
J. OPERATOR THEORY
69:1(2013), 117–133

doi: 10.7900/jot.2010jul19.1870

© Copyright by THETA, 2013

CENTRALIZERS AND JORDAN DERIVATIONS FOR
CSL SUBALGEBRAS OF VON NEUMANN ALGEBRAS

PENGTONG LI, DEGUANG HAN, and WAI-SHING TANG

Communicated by William Arveson

ABSTRACT. We investigate the centralizers and Jordan derivations for com-
mutative subspace lattice algebras in von Neumann algebras. For any CSL
subalgebra A of a von Neumann algebra, we prove that a (weak) Jordan
centralizer Φ (i.e Φ : A → A is an additive mapping satisfying 2Φ(A2) =
Φ(A)A + AΦ(A) for all A ∈ A) is automatically a centralizer. Similarly, we
show that every Jordan derivation of A is a derivation. Additionally, we ob-
tain concrete characterizations of centralizers for standard subalgebras of CSL
algebras, and a stronger result is also obtained for standard subalgebras of
nest algebras.
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1. INTRODUCTION AND STATEMENTS OF THE RESULTS

The investigation for derivations and Jordan derivations of operator alge-
bras has been an interesting topic since Kaplansky [19] started the research in this
area by proving that every derivation of a type I W∗-algebra is inner. Kadison
then continued the investigation in [18] for von Neumann algebras and he proved
that every derivation on a von Neumann algebra is inner, and also proved that
every derivation of a C∗-algebra on a Hilbert space is spatial. The complete so-
lution for the derivation problem for W∗-algebra was settled by Sakai [26] who
proved that every derivation of a W∗-algebra is inner. All these results mentioned
above are concerned with self-adjoint operator algebras, and the same techniques
in general do not apply to non-self-adjoint operator algebras. We refer to [7], [9],
[13], [14], [15], [18], [21], [22], [25], [31] for a good resource on the results about
the derivation and related problem for non-self-adjoint operator algebras. In par-
ticular we mention that Christensen [7] proved that every derivation of a nest
algebra is inner. For a more general case, Gilfeather and Moore [13], [25] studied
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the spatiality and quasi-spatiality of derivations of certain CSL algebras. Clearly,
by definition every derivation must be a Jordan derivation. The converse is not
necessarily true in general. A classical result of Herstein states that every Jor-
dan derivation on a prime ring of characteristic not two is a derivation [16]. Cu-
sack [8] generalized Herstein’s result to the case of semiprime rings (see also [6]
for an alternative proof). It follows immediately that every Jordan derivation of
semisimple Banach algebras is a derivation. However, most of the well studied
non-self-adjoint operator algebras are not semisimple. Zhang [33] proved that
every Jordan derivation of nest algebras is a derivation, and this was recently
generalized by Lu [24] to CSL algebras. For several results concerning Jordan
derivations of self-adjoint operator algebras, we refer to [2], [3], [17].

A related problem in this area is to characterize the centralizers for various
operator algebras. For example, the theory of centralizers (also called multipli-
ers) for C∗-algebras and some Banach algebras has been relatively well studied in
the literature (see e.g. [1], [4] and references therein). Centralizers have also been
studied in the general framework of prime rings and semiprime rings by Zalar
[32] and more recently by Vukman [27], [28], [29], and Vukman and Kosi-Ulbl
[20], [30], et al. Similar to Jordan derivations, there is a notion of Jordan central-
izers which have been investigated recently mainly on prime or semiprime rings.
However, to our knowledge nothing has been done for non-self-adjoint opera-
tor algebras which in most cases are not semiprime. In this paper we will focus
on the study of centralizers and Jordan derivations on CSL algebras and more
generally on CSL subalgebras of von Neumann algebras.

Let us first recall and introduce some notations and terminologies. Through-
out, all algebras and vector spaces will be over F, where F is either the real field
or the complex field. Let H be a Hilbert space. We denote by B(H) the alge-
bra of all bounded linear operators on H and by I the identity operator on H.
The terms “projection” and “subspace” will mean “orthogonal projection” and
“norm closed linear manifold”, respectively. For convenience, we will identify
the subspace and the projection onto it. Let L be a subspace lattice on H, i.e., it
is a strongly closed lattice of projections (or subspaces) that is closed under the
usual lattice operations ∨ (closed linear span) and ∧ (set theoretic intersection)
and contains 0 and I. Denote AlgL by the algebra of all operators in B(H) which
leave every projection in L invariant, that is

AlgL = {T ∈ B(H) : P⊥TP = 0 for all P ∈ L},

where P⊥ = I − P. Clearly, AlgL is a weakly closed unital algebra. We call a
subspace lattice L a commutative subspace lattice, or CSL, if all the projections
in L commute pairwise. In this case the associated algebra AlgL is called a CSL
algebra. If a CSL L is linearly ordered by inclusion, then L is called a nest and
AlgL is called a nest algebra. Putting L⊥ = {P⊥ : P ∈ L}, then L⊥ is a CSL if
and only if L is a CSL. Write L′ and L′′ for the commutant and bicommutant of
L, respectively. Then for every CSL L, we have that L ⊆ L′′ ⊆ L′ = AlgL ∩
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(AlgL)∗, (AlgL)∗ = AlgL⊥ and L′′ is the von Neumann algebra generated by L,
where (AlgL)∗ = {A∗ : A ∈ AlgL} in which A∗ denotes the adjoint of operator
A. For a subalgebra A of B(H), let LatA be the collection of all the projections
which are invariant by each operator in A. Obviously, LatA is a subspace lattice.
We will say that an algebra A is reflexive if AlgLatA = A and dually, a subspace
lattice L is reflexive if LatAlgL = L. Subspace lattices need not be reflexive.
However, it is well known that every CSL is reflexive ([5], Theorem 1.6.3).

