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ABSTRACT. There has been a long-standing conjecture in Banach algebras
that every amenable operator is similar to a normal operator. In this paper,
we study the structure of amenable operators on Hilbert spaces. At first, we
show that the conjecture is equivalent to the statement that every non-scalar
amenable operator has a non-trivial hyperinvariant subspace. It is also equiv-
alent to the statement that every amenable operator is similar to a reducible
operator and has a non-trivial invariant subspace; and then, we give two de-
compositions for amenable operators, supporting the conjecture.
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1. INTRODUCTION

Throughout this paper, H denotes a complex separable infinite-dimensional
Hilbert space and B(H) denotes the bounded linear operators on H. For an alge-
bra A in B(H), we write A′ for the commutant of A (i.e., A′ = {B ∈ B(H), BA =
AB for allA ∈ A}) and A′′ for the double commutant of A (i.e., A′′ = (A′)′). If
T ∈ B(H), we write AT for the norm-closure of span{Tk : k ∈ {0} ∪N}, where
N is the set of natural numbers. We also write LatA for the collection of those
closed subspaces which are invariant for every operator in A. We say A is com-
pletely reducible if for every subspace M in LatA there exists N in LatA such that
H = M+̇N (i.e., M ∩ N = {0} and H is the algebraic direct sum of M and N); A
is reductive if for every subspace M in LatA we have M⊥ (the orthogonal comple-
ment of M) in LatA; A is transitive if LatA = {{0},H}. If T ∈ B(H), we say that
a subspace M of H is a hyperinvariant subspace for T if M is invariant under each
operator in A′T ; M is a reducing subspace for T if M, M⊥ ∈ Lat T.

The concept of amenable Banach algebras was first introduced by B.E. John-
son in [12]. Suppose that A is a Banach algebra. A Banach A-bimodule is a Banach
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space X that is also an algebra A-bimodule for which there exists a constant K > 0
such that ‖a · x‖ 6 K‖a‖‖x‖ and ‖x · a‖ 6 K‖a‖‖x‖ for all a ∈ A and x ∈ X.
We note that when X is a Banach A-bimodule, then X∗, the dual of X, is a Ba-
nach A-bimodule with respect to the dual actions [a · f ](x) = f (x · a), [ f · a](x) =
f (a · x), a ∈ A, x ∈ X, f ∈ X∗. Such a Banach A-bimodule is called a dual A-
bimodule.

A derivation D : A → X is a continuous linear map such that D(ab) =
a · D(b) + D(a) · b, for all a, b ∈ A. Given x ∈ X, the inner derivation δx : A → X,
is defined by δx(a) = a · x− x · a.

According to Johnson’s original definition, a Banach algebra A is amenable
if every derivation from A into the dual A-bimodule X∗ is inner for all Banach
A-bimodules X. If T ∈ B(H), we say that T is an amenable operator, if AT is an
amenable Banach algebra. Ever since its introduction, the concept of amenability
has played an important role in research in Banach algebras, operator algebras
and harmonic analysis. There has been a long-standing conjecture in the Banach
algebra community, stated as follows:

CONJECTURE 1.1. A Banach subalgebra of B(H) is amenable if and only if it is
similar to a C∗-algebra.

One of the first results in this direction is due to Willis [17]. Willis showed
that if T is an amenable compact operator, then T is similar to a normal operator.
In [8] Gifford studied the reduction property for operator algebras consisting of
compact operators and showed that if such an algebra is amenable then it is sim-
ilar to a C∗-algebra. In the recent papers [6], [7] Farenick, Forrest and Marcoux
showed that if T is similar to a normal operator, then AT is amenable if and only
if AT is similar to a C∗-algebra and the spectrum of T has connected complement
and empty interior; if T is a triangular operator with respect to an orthonormal
basis of H, then AT is amenable if and only if T is similar to a normal operator
whose spectrum has connected complement and empty interior. For further de-
tails see [6] and [7].

