1/t)

tm+2 + l f (k)
el(1−1/t)

tm+2 −m f (k)(e1−1/t)
el(1−1/t)

tm+1 ,

so the same is true for dn+1

dtn+1 f (e1−1/t). Because of the following equalities:

lim
t→0+

f (k)(e1−1/t)
el(1−1/t)

tm = f (n)+ (0) · 0=0, lim
t→1−0

f (k)(e1−1/t)
el(1−1/t)

tm = f (n)− (1)=0,
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for any f ∈ I, k, l, m > 1, the function f (e1−1/t) belongs to S∞A. Let

r : I→ S∞A

be the map defined by

r( f )(t) = f (e1−1/t) ( f ∈ I, t ∈ [0, 1])

and i the natural inclusion from S∞A into I. For the proof that r ◦ i is smoothly
homotopic to the identity on S∞A, we use the bounded homomorphism

G : S∞A→ C∞([0, 1], S∞A)

defined by

Gs( f )(t) = f (se1−1/t + (1− s)t) ( f ∈ S∞A, s, t ∈ [0, 1])

which gives a smooth homotopy connecting r ◦ i and the identity on S∞A. We
firstly show that Gs( f ) ∈ S∞A for any fixed f ∈ S∞A, s ∈ [0, 1]. Since

d
dt

Gs( f )(t) = f (1)(se1−1/t + (1− s)t)
( s

t2 e1−1/t + 1− s
)

,

we know that

lim
t→0+

d
dt

Gs( f )(t) = f (1)+ (0) · (1− s) = 0, lim
t→1−0

d
dt

Gs( f )(t) = f (1)− (1) = 0.

For general n > 2, we also see that

lim
t→0+

dn

dtn Gs( f )(t) = lim
t→1−0

dn

dtn Gs( f )(t) = 0.

The case for n = 1 has already been shown. It suffices to show that for n > 2, the
function dn

dtn Gs( f )(t) is a linear combination of functions like

f (k)(se1−1/t + (1− s)t)
el(1−1/t)

tm (k, l, m > 1).

We now calculate that

d
dt

f (k)(se1−1/t + (1− s)t)
el(1−1/t)

tm

= f (k+1)(se1−1/t + (1− s)t)
el(1−1/t)

tm

( s
t2 + 1− s

)
+ f (k)(se1−1/t + (1− s)t)

( lel(1−1/t)

tm+2 − mel(1−1/t)

tm+1

)
,

which completes the induction process. Moreover we see that dn

dtn Gs is uniformly
bounded on [0, 1] for each n > 1. We note that the function

t 7→ el(1−1/t)

tm

is bounded on [0, 1] and that f (k) is also bounded since f ∈ C∞([0, 1],A). Hence
G is a smooth homotopy connecting r ◦ i and the identity on S∞A since G1 = r ◦ i
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and G0 is the identity on S∞A. Similarly, i ◦ r and the identity on I are smoothly
homotopic via the smooth homotopy defined by the same way as G, which im-
plies the following, as desired:

HE∗(I) ' HE∗(S∞A).

2. TOEPLITZ F∗-ALGEBRAS

In this section, we construct smooth Toeplitz algebras based on 1-torus and
to analyze them. They could be viewd as a quantization of 2-disc (cf. [1], [11]).
Let {zn}n∈Z be the orthonomal basis of the Hilbert space L2(T) of all square
integrable functions on the 1-torus T, where zn(t) = tn (t ∈ T, n ∈ Z), and
H2 = H2(T) the Hardy space on T which is a closed subspace of L2(T) spanned
by {zn}n>0. For f ∈ C∞(T) the algebra of all infinitely differentiable functions on
T, in which we mean that the derivation is defined by

d
dt

f (t) = lim
r→0

f (e2πirt)− f (t)
r

,

we define the operator Tf for f ∈ C∞(T) by

Tf ξ = P f ξ (ξ ∈ H2),

where P is the projection onto H2. We consider the ∗-algebra P generated by
Tzj (j ∈ Z), namely,

P =
⋃

N∈Z>0

{
∑

ij∈Z, |ij |6N
ci1,...,in Tzi1 · · · Tzin : ci1,...,in ∈ C, n ∈ Z>0

}
.

Since Tf Tg−Tf g is a compact operator for any f , g∈C∞(T) and Tf is compact if
and only if f =0 (cf. [8]), it is easily seen by induction that for any T∈P , there is
a unique f ∈C∞(T) and a unique compact operator S with T=Tf +S. Actually, if

T = ∑
ij∈Z, |ij |6N

ci1,...,in Tzi1 · · · Tzin ∈ P ,

then T = Tf + S, where

f = ∑
ij∈Z, |ij |6N

ci1,...,in zi1 · · · zin

and the compact operator S is a linear combination of the operators of the form

Tzl1 · · · Tzlk (Tzn Tzm − Tzn+m)T
zl′1
· · · T

z
l′
k′

(l1, . . . lk, . . . l′1, . . . l′k′ , n, m ∈ Z).

We show that there exists a function KS(t, s) ∈ C∞(T2) which is a polynomial of
t, s and satisfies

(Sξ)(t) =
∫
T

KS(t, s)ξ(s)ds (ξ ∈ H2).
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This function KS is called the kernel function of S. Given n, m ∈ Z, it is easily
verified that

(Tzn Tzm − Tzn+m)ξ(t) =
(

∑
k>max{−m,−n}

− ∑
k>−m−n

)
〈ξ | zk〉zk(t)

=
∫
T

(
∑

k>max{−m,−n}
− ∑

k>−m−n

)
tks−kξ(s)ds,

where

〈 f : g〉 =
∫
T

f (s)g(s)ds ( f , g ∈ L2(T))

is the usual inner product on L2(T). Then the kernel function KTzn Tzm−Tzn+m of
Tzn Tzm − Tzn+m is a finite sum of the functions tks−k since there exists a finite sub-
set In,m ⊂ Z such that

KTzn Tzm−Tzn+m (t, s) =
(

∑
k>max{−m,−n}

− ∑
k>−m−n

)
tks−k = ± ∑

k∈In,m

tks−k

(when In,m is empty, we regard the function KTzn Tzm−Tzn+m (t, s) = 0). Moreover,
given l ∈ Z, we compute that

K(Tzn Tzm−Tzn+m )Tzl
(t, s) =

∫
T

KTzn Tzm−Tzn+m (t, r)KTzl (r, s)dr

= ±
∫
T

∑
k∈In,m

tkr−k ∑
k′>−l

rk′ s−k′dr

= ± ∑
k′>−l

∑
k∈In,m

tks−k′
∫
T

rk′−kdr = ± ∑
k∈In,m , k>−l

tks−k,

which implies that the kernel function K(Tzn Tzm−Tzn+m )Tzl
is a polynomial of t, s.

By the similar computation, it follows that for l, m, n ∈ Z, the kernel function
KTzl (Tzn Tzm−Tzn+m ) is also a polynomial. Then, by the inductive argument, we have
that the kernel functions

KT
zl1
···T

zlk
(Tzn Tzm−Tzn+m )T

z
l′1
···T

z
l′
k′

are also polynomials, which in particular belong to C∞(T2).
Let K∞ be the set of all compact operators S such that there exists a function

KS ∈ C∞(T2) with the property that

(Sξ)(t) =
∫
T

KS(t, s)ξ(s)ds (ξ ∈ H2, t ∈ T).

By the above argument, it follows that for each operator T ∈ P , there exist a
function f ∈ C∞(T) and an operator S ∈ K∞ with T = Tf + S. Since Tg is
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compact if and only if g = 0, the function f and the operator S are uniquely
determined. We define the seminorms {‖ · ‖k,l,m} on P by

‖Tf + S‖k,l,m = ‖ f (k)‖∞ + ‖K(l,m)
S ‖∞ (k, l, m ∈ Z>0),

where f (k) is the k-th derivative of f ,

K(l,m) =
∂l+m

∂tl∂sm K(t, s) (K ∈ C∞(T2)),

and ‖ · ‖∞ mean the supremum norms on the corresponding function spaces.

DEFINITION 2.1. The smooth Toeplitz algebra T ∞ is defined by the completion
of P with respect to the topology induced by the seminorms {‖ · ‖k,l,m}.