Let B be a von Neumann algebra on a Hilbert space H, L be a CSL in B,
and let AlgBL = (AlgL) ∩B. We call AlgBL a CSL subalgebra of von Neu-
mann algebra B. Then AlgBL is a reflexive algebra since it is the intersection of
two reflexive algebras. If we let M denote the lattice of projections in B′, then
AlgBL = Alg(L ∨M), where L ∨M denotes the subspace lattice generated
by L andM which is usually noncommutative. Gilfeather and Larson [11], [12]
introduced and studied nest subalgebra of von Neumann algebras, and they re-
marked that in [11], they had shown that if L is a nest then the subspace lattice
L ∨M is reflexive (unpublished). For the general case, it seems still unkown
whether L ∨M is reflexive. Fortunately, our research does not depend on the
reflexivity of L ∨M. This is different from a general study of CSL algebras, in
which the reflexivity of CSL is often used; for example, see [24].

Let R be an associative ring. Recall that R is prime if aRb = (0) implies
a = 0 or b = 0, and is semiprime if aRa = (0) implies a = 0. An additive
mapping δ : R → R is called a derivation if δ(xy) = δ(x)y + xδ(y) holds for all
x, y ∈ R, and is called a Jordan derivation in case δ(x2) = δ(x)x + xδ(x) for all
x ∈ R. An additive mapping Φ : R → R is called a left (right) centralizer in case
Φ(xy) = Φ(x)y (Φ(xy) = xΦ(y)) holds for all pairs x, y ∈ R. Call Φ a centralizer
in case Φ is a both left and right centralizer. Obviously, if a ∈ R then La(x) = ax
(Ra(x) = xa) is a left (right) centralizer and conversely, a left (right) centralizer
must be of this form in case R has an identity element. For x, y ∈ R, the usual
Jordan product is given by x ◦ y = xy + yx. Then clearly, a Jordan derivation is
an additive mapping δ : R → R which satisfies δ(x ◦ y) = δ(x) ◦ y + x ◦ δ(y)
for all x, y ∈ R. Therefore, we can define a Jordan centralizer to be an additive
mapping Φ : R → R which satisfies Φ(x ◦ y) = Φ(x) ◦ y = x ◦Φ(y), i.e.,

Φ(xy + yx) = Φ(x)y + yΦ(x) = xΦ(y) + Φ(y)x

for all x, y ∈ R. Since the product ◦ is commutative, there is no difference be-
tween the left and right Jordan centralizers. Note that, every centralizer Φ is a
Jordan centralizer, and every Jordan centralizer Φ satisfies the relation

(1.1) 2Φ(x2) = Φ(x)x + xΦ(x)

for all x ∈ R. Similar to the study of Jordan derivations, it seems natural to ask,
whether the converse is true. In [32], Zalar proved that every Jordan centralizer
on a semiprime ring of characteristic is not a centralizer two. More generally,
Vukman ([27], Theorem 1) showed that if R is a semiprime ring of characteristic
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not two, and Φ : R → R be an additive mapping satisfying the equality (1.1),
then Φ is a centralizer.

Our first main result shows that Vukman’s result for semiprime rings re-
mains true for CSL subalgebras of von Neumann algebras.

THEOREM 1.1. Let L be a CSL in a von Neumann algebra B on a Hilbert space
H, and let Φ : AlgBL → AlgBL be an additive mapping such that

(1.2) 2Φ(A2) = Φ(A)A + AΦ(A)

for all A ∈ AlgBL. Then Φ is a centralizer.

We remark that a CSL algebra is not necessarily prime or semiprime. There-
fore, Theorem 1.1 is independent of Vukman’s result and the proof relies on com-
pletely different techniques. Moreover, as Vukman pointed out in [27], the proof
of his result is nontrivial even in case the considered semiprime ring has an iden-
tity element. In fact, he presented the proof for unital case, in which some classical
results in prime and semiprime ring theory were used.

Using similar techniques developed in the proof of Theorem 1.1, we obtain
the following result which states that every Jordan derivation on a CSL subal-
gebra of a von Neumann algebra is automatically a derivation. This generalizes
the result of Lu ([24], Theorem 3.2) to a large class of noncommutative subspace
lattice algebras.

THEOREM 1.2. Let L be a CSL in a von Neumann algebra B on a Hilbert space
H. Then every Jordan derivation δ of AlgBL into itself is a derivation.

Our third result is devoted to characterizing the general form of centralizers
on standard subalgebras of certain CSL algebras. For a subspace lattice L, we
adopt the notations

J (L) = {E ∈ L : E 6= 0 and E− 6= H},
where E− =

∨{F ∈ L : E * F}. We call a subalgebra A of AlgL standard, if it
contains all finite rank operators in AlgL.

THEOREM 1.3. Let L be a CSL on a Hilbert space H, A be a standard subalgebra
of AlgL and Φ : A → A be a centralizer. Suppose that∨

{E : E ∈ J (L)} = H and
∧
{E− : E ∈ J (L)} = 0.

Then there exists a densely defined, closed linear operator T : D ⊆ H → H with its
domain D invariant under every element of A, such that Φ(A)x = TAx = ATx for all
A ∈ A and x ∈ D

We will see that the proof of Theorem 1.3 depends heavily on the existence
of rank one operators in the considered CSL algebras. Since a von Neumann al-
gebra need not contain rank one operators, we are not able to extend Theorem 1.3
to all CSL subalgebras of von Neumann algebras although we conjecture that the
result should hold in general.
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A good deal of attention has been lavished on commutative subspace lat-
tices which are also completely distributive. By definition, a completely distribu-
tive lattice is a subspace lattice in which distributive laws (∧ distributing over ∨
and vice versa) holds for infinite families of projections. However, there is a tidier
description due to Longstaff [23]: A subspace lattice L is completely distributive
if and only if E =

∨{F ∈ L : E * F−} for every E ∈ L, which is also equivalent to
the condition E =

∧{F− : F ∈ L and F * E} for every E ∈ L. Thus if L is com-
pletely distributive, then

∨{E : E ∈ J (L)} = H and
∧{E− : E ∈ J (L)} = 0.

