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ABSTRACT. The interplay between order-theoretic properties of structures of
subspaces affiliated with a von Neumann algebra M and the inner structure of
the algebra M is studied. The following characterization of finiteness is given:
a von Neumann algebra M is finite if and only if in each representation space
of M one has that closed affiliated subspaces are given precisely by strongly
closed left ideals in M. Moreover, it is shown that if the modular operator of
a faithful normal state ϕ is bounded, then all important classes of affiliated
subspaces in the GNS representation space of ϕ coincide. Orthogonally closed
affiliated subspaces are characterized in terms of the supports of normal func-
tionals. It is proved that complete affiliated subspaces correspond to left ideals
generated by finite sums of orthogonal atomic projections.
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INTRODUCTION AND PRELIMINARIES

The set L(H) of all closed subspaces of a Hilbert space H ordered by set
inclusion and endowed with orthogonal complement constitutes one of the most
important examples of a complete orthomodular lattice. From the point of view
of the lattice theory the lattice L(H) has many specific properties. It is irreducible,
atomic, and usually not modular. In order to obtain more general subspace lat-
tices interesting from both mathematical and physical point of view one can select
only distinguished subspaces of H. A natural way how to do it is to replace the
lattice L(H) by its sublattice consisting of those closed subspaces of H for which
the corresponding projections belong to a given von Neumann algebra M acting
on H. (The lattice L(H) can be then recovered as a special case by taking M to
be the algebra of all bounded operators on H.) In other words, one can choose
only subspaces which are invariant under operators from the commutant M′ of
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M. This "selection procedure" leads to lattices which may be atomless, modu-
lar, and may enjoy the properties of continuous geometry; see [8]. This was the
basic idea of von Neumann and Murray [9] and especially of Birkhoff and von
Neumann; see the celebrated paper [2]. Their approach has led to many beautiful
results in functional analysis, lattice theory, and foundations of quantum physics.
Besides lattices of closed subspaces in a Hilbert space more general posets of sub-
spaces of a (possibly incomplete) inner product space play an important role in
the theory of ordered structures and quantum structures. This line of the re-
search has attracted many authors (see e.g. [3], [4], [6], [7] and the references
therein). One of the most striking classical results in this field is the Amemyia–
Araki theorem [1] saying that an inner product space S is complete if and only
if orthogonally closed subspaces of S form an orthomodular lattice. Related re-
sult states that orthogonally closed and splitting subspaces coincide precisely for
complete spaces. This sheds some light on the role of metric completeness in
ordered subspace structures. Moreover, by explaining the purely technical as-
sumption of completeness in terms of physically more plausible “orthomodu-
lar law” the Amemyia–Araki theorem and subsequent results have contributed
to better understanding of mathematical axioms of quantum mechanics. Analo-
gously to Hilbert space lattices the structure of all closed subspaces of an inner
product space enjoyes some specific properties. For example, those structures
admit atoms — one dimensional subspaces. Parallel to transition from Hilbert
space lattices to von Neumann projection lattices, one can replace the system of
all closed subspaces of an inner product space by a smaller system of subspaces
which are invariant with respect to some von Neumann algebra. This investiga-
tion was initiated by Sherstnev and Turilova, see [11], [12], [13], [14]. In [11] the
research has been focused primarily on the structure of affiliated subspaces re-
sulting from Gelfand–Naimark–Segal representation (GNS for short) generated
by a normal faithful state on the algebra of all bounded operators on a Hilbert
space. Among others it was shown there that in this case all major types of af-
filiated subspaces (such as splitting, orthogonally closed, etc.) do not coincide.
The aim of this note is to generalize important results along this line from specific
type I factors to general von Neumann algebras. We are going to study the po-
sition of important classes of subspaces affiliated with a von Neumann algebras
and show that there is an interesting interplay between the properties of subspace
posets and the structure of von Neumann algebras.