Similarly as in the case of P , we have that for any T ∈ T ∞, there exist
a function f ∈ C∞(T) and an operator S ∈ K∞ with T = Tf + S. In fact, if
{Tn}n>1 ⊂ P converges to T with respect to the seminorms {‖ · ‖k,l,m} with Tn =
Tfn + Sn, we compute that

‖ f (k)n − f (k)n′ ‖∞ = ‖Tfn − Tfn′
‖k,0,0 6 ‖Tn − Tn′‖k,0,0 → 0 (n, n′ → ∞),

for any k ∈ Z>0, which ensures that there exists the function f ∈ C∞(T) such that
fn → f with respect to the seminorms. Alternatively, since {Sn} is also Cauchy,
we have that for any k, l, m ∈ Z,

‖Sn − Sn′‖k,l,m = ‖K(l,m)
Sn
− K(l,m)

Sn′
‖∞ → 0 (n, n′ → ∞).

Hence, we find a function K ∈ C∞(T2) with KSn → K as n → ∞ with respect to
Fréchet topology on C∞(T2). Then the operator S defined by

Sξ(t) =
∫
T

K(t, s)ξ(s)ds (ξ ∈ H2, t ∈ T)

belongs to K∞ and Sn − S → 0 as n → ∞ with respect to the seminorms, which
implies the conclusion. It is clear by the above argument that K∞ is a ∗-ideal of
T ∞ and Fréchet closed.

We define a homomorphism q : T ∞ → C∞(T) by q(Tf + S) = f , which is
continuous with respect to the seminorms cited before. The following lemma is
already clear:

LEMMA 2.2. We obtain the following short exact sequence as F∗-algebras:

0 −−−−→ K∞ i−−−−→ T ∞ q−−−−→ C∞(T) −−−−→ 0,

where i is the canonical inclusion.

We next deduce the following lemma, which is a smooth version of C∗-
algebra case:
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LEMMA 2.3. We have the following isomorphism:

K∞ ' lim−→(Mn(C), ϕn),

where the homomorphisms ϕn : Mn(C)→ Mn+1(C) are given by

ϕn(A) =

(
A 0
0 0

)
(A ∈ Mn(C), n > 1).

Proof. Let Pn (n > 1) be the orthogonal projections on H2 defined by

Pnξ(t)=
n−1

∑
k=0
〈ξ : zk〉zk(t)=

n−1

∑
k=0

( ∫
T

ξ(s)s−kds
)

tk =
∫
T

n−1

∑
k=0

tks−kξ(s)ds (ξ ∈ H2),

which implies that

KPn(t, s) =
n−1

∑
k=0

tks−k.

Then PnK∞Pn is isomorphic to Mn(C). Indeed, the kernel function KPnSPn for
S ∈ K∞ is calculated as follows: since

KSPn(t, s) =
∫
T

KS(t, r)KPn(r, s)dr =
∫
T

n

∑
k=0

rks−kKS(t, r)dr,

we have that

KPnSPn(t, s) =
∫
T

KPn(t, u)KSPn(u, s)du =
∫
T

n−1

∑
k=0

tku−k
( ∫

T

n−1

∑
k′=0

rk′ s−k′KS(u, r)dr
)

du

=
∫
T

∫
T

n−1

∑
k,k′=0

tku−krk′ s−k′KS(u, r)drdu

=
n−1

∑
k,k′=0

tks−k′
∫
T

∫
T

rk′u−kKS(u, r)drdu =
n−1

∑
k,k′=0

ck,k′ t
ks−k′ ,

where

ck,k′ =
∫
T

∫
T

rk′u−kKS(u, r)drdu

are the Fourier coefficients of KS ∈ C∞(T2).
On the other hand, we define the matrix units Eij in what follows: when

i = j, we define
Eii = Tzi−1 T∗zi−1 − Tzi T∗zi .

For i 6= j, we define

Eij =

{
Tzj−i Eii (i < j),
EjjTzj−i (i > j).
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It is not hard to see that {Eij} forms a family of matrix units. By taking m = −n
in the computation of the kernel function of Tzn Tzm − Tzn+m , we have

KI−Tzn T∗zn (t, s) =
n−1

∑
k=0

tks−k.

Hence we have
KEii (t, s) = ti−1s−(i−1).

More generally, we obtain that

KEij(t, s) = tj−1s−(i−1).

Then PnK∞Pn is generated by the matrix units {Eij}n
i,j=1 so that it is isomorphic

to Mn(C) with the seminorms given by

‖(λkl)‖p,q = sup
t,s∈T

∣∣∣ n−1

∑
k,l=0

λkl lpkqtls−k
∣∣∣ ((λkl) ∈ Mn(C)).

For any S ∈ K∞, ‖S − PnSPn‖l,m → 0 as n → ∞ for any l, m > 0 since {ck,k′}
belongs to the Schwartz space on Z2. Therefore,

‖S− PnSPn‖l,m → 0 (n→ ∞)

for any l, m ∈ Z>0. Hence, the conclusion follows.

By the above lemma, we deduce the following corollary:

COROLLARY 2.4. K∞ is a simple F∗-algebra, which is equal to the commutator
F∗-ideal [T ∞, T ∞] of T ∞.

In what follows, we study briefly the F∗-crossed products T ∞ oαθ
Z of T ∞

by the gauge action αθ of Z. Let αθ be the action of Z on T ∞ defined by

αθ(Tf ) = Tfθ
( f ∈ C∞(T), n ∈ Z),

where fθ(z) = f (e2πiθz), which gives a F∗-dynamical system (T ∞,Z, αθ). We also
consider the unitary operator Uθ on H2 defined by

Uθξ(t) = ξ(e2πiθt) (ξ ∈ H2, t ∈ T).

It is easily seen that U∗θ ξ(t) = U−1
θ ξ(t) = ξ(e−2πiθt). Then we form the F∗-

crossed products T ∞ oαθ
Z of the F∗-dynamical system (T ∞,Z, αθ), which could

be viewed as the deformation quantization (D2 × S1)θ of the solid torus D2 × S1.
In fact, let T ∞[Z] be the ∗-algebra of all finite sums

f = ∑
n∈Z, |n|6N

AnUn
θ (An ∈ T ∞, N ∈ Z>0),

where its multiplication is determined by Uθ AU−1
θ = αθ(A) and its ∗-operation

is given by (AUθ)
∗ = α−1

θ (A∗)U−1
θ . For f = ∑ AnUn

θ ∈ T ∞[Z], we induce the



576 KATSUTOSHI KAWASHIMA AND HIROSHI TAKAI

seminorms defined by

‖ f ‖p,q,r,s = sup
n∈Z

(1 + |n|2)p‖An‖q,r,s (p, q, r, s ∈ Z>0).

We define the F∗-crossed product (D2 × S1)θ = T ∞ oαθ
Z by the completion of

T ∞[Z] with respect to the seminorms cited above. For S ∈ K∞, we calculate that

αθ(S)ξ(t) = UθSU∗θ ξ(t) = Uθ

∫
T

KS(t, s)ξ(e−2πiθs)ds =
∫
T

KS(e2πiθt, e2πiθs)ξ(s)ds

to obtain that
Kαθ(S)(t, s) = KS(e2πiθt, e2πiθs).

Therefore, we have αθ(K∞) = K∞ so that we construct a F∗-dynamical system
(K∞,Z, αθ). Since

Kαθ(Pn)(t, s) = KPn(e
2πiθt, e2πiθs) =

n−1

∑
k=0

(e2πiθt)k(e2πiθs)−k =
n−1

∑
k=0

tks−k = KPn(t, s),

we have αθ(PnK∞Pn) = PnK∞Pn. Therefore, we also construct F∗-dynamical
systems (PnK∞Pn,Z, α

(n)
θ ), where α

(n)
θ are the restrictions of αθ on PnK∞Pn. Let

in be the isomorphism from PnK∞Pn onto Mn(C) defined before and i = lim−→ in
the isomorphism from lim−→ PnK∞Pn onto K∞ induced by the isomorphisms in. We

write by α
(n)
θ the action in ◦ αθ ◦ i−1

n .

PROPOSITION 2.5. We have the following isomorphism:

K∞ oαθ
Z ' lim−→(Mn(C)o

α
(n)
θ

Z, ϕ̃n),

where ϕ̃n are the inclusions induced naturally by ϕn.

Proof. Since i ◦ α
(n)
θ = αθ ◦ i for any n > 1, we have

K∞ oαθ
Z ' lim−→(PnK∞Pn o

α
(n)
θ

Z, ϕn),

where ϕn : PnK∞Pn o
α
(n)
θ

Z→ Pn+1K∞Pn+1 oα
(n+1)
θ

Z are the canonical inclusions.