Hence Theorem 1.3 holds for completely distributive CSL algebras and in partic-
ular, holds for nest algebras. Moreover, for standard subalgebras of nest algebras,
we have the following characterization for even one-sided centralizers.

THEOREM 1.4. Let N be a nest on a Hilbert space H, and A be a standard sub-
algebra of AlgN . If Φ is a norm continuous left centralizer of A, then there exists an
operator T ∈ AlgN with ‖T‖ = ‖Φ‖, such that Φ(A) = TA for all A ∈ A. Dually, if
Φ is a norm continuous right centralizer of A, then there exists an operator S ∈ AlgN
with ‖S‖ = ‖Φ‖, such that Φ(A) = AS for all A ∈ A.

2. PROOFS OF THEOREMS 1.1 AND 1.2

In order to prove Theorems 1.1 and 1.2, we need a decomposition result for
CSL subalgebras of von Neumann algebras, which is the key to our proofs. Let L
be a CSL in a von Neumann algebra B on a Hilbert space H. Denote by

Q1(L) = span{PAP⊥x : P ∈ L, A ∈ AlgBL, x ∈ H},

Q2(L) = span{P⊥A∗Px : P ∈ L, A ∈ AlgBL, x ∈ H},
Q = Q1(L) ∨Q2(L).

Here, span{·} is the norm closure of linear span of a set.

LEMMA 2.1. With the notations as above, we have:
(i) Q1(L), Q2(L), Q ∈ L′ ∩B ⊆ AlgBL, Q1(L) and Q2(L) are commuting

projections, and Q⊥AQ = QAQ⊥ = 0 for all A ∈ AlgBL;
(ii) Q⊥(AlgBL)Q⊥ is a von Neumann algebra on Q⊥H, if Q 6= I;

(iii) AlgBL = Q(AlgBL)Q⊕Q⊥(AlgBL)Q⊥.

Proof. For convenience, put Q1 = Q1(L), Q2 = Q2(L).
(i) Clearly, L′ ∩B ⊆ AlgBL, Q1 ∈ LatAlgBL and Q2 ∈ Lat(AlgBL)∗. Thus

for every P ∈ L, we have PQ1 = Q1PQ1 and then, Q1P = Q1PQ1 by considering
adjoint. Hence Q1 ∈ L′. Let B ∈ B′. For every A ∈ AlgBL, P ∈ L and x ∈ H,
noting that PAP⊥ ∈ B, we obtain

Q1BPAP⊥x = Q1PAP⊥Bx = PAP⊥Bx = BPAP⊥x.
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It follows from the definition of Q1 that Q1BQ1 = BQ1. Since B∗ ∈ B′, we also
have Q1B∗Q1 = B∗Q1. Hence Q1B = BQ1 for all B ∈ B′, that is Q1 ∈ B.
Similarly, we can prove that Q2 ∈ L′ ∩B. From Q1 ∈ LatAlgBL and Q2 ∈
AlgBL we see that Q2Q1 = Q1Q2Q1. Consequently, Q1Q2 = Q2Q1 and Q =
Q1 + Q2 −Q1Q2 ∈ L′ ∩B.

We now want to prove that Q⊥AQ = QAQ⊥ = 0 for all A ∈ AlgBL. Fix an
arbitrary operator A ∈ AlgBL. For every P ∈ L, from the fact that Q commutes
with P and the definitions of Q1 and Q2, we get

P(Q⊥A)P⊥ = Q⊥PAP⊥ = 0, P(AQ⊥)P⊥ = (Q⊥P⊥A∗P)∗ = 0.

This means that Q⊥A, AQ⊥∈(AlgL)∗. Also, Q⊥A, AQ⊥∈AlgL. Then Q⊥A, AQ⊥

∈ L′. Hence

(2.1) A∗Q⊥, Q⊥A∗ ∈ L′ ∩B.

Let T ∈ AlgBL, P ∈ L. We have

Q⊥A∗PTP⊥ = PQ⊥A∗TP⊥ = Q1PQ⊥A∗TP⊥ = Q1Q⊥A∗PTP⊥ = 0,

from which it follows that Q⊥A∗Q1 = 0, that is Q1 AQ⊥ = 0. In a similar way, we
can prove that Q2 AQ⊥ = Q⊥AQ1 = Q⊥AQ2 = 0. Thus Q⊥AQ = QAQ⊥ = 0
for all A ∈ AlgBL. This proves (i).

(ii) Clearly, Q⊥(AlgBL)Q⊥ is a weakly closed operator algebra on Q⊥H,
containing the identity operator Q⊥. Also, from (2.1) we see that A∗Q⊥ ∈ AlgBL
for all A ∈ AlgBL, which tells us that Q⊥(AlgBL)Q⊥ is self-adjoint. Hence
Q⊥(AlgBL)Q⊥ is a von Neumann algebra on Q⊥H.

(iii) Obviously.

Now let us prove Theorem 1.1. For clarity of exposition, we shall organize
the proof in a series of lemmas, in which the notations in Theorem 1.1 will be
kept.

LEMMA 2.2. For all A, B ∈ AlgBL, we have

2Φ(AB + BA) = Φ(A)B + AΦ(B) + Φ(B)A + BΦ(A).

Proof. Replacing A by A + B in (1.2), the desired equality can be obtained
easily.

In the coming three lemmas, we introduce some notations for convenience.
Let P ∈ L ∪ {Q1(L), Q(L)} be an arbitrary nontrivial projection. Put P1 = P
and P2 = I − P1. Then P1, P2 ∈ AlgBL and for every A ∈ AlgBL, we have
A = P1 AP1 + P1 AP2 + P2 AP2, since P2 AP1 = 0. Writing A11 = P1(AlgBL)P1,
A12 = P1(AlgBL)P2 and A22 = P2(AlgBL)P2, then

AlgBL = A11 ⊕A12 ⊕A22.
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LEMMA 2.3. We have:
(i) Φ(Aij) ∈ Aij for Aij ∈ Aij, where 1 6 i 6 j 6 2;

(ii) Φ(A12) = Φ(P1)A12 = A12Φ(P2) for A12 ∈ A12.