In this paper, we give a characterization of the structure of amenable op-
erators. First, we use the reduction theory of von Neumann to give two equiv-
alent descriptions for Conjecture 1.1; and then, we give two decompositions for
amenable operators, which support Conjecture 1.1.

2. AN EQUIVALENT FORMULATION OF CONJECTURE 1.1

In this section we use the reduction theory of von Neumann to give two
equivalent descriptions for Conjecture 1.1. We obtain that every amenable op-
erator is similar to a normal operator if and only if every non-scalar amenable
operator has a non-trivial hyperinvariant subspace if and only if every amenable
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operator is similar to a reductive operator (i.e. AT is reductive) and has a non-
trivial invariant subspace.

In order to prove the main theorem, we need to introduce von Neumann’s
reduction theory [16] and some lemmas.

Let H1 ⊆ H2 ⊆ · · · ⊆ H∞ be a sequence of Hilbert spaces chosen once and
for all, Hn having dimension n. Let µ be a finite positive regular measure defined
on the Borel sets of a separable metric space ∧, and let {En}∞

n=1 be a collection of
disjoint Borel sets of ∧ with union ∧. Then the symbol

∫
∧

⊕
H(λ)dµ(λ)

denotes the set of all functions f defined on ∧ such that:

(i) f (λ) ∈ Hn if λ ∈ En, n = 1, 2, . . . , ∞;
(ii) f (λ) is a µ-measurable function with values in H∞;

(iii)
∫
∧

⊕| f (λ)|2dµ(λ) < ∞.

We put
(iv) ( f , g) =

∫
∧

⊕
( f (λ), g(λ))dµ(λ).

The set of functions thus defined is called the direct integral Hilbert space with
measure µ and dimension sets {En} and denoted by H =

∫
∧

⊕
H(λ)dµ(λ).

An operator on H is said to be decomposable if there exists a strongly µ-
measurable operator-value function A(·) defined on ∧ such that A(λ) is a
bounded operator on the space H(λ) = Hn when λ ∈ En, and for all f ∈ H,
(A f )(λ) = A(λ) f (λ). We write A =

∫
∧

⊕A(λ)dµ(λ) for the equivalence class cor-

responding to A(·). If A(λ) is a scalar multiple of the identity on H(λ) for almost
all λ, then A is called diagonal. The collection of all diagonal operator is called the
diagonal algebra of ∧. In I.3 of [16], Schwartz showed that an operator A on Hilbert
space H =

∫
∧

⊕
H(λ)dµ(λ) is decomposable if and only if A belongs to the com-

mutant of the diagonal algebra of ∧. Furthermore, ‖A‖ = µ-esssupλ∈∧‖A(λ)‖.
In [1], Azoff, Fong and Gilfeather used von Neumann’s reduction theory

to define the reduction theory for non-selfadjoint operator algebras: Fix a parti-
tioned measure space ∧ and let D be the corresponding diagonal algebra. Given
an algebra A of decomposable operators, each operator A ∈ A has a decom-
position A =

∫
∧

⊕A(λ)dµ(λ). Choose a countable generating set {An} for A

and let A(λ) be the strongly closed algebra generated by the {An(λ)}. Then
A ∼

∫
∧

⊕
A(λ)dµ(λ) is called the decomposition of A respect to D. A decomposition
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A ∼
∫
∧

⊕
A(λ)dµ(λ) of an algebra is said to be maximal if the corresponding diag-

onal algebra is maximal among the abelian von Neumann subalgebras of A′. The
following lemma is a basic result in [1] which will be used in this paper.

LEMMA 2.1 ([1], Theorem 4.1). Let A ∼
∫
∧

⊕
A(λ)dµ(λ) be a decomposition

of a reductive algebra. Then almost all of {A(λ)} are reducible. In particular, if the
decomposition is maximal, then almost all of the algebras {A(λ)} are transitive.

In [8] Gifford studied the reduction property for operator algebras and ob-
tained the following result:

LEMMA 2.2 ([8], Lemma 4.4, Lemma 4.12). If A is a commutative amenable
operator algebra, then A′,A′′ are completely reducible and there exists M > 1 so that for
any idempotent p ∈ A′′ ‖p‖ 6 M.