Moreover, since in ◦ α
(n)
θ = α

(n)
θ ◦ in, we find isomorphisms

ψn : PnK∞Pn o
α
(n)
θ

Z '−→ Mn(C)o
α
(n)
θ

Z.

Then since ψn ◦ ϕn = ϕ̃n ◦ ψn, we conclude, as desired,

lim−→(PnK∞Pn o
α
(n)
θ

Z, ϕn) ' lim−→(Mn(C)o
α
(n)
θ

Z, ϕ̃n).

Then we construct a ∗-homomorphism

ρn : Mn(C)o
α
(n)
θ

Z→ Mn(C)⊗̂γS(Z),
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where S(Z) is the set of all rapidly decreasing sequences {cn} ⊂ C and ⊗̂γ

means the tensor product of F∗-algebras completed by the topology induced by
the seminorms defined by∥∥∥ N

∑
j=1

xj ⊗ yj

∥∥∥
k,l

= inf
N

∑
j=1
‖xj‖k‖yj‖l ,

where the infinimum is taken over the all representations of
N
∑

j=1
xj ⊗ yj. Equiva-

lently, Mn(C)⊗̂γS(Z) is regarded as S(Z, Mn(C)) with the ordinary convolution
as its product. For x ∈ Mn(C)o

α
(n)
θ

Z, we define

ρn(x) = xUn
θ .

It is easily seen that it is an isomorphism. Moreover, since

‖ρn(x)‖p,q,r,s = sup
m∈Z

(1 + m2)p‖xmUn
θ ‖q,r,s = ‖x‖p,q,r,s (p, q, r, s ∈ Z>0),

for any x = ∑ xmUm
θ ∈ T ∞Z, it is Fréchet isometry. Therefore, we have

Mn(C)o
α
(n)
θ

Z ' Mn(C)⊗̂γS(Z)

by ρn. Now it is immediately known that the following fact follows:

COROLLARY 2.6. The follwing isomorphism holds:

K∞ oαθ
Z ' K∞⊗̂γC∞(T).

Proof. By Proposition 2.5 and Lemma 2.3, we have that

K∞ oαθ
Z ' lim−→(Mn(C)o

α
(n)
θ

Z, ϕ̃n) ' lim−→(Mn(C)⊗̂γS(Z), ϕ̃n ⊗ idS(Z))

'
(

lim−→(Mn(C), ϕn)
)
⊗̂γS(Z) ' K∞⊗̂γS(Z).

Since S(Z) is isomorphic to C∞(T) sending by the Fourier transform, the conclu-
sion follows.

We end this section by stating the following fact:

COROLLARY 2.7. We have the following short exact sequence:

0 −−−−→ K∞ ⊗γ S(Z)
ĩ−−−−→ (D2 × S1)θ

q̃−−−−→ C∞(T)oαθ
Z −−−−→ 0,

where αθ : C∞(T)×Z→ C∞(T) is the Fréchet continuous action defined by

αn
θ ( f )(z) = f (e2πinθz) ( f ∈ C∞(T), z ∈ T),

with a bounded linear section s̃ of q̃.

Proof. Since i ◦ αn
θ = αn

θ ◦ i and q ◦ αn
θ = αn

θ ◦ q for all n ∈ Z, it is clear that the
desired short exact sequence holds and s̃( f Un

θ ) = Tf Un
θ ( f ∈ C∞(T), n ∈ Z).
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3. METRIC APPROXIMATION PROPERTY

We introduce an analogue of the notion of metric approximation property
for Banach spaces [4]. Let A,B be two Banach spaces and I ⊂ B an M-ideal.
In [4], the authors prove that if A is separable and has the metric approximation
property, then each contractive map ϕ : A → B/I has a lift ϕ̃ : A → B which is
contractive and satisfies q ◦ ϕ̃ = ϕ, where q : B→ B/I is the quotient map. Our
purpose in this section is to define this property for F∗-algebras to prove lifting
problem cited above. The topology on A induced by its seminorms {‖ · ‖k}k>0 is
same as that induced by the metric dA defined by

dA(a, b) =
∞

∑
k=0

1
2k
‖a− b‖k

1 + ‖a− b‖k
(a, b ∈ A).

We say that a linear map ϕ : A → B is bounded if and only if there exists a
constant C > 0 with

dB(ϕ(a), 0) 6 CdA(a, 0) (a ∈ A).

DEFINITION 3.1. Let A be an F∗-algebra and {‖ · ‖k}k>0 its seminorms. We
say that it has the metric approximation property if there is a family of bounded
linear maps {θn}n>1 on A with the following properties:

(i) each θn has a finite rank,
(ii) for any a ∈ A, dA(θn(a), a)→ 0 as n→ ∞.

We give some examples of F∗-algebras with the metric approximation prop-
erty. Here we note that dA(θn(a), a)→ 0 is satisfied if and only if ‖θn(a)− a‖k →
0 for any k > 0.

EXAMPLE 3.2. For n > 2, let Fn be the free group with n-generators. Given
g ∈ Fn, we denote by |g| its word length, and for f ∈ C[Fn] and an integer
k ∈ Z>0, we define seminorms by

‖ f ‖k = sup
g∈Fn

(1 + |g|)k| f (g)|.

The Schwartz space S(Fn) is defined by the completion of C[Fn] with respect to
the above seminorms. For f ∈ S(Fn), we define a bounded operator λ( f ) on the
Hilbert space l2(Fn) by the convolution with f , that is,

(λ( f )ξ)(g) = ( f ∗ ξ)(g) = ∑
h∈Fn

f (h)ξ(h−1g) (g ∈ Fn, ξ ∈ l2(Fn)),

on which the seminorms are defined by

‖λ( f )‖k = ‖ f ‖k (k ∈ Z>0).
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This operator is well-defined. Indeed, if λ( f ) = 0, then λ( f )δe = 0, where e ∈ Fn
is the unit and the element δe ∈ l2(Fn) is defined by

δe(g) =

{
1 (g = e),
0 (g 6= e).

Hence, for any g ∈ Fn, we have that

0 = (λ( f )δe)(g) = ( f ∗ δe)(g) = ∑
h∈Fn

f (h)δe(h−1g) = f (g).

Therefore, λ( f ) = 0 leads f = 0, which implies that the seminorms are well-
defined. We define the F∗-algebra C∗r (Fn)∞ by the completion of the ∗-algebra
generated by the bounded operators λ( f ) ( f ∈ S(Fn)). Here we claim that

C∗r (Fn)
∞ = {λ( f ) : f ∈ S(Fn)}.

In fact, it is clear that λ( f )∗ = λ( f ∗) for any f ∈ S(Fn), where

f ∗(g) = f (g−1) ∈ S(Fn).

For any T ∈ C∗r (Fn)∞, there exists a family {λ( fn)}n>1 ( fn ∈ S(Fn)) which con-
verges to T with respcet to the seminorms cited above. Then, for any k ∈ Z>0, we
have that

‖ fn − fm‖k = ‖λ( fn)− λ( fm)‖k → 0 (n, m→ ∞),

which implies that there exists a function f ∈ S(Fn) which is the limit of { fn}.
Thus, for any k ∈ Z>0, we have that

‖T − λ( f )‖k 6 ‖T − λ( fn)‖k + ‖λ( fn)− λ( f )‖k → 0 (n→ ∞).

We construct a family of finite dimensional bounded linear maps {θk} on C∗r (Fn)∞

in what follows. Given an integer k > 1, let Ek = {g ∈ Fn : |g| 6 k} and χk the
function on S(Fn) defined by

χk(g) =

{
1 (g ∈ Ek),
0 (g 6∈ Ek).

Since the number of elements of Ek is finite for each k > 1, the linear maps ψn :
Fn → Fn defined by

ψk(λ( f )) = λ(χk f )

have finite ranks. We define the finite linear bounded maps θk : Fn→Fn (k>1) by

θk(λ( f )) = λ(e−|·|/kχk f ).
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Then for any l > 0 and f ∈ C∗r (Fn)∞, we compute that

‖λ( f )− θk(λ( f ))‖l

6 ‖λ( f )− λ(e−|·|/k f )‖l + ‖λ(e−|·|/k f )− λ(e−|·|/kχk f )‖l

= ‖ f − e−|·|/k f ‖l + ‖e−|·|/k f − e−|·|/kχk f ‖l

= sup
g∈Fn

|(1+|g|)l f (g)(1−e−|g|/k)|+ sup
g∈Fn

|(1+|g|)l f (g)e−|g|/k(1−χk(g))|

6 ‖ f ‖l sup
g∈Fn

|(1− e−|g|/k)|+ sup
|g|>k+1

|(1 + |g|)l f (g)e−|g|/k| → 0 (k→ ∞).