Proof. (i) We first claim that

(2.2) Φ(Pi) = PiΦ(Pi)Pi, i = 1, 2.

In fact, since P1 is idempotent, we have 2Φ(P1) = Φ(P1)P1 + P1Φ(P1) by the
equality (1.2), which yields that P1Φ(P1)P2 = P2Φ(P1)P2 = 0. Hence Φ(P1) =
P1Φ(P1)P1. For i = 2, the proof goes similarly.

By Lemma 2.2, we have

2Φ(A12) = 2Φ(A12P2 + P2 A12)(2.3)

= Φ(A12)P2 + A12Φ(P2) + Φ(P2)A12 + P2Φ(A12)

and

2Φ(A12) = 2Φ(P1 A12 + A12P1)(2.4)

= Φ(P1)A12 + P1Φ(A12) + Φ(A12)P1 + A12Φ(P1).

Multiplying (2.3) by P1 from the right side and multiplying (2.4) by P2 from the
left side, we get Φ(A12)P1 = 0 and P2Φ(A12) = 0, respectively. Hence Φ(A12) =
P1Φ(A12)P2 ∈ A12.

For the case of i = j = 2, apply Lemma 2.2 again

4Φ(A22)=2Φ(A22P2+P2 A22)=Φ(A22)P2+A22Φ(P2)+Φ(P2)A22+P2Φ(A22).

This together with the equality (2.2) gives that P1Φ(A22)P1 = P1Φ(A22)P2 = 0.
Accordingly, Φ(A22) = P2Φ(A22)P2 ∈ A22.

Similarly, we can prove that Φ(A11) = P1Φ(A11)P1 ∈ A11.
(ii) It is immediate from the results of (i) and equalities (2.3)–(2.4).

LEMMA 2.4. For A11 ∈ A11, A12, B12 ∈ A12 and A22 ∈ A22, we have:
(i) Φ(A11B12) = A11Φ(B12) = Φ(A11)B12;

(ii) Φ(A12B22) = A12Φ(B22) = Φ(A12)B22.

Proof. (i) By Lemma 2.3(ii), we have

Φ(A11B12) = A11B12Φ(P2) = A11Φ(B12).

Combining this equality with Lemmas 2.2 and 2.3(i), we get:

2Φ(A11B12) = 2Φ(A11B12 + B12 A11)

= Φ(A11)B12 + A11Φ(B12) + Φ(B12)A11 + B12Φ(A11)

= Φ(A11)B12 + Φ(A11B12).

Consequently, Φ(A11B12) = Φ(A11)B12.
(ii) goes similarly.
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LEMMA 2.5. For A ∈ AlgBL, B12 ∈ A12, we have:
(i) Φ(AB12) = AΦ(B12) = Φ(A)B12;

(ii) Φ(B12 A) = Φ(B12)A = B12Φ(A).

Proof. Since AP1 = P1 AP1, we have by Lemmas 2.3(i) and 2.4(i)

Φ(AB12) = Φ(P1 AP1B12) = P1 AP1Φ(B12) = AΦ(B12).

Moreover, applying the same argument as above, we have

Φ(A)B12 = Φ(P1 AP1)B12 + Φ(P1 AP2)B12 + Φ(P2 AP2)B12

= Φ(P1 AP1B12) = Φ(AB12).

This proves (i).
In a similar way, we can prove (ii).

LEMMA 2.6. For A, B ∈ AlgBL, we have:
(i) (Φ(AB)− AΦ(B))Q1(L) = 0;

(ii) Q2(L)(Φ(AB)− AΦ(B)) = 0.

Proof. Let T ∈ AlgBL, P ∈ L be arbitrary elements. By Lemma 2.5(i) we get

Φ(AB)PTP⊥ = Φ(ABPTP⊥) = Φ(APBPTP⊥)

= AΦ(PBPTP⊥) = AΦ(BPTP⊥) = AΦ(B)PTP⊥,

from which it follows that (i) holds.
By Lemma 2.5(ii) we get

PTP⊥Φ(AB)=Φ(PTP⊥AB)=Φ(PTP⊥AP⊥B)=PTP⊥AP⊥Φ(B)=PTP⊥AΦ(B).

It follows that (Φ(AB)− AΦ(B))∗Q2(L) = 0, which means that (ii) holds.

LEMMA 2.7. Suppose that Q1(L) ∨ Q2(L) = I. Then Φ is a right centralizer,
that is, Φ(AB) = AΦ(B) for all A, B ∈ AlgBL.

Proof. Denote Q1 = Q1(L) and Q2 = Q2(L). Define an additive mapping
Ψ : AlgBL → AlgBL by

Ψ(A) = Φ(A)− AΦ(Q1), A ∈ AlgBL.

Then clearly, Φ is a right centralizer if and only if Ψ is a right centralizer.
Let A ∈ AlgBL. By Lemma 2.3 we have:

Ψ(A)Q1=Φ(A)Q1 − AΦ(Q1)Q1(2.5)

=Φ(Q1 AQ1)Q1+Φ(Q1 AQ⊥1 )Q1+Φ(Q⊥1 AQ⊥1 )Q1−AΦ(Q1)Q1

=Φ(AQ1)− AQ1Φ(Q1) = Ψ(AQ1).
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Similarly

Q⊥1 Ψ(A)=Q⊥1 Φ(A)−Q⊥1 AΦ(Q1)(2.6)

=Q⊥1 Φ(Q1 AQ1)+Q⊥1 Φ(Q1 AQ⊥1 )+Q⊥1 Φ(Q⊥1 AQ⊥1 )−Q⊥1 AΦ(Q1)

=Φ(Q⊥1 A)−Q⊥1 AΦ(Q1) = Ψ(Q⊥1 A).

