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ABSTRACT. We determine when there is a unique conditional expectation from
a semifinite von Neumann algebra onto a singly-generated maximal abelian
∗-subalgebra. Our work extends the results of Kadison and Singer via new
methods, notably the observation that a unique conditional expectation onto
a singly-generated maximal abelian ∗-subalgebra must be normal.
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1. INTRODUCTION

Throughout this paper N is a von Neumann algebra and A ⊆ N is a maxi-
mal abelian ∗-subalgebra (MASA). Recall that a conditional expectation (CE) from a
von Neumann algebra onto a subalgebra is a (not necessarily normal) projection
of norm one. Since abelian von Neumann algebras are injective Banach spaces,
there is at least one CE from N onto A. Here we ask, “When is there a unique CE
from N onto A?"

A MASA is said to be discrete if it is generated by minimal projections, and
continuous if it contains no minimal projections. Kadison and Singer [8] showed
that in B(`2), a MASA has a unique CE if and only if it is discrete. A key step
in their proof is a calculation in Fourier analysis that guarantees the existence of
multiple CEs onto a continuous MASA. One of the main results here is that for
singly-generated A and semifinite N , the CE is unique if and only if A has the
form ∑ ptN pt for a family of abelian projections {pt} ⊂ N adding to 1 (Theo-
rem 4.6). In particular N must be of type I. Notably, our proof of this general-
ization requires no Fourier analysis at all. Our techniques rely on the new ob-
servation that a unique CE onto a singly-generated MASA is necessarily normal
(Corollary 3.3), and are closely tied to state extensions.
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The thrust of the Kadison–Singer paper is to decide whether pure states on
a MASA in B(`2) have unique state extensions to all of B(`2). They answered
this negatively for a continuous MASA, via the observation that the existence
of multiple CEs implies that there is a pure state with multiple extensions. The
converse of this observation is not known to hold, so that the uniqueness of the
CE from B(`2) to a discrete MASA does not entail that pure states have unique
state extensions — a question that remains open as the Kadison–Singer problem.
But the observation remains valid for any inclusion of von Neumann algebras,
and the results of this paper do answer a Kadison–Singer-type question for many
inclusions A ⊆ N by guaranteeing that some pure states on A have nonunique
state extensions to N (Corollary 4.7).

2. BACKGROUND

Normality and singularity play an important role in this paper and can be
defined in different ways, so we review the characterizations we use. A linear
functional or CE is normal if it is weak* continuous. For a CE E, normality is
easily seen to be equivalent to the inclusion E∗(A∗) ⊆ N∗. A state or CE on N is
singular if for any nonzero projection p ∈ N there is a nonzero projection q 6 p in
its kernel. A linear functional is singular if it is a linear combination of singular
states.

The module actions of N on its dual will be written as follows:

(ϕx)(y) , ϕ(xy), (xϕ)(y) , ϕ(yx), x, y ∈ N , ϕ ∈ N ∗.
Here the normality or singularity of ϕ implies the same property for ϕx and xϕ.
The centralizer of ϕ ∈ N ∗+ is the ∗-subalgebra {x ∈ N : ϕx = xϕ}.

Some of our theorems require thatA be singly-generated. This is equivalent
to A being generated by countably many projections, or just being countably-
generated (Satz 10 in [17], also A.2.1 in [12]). It is weaker than requiring that A
have separable predual (see the discussion in [13]).

Let W be the collection of finite sets of projections inAwith sum 1, partially
ordered by refinement; i.e., F > G if every element of F is dominated by an
element of G. For F ∈ W, x ∈ N , ϕ ∈ N ∗, define the “pavings" xF ∈ N and
ϕF ∈ N ∗ by xF = ∑

p∈F
pxp and ϕF = ∑

p∈F
pϕp. With E : N → A a CE, the

following facts are easy to check:

(2.1) ϕF(x) = ϕ(xF), ‖xF‖ 6 ‖x‖, ‖ϕF‖ 6 ‖ϕ‖, E∗(ϕ|A)F = E∗(ϕ|A).
If V is an upward-filtering subset of W such that (

⋃
F∈V F)′ ∩ N = A, we

call V a full subset for A. In the sequel it will be useful to work with sequential
full subsets; these clearly exist for any singly-generated A, since we may take
an increasing family in a countable set of projections that generates A. But full
subsets need not be generating, and large MASAs may also have sequential full
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subsets. For example, let G be the group whose generators {gt}t∈[0,1] satisfy only
the relations gsgt = gtgs for s, t > 0. Since G is ICC, L(G) is a II1 factor. Moreover
A = W∗({gt}t>0) is an uncountably-generated MASA, and A = {g1}′ ∩ L(G).
(This can be read, for instance, out of Proposition 4.1 in [10].) Thus any upward-
filtering V whose union generates W∗({g1}) will be full.