Therefore, C∗r (Fn)∞ has the metric approximation property.

EXAMPLE 3.3. According to [16], the smooth noncommutative 2-torus T2
θ is

isomorphic to the Fréchet inductive limit

lim−→C∞(T)⊗̂γ(Mpn(C)⊕Mqn(C)).
We show that it also has the metric approximation property. As a preparation,
we verify that the Fréchet algebra C∞(T)⊗̂γ Mq(C) has the metric approximation
property. It suffices to show that C∞(T) has this property since if it had this
property with a family {θ(q)n } of bounded linear maps there, the family {θ(q)n ⊗ Iq}
would be the desired one for C∞(T) ⊗ Mq(C), where Iq is the identity map on

Mq(C). For f ∈ C∞(T), we define the maps θ
(q)
n : C∞(T)→ C∞(T) by

θ
(q)
n ( f ) = ∑

|l|6n
f̂ (l)zl (n > 1),

where f̂ (l) are the Fourier coefficients and z ∈ C∞(T) is the canonical generator
defined by z(t) = t (t ∈ T). Then it is clear that they are of finite rank. For
f ∈ C∞(T) and k ∈ Z>0,

‖ f−θ
(q)
n ( f )‖k = ‖ f (k) − (θn( f ))(k)‖∞ = sup

m∈Z

∣∣∣ f̂ (k)(m)− ∑
|l|6n

f̂ (l)(2πil)kδl(m)
∣∣∣

= sup
m∈Z

∣∣∣ ∑
|l|>n+1̂

f (l)(2πil)kδl(m)
∣∣∣= sup

m∈Z,|m|>n+1
| f̂ (m)(2πm)k|→0 (n→∞),

where δl(m) = 0 (m 6= l),= 1(m = l), since { f̂ (l)}l∈Z is a rapidly decreasing
sequence by the hypothesis f ∈ C∞(T). Hence C∞(T) has the metric approxima-
tion property.

We turn to show briefly that T2
θ also has this property. For any x ∈ T2

θ , we
define the sequence {xn} by

xn = e(n)1 xe(n)1 + e(n)2 xe(n)2 (n > 1),

where e(n)j (j = 1, 2) are the projections such that

e(n)1 xe(n)1 ∈ C∞(T)⊗Mpn(C), e(n)2 xe(n)2 ∈ C∞(T)⊗Mqn(C)
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for any x ∈ T2
θ ([16]). We define the linear maps Φn on T2

θ by

Φn(x) = θ
(pn)
n (e(n)1 xe(n)1 ) + θ

(qn)
n (e(n)2 xe(n)2 ).

It is easily seen that Φn(x) → x with respect to the seminorms on T2
θ (see [16]),

hence to the metric d as well. Therefore, T2
θ has the metric approximation prop-

erty.

By the similar argument for C∞(T), the operation of taking suspension pre-
serves the metric approximation property.

COROLLARY 3.4. If an F∗-algebra A has the metric approximation property, so
does its suspension S∞A.

Proof. It suffices to show that the F∗-algebra

C∞
0 (0, 1) = { f ∈ C∞(0, 1) : f (n)+ (0) = f (n)− (1) = 0 (n ∈ Z>0)}

has the metric approximation property. For any integer j > 1, we put

f j(t) = e−1/jt(1−t) ∈ C∞
0 (0, 1).

Let {ξ j}∞
j=1 be the orthogonal family of C∞

0 (0, 1) obtained by Schmidt orthogo-
nalization of { f j}. Then we define the linear maps θn : C∞

0 (0, 1)→ C∞(0, 1) by

θn( f )(t) =
n

∑
j=1
〈 f |ξ j〉ξ j(t) (ξ ∈ C∞

0 (0, 1), t ∈ (0, 1), n > 1).

It is easily seen that the images of θn are included in C∞
0 (0, 1). By the similar

argument for C∞(T), we obtain the conclusion.

For an F∗-algebra A, by A∗ we denote the set of all bounded linear function-
als on A, where we say a linear functional ϕ on A is bounded if and only if

‖ϕ‖ = sup
a∈A\{0}

|ϕ(a)|
dA(a, 0)

< ∞.

Before we proceed to show the lifting problem, we need the following lemma:

LEMMA 3.5. Let A,B be two F∗-algebras. Suppose that I is an F∗-ideal of B and
that L, N are finite dimensional subspaces of A with L ⊂ N. We consider the following
diagram of bounded linear maps:

L ι−−−−→
⊂

N Ψ−−−−→ B∥∥∥ yq

L ι−−−−→
⊂

N −−−−→
ϕ

B/I,

where q and ι are the quotient map and the natural inclusion respectively, and suppose
that

dB(q ◦Ψ(a)− ϕ(a), 0) 6 εdA(a, 0) (a ∈ L).
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for a positive constant ε > 0. Then there is a bounded linear map ϕ′ : N → B/I with
the property that 

ϕ = q ◦ ϕ′,
dB(ϕ′(a), 0) 6 dA(a, 0) (a ∈ N),
dB(ϕ′(a)−Ψ(a), 0) 6 6ε (a ∈ L).

Proof. This lemma is an analogy of Lemma 2.5 in [4]. Let D′ and K be the
closed unit ball of L⊗̂γB and N⊗̂γB respectively, that is,

D′ = {ϕ : B→ L : ‖ϕ‖L⊗̂γB∗ 6 1} ⊂ L⊗̂γB
∗,

K = {ϕ : B→ N : ‖ϕ‖N⊗̂γB∗ 6 1} ⊂ N⊗̂γB
∗,

where

‖ϕ‖L⊗̂γB∗ = sup
a∈B\{0}

dA(ϕ(a), 0)
dB(a, 0)

and ‖ · ‖N⊗̂γB∗ is defined by the similar way for ‖ · ‖L⊗̂γB∗ , and AffT(D′) the set
of all affine functions ψ on D′ such that ψ(αϕ) = αψ(ϕ) for all α ∈ T, ϕ ∈ D′. It is
clear that I is an M-ideal of B and the equality

B∗ = I⊥ ⊕ I∗

holds as a linear space, where I⊥ is the annihilator of I. Let e : B∗ → I⊥ be
the natural projection and W the image of N⊗̂γB

∗ via 1⊗ e, which is equal to
N⊗̂γI

⊥. Then D′ is mapped weak∗ homeomorphically to D ⊂ K through the
natural embedding ι⊗ 1 : L⊗̂γB

∗ → N⊗̂γB
∗. We may identify the closed unit

ball of N⊗̂γB
∗ with F = K ∩W. We also identify the closed unit ball of L⊗̂γB

∗

with D′ ∪W ′, where W ′ = (1⊗ e)(L⊗̂γB
∗) = L⊗̂γI

⊥. It is verified by the same
argument as in the proof of Lemma 2.5 in [4] that

(ι⊗ 1)(1⊗ e) = (1⊗ e)(ι⊗ 1),(3.1)

(ι⊗ 1)(D′ ∩W ′) = D ∩ (ι⊗ 1)(W ′) = D ∩W = D ∩ F.(3.2)

Thus we have the following diagram of restrictions

(3.3)

AffT(D ∩ F) ←−−−− AffT(F)x x
AffT(D) ←−−−− AffT(K).

Since 1⊗ e : L⊗̂γB
∗ → L⊗̂γI

⊥ maps D′ onto D′ ∩W, D is mapped onto D∩ F by
(3.1) and (3.2) and D satisfies the condition of Lemma 2.1 in [4]. Therefore, with
the diagram (3.3), we obtain the conclusion by the same argument of Lemma 2.5
in [4].

PROPOSITION 3.6. Let A,B be two F∗-algebras and I ⊂ B an F∗-ideal. If A is
separable and has the metric approximation property, then for any bounded linear map
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ϕ : A → B/I, there exists a bounded linear map Φ : A → B with the property that
q ◦Φ = ϕ, where q : B→ B/I is the quotient map.