Suppose that A, B ∈ AlgBL. By the assumption Q1 ∨ Q2 = I, we have Q⊥1 Q2 =

Q⊥1 . It follows from Lemma 2.6(ii) that

(2.7) Q⊥1 (Ψ(AB)− AΨ(B)) = Q⊥1 Q2(Φ(AB)− AΦ(B)) = 0.

By applying Lemma 2.6(i) we can obtain

(2.8) (Ψ(AB)− AΨ(B))Q1 = 0.

Moreover, we can write

AB = (AQ1 + Q1 AQ⊥1 + Q⊥1 AQ⊥1 )(BQ1 + BQ⊥1 )

= ABQ1 + AQ1BQ⊥1 + Q1 AQ⊥1 B + Q⊥1 AB.

Now, making use of Lemmas 2.3(i), 2.5 and the equalities (2.5)–(2.8) and Φ(Q1) =
Q1Φ(Q1)Q1, we see that:

Ψ(AB) = Ψ(ABQ1) + Ψ(AQ1BQ⊥1 ) + Ψ(Q1 AQ⊥1 B) + Ψ(Q⊥1 AB)

= Ψ(AB)Q1 + (Φ(AQ1BQ⊥1 )− AQ1BQ⊥1 Φ(Q1))

+ (Φ(Q1 AQ⊥1 B)−Q1 AQ⊥1 BΦ(Q1)) + Q⊥1 Ψ(AB)

= AΨ(B)Q1 + Φ(AQ1BQ⊥1 ) + Φ(Q1 AQ⊥1 B) + Q⊥1 AΨ(B)

= AΨ(BQ1) + AΦ(Q1BQ⊥1 ) + Q1 AQ⊥1 Φ(B) + Q⊥1 AΨ(B)

= AΨ(Q1BQ1) + AΨ(Q1BQ⊥1 ) + Q1 AQ⊥1 Ψ(B) + Q⊥1 AQ⊥1 Ψ(B)

= AΨ(Q1B) + AΨ(Q⊥1 B) = AΨ(B).

This proves that Ψ is a right centralizer, and equivalently, so is Φ.

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider the decomposition

AlgBL = Q(AlgBL)Q⊕Q⊥(AlgBL)Q
⊥

as in Lemma 2.1. Denote by Φ1 and Φ2 the restrictions of Φ on the subalgebras
Q(AlgBL)Q and Q⊥(AlgBL)Q⊥, respectively. From Lemma 2.3(i) we know that
Φ1(QAQ) = QΦ1(QAQ)Q and Φ2(Q⊥AQ⊥) = Q⊥Φ2(Q⊥AQ⊥)Q⊥ for all A ∈
AlgBL and clearly, both Φ1 and Φ2 satisfy the equality (1.2). Note that

Q(AlgBL)Q = AlgQBQ(QL) = {T ∈ QBQ : (Q−QP)TQP = 0 for all P ∈ L}
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is a CSL subalgebra of the von Neumann algebra QBQ. For every P ∈ L, A ∈
AlgBL, x ∈ H, by Lemma 2.1 we know that QAQ⊥ = 0 and so PAP⊥x =

QPAP⊥x = PQA(Q−QP)x. Recalling that

Q1(L) = span{PAP⊥x : P ∈ L, A ∈ AlgBL, x ∈ H},
Q1(QL) = span{PQA(Q−QP)x : P ∈ L, A ∈ AlgBL, x ∈ H},

we have Q1(L) = Q1(QL). Similarly, Q2(L) = Q2(QL). Hence

Q1(QL) ∨Q2(QL) = Q.

By Lemma 2.7, we know that Φ1 is a right centralizer of Q(AlgBL)Q. For Φ2,
since any von Neumann algebra is semiprime, from Vukman’s result ([27], Theo-
rem 1), it follows that Φ2 is a centralizer of Q⊥(AlgBL)Q⊥. Consequently, Φ is a
right centralizer of AlgBL.

Finally, let A ∈ AlgBL. The fact that Φ is a right centralizer implies that
Φ(A) = AΦ(I). Also, putting B = I in Lemma 2.2, it is easy to see that 2Φ(A) =
AΦ(I) + Φ(I)A. Therefore, Φ(A) = Φ(I)A = AΦ(I), which means that Φ is a
centralizer on AlgBL. This completes the proof.

Next, we will prove Theorem 1.2. The techniques are similar to those in
Theorem 1.1, and the proof is an appropriate modification of that in Theorem 3.2
of [24].

Proof of Theorem 1.2. Let A, B ∈ AlgBL. Since δ is a Jordan derivation, we
have

δ(A2) = δ(A)A + Aδ(A), δ(AB + BA) = Aδ(B) + δ(A)B + Bδ(A) + δ(B)A.

From 2ABA = A(AB + BA) + (AB + BA)A − (A2B + BA2) we see that δ also
satisfies

(2.9) δ(ABA) = δ(A)BA + Aδ(B)A + ABδ(A).

For an arbitrary nontrivial projection P ∈ L∪ {Q1(L), Q(L)}, write P1 = P,
P2 = I − P1, Aij = Pi(AlgBL)Pj, 1 6 i 6 j 6 2. Then we have the decomposition
AlgBL = A11⊕A12⊕A22. From δ(P1) = P1δ(P1) + δ(P1)P1 we can easily obtain
that P1δ(P1)P1 = P2δ(P1)P2 = 0, and so

(2.10) δ(P1) = P1δ(P1)P2.

For A12 ∈ A12, by (2.10) we have

δ(A12) = δ(P1 A12 + A12P1) = δ(P1)A12 + P1δ(A12) + δ(A12)P1 + A12δ(P1)

= P1δ(A12) + δ(A12)P1,

from which it follows that P1δ(A12)P1 = P2δ(A12)P2 = 0. Hence

(2.11) δ(A12) = P1δ(A12)P2.
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For A11 ∈ A11, from

2δ(A11) = δ(P1 A11 + A11P1) = δ(P1)A11 + P1δ(A11) + δ(A11)P1 + A11δ(P1)

we see that

(2.12) P2δ(A11) = 0.