Assume A is an operator algebra, let P(A) denote the idempotents in A and
P(A) denote the strongly closed algebra generated by P(A). We get the following
lemma:

LEMMA 2.3. If A is a commutative amenable operator algebra, then P(A′′) is
similar to an abelian von Neumann algebra.

Proof. By Lemma 2.2 and Corollary 17.3 of [2], it follows that there exists
X ∈ B(H) such that XpX−1 is selfadjoint for each p ∈ P(A′′). Hence P(A′′) is
similar to an abelian von Neumann algebra.

LEMMA 2.4 ([6]). Let A and B be Banach algebras and suppose that ϕ : A −→ B

is a continuous homomorphism with ϕ(A) dense in B. If A is amenable, then B is
amenable.

NOTATION 2.5. From Lemmas 2.3, 2.4 we always assume that P(A′′T) is a
abelian von Neumann algebra, and A′T is a reducible operator algebra in this
section.

Now we will prove the main result of this section:

THEOREM 2.6. The following are equivalent:
(i) every amenable operator is similar to a normal operator;

(ii) every non-scalar amenable operator has a non-trivial hyperinvariant subspace;
(iii) every amenable Banach algebra which is generated by an operator is similar to a

C∗-algebra.

Proof. (i)⇔ (iii) and (i)⇒ (ii) are clear by [6]. Therefore, in order to establish
the theorem it suffices to show the implication (ii)⇒ (i).

Assume (ii), by Lemma 2.3 choose a maximal decomposition for

A′T ∼
∫
∧

⊕
A′T(λ)dµ(λ)
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with respect to the diagonal algebra P(A′′T).
Assume T ∼

∫
∧

⊕T(λ)dµ(λ) is the decomposition for T. Let {pn}∞
n=1 denote

all the polynomials with rational coefficients. Then pn(T) ∼
∫
∧

⊕pn(T)(λ)dµ(λ) is

decomposable for all n and there exists a measurable E ⊆ ∧ such that µ(∧− E) =
0 and for any λ ∈ E we have pn(T)(λ) = pn(T(λ)) and ‖pn(T)(λ)‖ 6 ‖pn(T)‖
by Lemma I.3.1, I.3.2 of [16]. Define a mapping ϕλ : AT → AT(λ) by ϕλ(pn(T)) =
pn(T(λ)) for each polynomial with rational coefficients pn and λ ∈ E. Note that
‖pn(T(λ))‖ 6 ‖pn(T)‖ for each polynomial with rational coefficients pn and fur-
thermore, {pn(T)} is dense in AT . Hence, ϕλ is well-defined and ϕλ is a continu-
ous homomorphism with ϕ(AT) dense in AT(λ). By Lemma 2.4, T(λ) is amenable
for almost all λ.

Now for almost all λ, T(λ) is amenable and A′T(λ) ⊆ A′T(λ) and A′T(λ) is
transitive by Lemma 2.1. Thus almost all of T(λ) are scalar operators, i.e. T is a
normal operator.

COROLLARY 2.7. Every amenable operator is similar to a normal operator if and
only if there exists a non-trivial idempotent in the double-commutant of every non-scalar
amenable operator.

REMARK 2.8. In [6], Farenick, Forrest and Marcoux showed that if T ∈
B(H) is amenable and similar to a normal operator N, then the spectrum of N has
connected complement and empty interior. According to Theorem 1.23 of [13], N
is a reducible operator. Hence, there exists an invertible operator X ∈ B(H) such
that A′′XTX−1 is a reducible algebra. The following theorem gives a description
equivalent to Conjecture 1.1 for the existence of invariant subspaces for amenable
operators.

THEOREM 2.9. The following are equivalent:
(i) every amenable operator is similar to a normal operator;

(ii) for every amenable operator T ∈ B(H), there exists an invertible operator X ∈
B(H) such that A′′XTX−1 is a reducible algebra and T has a non-trivial invariant subspace.