Proof. This proof is inspired by that of Theorem 2.6 in [4]. We fix a sequence
{an}n∈N ⊂ A dense in A. We construct recursively the pairs {(Ln, θn)}n∈Z>0

which consist of increasing finite dimensional subspaces Ln ⊂ A with an ∈ Ln for
any n ∈ Z>0 and bounded linear maps θn : A → Ln with the property that for
any a ∈ Ln−1, the inequalities

dA(a, θn(a)) 6
1
2n

are satisfied. We put L0 = {0} and θ0 = 0. We suppose that for some n ∈
Z>0 the pairs (L0, θ0), . . . , (Ln, θn) with the above properties are given. By the
approximation property of A, there exists a bounded linear map θn+1 : A → A

such that for each a ∈ Ln, the inequality

dA(a, θn+1(a)) 6
1

2n+1

holds. We define the subspace Ln+1 of A by

Ln+1 = Ln + θn+1(A) +Can+1.

Then we have the desired pairs {(Ln, θn)}n∈Z>0 . We note that
⋃

n∈Z>0

Ln is dense

in A with respect to Fréchet topology.
Next we inductively define a family of bounded linear maps

Ψn : Ln → B (n ∈ Z>0)

such that

q ◦Ψn(a) = ϕ(a) (a ∈ Ln).(3.4)

Putting Ψ0 = 0, suppose that for some n ∈ Z>0, bounded linear maps Ψ0, . . . , Ψn
satisfying (3.4) are constructed. Then we have that for any a ∈ Ln−1,

dB/I(q ◦Ψn ◦ θn(a), ϕ(a)) = dB/I(ϕ ◦ θn(a), ϕ(a)) 6 CdA(θn(a), a) 6
C
2n .

By Lemma 3.5, we find a bounded map Ψn+1 : Ln+1 → B such that ϕ = q ◦Ψn+1
on Ln+1 and that for any a ∈ Ln−1 with

dB(Ψn+1(a), Ψn ◦ θn(a)) 6
6C
2n .

Therefore, we compute that

dB(Ψn+1(a), Ψn(a)) 6
6C
2n + dB(Ψn(a), Ψn ◦ θn(a)) 6

6C
2n + dA(a, θn(a))

6
6C + 1

2n (a ∈ Ln−1).



584 KATSUTOSHI KAWASHIMA AND HIROSHI TAKAI

Hence for a fixed integer n0 ∈ Z>0, we have for all n > n0,

dB(Ψn+1(a), Ψn(a)) 6
6C + 1

2n .

Thus, for a fixed integer n0 ∈ Z>0, the family of bounded linear maps {Ψn} con-
verges to some Ψ(n0) : Ln0−1 → B. Therefore, we have the bounded linear map

Ψ :
⋃

n∈Z>0

Ln → B

such that Ψ|Ln = Ψ(n) (n ∈ Z>0), and we can extend it to that on the closure of⋃
n∈Z>0

Ln which is equal to A. This completes the proof.

4. MEYER–VIEOTRIS EXACT SEQUENCE

This section is devoted to proving Mayer–Vietoris exact sequence for the
entire cyclic cohomology. We firstly give a short proof of Bott periodicity for the
entire cyclic cohomology by using the following Meyer’s excision for the entire
cyclic theory [14]:

PROPOSITION 4.1. Let

0 −−−−→ K i−−−−→ P
q−−−−→ Q −−−−→ 0

be a short exact sequence of F∗-algebras with a bounded linear section s of q. Then the
following 6-terms exact sequence holds:

HEev(Q)
q∗−−−−→ HEev(P) i∗−−−−→ HEev(K)x y

HEod(K) ←−−−−
i∗

HEod(P) ←−−−−
q∗

HEod(Q).

This yields the following fact, which has been already shown by Brodzki
and Plymen [3] using bivariant entire homology and cohomology theory:

LEMMA 4.2 (Bott periodicity for entire cyclic cohomology). For an F∗-algebra
A we have the following:

HEev(S∞A) ' HEod(A), HEod(S∞A) ' HEev(A).

Proof. By the exact sequence cited above, we have the following exact dia-
gram:

HEev(A) −−−−→ HEev(C∞A) −−−−→ HEev(I)x y
HEod(I) ←−−−− HEod(C∞A) ←−−−− HEod(A).
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By Lemma 1.3, we deduce the conclusion.

In what follows, we show an entire cyclic cohomology version of Mayer–
Vietoris exact sequence. Before stating it, we review briefly the fibered product
of F∗-algebras, which is an noncommutative analogue of the connected sum of
two manifolds. Let A1,A2 and B be F∗-algebras and f j : Aj → B (j = 1, 2)
epimorphisms.

DEFINITION 4.3. {(a1, a2) ∈ A1 ⊕ A2 : f1(a1) = f2(a2)} is called the fibered
product of (A1,A2) along ( f1, f2) over B, which we denote by A1 #

B
A2. Let gj be

the projections of A1 #
B
A2 onto Aj (j = 1, 2).

THEOREM 4.4 (Mayer–Vietoris exact sequence for entire cyclic cohomology).
In the situation of Definition 4.3, suppose that B has the metric approximation property
and separable. Then we have that the following exact diagram holds:

HEev(A1 #
B
A2) −−−−→ HEod(B)

− f ∗1 + f ∗2−−−−→ HEod(A1)⊕ HEod(A2)

g∗1+g∗2

x yg∗1+g∗2

HEev(A1)⊕ HEev(A2) ←−−−−
− f ∗1 + f ∗2

HEev(B) ←−−−− HEod(A1 #
B
A2).

Proof. We write

C = {(h1, h2) ∈ C∞A1⊕C∞A2 : f1 ◦ (h1)
(n)
+ (0) = (−1)n f2 ◦ (h2)

(n)
+ (0) (n ∈ Z>0)}

and define a map q : C → A1 #
B
A2 by

q(h1, h2) = (h1(0), h2(0)).

It is easily verified that the following sequence:

0 −−−−→ I
i−−−−→ C

q−−−−→ A1 #
B
A2 −−−−→ 0

is exact, where
I = {(h1, h2) ∈ C : hj(0) = 0 (j = 1, 2)}

and i is the canonical inclusion. Then there exists a bounded linear section s of q
defined by

s(a1, a2) = ((1− t)a1, (1− t)a2), ((a1, a2) ∈ A1 #
B
A2, t ∈ [0, 1]).

Then by Proposition 4.1, we have the following exact diagram:

HEev(A1 #
B
A2) −−−−→ HEev(C) −−−−→ HEev(I)x y

HEod(I) ←−−−− HEod(C) ←−−−− HEod(A1 #
B
A2).
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Moreover, repeating the argument cited above, I is smoothly homotopic to
S∞A1 ⊕ S∞A2. More precisely, we define the map

r : I→ S∞A1 ⊕ S∞A2

by
r(h1, h2)(t) = (h1(e1−1/t), h2(e1−1/t)) ((h1, h2) ∈ C)

and let i : S∞A1 ⊕ S∞A2 → I be the natural inclusion. It follows by the same
argument discussed above that since the functions t 7→ hj(e1−1/t) are in S∞Aj (j =
1, 2) and using the maps

G1 : I→ C∞([0, 1], I),

G2 : S∞A1 ⊕ S∞A2 → C∞([0, 1], S∞A1 ⊕ S∞A2),

defined by

(Gj)s(h1, h2)(t) = (h1(se1−1/t + (1− s)t), h2(se1−1/t + (1− s)t)) (j = 1, 2),

I is smoothly homotopic to S∞A1 ⊕ S∞A2. Hence we conclude that

HE∗(I) ' HE∗(S∞A1)⊕ HE∗(S∞A2).

Now we define the map Ψ : C → S∞B by

Ψ(h1, h2)(t) =

{
f1 ◦ h1(1− 2t) (t ∈ [0, 1/2]),
f2 ◦ h2(2t− 1) (t ∈ [1/2, 1]).

We have to verify that it is well-defined. Since f1 ◦ h1(0) = f2 ◦ h2(0) by the
definition of C, it is continuous at t = 1/2. For n = 1, we compute that

lim
t→1/2+0

Ψ(h1, h2)(t)−Ψ(h1, h2)(1/2)
t− 1/2

= lim
t→1/2+0

f2 ◦ h2(2t− 1)− f2 ◦ h2(0)
t− 1/2

= f2

(
lim

t→1/2+0

h2(2t− 1)− h2(0)
t− 1/2

)
=2 f2

(
lim

ε→0+

h2(ε)−h2(0)
ε

)
=2 f2◦(h2)

(1)
+ (0)

and similarly, we compute that

lim
t→1/2−0

Ψ(h1, h2)(t)−Ψ(h1, h2)(1/2)
t− 1/2

= lim
t→1/2−0

f1 ◦ h1(1− 2t)− f1 ◦ h1(0)
t− 1/2

= −2 f1

(
lim

ε→0+

h1(ε)− h1(0)
ε

)
= −2 f1 ◦ (h1)

(1)
+ (0) = 2 f2 ◦ (h2)

(1)
+ (0).