Similarly, for A22 ∈ A22 we have

(2.13) δ(A22)P1 = 0.

Let A12 ∈ A12 and B ∈ AlgBL. Since δ(I) = 0, by (2.10) we have δ(P2) =
−P1δ(P1)P2 ∈ A12. Applying (2.9), (2.11) and (2.13) we get:

δ(A12B) = δ(A12P2BP2 + P2BP2 A12)(2.14)

= δ(A12)P2BP2 + A12δ(P2BP2) + δ(P2BP2)A12 + P2BP2δ(A12)

= δ(A12)P2BP2 + A12δ(P2BP2)

= δ(A12)P2B + A12δ(P2)BP2 + A12P2δ(B)P2 + A12P2Bδ(P2)

= δ(A12)B + A12δ(B).

In a similar way, for A∈AlgBL and B12∈A12, from (2.9), (2.11) and (2.12) one has

(2.15) δ(AB12) = δ(A)B12 + Aδ(B12).

We write Q1 = Q1(L), Q2 = Q2(L), and let A, B ∈ AlgBL. For every
T ∈ AlgBL and P ∈ L, we have by (2.15)

δ(ABPTP⊥) = δ(AB)PTP⊥ + ABδ(PTP⊥), and

δ(ABPTP⊥) = δ(A(PBPTP⊥)) = δ(A)PBPTP⊥ + Aδ(PBPTP⊥)

= δ(A)BPTP⊥ + Aδ(BPTP⊥)

= δ(A)BPTP⊥ + Aδ(B)PTP⊥ + ABδ(PTP⊥).

It follows that (δ(AB)− δ(A)B− Aδ(B))PTP⊥ = 0. Consequently

(2.16) (δ(AB)− δ(A)B− Aδ(B))Q1 = 0.

Similarly, we can prove that

(2.17) Q2(δ(AB)− δ(A)B− Aδ(B)) = 0.

Define a new Jordan derivation δ̃ : AlgBL → AlgBL by

δ̃(A) = δ(A)− (Aδ(Q1)− δ(Q1)A), A ∈ AlgBL.

Then δ̃(Q⊥1 ) = δ̃(Q1) = 0 by (2.10). Applying (2.9) for δ̃, it is easy to see that for
any A ∈ AlgBL, we have

(2.18) δ̃(AQ1) = δ̃(A)Q1 and δ̃(Q⊥1 A) = Q⊥1 δ̃(A).

We claim that if Q1(L) ∨Q2(L) = I, then δ is a derivation.
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For this, it suffices obviously to prove that δ̃ is a derivation. In fact, let
A, B ∈ AlgBL. Since δ̃ is also a Jordan derivation, the equality (2.17) holds if
replacing δ by δ̃. Thus Q2(δ̃(Q⊥1 AB)− δ̃(Q⊥1 A)B − Q⊥1 Aδ̃(B)) = 0. Because of
Q1(L) ∨ Q2(L) = I, we get that Q⊥1 (δ̃(Q

⊥
1 AB) − δ̃(Q⊥1 A)B − Q⊥1 Aδ̃(B)) = 0.

Also, by (2.18) we have Q1(δ̃(Q⊥1 AB)− δ̃(Q⊥1 A)B−Q⊥1 Aδ̃(B)) = 0. Hence

(2.19) δ̃(Q⊥1 AB) = δ̃(Q⊥1 A)B + Q⊥1 Aδ̃(B).

By using (2.16) and (2.18), a similar argument gives that

(2.20) δ̃(ABQ1) = δ̃(A)BQ1 + Aδ̃(BQ1).

Moreover, we have by (2.14)–(2.15) and (2.18)–(2.20)

δ̃(AB) = δ̃(ABQ1) + δ̃(AQ1BQ⊥1 ) + δ̃(Q1 AQ⊥1 B) + δ̃(Q⊥1 AB)

= δ̃(A)BQ1 + Aδ̃(BQ1) + δ̃(A)Q1BQ⊥1 + Aδ̃(Q1BQ⊥1 )

+ δ̃(Q1 AQ⊥1 )B + Q1 AQ⊥1 δ̃(B) + δ̃(Q⊥1 A)B + Q⊥1 Aδ̃(B)

= δ̃(A)(BQ1 + Q1BQ⊥1 ) + Aδ̃(BQ1 + Q1BQ⊥1 )

+ δ̃(Q1 AQ⊥1 + Q⊥1 A)B + (Q1 AQ⊥1 + Q⊥1 A)δ̃(B)

= δ̃(AQ1)B + Aδ̃(Q1B) + δ̃(AQ⊥1 )B + Aδ̃(Q⊥1 B) = δ̃(A)B + Aδ̃(B).

This proves that δ̃ is a derivation. Hence the claim holds.
For the general case, put Q = Q1(L) ∨ Q2(L). By Lemma 2.1 we have the

decomposition

AlgBL = Q(AlgBL)Q⊕Q⊥(AlgBL)Q
⊥.

Define a new Jordan derivation δ̂ : AlgBL → AlgBL by

δ̂(A) = δ(A)− (Aδ(Q)− δ(Q)A), A ∈ AlgBL.

Then δ̂(Q) = δ̂(Q⊥) = 0. For every A ∈ AlgBL, from (2.9) it follows that
δ̂(QAQ) = Qδ̂(A)Q and δ̂(Q⊥AQ⊥) = Q⊥ δ̂(A)Q⊥. Denote by δ̂1 and δ̂2 the re-
strictions of δ̂ on the subalgebras Q(AlgBL)Q and Q⊥(AlgBL)Q⊥, respectively.
Then δ̂1 and δ̂2 are both Jordan derivations. Since Q1(QL)∨Q2(QL) = Q, by the
claim we know that δ̂1 is a derivation. Also, recalling that Q⊥(AlgBL)Q⊥ is a
von Neumann algebra, then the fact that any von Neumann algebra is semiprime
implies that δ̂2 is also a derivation. Therefore, δ̂ is a derivation, and so is δ. The
proof is complete.

