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ABSTRACT. Let X be a Cantor set, and let A be a unital separable simple
amenable C∗-algebra with tracial rank zero which satisfies the Universal Coef-
ficient Theorem. We use C(X, A) to denote the set of all continuous functions
from X to A; let α be an automorphism on C(X, A). Suppose that C(X, A) is α-
simple and [α|1⊗A] = [id|1⊗A] in KL(1⊗ A, C(X, A)). We show that C(X, A)
oα Z has tracial rank zero.
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1. INTRODUCTION

That the transformation group C∗-algebras of minimal homeomorphisms of
the Cantor set are AT algebras (direct limits of circle algebras) with real rank zero
is implicit in Section 8 of [10], with the main step having been done in [22]. Elliott
and Evans proved in [4] that the irrational rotation algebras are AT algebras with
real rank zero. Furthermore, Lin proved in [14] that irrational higher dimensional
noncommutative tori of the form C(Tk)oθ Z are in fact AT algebras. Recently
Phillips constructs an inductive proof that every simple higher noncommutative
torus is an AT algebra ([20]). More generally, Lin and Phillips proved the follow-
ing result ([19]): Let X be an infinite compact metric space with finite covering
dimensional and let α: X → X be a minimal homeomorphism, the associated
crossed product C∗-algebra A = C(X)oα Z has tracial rank zero whenever the
image of K0(A) in Aff(T(A)) is dense. In particular, these algebras all belong to
the class known currently to be classifiable by K-theoretic invariants in the sense
of the Elliott classification program ([3]).

Let A be a unital separable simple C∗-algebra with tracial rank zero, and
let α be an automorphism on A. Lin proved in [18] that if α has certain Rokhlin
property and there is an integer J > 1 such that [αJ ] = [idA] in KL(A, A). Then
A oα Z has tracial rank zero.
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In present, we do not know if A oα Z belongs to the class known currently
to be classifiable by K-theoretic invariants when C∗-algebra A is neither com-
mutative nor simple. In this paper we consider the C∗-algebra C(X, A), all con-
tinuous functions from X to A, and the associated crossed product C∗-algebra
C(X, A)oα Z, where X is a Cantor set and A is a unital separable simple amenable
C∗-algebra with tracial rank zero which satisfies the Universal Coefficient Theo-
rem. When A is isomorphic to C, it is just the case in [22]. When A is not isomor-
phic to C, C(X, A) is neither commutative nor simple.

In this paper, we prove the following result: let X be a Cantor set, let A
be a unital separable simple amenable C∗-algebra with tracial rank zero which
satisfies the Universal Coefficient Theorem, and let α be an automorphism on
C(X, A). Suppose that C(X, A) is α-simple and [α|1⊗A] = [id|1⊗A] in KL(1 ⊗
A, C(X, A)), then C(X, A)oα Z has tracial rank zero, therefore it belongs to the
class known currently to be classifiable by K-theoretic invariants in the sense of
the Elliott classification program [3]. Let us analysis two conditions we need in
our result. The first condition is a necessary condition such that C(X, A)oα Z is
simple. The second condition is [α|1⊗A] = [id|1⊗A] in KL(1⊗ A, C(X, A)) which
implys that the action on each fiber of X is a trivial element of KL(A, A). An
early version of the second condition is weaker and can not ensure our result
which was pointed to us by Hiroki Matui.

This paper is organized as follows. In Section 2 we introduce notation
and give some elementary properties of α-simple automorphisms on C∗-algebras
C(X, A). In Section 3, we prove that, under our hypotheses, the C∗-subalgebra
B{y} = C∗(C(X, A), uC0(X\{y}, A)) ⊂ C(X, A)oα Z has tracial rank zero. Sec-
tion 4 contains the proof that C(X, A)oα Z has tracial rank zero.

2. PREMIMINARIES AND α-SIMPLE AUTOMORPHISMS ON C(X, A)

We will use the following convention:

(i) Let A be a C∗-algebra, let a ∈ A be a positive element and let p ∈ A be
a projection. We write [p] 6 [a] if there is a projection q ∈ aAa and a partial
isometry v ∈ A such that v∗v = p and vv∗ = q.

(ii) Let A be a C∗-algebra. We denote by Aut(A) the automorphism group of
A. If A is unital and u ∈ A is a unitary, we denote by adu the inner automorphism
defined by adu(a) = u∗au for all a ∈ A.

(iii) Let x ∈ A, ε > 0 and F ⊂ A. We write x ∈ε F , if dist(x,F ) < ε, or there is
y ∈ F such that ‖x− y‖ < ε.

(iv) Let A be a C∗-algebra and α ∈ Aut(A). We say A is α-simple if A does not
have any non-trivial α-invariant closed two-sided ideals.