Proof. (i)⇒ (ii) is clear by Remark 2.8.
(ii)⇒ (i) The proof can be adapted via trivial modifications from the proof

of Theorem 2.6.

REMARK 2.10. According to Theorem 2.6 and 2.9, it follows that Conjec-
ture 1.1 for singly-generated algebras is equivalent to the following statements:

(i) every amenable operator T has a non-trivial invariant subspace and H can
be renormed with an equivalent Hilbert space norm so that under this norm
LatAT becomes orthogonally complemented;

(ii) every non-scalar amenable operator has a non-trivial hyperinvariant sub-
space.
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3. DECOMPOSITION OF AMENABLE OPERATORS

In this section, we get two decompositions for amenable operators and
prove that the two decompositions are the same, which supports Conjecture 1.1.

At first, we summarize some of the details of multiplicity theory for abelian
von Neumann algebras. For the most part, we will follow [3]. If A is an operator
on a Hilbert space K and n is a cardinal number, let Kn denote the orthogonal
direct sum of n copies of K, and A(n) be the operator on Kn which is the direct
sum of n copies of A. Whenever A is an operator algebra on K, A(n) denotes
the algebra {A(n), A ∈ A}. An abelian von Neumann algebra B is of uniform
multiplicity n if it is (unitary equivalent to) A(n) for some maximal abelian von
Neumann algebra A. By [3], for any abelian von Neumann algebra A, there exists
a sequence of regular Borel measures {µn} on a sequence of separable metric

space {Xn} such that A is unitary equivalent to
∞
∑

n=1
⊕Bn ⊕B∞, where Bn is a

von Neumman algebra which has uniform multiplicity n for all 1 6 n 6 ∞. For
further details see II.3 of [3].

PROPOSITION 3.1. Suppose that T is an amenable operator and A′T contains a
subalgebra which is similar to an abelian von Neumman algebra with no direct summand
of infinite uniform multiplicity, then T is similar to a normal operator.

Proof. For the sake of simplicity, we assume A′T contains a subalgebra B

which is an abelian von Neumman subalgebra with no direct summand of infinite
uniform multiplicity. Trivial modifications adapt the proof to the more general
case.

By II.3 of [3], there exists a sequence of regular Borel measures {µn} on a
sequence of separable metric space {Xn} such that B is unitarily equivalent to

∞
∑

n=1
⊕Bn, where Bn is a von Neumman algebra which has uniform multiplicity

n for all n. Hence, T =
∞
∑

n=1
⊕Tn, where Tn ∈ B′n. It suffices to show that Tn is

similar to a normal operator for all n, then by Corollary 26 of [5], it follows that T
is similar to a normal operator.

Since T ∈ B′n, according to Theorem 7.20 of [13], for any 1 6 n < ∞ there
exists a unitary operator Un ∈ B′n such that

UnTn(Un)
−1 =



N11 N12 · · · · · · N1n
0 N22 · · · · · · N2n

0 0
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · 0 Nnn
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where Nij is a normal operator for all 1 6 i, j 6 n. By Proposition 3.1 of [11],

it follows that Tn is similar to
n⊕

i=1
Nii, i.e. Tn is similar to a normal operator for

all n.

COROLLARY 3.2. Assume T is an amenable operator. Then there exists hyperin-
variant subspaces M, N of T such that T has the form T = T1+̇T2 with respect to the
space decomposition H = M+̇N, where T1, T2 are amenable operators, T1 is similar to a
normal operator and P(A′′T2

) is similar to an abelian von Neumman algebra with uniform
infinite multiplicity.

The proof of the following lemma is straightforward and we omit it.

LEMMA 3.3. Suppose that A is a completely reductive operator algebra and p ∈
P(A′). Then pA is a completely reductive operator algebra on Ranp.

We are in need of the following propositions before we can address the main
theorem of this section.