The paper is organized as follows. In the present part we introduce basic
types of affiliated subspaces and show that there is a one-to-one correspondence
between splitting affiliated subspaces and projections in a given von Neumann
algebra that leave the basic space invariant. In the second part the subspace struc-
ture of the space of all right bounded elements corresponding to a full left Hilbert
algebra is briefly studied. It is shown that the projections in the definition alge-
bra of the semifinite normal faithful weight induce naturally splitting affiliated
subspaces of this space. The core of the paper is the third section which basically
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deals with affiliated subspaces of the space S = M′Ω, where Ω is a separating
and generating vector of a von Neumann algebra M. It is shown that there is
a one-to-one correspondence between affiliated subspaces of S and ideals in a
von Neumann algebra M. The main result concerns the relationship between
closed affiliated subspaces and affiliated subspaces for which the corresponding
ideal is closed in the strong operator topology. In Theorem 2.9 we state that a
von Neumann algebra M has properly infinite direct summand if and only if
the above mentioned subspace classes differ for every faithful normal state on M
(i.e. for every vector state given by cyclic and separating vector Ω in the stan-
dard representation of M). This generalizes considerably the work [11]. On the
other hand, we show that all important classes of subspaces coincide whenever
the modular operator of a given state is bounded. Therefore, unlike the situation
in Amemyia–Araki theorem, we can obtain orthomodular structure of orthogo-
nally closed affiliated subspaces even if the underlying space is far from being
complete. Besides, we characterize orthogonally closed affiliated subspaces in
terms of the support projections of derived functionals or in terms of the Radon–
Nikodym derivatives with respect to a trace.

Finally, in the concluding part it is proved that a closed affiliated subspace
is complete if and only if its corresponding projection is a sum of finitely many
atomic projections. It means that plenty of affiliated subspaces contain no com-
plete nontrivial affiliated subspace. As an illustration we describe all complete
affiliated subspaces in case of type I factor.

Let us now introduce basic concepts and fix the notation. Throughout the
paper M shall be a von Neumann algebra acting on a Hilbert space H. Denote
by M′ the commutant of M. By M+ we shall denote the set of positive elements
of M. The symbol P(M) will be reserved for the set of all projections in M. (By a
projection we mean a self-adjoint idempotent). The algebra of all bounded oper-
ators acting on a Hilbert space H is denoted by B(H). The state on M is a positive
normalized functional. Given a nonzero vector ξ ∈ H we obtain so-called vec-
tor functional ωξ on M by putting ωξ(x) = 〈xξ, ξ〉. A vector Ω in H is called
separating for M if xΩ 6= 0 for every nonzero x ∈ M. The vector Ω is called
generating (or cycling) for M if the space MΩ = {xΩ : x ∈ M} is dense in H. A
subspace S of H is said to be affiliated with M (in symbols SηM) if x′S ⊂ S for each
x′ ∈ M′. Given an affiliated subspace SηM we shall be interested in the structure
of its affiliated subspaces. This structure depends heavily on the underlying von
Neumann algebra M. For example, if M = B(H), then every subspace S of H is
affiliated with M since the commutant of M consists of multiples of the identity
map. On other hand, suppose that M is a one-dimensional algebra consisting of
multiples of the identity operator on H. Then M′ = B(H) and so only trivial
subspaces of H are affiliated with M.

Let us now fix a space S affiliated with M. By the symbol AM(S) we shall
denote the set of all subspaces of S which are affiliated with M. It is clear that the
set AM(S) is closed under taking closures X → X. It is also stable under forming
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relative orthogonal complements

X → X⊥S = {y ∈ S : 〈x, y〉 = 0 for all x ∈ X} .

The structure of affiliated subspaces is related to the projection structure of M in
the following natural way. If X ∈ AM(S), then its closure [X] in H is affiliated
with M and so the orthogonal projection p which projects H onto [X] belongs to
M′′ = M. Therefore X ⊂ pH ∩ S and if X is closed then X = pH ∩ S. On the
other hand, given a projection p ∈ P(M), one can easily verify that pH ∩ S ∈
AM(S). Therefore all closed affiliated subspaces of S arise from projections in M.
However, in general, the ranges of different projections in P(M) may have the
same intersection with S and so the relationship between projections and closed
affiliated subspaces may not be one-to-one.

We shall now introduce important types of affiliated subspaces studied in
this paper. By the symbol LM(S) we shall denote the set of all subspaces in AM(S)
which are closed in S. An affiliated subspace X ∈ AM(S) is called orthogonally
closed if X = (X⊥S)⊥S . Let the symbol FM(S) mean the set of all orthogonally
closed affiliated subspaces of S. An affiliated subspace X of S is called splitting if
S = X ⊕ X⊥S . The set of all affiliated splitting subspaces of S shall be denoted
by EM(S). Finally, the set of all subspaces in AM(S) that are complete will be
denoted by CM(S). The following chain of inclusions is obvious

CM(S) ⊂ EM(S) ⊂ FM(S) ⊂ LM(S) ⊂ AM(S) .