Thus Ψ(h1, h2) is differentiable once at t = 1/2. Suppose that it is differentiable
n-times at t = 1/2. Here we note that

Ψ(n)(h1, h2)(t) =

{
(−2)n f1 ◦ h(n)1 (1− 2t) t ∈ (0, 1/2),

2n f2 ◦ h(n)2 (2t− 1) t ∈ (1/2, 1),
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and that

Ψ(n)(h1, h2)(1/2) = (−2)n f1 ◦ (h1)
(n)
+ (0) = 2n f2 ◦ (h2)

(n)
+ (0)

by our hypothesis of induction. Then we compute that

lim
t→1/2+0

Ψ(h1, h2)
(n)(t)−Ψ(h1, h2)

(n)(1/2)
t− 1/2

= 2n lim
t→1/2+0

f2 ◦ h(n)2 (2t− 1)− f2 ◦ (h2)
(n)
+ (0)

t− 1/2

= 2n f2

(
lim

t→1/2+0

h(n)2 (2t− 1)− (h2)
(n)
+ (0)

t− 1/2

)
= 2n · 2 f2

(
lim

ε→0+

h(n)2 (ε)− (h2)
(n)
+ (0)

ε

)
= 2n+1 f2 ◦ (h2)

(n+1)
+ (0).

Alternatively, we compute that

lim
t→1/2−0

Ψ(h1, h2)
(n)(t)−Ψ(h1, h2)

(n)(1/2)
t− 1/2

= (−2)n lim
t→1/2−0

f1 ◦ h(n)1 (1− 2t)− f1 ◦ (h1)
(n)
+ (0)

t− 1/2

= (−2)n · (−2) f1

(
lim

ε→0+

h(n)1 (ε)− (h1)
(n)
+ (0)

ε

)
= (−2)n+1 f1 ◦ (h1)

(n+1)
+ (0) = 2n+1 f2 ◦ (h2)

(n+1)
+ (0).

Therefore, Ψ(h1, h2) is differentiable (n + 1)-times for each (h1, h2) ∈ C, which
ends the process of induction so that Ψ is well-defined. Since f1 and f2 are surjec-
tive, it is easily verified that Ψ is surjective. In fact, we canonically can lift them
on S∞Aj, and denote them also by f j (j = 1, 2). Now given an h ∈ S∞B, we find
h̃j ∈ S∞Aj with

f j(h̃j(t)) = h(t) (j = 1, 2).

Putting h1(t)= h̃1((1−t)/2), h2(t)= h̃2((1+t)/2) (06 t61), we then check that

Ψ(h1, h2)(t) =

{
f1(h1(1− 2t)) (0 6 t 6 1/2),
f2(h2(2t− 1)) (1/2 6 t 6 1),

=

{
f1(h̃1(1− 2(1− t)/2)) (0 6 t 6 1/2),
f2(h̃2(2(1 + t)/2− 1)) (1/2 6 t 6 1),

=

{
f1(h̃1(t)) (0 6 t 6 1/2),
f2(h̃2(t)) (1/2 6 t 6 1),

= h(t),



588 KATSUTOSHI KAWASHIMA AND HIROSHI TAKAI

which implies that Ψ is surjective. As it is clear that its kernel is C∞I1 ⊕ C∞I2,
where

Ij = Ker f j (j = 1, 2),

we obtain the following short exact sequence:

0 −−−−→ C∞I1 ⊕ C∞I2 −−−−→ C Ψ−−−−→ S∞B −−−−→ 0.(4.1)

Since B has the metric approximation property, so does S∞B by Corollary 3.4.
Writing J = C∞I1 ⊕ C∞I2, the inverse map

Ψ
−1 : S∞B→ C/J

of the isomorphism Ψ induced by Ψ has a bounded lift

Ψ̃
−1

: S∞B→ C

satisfying Ψ̃
−1
◦ q = Ψ

−1 by Proposition 3.6 since Ψ preserves each seminorms,

where q is the quotient map from C onto C/J. Hence it is verified that Ψ̃
−1

is a
bounded linear section of Ψ since we compute that

Ψ ◦ Ψ̃
−1

= Ψ ◦ q ◦ Ψ̃
−1

= Ψ ◦Ψ
−1

= idS∞B.

Therefore, we apply the above exact sequence (4.1) to Proposition 4.1 to obtain
the following exact diagram:

HEev(S∞B) −−−−→ HEev(C) −−−−→ HEev(C∞I1 ⊕ C∞I2)x y
HEod(C∞I1 ⊕ C∞I2) ←−−−− HEod(C) ←−−−− HEod(S∞B).

Since HE∗(C∞I1 ⊕ C∞I2) = 0, we have that

HEev(C) ' HEev(S∞B) ' HEod(B), HEod(C) ' HEod(S∞B) ' HEev(B),

by the Bott periodicity (Lemma 4.2).
Summing up, we get the desired exact diagram in what follows:

HEev(A1 #
B
A2) −−−−→ HEod(B) −−−−→ HEod(A1)⊕ HEod(A2)x y

HEev(A1)⊕ HEev(A2) ←−−−− HEev(B) ←−−−− HEod(A1 #
B
A2).

(4.2)

We consider the restriction Φ : S∞A1 ⊕ S∞A2 → S∞B of Ψ. We see that it is
C∞-homotopic to Π : S∞A1 ⊕ S∞A2 → B defined by

Π(h1, h2)(t) = −χ[0,1/2](t)( f1 ◦ h1)(t) + χ[1/2,1](t)( f2 ◦ h2)(t)
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for (h1, h2) ∈ S∞A1 ⊕ S∞A2, t ∈ [0, 1]. To see this, we note that for a Fréchet
continuous homomorphism f : A1 #

B
A2 → S∞B, we have

f
∗
= − f ∗ : HE∗(S∞B)→ HE∗(A1 #

B
A2)

by [14], where f : A1 #
B
A2 → S∞B is the homomorphism defined by

f (a)(t) = f (a)(1− t) (a ∈ A, t ∈ [0, 1]).

Indeed, we prepare the map Θ : S∞A1 ⊕ S∞A2 → C∞([0, 1], S∞B) defined by

Θs(h1, h2)(t) =

{
f1 ◦ h1(1− 2t/(1 + s)) (0 6 t 6 1/2),
f2 ◦ h2(2t/(1 + s)− (1− s)/(1 + s)) (1/2 6 t 6 1),

so that it is a smooth homotopy between Ψ and the homomorphism given by

(h1, h2) 7→ (t 7→ χ[0,1/2](t)( f1 ◦ h1)(1− t) + χ[1/2,1](t)( f2 ◦ h2)(t)).

Therefore, we have the homotopy equivalence of Ψ and Π. Considering the fol-
lowing commutative diagram:

HE∗(C) −−−−→ HE∗(S∞A1 ⊕ S∞A2)

'
xΨ∗

∥∥∥
HE∗(S∞B) −−−−→

Γ∗=Π∗
HE∗(S∞A1 ⊕ S∞A2)

we conclude that the right upper horizonal map and the left lower horizonal map
in the diagram (4.2) are both Π∗ = − f ∗1 + f ∗2 . Finally, since the following diagram

HE∗(S∞A1)⊕ HE∗(S∞A2) −−−−→ HE∗(A1 #
B
A2)

'
y ∥∥∥

HE∗(A1)⊕ HE∗(A2) −−−−→
g∗1+g∗2

HE∗(A1 #
B
A2)

is commutative, the vertical maps in the diagram (4.2) are both g∗1 + g∗2 . This
completes the proof.

5. THE ENTIRE CYCLIC COHOMOLOGY OF NONCOMMUTATIVE 3-SPHERES

In [1], Heegaard-type quantum 3-spheres with 3-parameters are constructed
as C∗-algebras. With their construction in mind, we define noncommutative 3-
spheres in the framework of F∗-algebras as follows; given an irrational number
θ with 0 < θ < 1, let T2

θ be the smooth noncommutative 2-torus with unitary
generators uθ , vθ subject to uθvθ = e2πiθvθuθ . There exists an isomorphism γθ :
T2
−θ → T2

θ satisfying
γθ(u−θ) = vθ , γθ(v−θ) = uθ ,
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by their universality. We consider the following two F∗-crossed products:

(D2 × S1)θ = T ∞ oαθ
Z, (D2 × S1)−θ = T ∞ oα−θ

Z,

defined before. We define two epimorphisms f j (j = 1, 2) such as

f1 : (D2 × S1)θ → T2
θ , f2 : (D2 × S1)−θ → T2

θ ,

by f1 = q̃+, f2 = γθ ◦ q̃−, where q̃± are the epimorphisms from T ∞ oα±θ
Z onto

C∞(T)oα±θ
Z = T2

±θ respectively.