(v) Let A be a unital C∗-algebra and T(A) the compact convex set of tracial
states of A. If α is an automorphism of A, we use Tα(A) to denote the α-invariant
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tracial states, which is again a compact convex set. We define an affine mapping
r of T(A oα Z) into Tα(A) by the restriction r(τ) = τ|A. Denote by Aff(T(A))
the normed space of all real affine continuous functions on T(A). Denote by
ρA : K0(A) → Aff(T(A)) the homomorphism induced by ρA([p])(τ) = τ(p) for
τ ∈ T(A).

We recall the definition of tracial topological rank of C∗-algebras.

DEFINITION 2.1 ([13]). Let A be a unital simple C∗-algebra. Then A is said
to have tracial (topological) rank zero if for any ε > 0, any finite set F ⊂ A and any
nonzero positive element a ∈ A, there exists a finite dimensional C∗-subalgebra
B ⊂ A with idB = p such that:

(i) ‖px− xp‖ < ε for all x ∈ F .
(ii) pxp ∈ε B for all x ∈ F .

(iii) [1− p] 6 [a].

If A has tracial rank zero, we write TR(A) = 0.

DEFINITION 2.2. Let X be a compact metric space and let A be a C∗-algebra,
we say a map β : X → Aut(A), denoted by x to βx, is strongly continuous if for
any {xn} with d(xn, x)→ 0 when n → ∞, we have ‖βxn(a)− βx(a)‖ → 0 for all
a ∈ A.

LEMMA 2.3. Let X be a compact metric space, let A be a unital simple C∗-algebra
and α ∈ Aut(C(X, A)). Then C(X, A) is α-simple if and only if there is a minimal
homeomorphism σ from X to X and a strongly continuous map β from X to Aut(A),
denote by x to βx, such that α( f )(x) = βσ−1(x)( f (σ−1(x))).

The proof is a straightforward exercise, we omit it.

LEMMA 2.4. Let X be an infinite compact metric space, let A be a unital simple
C∗-algebra and α ∈ Aut(C(X, A)). Then C(X, A) is α-simple if and only if the crossed
product C(X, A)oα Z is simple.

Proof. Let I be an α-invariant norm closed two-sided ideal of C(X, A). Then
I oα Z is a norm closed two-sided ideal of C(X, A)oα Z by Lemma 1 of [6].

Conversely, for any positive element f of the C∗-algebra C(X, A), any finite
set F = { fi; i = 1, 2, . . . , n} ⊂ C(X, A), any si ⊂ N, i = 1, 2, . . . , n, and any ε > 0,
we claim that there exists a positive element g ∈ C(X, A) with ‖g‖ = 1 such that

(2.1) ‖g f g‖ > ‖ f ‖ − ε, ‖g fiα
si (g)‖ 6 ε, i = 1, 2, . . . , n.

Because X is a compact set, we can get a point x ∈ X such that ‖ f (x)‖ =
‖ f ‖. By Lemma 2.3 we can get a minimal homeomorphism σ of X. Since σ is
the minimal homeomorphism of X, there exists a neighborhood O(x) of x such
that σi(O(x)) are disjoint for i = 1, . . . , s, where s = max{si, i = 1, 2, . . . , n} and
‖ f (y)− f (x)‖ < ε for all y ∈ O(x). It is easy to find a continuous function g from
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X to [0, 1] such that g(x) = 1 and g(z) = 0 for all z /∈ O(x). Then g satisfies the
conditions (2.1). The claim follows.

Use the condition (2.1) and the fact that C(X, A) is α-simple. We can com-
plete the proof as the same as Theorem 3.1 in [9] and we omit it.

Let u be the unitary implementing the action of α in the transformation
group C∗-algebra C(X, A)oα Z, then u f u∗ = α( f ). For a nonempty closed subset
Y ⊂ X, we define the C∗-subalgebra BY to be

BY = C∗(C(X, A), uC0(X\Y, A)) ⊂ C(X, A)oα Z.

We will often let B denote the transformation group C∗-algebra C(X, A)oα Z. If

Y1 ⊃ Y2 ⊃ · · · is a decreasing sequence of closed subsets of X with
∞⋂

n=1
Yn = {y},

then B{y} = lim BYn .
Let Y ⊂ X, and let x ∈ Y. If C(X, A) is α-simple, by Lemma 2.3 we have

a minimal homeomorphism σ of X. The first return time λY(x) (or λ(x) if Y is
understood) of x to Y is the smallest integer n > 1 such that σn(x) ∈ Y.

The following result is well known in the area, and is easily proved:

LEMMA 2.5. If Y is a nonempty clopen subset and σ is a minimal homeomorphism
of X. Then sup

x∈Y
{λY(x)} < ∞.

Let Y ⊂ X is a nonempty clopen subset. Let n(0) < n(1) < · · · < n(l) be
the distinct values of λ(x) for x ∈ Y. The Rokhlin tower based on a subset Y ⊂ X
with Y 6= ∅ consist of the partition

Y =
l

ä
k=0
{x ∈ Y : λ(x) = n(k)}

of Y (the sets here are the base sets), and the corresponding partition of X:

X =
l

ä
k=0

n(k)−1

ä
j=0

σj({x ∈ Y : λ(x) = n(k)}).