In general, all inclusions above are proper.

Among various subspace classes, the class of affiliated splitting subspaces
seems to have most transparent description in terms of projections from the alge-
bra M.

PROPOSITION 0.1. A subspace E ∈ AM(S) is splitting if and only if there is a
(uniquely determined) projection p in M such that

E = pS .

Proof. Suppose that E is an affiliated splitting subspace and denote by p
the projection projecting the underlying Hilbert space H onto the completion [E]
of E. (The completion will be identified with the closure taken in a complete
superspace H.) As [E] is invariant for M′, this projection must be in M. Each
s ∈ S can be decomposed as

s = s1 + s2 , s1 ∈ E, s2 ∈ E⊥ .

As E⊥S ⊂ (1− p)(H) we see that

ps = ps1 = s1 ∈ S .

It shows that E = pS. On the other hand, if p ∈ P(M) with pS ⊂ S, then the
space pS is obviously in EM(S).
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The previous proposition says that there is a one-to-one correspondence
between splitting affiliated subspaces and projections in M leaving S invariant.
Moreover, as a corollary of Proposition 0.1 we can also quickly see the fact, al-
ready observed in [11], that EM(S) = LM(S) whenever M is abelian. Indeed, if
M is abelian, then for each projection p ∈ M ⊂ M′ we have that pS ⊂ S, meaning
that every closed space F in LM(S) is of the form pS, where p is the projection
onto the completion of F.

1. AFFILIATED SUBSPACES GENERATED BY WEIGHTS

This section will be devoted to basic facts on affiliated subspaces arising in
modular theory of von Neumann algebras. We recall basic results and fix the
notation. (For details on modular theory we refer the reader to [10], [15].) Let ϕ
be a faithful normal semifinite weight on a von Neumann algebra M. Denote by

Nϕ = {x ∈ M : ϕ(x∗ x) < ∞} , Aϕ = N ∗ϕ ∩Nϕ .

The set Nϕ is a left ideal in M. The ideal Nϕ endowed with the inner product

〈x, y〉ϕ = ϕ(y∗ x) , x, y ∈ Nϕ ,

becomes an inner product space whose completion will be denoted by Hϕ. Aϕ is
a dense subspace of Nϕ ⊂ Hϕ. If we consider x ∈ Nϕ as an element of the inner
product space (Nϕ, 〈·, ·〉ϕ), we shall emphasize this by writing x. In this notation

ϕ(x) = ‖x1/2‖ϕ for all positive x with ϕ(x) < ∞ .

The weight ϕ gives rise to a faithful normal representation πϕ : M→ B(Hϕ) such
that

πϕ(x)y = xy x ∈ M, y ∈ Nϕ .
If not stated otherwise we shall identify M with πϕ(M) by identifying πϕ(x)

with x. In other words, M will always be represented on Hϕ and the commutant
M′ of M will always be taken in B(Hϕ).

It is well known that Aϕ is a full left Hilbert algebra with the multiplication
(x, y) → xy and the involution x → x∗. By Sϕ, Jϕ, and ∆ϕ we shall denote the
modular data of Aϕ. That is, Sϕ is the closure of the conjugate linear operator
x → x∗ with the polar decomposition

Sϕ = Jϕ∆1/2
ϕ ,

where Jϕ is a conjugate linear isometry on Hϕ and ∆ϕ is a positive self-adjoint
operator affiliated with M. A basic result of the Tomita–Takesaki modular theory
says that

Jϕ MJϕ = M′ .
By the symbol jϕ we shall denote the canonical (conjugate linear) isomorphism of
M and M′

jϕ : M→ M′ : x → JϕxJϕ .
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For x ∈ M we shall write x′ = jϕ(x). An element η ∈ Hϕ is called right bounded if

sup{‖xη‖ : x ∈ Aϕ, ‖x‖ 6 1} < ∞ .

In other words, η is right bounded if the map x → xη is continuous on Aϕ. By the
symbol B′ϕ we shall denote the set of all right bounded elements. It can be easily
seen (see e.g. Lemma 1.8 on p. 5, Vol. 2 of [15]) that B′ϕ is a subspace ofHϕ which
is affiliated with M. We shall be mainly interested in the structure of affiliated
subspaces of this space. The following lemma will be useful in the sequel. It
says that if the modular operator is bounded, then any projection in Nϕ induces
a splitting affiliated subspace.