DEFINITION 5.1. For an irrational number θ, the noncommutative 3-sphere S3
θ

is defined by the fibered product (D2 × S1)θ #
T2

θ

(D2 × S1)−θ of ((D2 × S1)θ (D2 ×

S1)−θ) along ( f1, f2) over T2
θ .

First of all, we compute the entire cyclic cohomology of (D2× S1)θ . We note
that the isomorphism C∞(T)oαθ

Z ' T2
θ holds and that by Lemma 4.3 in [16], we

have
HE∗(C∞(T)oαθ

Z) ' HE∗(T2
θ ) = HP∗(T2

θ ),

where HP∗ is the functor of periodic cyclic cohomology. According to Connes
[5], we know the generators of HP∗(T2

θ ) as follows:

HPev(T2
θ ) = C[τθ ]⊕C[τ′θ ], HPod(T2

θ ) = C[τ(1)
θ ]⊕C[τ(2)

θ ],

where τθ is the unique normalized trace on T2
θ and

τ′θ(a0, a1, a2) = τθ(a0(δ
(1)
θ (a1)δ

(2)
θ (a2)− δ

(2)
θ (a1)δ

(1)
θ (a2))),

τ
(j)
θ (a0, a1) = τθ(a0δ

(j)
θ (a1)) (j = 1, 2),

where δ
(j)
θ are the derivations on T2

θ such that

δ
(1)
θ (uθ) = 2πiuθ , δ

(1)
θ (vθ) = 0, δ

(2)
θ (uθ) = 0, δ

(2)
θ (vθ) = 2πivθ .

PROPOSITION 5.2. We have:

HEev((D2 × S1)θ) = C[τ′θ ◦ q̃], HEod((D2 × S1)θ) = C[τ(1)
θ ◦ q̃].

Proof. We remember the following short exact sequence:

0 −−−−→ K∞ oαθ
Z ĩ−−−−→ (D2 × S1)θ

q̃−−−−→ C∞(T)oαθ
Z −−−−→ 0

appeared in Corollary 2.7. Hence we apply the above exact sequence to Proposi-
tion 4.1 to obtain the following exact diagram:

HEev(C∞(T)oαθ
Z)

q̃∗−−−−→ HEev((D2 × S1)θ)
ĩ∗−−−−→ HEev(K∞ oαθ

Z)x y
HEod(K∞ oαθ

Z) ←−−−−
ĩ∗

HEod((D2 × S1)θ) ←−−−−
q̃∗

HEod(C∞(T)oαθ
Z).
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Alternatively, we have by Corollary 2.6 and [12] that

HE∗(K∞ oαθ
Z) ' HE∗(K∞⊗̂γC∞(T)) = HDR

∗ (T;C),

which implies that

HEev(K∞ oαθ
Z) ' C, HEod(K∞ oαθ

Z) ' C.

Therefore, we have the following exact diagram:

(5.1)

C2 q̃∗−−−−→ HEev((D2 × S1)θ)
ĩ∗−−−−→ Cx y

C ←−−−−
ĩ∗

HEod((D2 × S1)θ) ←−−−−
q̃∗

C2.

We note that there exists an element [(ψ̃2k+1)] ∈ HEod((D2× S1)θ) with the prop-
erty that

(ψ̃2k+1) = (ψ̃, 0, 0, . . .), and Bψ̃ = τθ ◦ q̃, bψ̃ = 0,

where b, B=AB0 are the operations defined by Connes [5]. Indeed, we define ψ̃ by

ψ̃(x, y) = τθ ◦ q̃(xδ̃θ
(2)

(y)) (x, y ∈ (D2 × S1)θ),

where δ̃θ
(2)

is the derivation on (D2 × S1)θ induced by

δ̃θ
(2)(

∑
n∈Z

AnUn
θ

)
= ∑

n∈Z
2πiθnAnUn

θ

for any ∑
n∈Z

AnUn
θ ∈ T ∞[Z]. We note that δ̃θ

(2)
is Fréchet continuous since

∥∥∥δ̃θ
(2)(

∑
n∈Z

AnUn
θ

)∥∥∥
p,q,r,s

=sup
n∈Z

(1 + n2)p‖2πiθnAn‖q,r,s

62πθ sup
n∈Z

(1+n2)p+1‖An‖q,r,s =2πθ
∥∥∥ ∑

n∈Z
AnUn

θ

∥∥∥
p+1,q,r,s

,

for any p, q, r, s ∈ Z>0. In this case, let 1 ∈ T ∞ oαθ
Z be the unit. It is clear that

δ̃θ
(2)

(1) = 0. Then by the definition of b and B, we have that

Bψ̃(x) = ψ̃(1, x) + ψ̃(x, 1) = τθ ◦ q̃(xδ̃θ
(2)

(1)) + τθ ◦ q̃(1δ̃θ
(2)

(x))

= τθ ◦ q̃(δ̃θ
(2)

(x)) (x ∈ (D2 × S1)θ).

We note that for any f ∈ C∞(T)oαθ
Z,

τθ( f ) =
∫
T

f (0)(t)dt.
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Thus, we obtain that

τθ ◦ q̃(δ̃θ(x)) =
∫
T

q̃(δ̃θ(x))(0)(t)dt =
∫
T

q(x(0))(t)dt = τθ ◦ q̃(x)

for any x ∈ (D2 × S1)θ , which implies that q̃∗[τθ ] = 0. Hence, ker q̃∗ 6= 0 so that
the left vertical map of (5.1) is not 0, therefore, injective.

Similarly, we show that the right vertical map is also injective. Since θ is
an irrational number, the set {e2πiθn ∈ C : n ∈ Z} is dense in T. Hence, for all
r ∈ [0, 1], there exists a sequence {Nj}j ⊂ Z with |{θNj} − r| → 0 as j → ∞,
where

{x} = x− max
x>k, k∈Z

k (x ∈ R).

We consider the family {UθNj} of unitary operators on H2. Since we see that for
any ξ ∈ H2,

‖(UθNj −UθNk )ξ‖
2
H2 = ‖(UNj

θ −UNk
θ )ξ‖2

H2 =
∫
T

|ξ(e2πiθNj t)− ξ(e2πiθNk t)|2dt

=
∫
T

|ξ(e2πiθ(Nj−Nk)t)− ξ(t)|2dt→ 0 (j, k→ ∞)

by the Lebesgue dominated convergence theorem, we obtain that {UθNj} has the
strong limit Ur. It is easily seen that Urξ(t) = ξ(e2πirt) (ξ ∈ H2, t ∈ T). Moreover,
we define the operator hθ on H2 by

hθξ(t) = 2π
∞

∑
j=0
{jθ}cjtj, (ξ(t) =

∞

∑
j=0

cjtj ∈ H2).

Since 0 6 {jθ} 6 1, it is easily verified that hθ is a bounded self-adjoint positive
operator on H2 and Uθr = eirhθ for r ∈ [0, 1] by Stone’s theorem. Taking again a
family {Nj}j∈Z>0 ⊂ Z with |e2πiθNj − e2πir| → 0 as j→ ∞, we have that

‖αθNj(x)ξ−αθNk(x)ξ‖H2=‖UθNj xU−θNj ξ −UθNk xU−θNk ξ‖H2

6‖UθNj x(U−θNj−U−θNk )ξ‖H2+‖(UθNj−UθNk )xU−θNk ξ‖H2

→ 0 (x ∈ T ∞, ξ ∈ H2)

since the operation of product is strongly continuous. Therefore, it follows that
αr(x) = UrxU−r for x ∈ B(H2). We write

δ̃θ
(1)

(x) = hθ x− xhθ = ad(hθ)(x) (x ∈ T ∞ oαθ
Z)

so that

eirδ̃θ
(1)

= eirad(hθ) = αθr (r ∈ [0, 1]).
We now extend the homomorphism q̃ : T ∞ oαθ

Z→ C∞(T)oαθ
Z to that from the

strong closure of T ∞ oαθ
Z onto that of C∞(T)oαθ

Z faithfully acting on L2(T)
because of the simplicity of T2

θ = C∞(T) oαθ
Z, that is, that from B(H2) onto
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L∞(T) oαθ
Z. We also extend the trace τθ on T2

θ to that on L∞(T) oαθ
Z. We

use the same letters for their extensions. Then, we have that q̃ ◦ δ̃θ
(1)

= δ
(1)
θ ◦ q̃

on B(H2). Under the above preparation, we define the linear functional ϕ0 on
T ∞ oαθ

Z by
ϕ0(a) = −τθ ◦ q̃(ahθ) (a ∈ T ∞ oαθ

Z).
Then we compute that

(bϕ0)(a, b) = ϕ0(ab)− ϕ0(ba) = −τθ ◦ q̃(abhθ) + τθ ◦ q̃(bahθ)

= −τθ(q̃(a)q̃(b)q̃(hθ)) + τθ(q̃(b)q̃(a)q̃(hθ))

= τθ(q̃(a)q̃(hθ)q̃(b)− q̃(a)q̃(b)q̃(hθ))

= τθ(q̃(a)q̃(hθb− bhθ)) (a, b ∈ T ∞ oαθ
Z).