This gives a way to produce a CE E : N → A. Let V be a full subset for A,
and consider the net {(xF)x∈N }F∈V . For each index F the output lies in ∏

x∈N
N‖x‖

(here N‖x‖ denotes the closed ball in N of radius ‖x‖), which is compact when
topologized as the product of weak* compact sets. Let U be the index set for
a convergent subnet, and finally set E(x) = w∗ lim

F∈U
xF. The basic idea of this

construction originates with von Neumann ([18], Chapter II). It was explicitly
studied by Kadison–Singer for sequential full subsets of MASAs in B(`2), and
their justification that E is a CE holds in the general situation ([8], Lemma 1). We
follow their nomenclature by calling a CE onto a MASA proper if it is of this form,
and otherwise improper. (This terminology has been applied slightly differently
by some later authors.) The CEs constructed by Kadison–Singer from B(`2) onto
a continuous MASA are all proper — are there any improper CEs for this inclu-
sion? We do not know. In fact we believe that this paper is the first to establish
that improper CEs onto (other) MASAs exist (Corollary 4.5).

From the extensive literature concerning CEs onto MASAs, here are the the-
orems that we need.

THEOREM 2.1. (i) A CE is a positive bimodule map: E(a1xa2) = a1E(x)a2 for
x ∈ N , aj ∈ A ([15], Theorem 1).

(ii) A normal CE onto a MASA is the unique proper CE ([3], Corollary 6.1.8). Thus
there can be at most one normal CE onto a MASA.

(iii) A normal CE onto a MASA is automatically faithful ([16], Proposition 1.2). The
existence of a faithful CE implies the existence of a normal CE ([16], Proposition 2.2), and
for a MASA in a semifinite algebra this happens if and only if the MASA is generated by
finite projections ([16], Proposition 4.4).

(iv) There need not be any normal CEs — for instance, when A is the continuous
MASA in B(`2) ([8], Remark 5).

(v) Let ψ be a normal faithful state on A. There is a 1-1 correspondence between CEs
fromN toA and state extensions of ψ withA in their centralizers, given by E↔ E∗(ψ).
Moreover E is normal or singular if and only if E∗(ψ) is.

Proof. We discuss only (v), for which we have no complete reference.
First, any state of the form E∗(ψ) has A in its centralizer: for a ∈ A and

x ∈ N ,

(aE∗(ψ))(x) = ψ(E(xa)) = ψ(E(x)a) = ψ(aE(x)) = ψ(E(ax)) = (E∗(ψ)a)(x).

It is shown in Theorem 1 of [5] that any state extension of ψ having A in its
centralizer can be written as E∗(ψ) for some E. As for uniqueness, suppose E, E′ :
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N → A are CEs satisfying E∗(ψ) = E′∗(ψ), and choose an arbitrary x ∈ N . We
have, for any a ∈ A,

(2.2) (ψa)(E(x)− E′(x)) = ψ(E(ax)− E′(ax)) = E∗(ψ)(ax)− E′∗(ψ)(ax) = 0.

Since ψ is faithful, the space ψA is norm dense in A∗ (by Theorem III.2.7(iii) of
[14], for instance). So (2.2) implies that all normal functionals vanish on E(x)−
E′(x), and therefore E(x) = E′(x).

If E is normal, E∗(ψ) = ψ ◦ E is normal as a composition of normal maps.
On the other hand, if E∗(ψ) is normal, for any a ∈ Awe have E∗(ψa) = E∗(ψ)a ∈
N∗. Again by density of ψA in A∗, we conclude E∗(A∗) ⊆ N∗, and E is normal.
The statement about singularity follows from the observation that E and E∗(ψ)
annihilate the same projections.

Items (ii) and (v) of Theorem 2.1 entail the well-known fact that for a MASA
in a finite von Neumann algebra, the unique CE that preserves normal tracial
states is the unique normal CE.

3. UNIQUENESS IMPLIES NORMALITY

The main result of this section is the implication (i) ⇒ (v) in the following
theorem.