3. PROOFS OF THEOREMS 1.3 AND 1.4

In this section, rank one operators are a useful tool. Given vectors x and
y in a Hilbert space H, we define the operator x ⊗ y by z 7→ (z, y)x for z ∈ H.
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This operator has rank one if and only if both x and y are nonzero. It is easy to
check that, if A and B are linear operators on H such that B is bounded, then
A(x⊗ y)B = (Ax)⊗ (B∗y).

The following lemma will get repeated use.

LEMMA 3.1 ([23]). Let L be a subspace lattice on a Hilbert space H. Then the rank
one operator x ⊗ y ∈ AlgL if and only if there exists E ∈ J (L) such that x ∈ E and
y ∈ E⊥− , where E⊥− means (E−)⊥.

Proof of Theorem 1.3. If A contains the identity operator, then the conclusion
is clear, because Φ(A) = Φ(I)A = AΦ(I) holds for all A ∈ A.

In the following we do not assume thatA contains the identity operator. Let
A ∈ A and λ ∈ F. For every E ∈ J (L), choosing a nonzero vector y ∈ E⊥− , then
x ⊗ y ∈ A for every x ∈ E by Lemma 3.1. From Φ(λA)x ⊗ y = Φ(λAx ⊗ y) =
λΦ(A)x ⊗ y we see that Φ(λA)x = λΦ(A)x for all x ∈ E. Since

∨{E : E ∈
J (L)} = H, we have Φ(λA) = λΦ(A). This shows that Φ is linear.

Let E ∈ J (L). Fix a unit vector yE ∈ E⊥− . Then x⊗ yE ∈ A for every x ∈ E.
Define a linear mapping TE : E→ H by

TEx = Φ(x⊗ yE)yE, x ∈ E.

If A ∈ A and x ∈ E, then Ax ∈ E and Φ(Ax⊗ yE) = Φ(A)x⊗ yE = AΦ(x⊗ yE).
It follows that

(3.1) TE Ax = Φ(A)x = ATEx.

Claim 1. Let E, F∈J (L) such that EF 6=0 and let x∈E∧F. Then TEx=TFx.
In fact, taking a nonzero vector y ∈ E⊥− and noting that E⊥− ⊆ (E ∧ F)⊥−, it

follows from (3.1) that TEx ⊗ y = Φ(x ⊗ y) = TE∧Fx ⊗ y. Hence TEx = TE∧Fx.
Similarly, we have TFx = TE∧Fx. So TEx = TFx.

Claim 2. If x1 + x2 + · · ·+ xn = 0, where xi ∈ Ei, Ei ∈ J (L) then TE1 x1 +
TE2 x2 + · · ·+ TEn xn = 0.

Let us proceed its proof by induction. For simplicity, denote by Ti = TEi . If
n = 2, then x1 + x2 = 0 implies x1, x2 ∈ E1 ∧ E2. So T1x1 + T2x2 = T1x1 − T2x1 =
0 by Claim 1, as desired. Suppose that the claim holds for natural number n. Let
x1 + x2 + · · ·+ xn+1 = 0, where xi ∈ Ei and Ei ∈ J (L), i = 1, 2, · · · , n + 1. Then
T1x1 + T1E1x2 + · · ·+ T1E1xn+1 = 0. Since E1 ∈ AlgL, we have E1xi ∈ E1 ∧ Ei
and by Claim 1, T1E1xi = TiE1xi for each i > 2. Thus

(3.2) T1x1 + T2E1x2 + T3E1x3 + · · ·+ Tn+1E1xn+1 = 0.

On the other hand, taking E⊥1 x1 = 0 into account, we obtain E⊥1 x2 + E⊥1 x3 + · · ·+
E⊥1 xn+1 = 0, where E⊥1 xi ∈ Ei, i = 2, 3, . . . , n + 1. By the inductive hypothesis,
one has

(3.3) T2E⊥1 x2 + T3E⊥1 x3 + · · ·+ Tn+1E⊥1 xn+1 = 0.

It follows from (3.2) plus (3.3) that T1x1 + T2x2 + · · ·+ Tn+1xn+1 = 0, completing
the induction step.
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Denote by D0 the linear span of {E : E ∈ J (L)}. Define a linear mapping
T0 : D0 → H such that T0|E = TE for every E ∈ J (L), where T0|E denotes the
restriction of T0 to E. By Claim 2, it is easy to see that T0 is well defined. From
(3.1), we have clearly

(3.4) Φ(A)x = T0 Ax = AT0x

for all A ∈ A and x ∈ D0. Put

D = {x ∈ H : (x, y) ∈ G(T0) for some y ∈ H},

where G(T0) = {(x, T0x) : x ∈ D0} is the graph of T0, and G(T0) denotes the
norm closure. Then D is a linear manifold and D0 ⊆ D. Clearly, D is dense in
H. For every x ∈ D, we want to prove that there exists a unique y ∈ H such that
(x, y) ∈ G(T0). In fact, assume that (0, y) ∈ G(T0). Let a sequence {xn}∞

1 in D0
such that xn → 0 and T0xn → y. For any E ∈ J (L), fix a nonzero vector u ∈ E.
Then u⊗ v ∈ A for all v ∈ E⊥− . Applying (3.4) we obtain

(y, v)u = lim
n→∞

(u⊗ v)T0xn = lim
n→∞

Φ(u⊗ v)xn = 0.