By the definition of δ̃θ
(1)

and q̃ ◦ δ̃θ
(1)

= δ
(1)
θ ◦ q̃, we have that

(bϕ0)(a, b) = τθ(q̃(a)q̃ ◦ δ̃θ
(1)

(b)) = τθ(q̃(a)δ(1)θ ◦ q̃(b)) = (τ
(1)
θ ◦ q̃)(a, b)

for any a, b ∈ T ∞ oαθ
Z. Therefore, we obtain that

(b + B)[(ϕ0, 0, . . .)] = [(τ
(1)
θ ◦ q̃, 0, . . .)],

which means that [τ(1)
θ ◦ q̃] = 0 ∈ HEod(T ∞ oαθ

Z). Hence, we have ker q̃∗ 6= 0
so that the right vertical map of (5.1) is also injective.

Summing up, we obtain the following exact diagram:

(5.2)

C2 q̃∗−−−−→ HEev((D2 × S1)θ)
0−−−−→ Cx y

C ←−−−−
0

HEod((D2 × S1)θ) ←−−−−
q̃∗

C2,

to conclude that
HE∗((D2 × S1)θ) ' C2/C ' C

as required. Moreover, we easily see that q̃∗ 6=0. Hence q̃∗[τ′θ ]=[τ
′
θ◦q̃] and q̃∗[τ(2)

θ ]=

[τ
(2)
θ ◦q̃] are the generators of the corresponding entire cyclic cohomology.

We need the following lemma to end up the main result:

LEMMA 5.3. We have the following equalities:
(i) τθ ◦ γθ = τ−θ and τ′θ ◦ γθ = −τ′−θ ,

(ii) τ
(1)
θ ◦ γθ = τ

(2)
−θ and τ

(2)
θ ◦ γθ = τ

(1)
−θ .

Proof. Since τθ ◦ γθ is a normalized trace on T2
−θ , it follows by uniqueness

that τθ ◦ γθ = τ−θ . We firstly verify that

δ
(1)
θ ◦ γθ = δ

(2)
−θ , δ

(2)
θ ◦ γθ = δ

(1)
−θ .
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In fact, it is sufficient to verify these equalities for generators. We compute that

δ
(j)
θ ◦ γθ(u−θ) = δ

(j)
θ (vθ) =

{
0 (j = 1),
2πivθ (j = 2);

δ
(j)
θ ◦ γθ(v−θ) = δ

(j)
θ (uθ) =

{
2πiuθ (j = 1),
0 (j = 2).

We then deduce that

τ′θ(γθ(b0), γθ(b1), γθ(b2))

= τθ(γθ(b0)((δ
(1)
θ ◦ γθ(b1))(δ

(2)
θ ◦ γθ(b2))− (δ(2) ◦ γθ(b1))(δ

(1)
θ γθ(b2))))

= τθ(γθ(b0(δ
(2)
−θ (b1)δ

(1)
−θ (b2)− δ

(1)
−θ (b1)δ

(2)
−θ (b2))))

= −τθ ◦ γθ(b0(δ
(1)
−θ (b1)δ

(2)
−θ (b2)− δ

(2)
−θ (b1)δ

(1)
−θ (b2)))

= −τ−θ(b0(δ
(1)
−θ (b1)δ

(2)
−θ (b2)− δ

(2)
−θ (b1)δ

(1)
−θ (b2))) (b0, b1, b2 ∈ T2

−θ).

Moreover, for b0, b1 ∈ T2
−θ , we calculate that

τ
(1)
θ ◦ γθ(b0, b1) = τ

(1)
θ (γθ(b0)δ

(1)
θ (γθ(b1))) = τ

(1)
θ (γθ(b0δ

(2)
−θ (b1))) = τ

(2)
−θ (b0, b1).

Similarly we have that τ
(2)
θ ◦ γθ = τ

(1)
−θ .

Under the above preparation, we determine the entire cyclic cohomology
of noncommutative 3-spheres S3

θ . By Theorem 4.4, we have the following exact
diagram:

HEev(S3
θ) −−−−→ HEod(T2

θ )
− f ∗1 + f ∗2−−−−→ G1

θ ⊕ G1
−θ

g∗1+g∗2

x yg∗1+g∗2

G0
θ ⊕ G0

−θ ←−−−−− f ∗1 + f ∗2
HEev(T2

θ ) ←−−−− HEod(S3
θ),

where G0
±θ = HEev((D2 × S1)±θ), G1

±θ = HEod((D2 × S1)±θ) respectively. By
Proposition 5.2 and the description in its proof, the above diagram becomes the
following one:

HEev(S3
θ) −−−−→ C2 − f ∗1 + f ∗2−−−−→ C2

g∗1+g∗2

x yg∗1+g∗2

C2 ←−−−−
− f ∗1 + f ∗2

C2 ←−−−− HEod(S3
θ).

We describe precisely the maps− f ∗1 + f ∗2 to compute HE∗(S3
θ). For the even case,

we check the map

− f ∗1 + f ∗2 : HPev(T2
θ ) = C[τθ ]⊕C[τ′θ ]→ C[τ′θ ◦ q̃]⊕C[τ′−θ ◦ q̃] = G0

θ ⊕ G0
−θ .
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We have f ∗1 [τθ ] = [τθ ◦ q̃] = 0 by the calculation in Proposition 5.2 and f ∗1 [τ
′
θ ] =

[τ′θ ◦ q̃]. Alternatively, it follows from Lemma 5.3 that f ∗2 [τθ ] = [τ−θ ◦ q̃] = 0 by
the same reason for the case of f ∗1 and that f ∗2 [τ

′
θ ] = [τ′θ ◦ q̃] = −[τ′−θ ◦ q̃] by

Lemma 5.3. On the other hand, for the odd case, we consider the map

− f ∗1 + f ∗2 : HPod(T2
θ ) = C[τ(1)

θ ]⊕C[τ(2)
θ ]→ C[τ(2)

θ ◦ q̃]⊕C[τ(2)
−θ ◦ q̃] = G1

θ ⊕ G1
−θ .

Similarly, we compute, by Lemma 5.3, that:

f ∗1 [τ
(2)
θ ]= [τ

(2)
θ ◦ q̃], f ∗1 [τ

(1)
θ ]= [τ

(1)
θ ◦ q̃]=0, f ∗2 [τ

(1)
θ ]= [τ

(1)
θ ◦ γθ ◦ q̃]= [τ

(2)
−θ ◦ q̃],

f ∗2 [τ
(2)
θ ]= [τ

(2)
θ ◦ γθ ◦ q̃] = [τ

(1)
−θ ◦ q̃] = 0.

Therefore, we have the following exact diagram:

HEev(S3
θ)

0−−−−→ C2 (λ,µ) 7→(−µ,λ)−−−−−−−−→ C2x y0

C2 ←−−−−−−−−−
(λ,µ) 7→(−µ,−µ)

C2 ←−−−− HEod(S3
θ),

by which we conclude that

HEev(S3
θ) ' coker{C⊕C 3 (λ, µ) 7→ (−µ,−µ) ∈ C⊕C} ' C,

HEod(S3
θ) ' ker{C⊕C 3 (λ, µ) 7→ (−µ,−µ) ∈ C⊕C} ' C.

This completes our computation of the entire cyclic cohomology of noncommu-
tative 3-spheres.

THEOREM 5.4. The entire cyclic cohomology of noncommutative 3-spheres is iso-
morphic to the d’Rham homology of the ordinary 3-spheres with complex coefficients.
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