LEMMA 1.1. Suppose that ∆ϕ is a bounded operator. For each p ∈ P(M) such
that ϕ(p) < ∞ we have that

pB′ϕ ⊂ B′ϕ .

Proof. Let us take p ∈ P(M) with ϕ(p) < ∞ and any ξ ∈ B′ϕ. We are going
to prove that pξ ∈ B′ϕ. By continuity of ∆ϕ, the ∗-operation on Aϕ is continuous.
There is so a constant K > 0 such that for all x ∈ Aϕ

‖x∗‖ 6 K ‖x‖ .

In other words, for each x ∈ Aϕ one has

ϕ(xx∗) 6 K2 ϕ(x∗x) .

On the other hand, by the assumption, the map x → xξ : Aϕ → Hϕ is continuous.
There is therefore a constant L > 0 such that

‖xpξ‖ 6 L‖xp‖ ,

for all x ∈ Aϕ. (Note that xp ∈ Aϕ whenever x ∈ Aϕ because ϕ(p) is finite.)
Putting this together we can estimate

‖xpξ‖ 6 L‖xp‖ 6 LK‖px∗‖ = LKϕ(xpx∗)1/2

6 LKϕ(xx∗)1/2 6 LK2 ϕ(x∗x)1/2 = LK2‖x‖ ,

for each x ∈ Aϕ. This means that pξ ∈ B′ϕ.

2. AFFILIATED SUBSPACES GENERATED BY STATES

In this part we shall deal with the structure of affiliated subspaces of B′ϕ,
where ϕ is a normal faithful state on M. We continue to use the notation of the
preceding section. The situation simplifies becauseNϕ = Aϕ = M. Let us denote
ξϕ = 1 ∈ Hϕ. This vector is cyclic and separating for both M and M′ and

ϕ(x) = 〈xξϕ, ξϕ〉ϕ = ωξϕ
(x) .
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We shall extend ϕ to the whole algebra B(Hϕ) by putting ϕ = ωξϕ
. The set

of right bounded vectors, B′ϕ, coincide with the space generated by the cyclic
vector ξϕ:

B′ϕ = M′ξϕ = {uξϕ : u ∈ M′}
(see e.g. [10]). For simplicity of the notation we shall denote

Sϕ = Bϕ = M′ξϕ .

In the present section we are going to analyze the classes of affiliated sub-
spaces of the space Sϕ. First we shall describe the structure AM(Sϕ). For this,
observe that given a subspace X ∈ AM(Sϕ), there is a linear subspace J′X of M′

such that
X = {uξϕ : u ∈ J′X} = J′Xξϕ .

Moreover, since X is affiliated with M, we see that J′X must be a left ideal in M′.
Conversely, given a left ideal J′ of M′, the space

X = J′ξϕ

lies in AM(Sϕ). The correspondence X → J′X is a one-to-one correspondence
between affiliated subspaces and left ideals which preserves the order in both
directions.

In other words, the structure of affiliated subspaces AM(Sϕ), ordered by
set inclusion, is isomorphic to the structure of left ideals in M′. Moreover, since
M′ is canonically isomorphic to M, we can say that (AM(Sϕ),⊂) is nothing but
the left ideal structure in M. Having this in mind, the following natural question
arises: What are the ideals in M′ (and so in M) that correspond to closed affiliated
subspaces? One result in this direction, obtained in [11], says that every element
in LM(Sϕ) is represented by an ideal closed in the strong operator topology. We
repeat this argument for the convenience of the reader.

PROPOSITION 2.1. If X ∈ LM(Sϕ), then there is a unique projection p′ ∈ M′

such that
X = M′p′ξϕ = {x′p′ξϕ : x′ ∈ M′} .

Proof. It is enough to show that the corresponding left ideal J′X of M′ is
strongly operator closed. Take a net (x′α) ⊂ J′X converging strongly to x′ ∈ M′.
Then (x′αξϕ) converges to x′ξϕ. By closedness of X we see that x′ξϕ ∈ X, meaning
that x′ ∈ J′X . Since J′X is a strongly closed left ideal, there is a (unique) projection
p′ in M′ such that J′X = M′p′.