PROPOSITION 3.4. Assume that T is an amenable operator and there exists a space

decomposition H = M+̇N such that T has the matrix form T =

[
T1

T2

]
M
N

. Then

T is similar to a normal operator if and only if T1 and T2 are similar to normal operators.

Proof. Assume that T has the matrix form

T =

[
T1 T12

T̃2

]
M

M⊥

with respect to the space decomposition H = M ⊕ M⊥. By Lemma 2.8 of [11],

there exists an invertible operator S =

[
I S12

I

]
M

M⊥
such that S−1TS =

[
T1

T̃2

]
M

M⊥
. Assume that S has the matrix form S =

M M⊥[
I

S1

]
M
N

, we

obtain that T2 = S1T̃2S−1
1 . By Propsition 6.5 of [10], we get that T is similar to a

normal operator if and only if T1 and T2 are similar to normal operators.

PROPOSITION 3.5. Suppose that T is an amenable operator, M1 ∈ LatA′T and
M2 ∈ LatA′′T . Then M1 + M2 is closed.

Moreover, if T|M1 and T|M2 are similar to normal operators, then T|M1+M2 is
similar to a normal operator.

Proof. Let N0 = M1 ∩M2, according to Lemma 3.3, there exists N ∈ LatA′′T
such that M2 = N0+̇N. Choose q ∈ P(A′T), such that Ran q = N. By the assump-
tion, M1 ∈ LatA′T . Hence qM1 ⊂ M1 ∩ N = {0}. Therefore M1 ⊂ (I − q)H. We
see that M1 + M2 = M1+̇N is closed. This establishes the first statement of the
proposition.
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Since T|M2 is similar to a normal operator, by Proposition 3.4, we get that
T|N is similar to a normal operator. By the assumption that T|M1 is similar to a
normal operator, using Proposition 3.4 again, we obtain that T|M1+M2 = T|M1+̇N
is similar to a normal operator.

Now we will obtain the main theorem of this section.

THEOREM 3.6. Assume T is an amenable operator, then there exists hyperinvari-
ant subspaces M1, M2 of T such that T has the form T = T1+̇T2 with respect to the space
decomposition H = M1+̇M2 and satisfies the following:

(i) T1, T2 are amenable operators;
(ii) if M is a hyperinvariant subspace of T and T|M is similar to a normal operator,

then M ⊆ M1, i.e. M1 is the largest hyperinvariant subspace on which T is similar to a
normal operator;

(iii) for any q ∈ P(A′′T2
), T2|Ran q is not similar to a normal operator;

(iv) P(A′′T2
) is similar to an abelian von Neumman algebra with uniform infinite mul-

tiplicity;
(v) A′T = A′T1

+̇A′T2
, A′′T = A′′T1

+̇A′′T2
;

(vi) there exists no nonzero compact operator in A′T2
.

Proof. Case 1. For any p ∈ P(A′′T), T|Ranp is not similar to a normal operator.
According to the proof of Proposition 3.1, we obtain that P(A′′T) is similar to an
abelian von Neumman algebra with uniform infinite multiplicity. Let M1 = 0.

Case 2. There exists p ∈ P(A′′T) such that T|Ranp is similar to a normal opera-
tor. Then, by Zorn’s Lemma and the same method in the proof of Corollary 26 in
[5], we can show that there exists an element p0 ∈ P(A′′T) which is maximal with
respect to the property that T|Ranp0 is similar to a normal operator. Using Propo-
sition 3.5, Ranp0 is the largest hyperinvariant subspace of T on which T is similar
to a normal operator. Hence, T has the form T = T1+̇T2 with respect to the space
decomposition H = Ranp0+̇Kerp0 where T1 is similar to a normal operator, T1, T2
are amenable operators. Let M1 = Ranp0, M2 = Kerp0.