Actually, for our purposes it is more convenient to use the partition

X =
l

ä
k=0

n(k)

ä
j=1

σj({x ∈ Y : λ(x) = n(k)}).

Note that

Y =
l

ä
k=0

σn(k)({x ∈ Y : λ(x) = n(k)}).

Since Y is both closed and open, the following sets are all closed and open:

Yk = {x ∈ Y : λ(x) = n(k)}.
The proof of the following theorem is the same as the one of Theorem 2.4 in

[19] after we apply Lemma 2.3, so we omit it.
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THEOREM 2.6. Let X be a Cantor set, let A be a unital simple C∗-algebra and
α ∈ Aut(C(X, A)). Suppose C(X, A) is α-simple, let Y ⊂ X be a nonempty clopen
subset. Then there exists a unique isomorphism

γY : BY →
l⊕

k=0

C(Yk, Mn(k)(A))

such that if f ∈ C(X, A), then

γY( f )k = diag(α−1( f )|Yk , α−2( f )|Yk , . . . , α−n(k)( f )|Yk )

and if f ∈ C0(X\Y, A), then

(γY(u f ))k = skγY( f )k

where sk ∈ Mn(k) ⊂ C(Yk, Mn(k)(A)) is defined by

sk =



0 0 0 · · · · · · 0 0 1
1 0 0 · · · · · · 0 0 0
0 1 0 · · · · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · · · · 0 0 0
0 0 0 · · · · · · 0 1 0


.

3. THE TRACIAL RANK OF B{y}

The following lemma is similar to Proposition 2.5 in [19]. We adapt their
proof to establish the simplicity of B{y}.

LEMMA 3.1. Let X be an infinite compact metric space, let A be a unital simple
C∗-algebra and α ∈ Aut(C(X, A)). If C(X, A) is α-simple, then for any y ∈ X, B{y} is
simple.

Proof. Let I ⊂ B{y} be a nonzero ideal. Since X is an infinite compact metric
space, A is a unital simple C∗-algebra and C(X, A) is α-simple, we have a minimal
homeomorphism σ of X by Lemma 2.3. Then I ∩ C(X, A) is an ideal in C(X, A).
So we can write I ∩ C(X, A) = C0(U, A) for some open set U ⊂ X by the proof of
Lemma 2.3, which is necessarily given by,

U = {x ∈ X : there is f ∈ I ∩ C(X, A) such that f (x) 6= 0}.

We first claim that U 6= ∅,
Write

B{y} = lim
→

BYm
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for some decreasing sequence Y1 ⊃ Y2 ⊃ · · · of closed subsets of X with
∞⋂

n=1
Yn

= {y}, and int(Ym) 6= ∅,
Then there exists m such that BYm ∩ I 6= {0} by Lemma 3.5.10 of [11]. Let

a be a nonzero element of this intersection. Using Theorem 2.6, one can fairly
easily prove that there is N such that every element of BYm can be written in the

form
N
∑

n=−N
fnun, with fn ∈ C(X, A) for−N 6 n 6 N. Moreover, if a 6= 0, and one

writes a∗a =
N
∑

n=−N
fnun, then f0 6= 0. Choose x ∈ X such that f0(x) 6= 0, choose a

neighborhood V of x such that the sets hn(V), for −N 6 n 6 N, are disjoint, and
choose g ∈ C(X) such that supp(g) ∈ V and g(x) 6= 0. Then g ∈ B{y}, and one
checks that

ga∗ag =
N

∑
n=−N

g fnung =
N

∑
n=−N

g(g ◦ σn) fnun = g2 f0.

So g2 f0 is a nonzero element of I ∩ C(X, A), proving the claim.
We next claim that σ−1(U\{σ(y)}) ⊂ U. So let x ∈ U\{σ(y)}. Choose f ∈

I ∩C(X, A) such that f (x) 6= 0, and choose g ∈ C0(X\{y}) such that g(σ−1(x)) 6=
0. Then ug ∈ B{y}, and

(ug)∗ f (ug) = gu∗ f ug = |g|2(u∗ f u).

Thus |g|2(u∗ f u) ∈ I ∩ C(X, A) and is nonzero at σ−1(x). This proves the claim.
We further claim that σ(U\{y}) ⊂ U. The proof is similar: let x ∈ U\{y},

let f ∈ I ∩ C(X, A) and g ∈ C0(X\{y}) be nonzero at x, and consider ug ∈ B{y},

(ug) f (ug)∗ = ug f gu∗ = |g ◦ σ−1|2(u f u∗).

