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ABSTRACT. We study the multiplication operators on the weighted Lipschitz
space Lw consisting of the complex-valued functions f on the set of vertices
of an infinite tree T rooted at o such that sup

v 6=o
|v|| f (v)− f (v−)| < ∞, where |v|

denotes the distance between o and v and v− is the neighbor of v closest to o.
For the multiplication operator, we characterize boundedness, compactness,
provide estimates on the operator norm and the essential norm, and determine
the spectrum. We prove that there are no isometric multiplication operators
or isometric zero divisors on Lw.
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1. INTRODUCTION

Let X be a Banach space of complex-valued functions on a set Ω. For a
complex-valued function ψ with domain Ω, we define the multiplication operator
with symbol ψ on X to be Mψ f = ψ f for f ∈ X. The study of such operators
with symbol attempts to tie the properties of the operator with the function the-
oretic properties of the symbol. The operator properties typically considered are
boundedness, compactness, and being an isometry. Other aspects of interest are
the determination of estimates on the operator norm as well as on the essential
norm, and the identification of the spectrum and the essential spectrum.

A setting that has been widely considered in the literature is when Ω is the
open unit disk D and X is a Banach space of analytic functions on D. Examples of
such Banach spaces are the Hardy space Hp, the Bergman space Ap, and the Bloch
space B (see [19] for more information on the operator theory on these spaces.)

In recent years, researchers have been developing versions of these spaces
where the set Ω is a discrete space such as a tree or a discrete group. Historically,
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the function theory on trees has been largely devoted to studying the eigenfunc-
tions of the Laplace operator (and in particular, the harmonic functions), defined
as the averaging operator (with respect to a nearest-neighbor transition probabil-
ity) at the neighbors of a vertex, minus the identity operator.

The study of the harmonic functions on discrete structures can be traced
back many years in the literature. It was the harmonic analysis on trees devel-
oped by Cartier in [2] that made evident the analogy between trees endowed with
the edge-counting metric and the open unit disk in the complex plane under the
Poincaré metric.

The Hardy spaces Hp on trees have been studied by Korányi, Picardello,
and Taibleson in [10], and the theory of the Hp spaces was further developed in
[9] by Di Biase and Picardello in the special case when the tree is homogeneous
(that is, the vertices have the same number of neighbors).

Operators on discrete structures other than the Laplacian have been studied
in a number of papers (e.g., see the works of Pavone [11], [12], [13], Roe [14], and
Rabinovich and Roch [15], [16], and [17]). Examples include the composition op-
erators on Lp spaces associated with homogeneous trees, the Toeplitz operators
on discrete groups, and the band-dominated operators defined on `p(X), where
X is a discrete metric space. The band-dominated operators on `p(X) are com-
positions of shift operators on X with multiplication operators with symbols in
`∞(X) and have a natural connection to Schrödinger operators when X is a graph.

In [3], Cohen and the second author defined the Bloch space on an isotropic
homogeneous tree T by considering the harmonic functions which are Lipschitz
when regarded as function between metric spaces, where the distance on T counts
the edges between pairs of vertices and C is endowed with the Euclidean dis-
tance. However, in [4], where embeddings of homogeneous trees of even degree
in the hyperbolic disk were constructed so that the edges are geodesic arcs of the
same hyperbolic length, it was shown that the harmonicity condition on a tree
from a nearest-neighbor perspective is not related to the classical harmonicity
(and hence analyticity) condition on the disk derived through interpolation.

This suggests that for the purpose of the study of certain operators with
symbol such as the multiplication, or more generally, the weighted composition
operators, these spaces are not natural analogues of their continuous counter-
parts. In particular, the study of multiplication operators on such spaces is of no
interest, since in order for a multiplication operator to preserve harmonicity on
a tree, its symbol must be a constant function. So, for the study of the theory
of such operators with symbol, the spaces of functions on trees need to be less
restrictive.

In [5] (see also [19]) it was shown that the analytic functions f : D→ C such
that

β f = sup
z∈D

(1− |z|2)| f ′(z)| < ∞
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are precisely the Lipschitz functions with respect to the Poincaré distance ρ on D
and the Euclidean distance on C and β f is the Lipschitz constant of f , namely

β f = sup
z 6=w

| f (z)− f (w)|
ρ(z, w)

.

The collection of such functions is called the Bloch space.
In [6], the last two authors defined the Lipschitz space L on an infinite tree

T rooted at vertex o to be the collection of all complex-valued functions on the
vertices of the tree that are Lipschitz with respect to the edge-counting metric on
T and the Euclidean metric on C. They showed these are precisely the functions
f for which

sup
v∈T∗
| f (v)− f (v−)| < ∞,

where T∗ = T \ {o}. It was shown that L is a functional Banach space under the
norm

‖ f ‖L = | f (o)|+ sup
v∈T∗
| f (v)− f (v−)|,

and the multiplication operator was studied in detail on L as well as on a closed
separable subspace called the little Lipschitz space. The space L can be viewed as
a discrete analogue of the space B.