Proposition 2.1 motivates the following definition. We say that an affiliated
subspace X = J′Xξϕ ∈ AM(Sϕ) is operator closed if the corresponding left ideal J′X
in M′ is closed in the strong operator topology. We shall denote by HM(Sϕ) the
set of all operator closed affiliated subspaces. By the previous result the inclusion

LM(Sϕ) ⊂ HM(Sϕ)
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holds universally. We shall clarify the relationship between LM(Sϕ) and HM(Sϕ)
later on. In this moment, let us observe that the ordered structure (HM(Sϕ),⊂) is
a complete lattice isomorphic to the projection lattices P(M) and P(M′). Now we
are going to characterize the orthogonal complement of a subspace in LM(Sϕ),
which enables us to describe the class FM(Sϕ). It turns out that this description is
possible in terms of support projections of the normal functionals obtained from
ϕ. We recall basic notation and terminology (for details see [15]). Suppose that $
is a normal functional on a von Neumann algebra M and a ∈ M. We denote by

a$ = $( · a), $a = $(a · )
the normal functionals obtained by substituting x → xa and x → ax into argu-
ments of $, respectively. It can be proved that there is a smallest projection e ∈ M
such that $ = e$. The projection e is called the left support of $ and it is denoted
by sl($).

LEMMA 2.2. For each x ∈ M we have

ϕ(x) = ϕ(x′∗) .

Proof. By an easy computation and using basic facts of the modular theory
we obtain:

ϕ(x) = 〈xξϕ, ξϕ〉 = 〈xJϕξϕ, Jϕξϕ〉 = 〈ξϕ, JϕxJϕξϕ〉 = ωξϕ
(x′∗) = ϕ(x′∗) .

PROPOSITION 2.3. Let p, q ∈ P(M). Then the spaces M′p′ξϕ and M′q′ξϕ are
orthogonal if and only if

ϕ(qxp) = 0 for all x ∈ M .

Proof. Supposing that M′p′ξϕ ⊥ M′q′ξϕ, we take x ∈ M and compute (see
Lemma 2.2)

ϕ(qxp) = ϕ(p′x∗′q′) = 〈p′x∗′q′ξϕ, ξϕ〉 = 〈x′∗q′ξϕ, p′ξϕ〉 = 0 .

The reverse implication follows directly from the previous computation.

THEOREM 2.4. Suppose that p ∈ P(M). Then

(M′p′ξϕ)
⊥ = M′q′ξϕ ,

where q = 1− sl(ϕp).

Proof. First observe that the space (M′p′ξϕ)⊥ is closed and therefore opera-
tor closed. So there is a projection q′ ∈ M′ such that

(M′p′ξϕ)
⊥ = M′q′ξϕ .

In view of Proposition 2.3 the projection q is the largest projection such that

ϕ(pxq) = 0 for all x ∈ M .

In other words, 1− q is the smallest projection such that

ϕ(px(1− q)) = ϕ(px) for all x ∈ M ,
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giving immediately that
1− q = sl(ϕp) .

COROLLARY 2.5. Each orthogonally closed space X ∈ FM(Sϕ) is of the form

X = M′(1− sl(ϕp))′ξϕ ,

for some projection p ∈ M.

Proof. It follows immediately from the previous theorem and the fact that
every orthogonally closed affiliated subspace is of the form (M′p′ξϕ)⊥ for some
projection p ∈ M.

In addition to the foregoing corollary one can say that for each orthogonally
closed subspace X ∈ FM(Sϕ) there is a unique projection p ∈ P(M) such that

X = M′p′ξϕ and p = 1− sl(ϕ(1− sl(ϕp))) .

An easy description of the orthogonality relation in AM(Sϕ) can be given
in terms of the Radon–Nikodym derivative. Suppose that M is a semifinite von
Neumann algebra and so that it admits a normal semifinite faithful trace τ. Sup-
pose further that there is a bounded positive operator t ∈ M such that

ϕ(x) = τ(tx) for each x ∈ M .

In this special situation there is a lucid description of orthogonality and orthogo-
nal complement in terms of the trace class operator t.

THEOREM 2.6. Let p, q ∈ P(M) and ϕ = τ(t·), where t ∈ M+ and τ is a
semifinite faithful normal trace on M. Then the following statements hold:

(i) M′p′ξϕ ⊥ M′q′ξϕ if and only if ptq = 0.
(ii) (M′p′ξϕ)⊥ = M′r′ξϕ, where r is the orthogonal projection onto Ker pt.

Proof. (i) As we know M′p′ξϕ ⊥ M′q′ξϕ if and only if for each x ∈ M,

0 = ϕ(pxq) = τ(tpxq) = τ(qtpx) .