Thus |g ◦ σ−1|2(u f u∗) ∈ I ∩ C(X, A) and is nonzero at σ(x). So σ(U\{y}) ⊂ U.
Now set Z = X\U. The last two claims above imply that if x ∈ X and

x is not in the orbit of y, then σk(x) ∈ Z for all k ∈ Z. Since σ is minimal, Z
is closed, and Z 6= X, this is impossible. If σn(y) ∈ Z for some n > 0, then
σ−1(U\{σ(y)}) ⊂ U\{σ(y)} implies hk(y) ∈ Z for all k > n. Since σ is dense by
minimality, this is also a contradiction. Similarly, if σn(y) ∈ Z for some n 6 0,
then Z would contain the dense set {σk(y) : k 6 n}, again a contradiction.

So U = X and 1 ∈ I. Then B{y} is simple.

To prove Lemma 3.6, we recall some notions and results.
Decomposition rank is a topological property, originally defined by Kirch-

berg and Winter, that in its lowest instance captures, like real rank, the covering
dimension of the underlying space.

DEFINITION 3.2 ([8]). (i) A completely positive map ϕ : F → A has order
zero if it maps orthogonal elements to orthogonal elements.
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(ii) If F is a finite dimensional algebra, a c.p. map ϕ : F → A is n-decomposa-
ble if there is a decomposition F = F1 ⊕ · · · ⊕ Fn such that ϕ|Fi has order zero for
each i.

(iii) We say that A has decomposition rank n, in symbols, dr(A)= n, if n is the
smallest integer such that: for any finite subset G ⊂ A and ε > 0, there are a finite
dimensional algebra F and c.p. contractive maps ϕ : F → A and ψ : A → F such
that ϕ is n-decomposable and ‖ϕ ◦ ψ(a)− a‖ < ε for all a ∈ G.

A C∗-algebra has finite decomposition rank if dr(A)< +∞.
The following proposition shows that decomposition rank has nice perma-

nence properties.

PROPOSITION 3.3 (3.3 of [8]). For any two C∗-algebras A and B, we have:
(i) dr(A⊕ B) = max{dr(A), dr(B)}.

(ii) dr(A) 6 lim inf
n→∞

dr(An) if A = lim
n→∞

An.

(iii) dr(A/J) 6 dr(A) if J C A is an ideal.
(iv) dr(B) 6 dr(A) if B ⊂her A is a hereditary subalgebra.
(v) dr(A⊗ B) 6 (dr(A)+ 1) · (dr(B)+ 1)− 1, if B is AF algebra, we have dr(A⊗

B) 6 dr(A).

The Jiang–Su algebra, denoted by Z ([7]), occupies a central position in the
structure theory of separable amenable C∗-algebras. The property of absorbing
the Jiang–Su algebra tensorially (Z-stable) is a necessary, and, in considerable
generality, sufficient condition for the confirmation of Elliott’s K-theoretic rigidity
conjecture for simple separable amenable C∗-algebras ([23], [26]).

Winter has proved the following two remarkable results:

THEOREM 3.4 (Theorem 4.1 of [24]). Let A be a separable simple unital C∗-
algebra with finite decomposition rank n. Suppose A is Z-stable and has real rank zero.
Then A has tracial rank zero.

THEOREM 3.5 (Theorem 5.1 of [25]). Let A be a finite, non elementary, simple,
unital C∗-algebra. If dr(A)< +∞, then A is Z-stable.

LEMMA 3.6. Let X be a Cantor set, let A be a unital separable simple amenable C∗-
algebra with tracial rank zero which satisfies the UCT (Universal Coefficient Theorem),
and let α ∈ Aut(C(X, A)). Suppose C(X, A) is α-simple. Then, for any y ∈ X, the
C∗-algebra B{y} has tracial rank zero.

Proof. Let Y ⊂ X be a nonempty clopen subset, applying Theorem 2.6, we
have

BY ∼=
l⊕

k=0

C(Yk, Mn(k)(A)) =
l⊕

k=0

C(Yk)⊗Mn(k)(A).

Since A is a unital separable simple amenable C∗-algebra with tracial rank
zero which satisfies the Universal Coefficient Theorem, by [15] A is an AH-algebra
of slow dimension growth with real rank zero, furthermore, A is an AH-algebra
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of bounded dimension growth by [2], then by 6.1(2) of [8], A has finite decom-
position rank and dr(A) is bounded by the dimensions of the base spaces. Since
C(Yk) is an AF-algebra, by Proposition 3.3(5), dr(C(Yk)⊗Mn(k)(A)) 6dr(A) for
k = 0, . . . , l, then by Proposition 3.3(i), dr(BY) 6 dr(A).

Let y ∈ X, then there exists a decreasing sequence Z1 ⊃ Z2 ⊃ · · · of clopen

subsets of X with
∞⋂

n=1
Zn = {y}, we have B{y} = lim

n→∞
BZn . By Proposition 3.3(ii),

dr(B{y}) 6 lim inf
n→∞

dr(BZn) 6 dr(A) < +∞. By Theorem 3.5, B{y} absorbs the

Jiang–Su algebra Z tensorially.
Since A is a unital separable simple C∗-algebra with tracial rank zero, by

Theorem 3.6.11 of [11] A has real rank zero. Notice that C(Yk) is an AF-algebra,
it is easy to see that BY has real rank zero. So for any n ∈ N, BZn has real rank
zero, by Proposition 3.2.2 of [11] B{y} = lim

n→∞
BZn has also real rank zero. So the

C∗-algebra B{y} has tracial rank zero by Theorem 3.4.