THEOREM 3.1. For a CE E : N → A, the following conditions are equivalent:
(i) E is the unique proper CEx;

(ii) for every x ∈ N and full subset V for A, w∗ lim
F∈V

xF = E(x);

(iii) for every ϕ ∈ N∗ ⊆ N ∗ and full subset V for A, w∗ lim
F∈V

ϕF = E∗(ϕ|A).
If A has a sequential full subset {Fn}, then the following are also equivalent:

(iv) for every ϕ ∈ N∗, ϕFn → E∗(ϕ|A) in norm;
(v) E is normal.

Proof. (i)⇔ (ii) This follows from the definition of a proper CE.
(ii)⇒ (iii) For x ∈ N and ϕ ∈ N∗,

E∗(ϕ|A)(x) = ϕ(E(x)) = ϕ(w∗ lim xF) = lim ϕ(xF) = lim ϕF(x).

(iii)⇒ (ii) Similarly, for x ∈ N and ϕ ∈ N∗,

ϕ(E(x)) = E∗(ϕ|A)(x) = (w∗ lim ϕF)(x) = lim ϕF(x) = lim ϕ(xF).

(iii)⇒ (iv) Condition (iii) implies N∗ 3 ϕFn → E∗(ϕ|A) in the weak* topol-
ogy of N ∗. By Corollary 3.3 in [2], weak* convergence of the sequence is equiv-
alent to weak convergence. Since norm closed convex hulls and weakly closed
convex hulls agree, there is a sequence of convex combinations of {ϕFn} that

converges in norm to E∗(ϕ|A). Now for any convex combination
N
∑

j=1
cj ϕFnj

, for
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n > max{nj} the facts in (2.1) give

‖ϕFn − E∗(ϕ|A)‖ =
∥∥∥( N

∑
j=1

cj ϕFnj
− E∗(ϕ|A)

)
Fn

∥∥∥ 6 ∥∥∥ N

∑
j=1

cj ϕFnj
− E∗(ϕ|A)

∥∥∥.

It follows that ϕFn → E∗(ϕ|A) in norm.
(iv)⇒ (v) SinceN∗ is a norm-closed subspace ofN ∗, (iv) implies E∗(ϕ|A) ∈

N∗. Any normal state onA is the restriction of a normal state onN ([14], Exercise
III.5.1), so E∗(A∗) ⊆ N∗, and E is normal.

(v)⇒ (i) This is Theorem 2.1(ii).

COROLLARY 3.2 ([8], Theorem 2). There is more than one proper CE onto a
continuous MASA in B(`2).

The proof is immediate from Theorems 2.1(iv) and Theorem 3.1.
As mentioned in the Introduction, Kadison–Singer’s original proof of Corol-

lary 3.2 used Fourier analysis.

COROLLARY 3.3. If there is a unique CE onto a singly-generated MASA, then
this CE is normal and faithful.

Proof. Since proper CEs always exist, a unique CE is the unique proper CE.
A singly-generated MASA has a sequential full subset, so the conclusion follows
from Theorems 3.1 and 2.1(iii).

As in Section 2, we let W be the net of all finite sets of projections from A
with sum 1. We will say that an operator x ∈ N is pavable if there is a sequence
{Fn} ⊂ W such that xFn converges in norm to an element of A. Kadison–Singer
showed that in B(`2), this is equivalent to requiring that whenever two states
of N restrict to the same pure state of A, they agree on x ([8], Lemma 5). Their
arguments remain valid in our setting.

THEOREM 3.4. For a CE E : N → A, the following conditions are equivalent:
(i) every pure state of A has a unique state extension to N ;

(ii) every operator in N is pavable;
(iii) ∀x ∈ N , lim

F∈W
xF = E(x) (norm limit);

(iv) ∀x ∈ N , lim
F∈W

xF = E(x) (weak limit);

(v) ∀ϕ ∈ N ∗, w∗ lim
F∈W

ϕF = E∗(ϕ|A);
(vi) if ϕ is a pure state of N that restricts to a pure state of A, then w∗ lim

F∈W
ϕF =

E∗(ϕ|A).
Proof. (i)⇔ (ii) As mentioned just before the theorem, this can be proved in

the same way as Lemma 5 in [8].
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(ii)⇔ (iii) The reverse implication is trivial, so we suppose that x is pavable:
there are a ∈ A and {Fn} ⊂W such that ‖xFn − a‖ → 0. Then for any n,

‖E(x)− a‖ = ‖E(xFn)− a‖ = ‖E(xFn − a)‖ 6 ‖xFn − a‖,

so a = E(x). And for any F > Fn,

‖xF − E(x)‖ = ‖(xFn − E(x))F‖ 6 ‖xFn − E(x)‖.