By substituting x = (qtp)∗ in the previous equality we have

τ(|ptq|2) = 0 .

Therefore |ptq| = 0 and so ptq = 0.
(ii) By (i) (M′p′ξϕ)⊥ = M′r′ξϕ, where r must be the largest projection such that
ptr = 0. This means that r is the projection onto Ker pt.

Let us remark that the foregoing result generalizes result of [11], where The-
orem 2.6 is proved in a special case when M is a type I factor.

We shall now return to the relationship between closed and operator closed
affiliated subspaces. As we know from the previous discussion

LM(Sϕ) ⊂ HM(Sϕ) .
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It was shown in the previous work [11] that LM(Sϕ) 6= HM(Sϕ) provided that
M is an infinite-dimensional type I factor with a separable predual. On the other
hand, it was established in the same paper that LM(Sϕ) = HM(Sϕ) on condition
that ϕ is a tracial state. First we shall prove that the same is true if ϕ is close to a
trace in the sense that the modular operator ∆ϕ is bounded.

PROPOSITION 2.7. If ∆ϕ is bounded, then

EM(Sϕ) = HM(Sϕ) .

Proof. Suppose that ∆ϕ is bounded. Combining Lemma 1.1 and Proposi-
tion 0.1 we know that EM(Sϕ) = LM(Sϕ). It remains to show that the space
M′p′ξϕ is closed in M′ξϕ for every p ∈ P(M). For this suppose that there is a
sequence (xn) ⊂ M and x ∈ M such that

x′n p′ξϕ → x′ξϕ as n→ ∞ .

Then
Jϕx′n p′ Jϕξϕ → Jϕx′ Jϕξϕ as n→ ∞ .

In other words,

(2.1) xn pξϕ → xξϕ .

By Lemma 1.1 the map x = xξϕ → xp = xpξϕ is continuous. According to (2.1)

xn ppξϕ → xpξϕ , as n→ ∞ ,

which means that xpξϕ = xξϕ and so xp = x. Finally, x′p′ = x′ and so x′ξϕ ∈
M′p′ξϕ.

As a very special case of the previous proposition we can see that all types
of the subspaces coincide provided that the underlying algebra is abelian. Next
proposition says that this is far from being true for properly infinite algebras.

PROPOSITION 2.8. Suppose that M is a properly infinite von Neumann algebra
and ϕ a faithful normal state on M. Then there is a projection p ∈ M such that the space
M′p′ξϕ is not closed in Sϕ.

Proof. By the structure theory of von Neumann algebras there is a unital von
Neumann subalgebra N of M which is isomorphic to the algebra B(K), where K is
an infinite dimensional separable Hilbert space. Let us denote by tr the canonical
trace on B(K). The state ϕ restricts to a (normal) state on N. There is a positive
trace class operator t ∈ N such that

ϕ(x) = tr(tx) , x ∈ N .

We shall prove that there is a projection p ∈ N with 1− p 6= 0 and a sequence
(xn) of operators in N = B(K) such that

(2.2) tr(t(xn p− 1)∗(xn p− 1))→ 0 as n→ ∞ .
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Since ϕ is faithful, the operator t1/2 is one-to-one. On the other hand, by faithful-
ness of ϕ t has a sequence of nonzero eigenvalues going to zero and so the inverse
of t1/2 cannot be continuous. By the Inverse Mapping Theorem it means that the
range of t1/2 (as it acts on K) is not the whole space K. Pick now a vector k ∈ K
such that k is not in the range of t1/2. Let p be the projection (in B(K) ⊂ M) which
projects onto the hyperplane {k}⊥. Then obviously,

(2.3) Ker pt1/2 = 0 .

Let us now consider the polar decomposition

pt1/2 = u|pt1/2| ,

where u is a partial isometry. By (2.3) the range projection of (pt1/2)∗ = t1/2 p is
the unit. Therefore u∗u = 1. For an integer n we shall denote by gn the character-
istic function of the interval 〈1/n, n〉 and by fn the function fn(x) = (1/x)gn(x).
We employ the function calculus. Let pn be a projection pn = gn(|pt1/2|). Put

xn = t1/2 fn(|pt1/2|)u∗ .

Then
xn pt1/2 = t1/2 fn(|pt1/2|)u∗u|pt1/2| = t1/2 pn .