Next we will prove that for any q ∈ P(A′′T2
), T2|Ran q is not similar to a normal

operator. Then according to Proposition 3.1 P(A′′T2
) is similar to an abelian von

Neumman algebra with uniform infinite multiplicity.
Indeed, if there exists q ∈ P(A′′T2

) such that T2|Ran q is similar to a normal

operator and q has the form q =

[
I 0
0 0

]
Ran q
Kerq

. Then for any A ∈ A′T , A has the

form

A =

 A11
A22

A33

Ranp0
Ran q
Kerq

.
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Let

R =

 I
I

0

Ranp0
Ran q
Kerq

.

Then R ∈ P(A′′T). By the assumption T|RanR is similar to a normal operator which
contradicts to the maximal property of p0.

At last we will prove that there exists no nonzero compact operator in A′T2
.

Indeed, if there exists a nonzero compact operator k0 ∈ A′T2
, let L1 denote

the subspace spanned by the ranges of all compact operators in A′T2
, and L2 be

the intersection of their kernel, by Lemma 3.1 of [15], both L1, L2 lie in LatA′T2
and L1+̇L2 = Kerp0. Considering the restriction T2|L1 , assume T21 = T2|L1 , then
T21 is an amenable operator and A′T21

contain a sufficient set of compact operators.
By Lemma 2.2 and Theorem 9 of [14], T21 is similar to a normal operator which
contradicts to the above discussion.

Using trivial modifications, we can adapt the proof of Theorem 3.6 to obtain
the following theorem, which decomposes amenable operators according to their
invariant subspaces.

THEOREM 3.7. Assume T is an amenable operator, then there exist invariant sub-
spaces N1, N2 of T such that T has the form T = A1+̇A2 with respect to the space
decomposition H = N1+̇N2 and satisfies the following:

(i) A1, A2 are amenable operators;
(ii) if N is an invariant subspace of T such that N1 ⊆ N and T|N is similar to a

normal operator, then N = N1, i.e. N1 is the maximal invariant subspace on which T is
similar to a normal operator;

(iii) for any q ∈ P(A′T2
), T2|Ran q is not similar to a normal operator;

(iv) if P(A′T2
) contains a subalgebra which is similar to an abelian von Neumman

algebra then the von Neumman algebra has the uniform infinite multiplicity.

REMARK 3.8. If the answer to Conjecture 1.1 is positive, by Theorem 2.6,
every amenable is similar to a normal operator. Then, for the above theorem
M1 = N1 = H. That is to say, the two decompositions of Theorems 3.6 and 3.7 are
the same. The remainder of this section, we will prove that the two decomposi-
tions are the same which supports Conjecture 1.1.

LEMMA 3.9 ([5]). If T ∈ B(H) is an amenable operator and there exist a one-to-
one bounded linear map W : H → H2, a bounded linear map V : H1 → H with dense
range and operators S1 ∈ B(H1), S2 ∈ B(H2) that are similar to normal operators such
that TV = VS1 and WT = S2W. Then T is similar to a normal operator.

COROLLARY 3.10. Assume T = B1B2 is an amenable operator, where B1, B2 are
positive operators, then T is similar to a normal operator.
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Proof. Assume B1, B2 have the forms

B2 =

[
0

B̃2

]
, B1 =

[
B11 B12
B∗12 B22

]
,

with respect to the space decomposition H = KerB2 ⊕ (KerB2)
⊥ where B̃2 is one-

to-one and B11, B22 are positive operators. Thus T has the form T =

[
0 B12B̃2
0 B22B̃2

]
with respect to the same decomposition. Since T is an amenable operator, by

Lemma 2.8 of [11], T is similar to
[

0 0
0 B22B̃2

]
. Thus, without loss of generality,

we may assume that B2 is one-to-one.
Assume B1, B2 have the forms

B1 =

[
B̃1

0

]
, B2 =

[
B11 B12
B∗12 B22

]
,

with respect to the space decomposition H = (KerB1)
⊥ ⊕KerB1 where B̃1 is one-

to-one and has dense range and B11, B22 are positive operators. Thus T has the

form T =

[
B̃1B11 B̃1B12

0 0

]
with respect to this decomposition. Since T is an

amenable operator, by Lemma 2.8 of [11], T is similar to
[

B̃1B11 0
0 0

]
and there

exists an operator S such that B̃1B12 = B̃1B11S. Note that B̃1, B2 are one-to-one,
hence B12 = B11S, and B11 is one-to-one. Thus without loss of generality, we may
assume that B1 has dense range and B2 is one-to-one.