(iii)⇒ (iv) Trivial.
(iv) ⇔ (v) These are the same computations as (ii) ⇔ (iii) in Theorem 3.3

(with obvious small modifications).
(v)⇒ (vi) Trivial.
(vi)⇒ (i) Suppose there are two pure states ϕ1, ϕ2 on N such that ϕ1|A =

ϕ2|A is pure. As observed in the first paragraph of the proof of Lemma 5 in [8],
for j = 1, 2 and F ∈ W one has (ϕj)F = ϕj. (This is essentially because for a
projection in A, ϕj annihilates either the projection or its complement.) Thus the
condition in (vi) implies

ϕ1 = w∗ lim(ϕ1)F = E∗(ϕ1|A) = E∗(ϕ2|A) = w∗ lim(ϕ2)F = ϕ2.

It is a standard fact that a pure state onA has a unique state extension if and only
if it has a unique pure state extension. (The pure state extensions are the extreme
points of the convex weak* compact set of state extensions.)

REMARK 3.5. Since the first two items in Theorem 3.4 do not refer to E, they
clearly imply uniqueness of the CE. Regarding unique state extensions of pure
states, this well-known observation can also be seen more directly and goes back
to Kadison–Singer.

4. MASAs OF SEMIFINITE VON NEUMANN ALGEBRAS

THEOREM 4.1. If N is type I, the following conditions are equivalent:
(i) there is a normal CE onto A;

(ii) there exist abelian projections {pt} ⊂ A with ∑ pt = 1.
These conditions imply

(iii) there is a unique CE from N onto A.
If A has a sequential full subset, then all three conditions are equivalent.

Proof. (i) ⇔ (ii) By Theorem 2.1(iii) the existence of a normal CE is equiv-
alent to A being generated by finite projections. If q ∈ A is finite, then qA is a
MASA in the finite type I algebra qN q, so q is a sum of abelian projections ([7],
Exercise 6.9.23).

(ii)⇒ (iii) Let {pt} be abelian projections inA such that ∑ pt = 1. Note that
for any a ∈ A, psapt = δst psaps. Further note that for any x ∈ N , psxps belongs
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to the abelian algebra psN ps, so it commutes with psA and thus all ofA. SinceA
is a MASA, psxps ∈ A. Now let E : N → A be any CE and compute

E(x) =
(

∑ ps

)
E(x)

(
∑ pt

)
= ∑ psE(x)ps = ∑ E(psxps) = ∑ psxps.

(All sums should of course be interpreted as σ-strong limits of finite sums.) Thus
the only CE from N onto A is x 7→ ∑ psxps, which is visibly normal.

(iii) ⇒ (i) Assuming the sequential full subset, this follows from
Theorem 3.1.

REMARK 4.2. IfN is type I,A has a sequential full subset, and in additionN
has singly-generated center Z , then A must be singly-generated. Assume these
hypotheses, and let {Fn} be a sequential full subset for A. After enlarging {Fn}
if necessary we may assume that Z ⊆ W∗({Fn}). Now we apply the classical
fact that type I algebras are normal, meaning that any subalgebra that contains
the center is equal to its own double relative commutant ([6], Exercice III.7.13b):

A = A′ ∩N = (W∗({Fn})′ ∩N )′ ∩N = W∗({Fn}).

Thus A is singly-generated.

For the type II case discussed in the next two results, the main points are
these: given a normal tracial state τ on N , there is a singular state ϕ on N that
agrees with τ on A; under a cardinality restriction, we can also ensure that A lies
in the centralizer of ϕ; by Theorem 2.1(v) this produces a singular CE. Some re-
lated arguments can be found in Proposition 2.4, Corollary 2.5, and Paragraph 4.2
in [9], and Lemma 4.2 and subsequent text in [11]. We thank Sorin Popa for his
suggestions on these constructions.

LEMMA 4.3. If τ is a normal tracial state on the II1 von Neumann algebra N ,
then τ|A extends to a singular state on N . Actually any normal state on A extends to a
singular state on N .