Observe that pn ↗ 1. Whence,

tr(txn p) = tr(t1/2xn pt1/2) = tr(tpn)↗ tr(t) = 1,

tr(tpx∗nxn p) = tr(t1/2 px∗nxn pt1/2) = tr(pntpn) = tr(tpn)↗ 1 .

As a consequence,

tr(t(xn p− 1)∗(xn p− 1)) = 1 + tr(tpx∗nxn p)− 2Re(tr(txn p))→ 0, n→ ∞ .

Therefore (2.2) has been established. The equality (2.2) implies that

x′n p′ξϕ → ξϕ , as n→ ∞ .

Indeed, using Lemma 2.2 we see

‖x′n p′ξϕ − ξϕ‖2 = ϕ((x′n p′ − 1)∗(x′n p′ − 1)) = ϕ((xn p− 1)∗(xn p− 1))

= tr(t(xn p− 1)∗(xn p− 1))→ 0 as n→ 0 .

We have shown that ξϕ is in the closure of M′p′ξϕ. This means that M′p′ξϕ is
dense in Sϕ = M′ξϕ. However, as p′ 6= 1, M′p′ξϕ is a proper subspace of M′ξϕ.
In other words,

M′p′ξϕ ∈ HM(Sϕ) \ LM(Sϕ) .

THEOREM 2.9. Let M be a σ-finite von Neumann algebra. The following condi-
tions are equivalent:

(i) M is not finite.
(ii) LM(Sϕ) 6= HM(Sϕ) for each faithful normal state ϕ on M.
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Proof. (i) ⇒ (ii) If M is not finite, then there is a nonzero properly infinite
direct summand of M. So M decomposes as

M = zM⊕ (1− z)M ,

where z is a central projection, not equal to 1, such that zM is finite and (1− z)M
is properly infinite. Let ϕ be a faithful normal state on M. We shall continue to
identify M and πϕ(M). Since the modular data for (M, ϕ) are given by direct
sums of the corresponding modular data of the restriction of ϕ to zM and (1−
z)M, respectively, we see that

ξϕ = zξϕ + (1− z)ξϕ ,

where zξϕ and (1 − z)ξϕ are separating and generating vectors for the algebra
zM (living on z(Hϕ)) and (1 − z)M (living on (1 − z)(Hϕ)), respectively. By
Proposition 2.8 and its proof there is a proper subprojection p 6 1− z such that

(1− z)ξϕ ∈ (1− z′)p′M′ = p′M′ .

So for q = z + p we have

q′ 6= 1 and ξϕ ∈ M′q′ξϕ .

Hence, M′q′ξϕ ∈ HM(Sϕ) \ LM(Sϕ) .
(ii)⇒ (i) If M is finite, then it admits a normal faithful tracial state τ on M.

But in this case HM(Sτ) = LM(Sτ), which is a special case of Proposition 2.7.

Let us remark that by combining the previous results we obtain the follow-
ing fact. If a von Neumann algebra M admits a faithful normal state which has a
bounded modular operator, then M has to finite.

3. COMPLETE AFFILIATED SUBSPACES

In the concluding part we shall characterize complete affiliated spaces. We
restrict our discussion to the case Sϕ, where ϕ is a normal faithful state on M.

THEOREM 3.1. Let p ∈ P(M) be nonzero. The space M′p′ξϕ is complete if and
only if p is a sum of finitely many atomic projections.

Proof. Suppose that the space M′p′ξϕ is complete. It means that the left
ideal I = M′p′ endowed with the norm

‖x‖ϕ =
√

ϕ(x∗x) , x ∈ I ,

is a Hilbert space. There is an obvious inequality between the von Neumann
algebra norm and the Hilbert space norm ‖ · ‖ϕ:

‖x‖2
ϕ = ϕ(x∗x) 6 ‖x∗x‖ = ‖x‖2 , x ∈ I .

Thanks to this inequality both norms have to be equivalent by the Inverse
Mapping Theorem. In other words, I is a reflexive space and its closed subspace
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I ∩ I∗ = p′M′p′ is reflexive as well. However, it means that the hereditary sub-
algebra p′M′p′ is finite dimensional. Therefore p′ is a finite sum of orthogonal
atomic projections. By the isomorphism between M and M′ we conclude that the
same must hold for p.