LEMMA 3.7. Any trace on B{y} is restricted to C(X) is a σ-invariant measure
on X.

Proof. Let τ be a normalized trace on B{y}, and let f ∈ C(X). Set

a = u| f − f (y)|1/2 and b = u( f − f (y) · 1)| f − f (y)|−1/2.

Then a and b are both in B{y}. Moreover,

τ( f ◦ σ−1− f (y) · 1) = τ(u( f − f (y) · 1)u∗) = τ(ab∗) = τ(b∗a) = τ( f − f (y) · 1).
Cancelling τ( f (y) · 1), we get τ( f ◦ σ−1) = τ( f ).

4. MAIN RESULT

To prove Lemma 4.3, we firstly recall two results:

THEOREM 4.1 (Theorem 3.6 of [17]). Let C be a unital AH-algebra and let A be
a unital simple C∗-algebra with tracial rank zero. Suppose that h1, h2 : C → A are two
monomorphisms such that

[h1] = [h2] in KL(C, A) and τ ◦ h1(a) = τ ◦ h2(a) for all a ∈ C and τ ∈ T(A).

Then h1 and h2 are approximately unitarily equivalent, i.e., there exists a sequence of
unitaries {un} ⊂ A such that

lim
n→∞

adun ◦ h1(a) = h2(a) for all a ∈ C.

LEMMA 4.2 (Lemma 4.1 of [18]). Let A be a unital separable simple C∗-algebra
with real rank zero and stable rank one and let β ∈ Aut(A). Suppose that there is a
subgroup G ⊂ K0(A) such that ρA(G) is dense in ρA(K0(A)) and (β)∗0|G = id|G.
Then τ(a) = τ(β(a)) for all a ∈ A.
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LEMMA 4.3. Let X be a Cantor set, let A be a unital separable simple amenable
C∗-algebra with tracial rank zero which satisfies the UCT, and let α ∈ Aut(C(X, A)).
Suppose C(X, A) is α-simple and [α|1⊗A] = [id|1⊗A] in KL(1 ⊗ A, C(X, A)). Let
B = C(X, A)oα Z, and let y ∈ X. Then for any ε > 0 and finite subset F ⊂ B, there is
a projection p ∈ B{y} such that:

(i) ‖pa− ap‖ < ε for all a ∈ F .
(ii) pap ∈ pB{y}p for all a ∈ F .

(iii) τ(1− p) < ε for all τ ∈ T(B{y}).

Proof. We may assume thatF = G ∪{u} for some finite subset G ⊂ C(X, A).
By Lemma 2.3, there is a minimal homomorphism σ from X to X and a

strongly continuous map from X to Aut(A), denote by x to βx, such that α( f )(x)
= βσ−1(x)( f (σ−1(x))).

Choose N0 ∈ N so large that 4π/N0 < ε. Choose δ0 > 0 with δ0 < (1/2)ε
and so small that d(x1, x2) < 4δ0 implies ‖ f (x1) − f (x2)‖ < (1/4)ε for all f ∈
N0⋃
i=0

α−i(G). Choose δ > 0 with δ 6 δ0 and such that whenever d(x1, x2) < δ and

0 6 n 6 N0, then d(σ−n(x1), σ−n(x2)) < δ0.
Since σ is minimal, there is N > N0 + 1 such that d(σN(y), y) < δ. Since σ is

free, there is a clopen neighborhood Y of y in X such that

σ−N0(Y), σ−N0+1(Y), . . . , Y, σ(Y), . . . , σN(Y)

are disjoint and all have diameter less than δ, and furthermore µ(Y) < ε/(N +
N0 + 1) for every σ-invariant Borel probability measure µ.

Define continuous functions q0(x) =

{
1 x ∈ Y,
0 x ∈ X\Y.

For −N0 6 n 6 N, set qn = αn(q0) =

{
1 x ∈ σn(Y),
0 x ∈ X\σn(Y),

so the qn are

mutually orthogonal projections in B{y}.
We now have a sequence of projections:

q−N0 , . . . , q−1, q0, . . . , qN−N0 , . . . , qN−1, qN .

The projections q0 and qN live over clopen sets which are disjoint but close
to each other, and similarly for the pairs q−1 and qN−1 down to q−N0 and qN−N0 .
We are now going to use Berg’s technique [1] to splice this sequence along the
pairs of indices (−N0, N − N0) through (0, N), obtaining a loop of length N on
which conjugation by u is approximately the cyclic shift.