In this work, we carry out the study of the multiplication operators on the
space Lw of the complex-valued functions f on an infinite tree T rooted at o sat-
isfying the condition

sup
v∈T∗
|v|| f (v)− f (v−)| < ∞,

where |v| is the number of edges in the unique path from o to v and v− is the
neighbor of v closest to o. The interest in studying this space is due to the fact
that the bounded functions in Lw are the symbols of the bounded multiplication
operators on L [6]. The space Lw (where the subscript w stands for weight) can
be regarded as a discrete analogue of the weighted Bloch space B` defined as the
set of analytic functions f on D such that

sup
z∈D

(1− |z|2) log
2

1− |z|2 | f
′(z)| < ∞,

since the logarithmic weight is closely related to the Poincaré distance

ρ(0, z) =
1
2

log
1 + |z|
1− |z| .

The multiplication operators and cyclic vectors on the weighted Bloch space were
studied by Ye in [18]. In this work, we prove the discrete counterparts of several
results in [18] and expand the scope of the analysis of such operators.
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1.1. ORGANIZATION OF THE PAPER. After giving some preliminary definitions
and notation on trees, in Section 2, we show that Lw is a Banach space under the
norm

‖ f ‖w = | f (o)|+ sup
v∈T∗
|v|| f (v)− f (v−)|

and define a particular closed subspace Lw,0 we call the little weighted Lipschitz
space. We also give some useful properties that will be needed in the following
sections. In Section 3, we define the notion of a cyclic vector for Lw,0 and deter-
mine a class of cyclic vectors.

In Section 4, we characterize the bounded multiplication operators Mψ on
Lw and Lw,0 in terms of the symbol ψ and establish estimates on the operator
norm in Section 5. In Section 6, we determine the spectrum, the point spectrum
and the approximate spectrum of Mψ. We also show that Mψ is bounded below
if and only if the modulus of ψ is bounded away from 0.

In Section 7, we characterize the compact multiplication operators on Lw
and Lw,0 in terms of a little-oh condition corresponding to the big-oh condition
for boundedness. In Section 8, we determine estimates on the essential norm
of Mψ.

In Section 9, we characterize the isometric multiplication operators on Lw
and Lw,0 and show that there are no isometric zero divisors on these spaces.

1.2. PRELIMINARY DEFINITIONS AND NOTATION. By a tree T we mean a locally
finite, connected, and simply-connected graph, which, as a set, we identify with
the collection of its vertices. By a function on a tree we mean a complex-valued
function on the set of its vertices. Two vertices v and w are called neighbors if
there is an edge [v, w] connecting them, and we use the notation v ∼ w. A vertex
is called terminal if it has a unique neighbor. A path is a finite or infinite sequence
of vertices [v0, v1, . . . ] such that vk ∼ vk+1 and vk−1 6= vk+1, for all k. Given a tree
T rooted at o and a vertex v ∈ T, a vertex w is called a descendant of v if v lies
in the unique path from o to w. The vertex v is then called an ancestor of w. The
vertex v is called a child of v−.

For v ∈ T, the set Sv consisting of v and all its descendants is called the
sector determined by v. Define the length of a finite path [v = v0, v1, . . . , w = vn]
(with vk ∼ vk+1 for k = 0, . . . , n− 1) to be the number n of edges connecting v to
w. The distance, d(v, w), between vertices v and w is the length of the unique path
connecting v to w. Fixing o as the root of the tree, we define the length of a vertex
v, by |v| = d(o, v).

In this paper, we shall assume the tree T to be without terminal vertices (and
hence infinite), and rooted at a vertex o and shall denote by L∞ the space of the
bounded functions f on the tree equipped with the supremum norm

‖ f ‖∞ = sup
v∈T
| f (v)|.
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2. THE WEIGHTED LIPSCHITZ SPACE

Let T be a tree and let Lw denote the set of functions f on T such that
sup
v∈T∗
|v|D f (v) < ∞, where D f (v) = | f (v) − f (v−)| for v ∈ T∗. For f ∈ Lw,

define
‖ f ‖w = | f (o)|+ sup

v∈T∗
|v|D f (v).

PROPOSITION 2.1. If f ∈ Lw and v ∈ T∗, then

(2.1) | f (v)| 6 (1 + log |v|)‖ f ‖w.

For the proof we need the following result.

LEMMA 2.2. For x > 1, we have
1
x
6 log

( x
x− 1

)
6

1
x− 1

.

Proof. The upper estimate is an immediate consequence of the inequality

log
(

1 +
1

x− 1

)
6

1
x− 1

.