Note that B1/2
1 B2B1/2

1 , B1/2
2 B1B1/2

2 are positive operators and TB1/2
1 =

B1/2
1 B1/2

1 B2B1/2
1 and B1/2

2 T = B1/2
2 B1B1/2

2 B1/2
2 , by Lemma 3.9, T is similar to a

normal operator.

THEOREM 3.11. The two decompositions for an amenable operator in Theorems
3.6, 3.7 are the same.

Proof. According to Theorem 3.6, Theorem3.7 and Proposition 3.5, it suffices
to proof that N1 ∈ LatA′T .

Suppose otherwise. Then T has the form T =

[
T1

T2

]
N1
N2

and there

exists S =

[
0 0
Y 0

]
N1
N2
∈ A′T where Y 6= 0. Note that Y : N1 → N2 and H =

N1+̇RanY⊕ (N2 	 RanY), so S and T have the form

S =

 0 0 0
Ỹ 0 0
0 0 0

 N1
RanY

N2 	 RanY
, T =

 T1 0 0
T21 T22
T23 T24

 N1
RanY

N2 	 RanY
,
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where Ỹ has dense range. Note that TS = ST, we get that T23 = 0. Since T is
amenable, by Lemma 2.8 of [11] there exists an operator B : N2 	 RanY → RanY
such that I 0 0

I B
I

 T1 0 0
T21 T22

T24

 I 0 0
I −B

I

 =

 T1 0 0
T21 0

T24

 .

Moreover,

 I 0 0
I B

I

 0 0 0
Ỹ 0 0
0 0 0

 I 0 0
I −B

I

 =

 0 0 0
Ỹ 0 0
0 0 0

 .

Hence, we can assume that Y has dense range. Using T is amenable again, there

exists L =

[
0 X
0 0

]
N1
N2
∈ A′T , where X 6= 0, by Lemma 4.11 of [8]. Similar to the

decomposition to S and T, we get that S, L and T have the form

S =

 0 0 0
Ỹ1 0 0
Ỹ2 0 0

 , L =

 0 0 X̃
0 0 0
0 0 0

 , T =

 T1 0 0
T31 T32
T33 T34

 ,

with respect to the space decomposition H = N1+̇KerX⊕ (N2 	KerX), where X̃
is one-to-one, and Ỹ1, Ỹ2 has dense range. Note that LT = TL, we get that T33 = 0.
Using T is amenable again, there exists an operator C : N2 	KerX → KerX such
that I 0 0

I C
I

 T1 0 0
T31 T32

T34

 I 0 0
I −C

I

 =

 T1 0 0
T31 0

T34

 ,

 I 0 0
I C

I

 0 0 X̃
0 0 0
0 0 0

 I 0 0
I −C

I

 =

 0 0 X̃
0 0 0
0 0 0

 , and

 I 0 0
I C

I

 0 0 0
Ỹ1 0 0
Ỹ2 0 0

 I 0 0
I −C

I

 =

 0 0 0
Ỹ1 + CỸ2 0 0

Ỹ2 0 0

 .

Moreover, Ỹ2T1 = T34Ỹ2, T1X̃ = X̃T34, and T1 is similar to a normal operator. By
Lemma 3.9, T34 is similar to a normal operator, which contradicts Theorem 3.7.

COROLLARY 3.12. Assume T is an amenable operator, then M is a maximal in-
variant subspace such that T|M is similar to a normal operator if and only if M is the
largest invariant subspace such that T|M is similar to a normal operator.