We claim that there is a partial isometry w ∈ B{y} such that w∗w = q0,

ww∗ = qN and ‖w f |Y − f |σN(Y)w‖ < ε/4 for all f ∈
N0⋃
i=0

α−i(G).



26 JIAJIE HUA

Let x ∈ Y. The first return time λY(x) (or λ(x) if Y is understood) of x
to Y is the smallest integer n > 1 such that σn(x) ∈ Y. By Lemma 2.5, we let
n(0) < n(1) < · · · < n(l) be the distinct values of λ(x) for x ∈ Y.

We denote Y(k, j) = σj(λ−1(n(k))), So

X =
l

ä
k=0

n(k)

ä
j=1

σj({x ∈ Y : λ(x) = n(k)}) =
l

ä
k=0

n(k)

ä
j=1

Y(k, j).

Define continuous functions χY(k,j) =

{
1 x ∈ Y(k, j),
0 x ∈ X\Y(k, j).

Set w′ =
l

∑
k=0

χY(k,N)uN−n(k), then w′ ∈ B{y}.

w′∗w′ =
( l

∑
k=0

u−N+n(k)χY(k,N)

)( l

∑
k=0

χY(k,N)u
N−n(k)

)
=

l

∑
k=0

χY(k,n(k)) = q0,

w′w′∗ =
( l

∑
k=0

χY(k,N)u
N−n(k)

)( l

∑
k=0

u−N+n(k)χY(k,N)

)
=

l

∑
k=0

χY(k,N) = qN .

Let a|Y =

{
a x ∈ Y,
0 x ∈ X\Y,

for all a ∈ A.

Since A is a unital separable simple amenable C∗-algebra with tracial rank
zero which satisfies the UCT, by the classification theorem of [16], [15] and [5], A
is a unital separable simple AH-algebra. For any x ∈ X, if evx is the evaluation
map at X, then the composition

A 1⊗id−→ C(X, A)
α−→ C(X, A)

evσ(x)−→ A

map a to βx(a) for all a ∈ A, the composition

A 1⊗id−→ C(X, A)
id−→ C(X, A)

evσ(x)−→ A

map a to a for all a ∈ A. By the assumption [α|1⊗A] = [id|1⊗A] in KL(1 ⊗
A, C(X, A)), so [evσ(x) ◦ α|1⊗A] = [evσ(x) ◦ id|1⊗A] in KL(1⊗ A, A), i.e., [βx] gives
rise to a trivial element of KL(A, A). Hence (βx)∗0|K0(A) = id|K0(A) because A is a
unital separable simple amenable C∗-algebra which satisfies the UCT. Moreover,
Theorem 3.6.11 of [11] implies A have real rank zero and stable rank one. Apply-
ing Lemma 4.2, we get τ(βx(a)) = τ(a) for all a ∈ A and for all τ ∈ T(A) . Now
we can use Theorem 4.1 to get that βx is approximately unitary equivalent to the
identity map for any x ∈ X, so there are a clopen neighborhood Yx of x and an

unitary u′j ∈ A such that u′j|σj(Yx)
uja|Yx u∗ju′∗j |σj(Yx)

≈ε/8 a|σj(Yx)
for all a ∈

{
f (y) :

f ∈
N0⋃
i=0

α−i(G)
}

. Because Y is compact subset, we can get uj ∈ C(X, A) such that

uj|σj(Y)u
ja|Yu∗ju∗j |σj(Y) ≈ε/8 a|σj(Y) for all a ∈

{
f (y) : f ∈

N0⋃
i=0

α−i(G)
}

.
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Define w =
( l

∑
k=0

uN−n(k)χY(k,N)

)
w′, then w ∈ B{y}, w∗w = q0, ww∗ = qN

and

wa|Yw∗ =
l

∑
k=0

uN−n(k)χY(k,N)u
N−n(k)a|Yu−N+n(k)χY(k,N)u

∗
N−n(k) ≈ε/8 a|σN(Y),

wa|Y ≈ε/8 a|σN(Y)w, so ‖w f |Y − f |σN(Y)w‖ < ε/4 for all f ∈
N0⋃
i=0

α−i(G). The claim

follows.
For t ∈ R define v(t) = cos(πt/2)(q0 + qN)+ sin(πt/2)(w−w∗). Then v(t)

is a unitary in the corner (q0 + qN)B{y}(q0 + qN) whose matrix with respect to the
obvious block decomposition is

v(t) =
(

cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
.

So

‖v(t)( f |Y + f |σN(Y))− ( f |Y + f |σN(Y))v(t)‖
= ‖(cos(πt/2)(q0 + qN) + sin(πt/2)(w− w∗))( f |Y + f |σN(Y))

− ( f |Y + f |σN(Y))(cos(πt/2)(q0 + qN) + sin(πt/2)(w− w∗))‖
= ‖ sin(πt/2)(w f |Y − w∗ f |σN(Y))− sin(πt/2)( f |σN(Y)w− f |Yw∗)‖(4.1)

<
ε

2
for all f ∈

N0⋃
i=0

α−i(G).