Proof. After compressing by the support of τ, which is central and thus an
element of A, we may assume that τ is faithful. By Exercise 6.9.29 of [7], for any
n there are projections {qn

j }2n

j=1 ⊂ A that are equivalent inN and have sum 1. For
each 1 6 i, j 6 2n, let vn

ij be a partial isometry effecting the equivalence of qn
i and

qn
j , with the requirements that vn

ji = (vn
ij)
∗ and vn

ijv
n
kl = δjkvn

il (so vn
ii = qn

i ). We set

pn = 2−n
2n

∑
i,j=1

vn
ij, which is easily checked to be a projection. With E the normal

τ-preserving CE onto A, we also compute

E(vn
ij) = E(qn

i vn
ijq

n
j ) = qn

i E(vn
ij)q

n
j = δijqn

i

⇒ E(pn) = 2−n ∑
i,j

E(vn
ij) = 2−n ∑

i
qn

i = 2−n1.
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Define a sequence of states on N by ϕn = 2nτ(·pn). Note that for a ∈ A,

ϕn(a) = 2nτ(apn) = 2nτ(E(apn)) = 2nτ(aE(pn)) = 2nτ(a(2−n1)) = τ(a),

so that any weak* limit point ϕ of {ϕn} in N ∗ extends τ|A. Moreover, for any m,

ϕ
( ∞∨

k=m

pk

)
= (w∗ lim ϕn)

( ∞∨
k=m

pk

)
> (w∗ lim ϕn)(pn) = 1, and

τ
( ∞∨

k=m

pk

)
6

∞

∑
m

τ(pk) = 2−m+1.

Considering the complements of the projections
∞∨

k=m
pk, we see that ϕ vanishes

on projections of trace arbitrarily close to 1. Now given any projection p ∈ N ,
find another projection q with ϕ(q) = 0 and τ(p) + τ(q) > 1. The formula p−
(p ∧ q) ∼ (p ∨ q) − q implies τ(p ∧ q) = τ(p) + τ(q) − τ(p ∨ q) > 0. Thus
0 6= p ∧ q 6 p and ϕ(p ∧ q) 6 ϕ(q) = 0, as required to show that ϕ is singular.

For the second sentence of the lemma, let ψ be a normal state on A with
support r. Then rA is a MASA of rN r, and composing the center-valued trace of
rN r with ψ gives a faithful normal tracial state on rN r. Renaming rA ⊆ rN r as
A ⊆ N , we may assume that N admits a faithful normal tracial state τ. By the
preceding argument, τ|A has a singular extension ϕ.

Since τ|AA is norm dense in A∗, there are {an} ⊂ A+ with τ|Aan → ψ

in norm. Note that ‖a1/2
n ϕa1/2

n ‖ = ϕ(an) = τ(an) = ‖τ|Aan‖ → ‖ψ‖, so the
sequence of singular functionals {a1/2

n ϕa1/2
n } is norm-bounded; let ρ be a weak*

limit point. Necessarily ρ is singular ([1], Theorem III.5). But (a1/2
n ϕa1/2

n )|A =
τ|Aan now converges both weak* to ρ|A and in norm to ψ, so that ρ must restrict
to ψ on A.

THEOREM 4.4. If N is type II and A is singly-generated, then there are multiple
CEs from N onto A.

Proof. Assume the hypotheses, and suppose toward a contradiction that
E : N → A is the unique CE. By Corollary 3.3, E is normal and faithful. By
Theorem 2.1(iii) we know that A contains a nonzero finite projection r. Let ψ be
any normal state on rA; after compressing by the support of ψ, we may assume
that ψ is faithful onA and thatN is type II1. Our strategy is to find a non-normal
state extension of ψ that has A in its centralizer, so that by Theorem 2.1(v) there
is also a non-normal CE onto A.

Let {pn} be a countable generating set of projections for A. By Lemma 4.3
there is a singular ϕ1 that restricts to ψ onA. We recursively define ϕn = pn ϕn−1 pn
+(1 − pn)ϕn−1(1 − pn), a singular state that restricts to ψ on A and contains
{p1, p2, . . . , pn} in its centralizer. Let ϕ be a weak* limit point of {ϕn}. Then
ϕ is still singular ([1], Theorem III.5), still restricts to ψ on A, and has all the pn
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in its centralizer. The proof will be complete if we can show that A lies in its
centralizer, which we do now by adapting the proof of Theorem 11 in [4].