COROLLARY 3.13. Assume T is an amenable operator and which is quasisimilar
to a compact operator, then T is similar to a normal operator.
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Proof. Suppose, TV = VK, WT = KW with V, W injective operators having
dense ranges and K is a compact operator. Then TVKW = VKWT. Let C =
VKW, C ∈ A′T , and C is a compact operator. According to Theorem 3.6, C has the

form
[

C1
0

]
with respect to the decomposition H = M1+̇M2 following from

that theorem. If Cx = 0, VWTx = Cx = 0, thus Tx = 0. It follows that there is no
part of T2, i.e. T is similar to a normal operator.

4. (ESSENTIAL) OPERATOR VALUED ROOTS OF ABELIAN ANALYTIC FUNCTIONS

In this section, we will study the structure of an operator which is an (es-
sential) operator-valued root of an abelian analytic function and then we get that
if such an operator is also amenable, then it is similar to a normal operator. In
[9] Gilfeather introduce the concept of operator-valued roots of abelian analytic
functions as follows: let A be an abelian von Neumann algebra and ψ(z), an A

valued analytic function on a domain D in the complex plane. We may decom-
pose A into a direct integral of factors such that for A ∈ A, there exists a unique
g ∈ L∞(∧, µ) such that A =

∫
∧

⊕g(λ)I(λ)dµ(λ). If T ∈ A′ and σ(T) ⊆ D, let

ψ(T) = (2πi)−1
∫
∧

(T − zI)−1ψ(z)dz.

An operator T is called an (essential) root of the abelian analytic function ψ, if
ψ(T) = 0 (if ψ(T) is compact, respectively). The structure of roots of a locally
nonzero abelian analytic function has been given in [9]. In this section we mainly
study the structure of essential roots of a locally nonzero abelian analytic func-
tion.

LEMMA 4.1. Assume T ∈ B(H), f is a locally nonzero analytic function on the
neighborhood of σ(T) and assume f (T) is a compact operator, then T is a polynomial
compact operator.

Proof. Let T̂ denote the image of T in the Calkin algebra, then f̂ (T) = 0.
Since f is a locally nonzero analytic function on σ(T), there exists a polynomial p
such that p̂(T) = 0. i.e. T is a polynomial compact operator.

THEOREM 4.2. Let ψ be a locally nonzero abelian analytic function on D taking
values in the von Neumann algebra A. If T is an essential root of ψ and is amenable, then
T is similar to a normal operator.

Proof. Since A is an abelian von Neumann algebra, A is unitarily equiva-

lent to
∞
∑

n=1
⊕Bn ⊕B∞, where Bn is a von Neumann algebra which has uniform

multiplicity n for all 1 6 n 6 ∞. Note T ∈ A′ is an amenable operator, thus
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T = T1⊕ T2, where T1 is similar to a normal operator, and T1 ∈
( ∞

∑
n=1
⊕Bn

)′
, T2 ∈

B′∞. Let σ1(σ2) denote the continuous (atom, respectively) parts of the spectrum
of B∞, then B∞ = C∞ ⊕ D∞, where C∞ and D∞ are uniform multiplicity ∞
von Neumman algebra and σ(C∞) = σ1, σ(D∞) = σ2 and T2 = T3 ⊕ T4, where
T3 ∈ σ(C∞)′, T4 ∈ σ(D∞)′.

Assume ψ is a locally nonzero abelian analytic function onD and σ(T) ⊆ D,
then ψ(T) = ψ(T1)⊕ ψ(T3)⊕ ψ(T4), note that ψ(T3) is a compact operator and
σ(C∞) = σ1, so ψ(T3) = 0. Since D∞ are uniform multiplicity ∞ and σ(D∞) = σ2,
by Lemma 4.1, it follows that T4 is a direct sum of polynomial compact operators.
According to Theorem 2.1 of [9], there exists a sequence of mutually orthogonal
projections {Pn, Qm} in A with I = ∑ Pn + ∑ Qm so that T|Pn is a finite type spec-
tral operator and T|Qm is a polynomial compact operator. By Theorems 3.5, 4.5 of
[11], we get that T is similar to a normal operator.
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