The lower estimate follows from the fact that the function ϕ(x) = x log
(

x
x−1

)
is

decreasing and lim
x→∞

ϕ(x) = 1.

Proof of Proposition 2.1. Let us first assume f (o) = 0 and argue by induction
on |v|. For |v| = 1, we have

| f (v)| = |v|D f (v) 6 ‖ f ‖w = (1 + log |v|)‖ f ‖w.

Let n ∈ N and assume | f (w)| 6 (1 + log |w|)‖ f ‖w whenever w is a vertex such
that 1 6 |w| < n. Let v be a vertex of length n. Then, by Lemma 2.2 we get

| f (v)| 6 | f (v−)|+ | f (v)− f (v−)| 6
(

1 + log(|v| − 1) +
1
|v|

)
‖ f ‖w

6 (1 + log |v|)‖ f ‖w.

On the other hand, if f (o) 6= 0, let g(v) = f (v) − f (o) for v ∈ T. By the
previous case, we have |g(v)| 6 (1 + log |v|)‖g‖w for v ∈ T∗. Since ‖ f ‖w =
| f (o)|+ ‖g‖w, we deduce that

| f (v)| 6 | f (o)|+ |g(v)| 6 | f (o)|+ (1 + log |v|)‖g‖w 6 (1 + log |v|)‖ f ‖w,

completing the proof.

THEOREM 2.3. Lw is a Banach space under the norm ‖ · ‖w.

Proof. It is immediate to see that Lw is a vector space and that f 7→ ‖ f ‖w
is a semi-norm. It is also evident that the norm of the function identically 0 is 0.
Conversely, assume ‖ f ‖w = 0. Then D f is identically 0. Thus, f is a constant and
since f (o) = 0, f is identically 0.



214 ROBERT F. ALLEN, FLAVIA COLONNA, AND GLENN R. EASLEY

To prove that Lw is a Banach space, let { fn} be Cauchy in Lw. For n, m ∈ N,
since | fn(o)− fm(o)| 6 ‖ fn − fm‖w, and by Proposition 2.1, for v ∈ T∗,

| fn(v)− fm(v)| 6 (1 + log |v|)‖ fn − fm‖w,

the sequence { fn(v)} is Cauchy for each v ∈ T. Hence it converges pointwise to
some function f . We now show that f ∈ Lw.

Let v ∈ T∗ and fix n ∈ N. Then

|v|D f (v) 6 |v|| f (v)− fn(v)|+ |v|D fn(v) + |v|| fn(v−)− f (v−)|.(2.2)

Since for each v ∈ T∗, |v|D fn(v) 6 ‖ fn‖w and { fn} is Cauchy in Lw, and hence
bounded, {|v|D fn(v)} is uniformly bounded by some constant C, and so (2.2)
yields

|v|D f (v) 6 lim inf
n→∞

|v|D fn(v) 6 C.

Hence f ∈ Lw.
To conclude the proof of the completeness, we need to show that fn con-

verges to f in norm as n→ ∞. Since fn(o)→ f (o), it suffices to show that

sup
v∈T∗
|v|D( fn − f )(v)→ 0

as n→ ∞. Arguing by contradiction, suppose there exist ε > 0 and a subsequence
{ fnj}j∈N such that sup

v∈T∗
|v|D( fnj − f )(v) > ε for all j ∈ N. Then for each j ∈ N, we

may pick two neighboring vertices vnj and wnj , with vnj child of wnj , such that

|vnj || fnj(vnj)− f (vnj)− ( fnj(wnj)− f (wnj))| > ε.

Since { fnj} is Cauchy in Lw, there exists a positive integer j0 such that for each
j, h > j0, and v ∈ T∗, we have

|v|| fnj(v)− fnh(v)− ( fnj(v
−)− fnh(v

−))| 6 ‖ fnj − fnh‖w <
ε

2
.

In particular, for all h > j0, we have

|vnj0
|| fnj0

(vnj0
)− fnh(vnj0

)− ( fnj0
(wnj0

)− fnh(wnj0
))| < ε

2
.(2.3)

On the other hand, by the pointwise convergence of fnh to f , for all integers h
sufficiently large

| fnh(vnj0
)− f (vnj0

)− ( fnh(wnj0
)− f (wnj0

))| < ε

2|vnj0
| .(2.4)

Thus, by the triangle inequality, from (2.3) and (2.4) we deduce that

|vnj0
|| fnj0

(vnj0
)− f (vnj0

)− ( fnj0
(wnj0

)− f (wnj0
))| < ε,

contradicting the choice of vnj0
and wnj0

. Therefore Lw is a Banach space.
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A Banach space X of complex-valued functions on a set Ω is said to be a
functional Banach space if for each ω ∈ Ω, the point evaluation functional

eω( f ) = f (ω), f ∈ X,

is bounded; that is, there exists a constant C > 0 such that | f (ω)| 6 C‖ f ‖, for
each f ∈ X.