For 0 6 k 6 N0 define wk = u−kv(k/N0)uk, so wk ∈ (q−k + qN−k)B{y}(q−k +

qN−k)‖uwk+1u∗ − wk‖ = ‖v(k/N0)− v(k− 1)/N0‖ 6 2π/N0 < (1/2)ε.
Now define en = qn for 0 6 n 6 N−N0, and for N−N0 6 n 6 N write k =

N − n and set en = wkq−kw∗k . The two definitions for n = N − N0 agree because
wN0 q−N0 w∗N0

= qN−N0 , and moreover eN = e0. Therefore ‖uen−1u∗ − en‖ = 0 for
1 6 n 6 N − N0, and also ueNu∗ = e1, while for N − N0 < n 6 N we have

‖uen−1u∗ − en‖ 6 2‖uwN−n+1u∗ − wN−n‖ < ε.

Also, clearly en ∈ B{y} for all n.

Set e =
N
∑

n=1
en and p = 1− e. We verify that p satisfies (i) through (iii).

First,

p− upu∗ = ueu∗ − e =
N

∑
n=N0+1

(uen−1u∗ − en).

The terms in the sum are orthogonal and have norm less than ε, so ‖upu∗−p‖< ε.
Furthermore, pup ∈ B{y}.
Next, let g ∈ G. The sets U0, U1, . . . , UN all have diameter less than δ. We

have d(σN(y), y) < δ, so the choice of δ implies that d(σn(y), σn−N(y)) < δ0 for
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N − N0 6 n 6 N. Also, Un−N = σn−N(U0) has diameter less than δ. Therefore
Un−N ∪Un has diameter less than 2δ + δ0 6 3δ0. Since g varies by at most (1/4)ε
on any set with diameter less than 4δ0, and since the sets σ(Y), σ2(Y), σN−N0−1(Y),
σN−N0(Y) ∪ σ−N0(Y), σN−N0+1(Y) ∪ σ−N0+1(Y), . . . , σN(Y) ∪Y are disjoint.

For 0 6 n 6 N − N0, we have gen = gqn = qng = eng.
For N − N0 < n 6 N and any g ∈ G, we use en ∈ (qn−N + qn)B{y}(qn−N +

qn) and (4.1) to get ‖gen − eng‖ = ‖gwkq−kw∗k − wkq−kw∗k g‖ = ‖w∗k gwkq−k −
q−kw∗k gwk‖ < ε. It follows that ‖pg−gp‖= ‖ge−eg‖< ε. That pgp∈ B{y} follows
from the fact that g and p are in this subalgebra. So we also have (ii) for g.

It remains only to verify (iii). Let τ ∈ T(B{y}), and let µ be the correspond-
ing σ-invariant probability measure on X by Lemma 3.7. We have

1− p = e 6
N

∑
n=−N0

qn,

so we have the following that completes the proof:

τ(1− p) 6
N

∑
n=−N0

µ(σn(Y)) = (N + N0 + 1)µ(Y) < ε.

We recall two results from Lemma 4.3 and Lemma 4.4 of [19].

LEMMA 4.4. Let A be a unital simple C∗-algebra. Suppose that for every ε > 0
and every finite subset F ⊂ A, there exists a unital C∗-subalgebra B ⊂ A which has
tracial rank zero and a projection p ∈ B such that

‖pa− ap‖ < ε and dist(pap, pBp) < ε

for all a ∈ F . Then A has the local approximation property of Popa [21], that is for every
ε > 0 and every finite subset F ⊂ A, there exists a nonzero projection q ∈ A and a finite
dimensional unital C∗-subalgebra D ⊂ qAq such that, for all a ∈ F ,

‖qa− aq‖ < ε and dist(qaq, D) < ε.

LEMMA 4.5. Let A be a unital simple C∗-algebra. Suppose that for every finite
subset F ⊂ A, every ε > 0, and every nonzero positive element c ∈ A, there exists a
projection p ∈ A and a unital simple subalgebra B ⊂ pAp with tracial rank zero such
that:

(i) ‖[a, p]‖ < ε for all a ∈ F ;
(ii) dist(pap, B) < ε for all a ∈ F ;

(iii) 1− p is Murray–von Neumann equivalent to a projection in cAc.
Then A has tracial rank zero.

THEOREM 4.6. Let X be a Cantor set, and let A be a unital separable simple
amenable C∗-algebra with tracial rank zero which satisfies the UCT. Let C(X, A) de-
note all continuous functions from X to A and α be an automorphism of C(X, A). Sup-
pose that C(X, A) is α-simple and [α|1⊗A] = [id|1⊗A] in KL(1⊗ A, C(X, A)). Then
C(X, A)oα Z is a unital simple C∗-algebra with tracial rank zero.
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Proof. Let B = C(X, A) oα Z, then B is a unital simple C∗-algebra by
Lemma 2.4.