Suppose now that p is a finite sum of atomic projections. The same holds
for p′. The central cover of the atomic projection is an atomic projection in the
center. Hence

p′ = p′1 + · · ·+ p′n ,

such that the following holds: each p′i is a sum of orthogonal atomic projections
and the central covers c(p′1), c(p′2), . . . , c(p′n) are mutually orthogonal atomic pro-
jections in the center of M′. Therefore M′c(p′i) is a type I factor for all i. We shall
prove that each space X′i = M′p′iξϕ is complete. Assume that this space is not
zero. As p′i is a sum of finitely many atomic projections we have that the vector
functional $i corresponding to the vector p′i ξϕ restricts to a finite combination of
pure states on M′c(p′i). Each space X′i is unitarily isomorphic to the GNS inner
product space corresponding to this restriction of $i. But such a space is complete
by e.g. [5]. As M′p′ξϕ is a direct sum of complete spaces it must be complete.

It has been proved in [11] that for M = B(H) (where H is separable and
infinite dimensional) the affiliated subspace M′p′ξϕ is splitting if the projection
p (acting on H) is finite dimensional. The previous result says that the space
M′p′ξϕ is not only splitting. In fact, it is even complete, which is a much stronger
statement. Moreover, in the light of the previous result, only finite dimensional
projections in B(H) generate complete affiliated subspaces in Sϕ. In order to il-
lustrate this situation, we shall now give a concrete picture of complete subspaces
affiliated with the type I factor. Let H be a separable infinite dimensional Hilbert
space and ϕ a normal faithful state on B(H). Then there is an orthonormal basis

(en) and a sequence of strictly positive numbers (λk) such that
∞
∑

k=1
λk = 1 and

ϕ =
∞

∑
k=1

λkωek .

We shall use the following realization of the modular data for (B(H), ϕ):

Hϕ = H ⊗ H , ξϕ =
∞

∑
k=1

λ1/2
k (ek ⊗ ek) .

M = B(H) will be identified with B(H) ⊗ 1 and so M′ = 1⊗ B(H) . Each op-
erator x ∈ B(H) can be represented by a matrix with respect to the basis (en).
We shall denote by x̃ the operator whose matrix results from entrywise complex
conjugation of the matrix of x. The modular conjugation acts as

j(x) = Jϕ(x⊗ 1)Jϕ = 1⊗ x̃ .
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The space Sϕ becomes

Sϕ = M′ξϕ =
{ ∞

∑
k=1

λ1/2
k (ek ⊗ xek) : x ∈ B(H)

}
.

PROPOSITION 3.2. Let p ∈ B(H) be a finite dimensional nonzero projection.
Then there is an orthogonal sequence h1, . . . , hn in H such that

M′p′ξϕ = (h1 ⊗ H)⊕ (h2 ⊗ H)⊕ · · · ⊕ (hn ⊗ H) .

Proof. Write
p = pξ1 + pξ2 + · · ·+ pξs ,

where ξ1, . . . , ξs is an orthonormal sequence and pξi the projection with range
sp(ξi). By ξ̃i we shall denote the element of H whose coordinates with respect to
the basis (en) are term by term complex conjugate of that of ξi. We can compute

M′p′ξϕ = {(1⊗ x)(1⊗ p̃)ξϕ : x ∈ B(H)} =
{ ∞

∑
k=1

λ1/2
k (ek ⊗ xp̃ek) : x ∈ B(H)

}
=
{ ∞

∑
k=1

λ1/2
k

(
ek ⊗

s

∑
i=1
〈ek, ξ̃i〉xξ̃i

)
: x ∈ B(H)

}
.

Since the collection x̃ξ̃1, x̃ξ̃2, . . . , x̃ξ̃s, where x runs through all B(H) may be an
arbitrary collection of the vectors in H, we have

M′p′ξϕ =
{ ∞

∑
k=1

λ1/2
k

(
ek ⊗

s

∑
i=1
〈ek, ξ̃i〉 vi

)
: v1, . . . , vs ∈ H

}
= (u1 ⊗ H) + (u2 ⊗ H) + · · ·+ (us ⊗ H) ,

where

ui =
∞

∑
k=1

λ1/2
k 〈ek, ξ̃i〉ek .

Employing the Gramm–Schmidt orthogonalization process we can find an or-
thonormal sequence h1, . . . , hn giving the same linear span as the sequence
u1, . . . , us. Then

M′p′ξϕ = (h1 ⊗ H)⊕ (h2 ⊗ H)⊕ · · · ⊕ (hn ⊗ H) .
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