Let A0 be the intersection of A and the centralizer of ϕ. Then A0 is a ∗-
algebra, and we claim that it is closed in the σ-strong* topology. For if {aα} ⊂ A0
is a net converging σ-strong* to a ∈ A, then for any x ∈ N we have

|(aϕ−ϕa)(x)|
= |[(a− aα)ϕ− ϕ(a− aα)](x)| = lim

α
|[(a− aα)ϕ− ϕ(a− aα)](x)|

= lim
α
|ϕ(x(a− aα))− ϕ((a− aα)x)|

6 lim
α

ϕ(xx∗)1/2 ϕ((a−aα)
∗(a−aα))

1/2+lim
α

ϕ((a−aα)(a−aα)
∗)1/2 ϕ(x∗x)1/2

= 0,

since ϕ|A = ψ is normal. ThereforeA0, being σ-strong* closed, is a von Neumann
subalgebra of A. We have already noted that {pn} ⊂ A0, so A0 = A; i.e., A lies
in the centralizer of ϕ.

COROLLARY 4.5. There is an improper CE onto any singly-generated MASA in
a type II1 algebra.

Proof. The normal CE is the unique proper CE, by Theorem 2.1(ii). By The-
orem 4.4 there are others.

To our knowledge there had been no previous examples of improper CEs
onto MASAs.

THEOREM 4.6. If A is singly-generated and N is semifinite, the following condi-
tions are equivalent:

(i) there exist abelian projections {pt} ⊂ A with ∑ pt = 1 (and in particular, N is
type I);

(ii) no normal state of A has a non-normal state extension to N ;
(iii) no normal state of A has a singular state extension to N ;
(iv) there is a unique CE E : N → A that is also normal and faithful;
(v) there is a unique CE E : N → A.

Proof. (i)⇒ (ii) Suppose that the {pt} exist, and that ϕ is a state of N such
that ϕ|A is normal. Let ϕ = ϕ1 + ϕ2 be the unique decomposition in which ϕ1
is normal and ϕ2 is singular ([14], Theorem III.2.14); necessarily ϕ1 and ϕ2 are
positive. For any t it follows from the definition of singularity that the restriction
ϕ2|ptN pt is still singular. On the other hand pt is an abelian projection and A is
a MASA, so ptN pt ⊆ A and by our assumption ϕ2|ptN pt must also be normal.
But a singular normal positive functional is zero, and therefore ϕ2(pt) = 0. Now
ϕ2|A = ϕ|A − ϕ1|A is normal, so ϕ2(1) = ϕ2(∑ pt) = ∑ ϕ2(pt) = 0. Thus ϕ2 = 0,
and ϕ = ϕ1 is normal.

(ii)⇒ (iii) Trivial.
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(iii)⇒ (i) Suppose that (i) is false, so that there is a projection 0 6= p ∈ A such
that pA contains no abelian projections. We need to show that there is a normal
state on pA extending to a singular state on pN p, and it suffices to assume p = 1.
There are two cases.

Case 1. Suppose A contains no finite projections. Let I be the closed ideal
ofN generated by the finite projections. The dual space ofN/I is positively iso-
metric to I⊥, which by weak* density of I inN consists entirely of singular linear
functionals. Since A contains no finite projections, A is isometrically imbedded
in N/I , hence its dual space is the set of restrictions of functionals in I⊥. We
conclude that every normal state of A is the restriction of a singular state of N .

Case 2. If A contains a non-zero finite projection q, then qA is a MASA of
qN q. We may assume that q = 1, so thatN is finite. NowN cannot have a type I
summand, because again by Exercise 6.9.2 of [7], A would have nonzero abelian
projections, contrary to assumption. So N is type II1, and the conclusion follows
from Lemma 4.3.

(i)⇔ (v) This follows from Theorems 4.1 and 4.4.
(iv)⇔ (v) The nontrivial direction is covered by Corollary 3.3.

The argument for (iii)⇒ (i) allows for a more refined conclusion. Let z ∈ A
be the supremum of all projections in A that are abelian in N , and let ψ be a
normal state on A with support p. Then p 6 z if and only if ψ has a unique state
extension to N , necessarily normal; p 6 1− z if and only if ψ has a singular state
extension.

COROLLARY 4.7. Let A be a singly-generated MASA in the semifinite von Neu-
mann algebra N . If A is not generated by abelian projections (in particular, if N is not
type I), then some pure states of A have nonunique state extensions to N .

Proof. Under the hypotheses, Theorem 4.6 implies that there are multiple
CEs from N to A. By Remark 3.5 there must be some pure state on A with mul-
tiple state extensions.
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