We verify the conditions of Lemma 4.5.
For any given point y ∈ X, B{y} = C∗(C(X, A), uC0(X\{y}, A)) has tracial

rank zero by Lemma 3.6. Thus, let F ⊂ B be a finite subset, let ε > 0, and let c ∈ B
be a nonzero positive element. Beyond Lemma 4.3, the main step of the proof is
to find a nonzero projection in B{y} which is Murray–von Neumann equivalent
to a projection in cBc.

The algebra B is simple, so Lemma 4.3, Lemma 4.4 and Lemma 2.12 of [12]
imply that B has property (SP). Therefore there is a nonzero projection e ∈ cBc.
Set

δ0 =
1

18
inf

τ∈T(B)
τ(e) 6

1
18

.

By Lemma 4.3, there is a projection q ∈ B{y} and an element b0 ∈ qB{y}q such that

‖qe− eq‖ < δ0, ‖qeq− b0‖ < δ0, and sup
τ∈T(B{y})

τ(1− q) 6 δ0.

Then sup
τ∈T(B)

τ(1− q) 6 sup
τ∈T(B{y})

τ(1− q) 6 δ0. Replacing b0 by (1/2)(b0 + b∗0),

we may assume that b0 is self-adjoint. We have −δ0 6 b0 6 1 + δ0, so applying
continuous functional calculus we may find b ∈ qB{y}q such that 0 6 b 6 1 and
‖qeq− b‖ < 2δ0. Using ‖qe− eq‖ < δ0 on the last term in the second expression,
we get

‖b2 − b‖ 6 3‖b− qeq‖+ ‖(qeq)2 − qeq‖ < 3 · 2δ0 + δ0 = 7δ0 <
1
4

.

Therefore there is a projection e1 ∈ qB{y}q such that ‖e1− b‖ < 14δ0, giving ‖e1−
qeq‖ < 16δ0. Similarly (actually, one gets a better estimate) there is a projection
e2 ∈ (1 − q)B(1 − q) such that ‖e2 − (1 − q)e(1 − q)‖ < 16δ0. Therefore ‖e1 +
e2 − [qeq + (1− q)e(1− q)]‖ < 16δ0 and, using ‖qe − eq‖ < δ0 again, we have
‖e1 + e2 − e‖ < 18δ0 6 1. It follows that e1 - e. Also, for τ ∈ T(B), we have

τ(e1)>τ(qeq)−16δ0=τ(e)−τ((1−q)e(1−q))−16δ0>τ(e)−τ(1−q)−16δ0>0,

so e1 6= 0.
Now set ε0 = inf{τ(e1) : τ ∈ T(B{y})}. By Lemma 4.3, there is a projection

p ∈ B{y} such that:

(i) ‖pa− ap‖ < ε for all a ∈ F ;
(ii) pap ∈ pB{y}p for all a ∈ F ;

(iii) τ(1− p) < ε0 for all τ ∈ T(B{y}).
Since B{y} has tracial rank zero which implies that the order on projections is

determined by traces (Theorem 3.7.2 of [11]), it follows that 1− p - e1 - e. Since
pB{y}p also has tracial rank zero, we have verified the hypotheses of Lemma 4.5.
Thus B has tracial rank zero.



30 JIAJIE HUA

COROLLARY 4.7. For j = 1, 2 let X be a Cantor set, and let Aj be a unital sep-
arable simple amenable C∗-algebra with tracial rank zero which satisfy the UCT. Let
C(X, Aj) denote all continuous functions from X to Aj, and let αj be an automor-
phism of C(X, Aj). Suppose that C(X, Aj) is αj-simple and [αj|1⊗Aj ] = [id|1⊗Aj ] in
KL(1⊗ Aj, C(X, Aj)). Let Bj =C(X, Aj)oαjZ for j=1, 2. Then B1

∼=B2 if and only if

(K0(B1), K0(B1)+, [1B1 ], K1(B1)) ∼= (K0(B2), K0(B2)+, [1B2 ], K1(B2)).

The proof is immediate from Theorem 5.2 of [16] and Theorem 4.6.

Acknowledgements. The author is thankful to Professor Huaxin Lin for valuable dis-
cussions and suggestions. The author was supported by the National Natural Science
Foundation of China (Nos. 10771069, 10771161, 11071188) and Zhejiang Provincial Natu-
ral Science Foundation of China (No. LQ12A01015).

REFERENCES

[1] I.D. BERG, On approximation of normal operators by weighted shifts, Michigan
Math. J. 21(1974), 377–383.

[2] M. DADARLAT, G. GONG, A classification result for approximately homogeneous
C∗-algebras of real rank zero, Geom. Funct. Anal. 7(1997), 646–711.

[3] G.A. ELLIOTT, The classification problem for amenable C∗-algebras, in Proceedings
of the International Congress of Mathematications (Zürich, 1994), Birkhäuser, Basel 1995,
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