Hence (y, v) = 0. So y ∈ E− for all E ∈ J (L). From the assumption
∧{E− : E ∈

J (L)} = 0, it follows that y = 0, as required.
Thus, we can define a mapping T : D ⊆ H → H in an obvious way, such

that G(T) = G(T0). Clearly, T is a densely defined, closed linear operator and
extends T0.

Finally, we show thatD is invariant under every element ofA, and Φ(A)x =
TAx = ATx for all A ∈ A and x ∈ D. For this, let A ∈ A and x ∈ D.
Then (x, Tx) ∈ G(T0). Hence there exists a sequence {xn}∞

1 in D0 such that
xn → x, T0xn → Tx. So Axn → Ax, AT0xn → ATx and Φ(A)xn → Φ(A)x.
By (3.4) we have Φ(A)xn = AT0xn = T0 Axn. Consequently, Φ(A)x = ATx and
(Axn, T0 Axn) = (Axn, AT0xn) → (Ax, ATx). Then (Ax, ATx) ∈ G(T). Hence
Ax ∈ D and TAx = ATx. This completes the proof.

To prove Theorem 1.4, we need to cite the following lemma.

LEMMA 3.2 ([10]). Let N be a nest on a Hilbert space H. Then the finite rank
operators of AlgN are strongly dense in AlgN ; in particular, there is a net Fα of finite
rank operators in AlgN , each of which has norm at most one, such that Fα converges to
I strongly.

Proof of Theorem 1.4. We first consider the “left” case. IfA contains the iden-
tity operator, then Φ(A) = Φ(I)A for all A ∈ A.

Assume that A does not contain the identity operator. Similar to the proof
of Theorem 1.3, we can see that Φ is linear. We now want to prove that there
exists an operator T ∈ B(H) such that Φ(A) = TA for all A ∈ A. For this, we
distinguish two cases.
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Case 1. H− 6= H. Choose a unit vector x0 ∈ H⊥− . Then x ⊗ x0 ∈ A for any
x ∈ H. Define a linear mapping T : H → H by

Tx = Φ(x⊗ x0)x0, x ∈ H.

Clearly, T is continuous and for all A ∈ A, x ∈ H, we have Φ(A)x = Φ(A)(x⊗
x0)x0 = Φ(Ax⊗ x0)x0 = TAx. Hence Φ(A) = TA.

Case 2. H− = H. Then N 6= {0, H} and H =
∨{E ∈ N : E 6= H} by

the definition of H−. Let E ∈ N \ {0, H} and pick a unit vector xE ∈ E⊥. Since
E− ⊆ E, we have x⊗ xE ∈ A for each x ∈ E. Define a continuous linear mapping
TE : E→ H by

TEx = Φ(x⊗ xE)xE, x ∈ E.
Then Φ(A)x = TE Ax for all A ∈ A and x ∈ E. Further, suppose that E1, E2 ∈
N \ {0, H} such that E1 ⊆ E2. Then for x ∈ E1, it follows that TE1 Ax = Φ(A)x =
TE2 Ax holds for all A ∈ A. Applying Lemma 3.2 and the continuity of TE1 and
TE2 , we obtain TE1 x = TE2 x. Denote K by the subspace

⋃{E ∈ N : E 6= H}which
is not necessarily closed. Then we can define a linear mapping T′ : K → H such
that T′|E = TE for every E ∈ N \ {0, H}. Obviously,

(3.5) Φ(A)x = T′Ax

for all A ∈ A, x ∈ K. We now want to prove that T′ is continuous. Let x ∈ K.
Then x ∈ E for some E ∈ N with E 6= H. Picking a unit vector y ∈ E⊥, then
x⊗ y ∈ A and for any u ∈ K, we have Φ(x⊗ y)u = (T′x⊗ y)u by (3.5). Noting
that both Φ(x ⊗ y) and T′x ⊗ y are continuous on H and K is dense in H, we
get that Φ(x ⊗ y) = T′x ⊗ y. Hence, ‖T′x‖ = ‖T′x ⊗ y‖ 6 ‖Φ‖‖x‖. So T′ is
continuous. Therefore T′ can be extended to be a continuous linear operator T on
H. By (3.5), we have clearly Φ(A) = TA for all A ∈ A, as desired.

Now we will show that ‖Φ‖ = ‖T‖. Obviously, ‖Φ‖ 6 ‖T‖. To prove the
reverse, let x ∈ H be arbitrary. By Lemma 3.2, there is a net Fα of finite rank
operators in A with ‖Fα‖ 6 1, which converges to I strongly. Thus for each Fα,

‖TFαx‖ = ‖Φ(Fα)x‖ 6 ‖Φ‖‖Fα‖‖x‖ 6 ‖Φ‖‖x‖.
Taking the limit, we get ‖Tx‖ 6 ‖Φ‖‖x‖ and so ‖T‖ 6 ‖Φ‖.

Let Fα be as above. Then TFα converges to T strongly. Since Φ(Fα) ∈ A, we
have TFα ∈ A for each Fα. So T ∈ AlgN . This completes the proof in case Φ is a
left centralizer.

Finally, assume that Φ is a right centralizer. Obviously, N⊥ is still a nest on
H and A∗ is a standard subalgebra of AlgN⊥. Define a mapping Ψ : A∗ → A∗
by Ψ(A∗) = Φ(A)∗ for A ∈ A. Then for A, B ∈ A, we have

Ψ(A∗B∗) = Ψ((BA)∗) = Φ(BA)∗ = (BΦ(A))∗ = Φ(A)∗B∗ = Ψ(A∗)B∗.

Hence Ψ is a left centralizer of A∗. Also, Ψ is clearly linear, norm continuous and
‖Ψ‖ = ‖Φ‖. It follows that there is an operator T ∈ AlgN⊥ with ‖T‖ = ‖Ψ‖,
such that Ψ(A∗) = TA∗ for every A ∈ A. Take S = T∗. Then S ∈ AlgN ,
‖S‖ = ‖Φ‖ and Φ(A) = AS for all A ∈ A. The proof is complete.
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