LEMMA 2.4 (Lemma 11 of [8]). Let X be a functional Banach space on the set Ω
and let ψ be a complex-valued function on Ω such that Mψ maps X into itself. Then Mψ

is bounded on X and |ψ(ω)| 6 ‖Mψ‖ for all ω ∈ Ω. In particular, ψ is bounded.

COROLLARY 2.5. The set Lw is a functional Banach space. If Mψ is a multiplica-
tion operator on Lw, then Mψ is bounded, its symbol ψ is bounded and ‖ψ‖∞ 6 ‖Mψ‖.

Proof. Let f ∈ Lw. Then | f (o)| 6 ‖ f ‖w and fixing v ∈ T∗, inequality (2.1)
shows that the point evaluation functional ev( f ) = f (v) is bounded. Thus, Lw
is a functional Banach space. The second statement is an immediate consequence
of Lemma 2.4.

Define the little weighted Lipschitz space to be the subspace Lw,0 of Lw con-
sisting of the functions f such that

lim
|v|→∞

|v|D f (v) = 0.

PROPOSITION 2.6. If f ∈ Lw,0, then lim
|v|→∞

f (v)
log |v| = 0.

Proof. If f is constant then the result holds trivially. Assume f is noncon-
stant, so that β f = sup

v∈T∗
|v|D f (v) > 0, and fix ε ∈ (0, β f ). Then, there exists

N ∈ N such that |v|D f (v) < ε, for all v ∈ T, with |v| > N. For |w| = N and
v a descendant of w, let u0 = w, u1, . . . , u|v|−N = v be the vertices in the path
from w to v, where uj

− = uj−1, j = 1, . . . , |v| − N. By the triangle inequality and
Proposition 2.1, we have

| f (v)| 6 | f (w)|+
|v|−|w|

∑
j=1
| f (uj)− f (uj−1)| 6 (1 + log N)‖ f ‖w + ε

|v|

∑
k=N+1

1
k

6
(

1+
N−1

∑
k=1

1
k

)
‖ f ‖w−ε

N

∑
k=2

1
k
+ε
|v|

∑
k=2

1
k
<2‖ f ‖w+(‖ f ‖w−ε)

N

∑
k=2

1
k
+ε log |v|.

Therefore, for all vertices v of length greater than N we obtain

| f (v)|
log |v| <

2‖ f ‖w + (‖ f ‖w − ε)∑N
k=2

1
k

log |v| + ε.

Hence lim
|v|→∞

| f (v)|
log |v| 6 ε. Letting ε→ 0, we obtain the result.



216 ROBERT F. ALLEN, FLAVIA COLONNA, AND GLENN R. EASLEY

The following result will be used in Section 8 to derive estimates on the
essential norm of the multiplication operators on Lw.

PROPOSITION 2.7. Let { fn} be a sequence of functions in Lw,0 converging to 0
pointwise in T and such that ‖ fn‖w is bounded. Then fn → 0 weakly in Lw,0.

Proof. First suppose fn(o) = 0 for all n ∈ N, thus ‖ fn‖w = sup
v∈T∗
|v|D fn(v).

Then, letting µ(v) = |v| for v ∈ T, the sequence {µD fn} converges to 0 pointwise.
Observe that the subspace of Lw,0 whose elements send o to 0 is isomorphic to
the space c0, consisting of the sequences indexed by T which vanish at infinity,
under the supremum norm via the correspondence f 7→ µD f . The space c0 has
dual isomorphic to the space `1 of absolutely summable sequences (e.g. [7]) via
the correspondence g ∈ `1 7→ g̃ ∈ c∗0 , where for f ∈ c0,

g̃( f ) = ∑
v∈T

f (v)g(v).

Thus, under the identification of Lw,0 with c0, if fn ∈ c0 converges pointwise to 0
and is bounded in c0, then for any g ∈ `1, we have

|g̃( fn)| =
∣∣∣ ∑

v∈T
fn(v)g(v)

∣∣∣ 6 ∑
v∈T
| fn(v)||g(v)|.(2.5)

Let c = sup
n∈N,v∈T

| fn(v)|. Fixing any positive integer N, we may split the sum on

the right-hand side of (2.5) into the two sums

S1(n, N) = ∑
|v|6N

| fn(v)||g(v)| and S2(n, N) = ∑
|v|>N

| fn(v)||g(v)|.

Since fn → 0 uniformly on the set {v ∈ T : |v| 6 N}, we see that

S1(n, N) 6 max
|v|6N

| fn(v)|‖g‖1 → 0, as n→ ∞.

On the other hand, since g ∈ `1, the tail end of the series ∑
v∈T
|g(v)| approaches 0.

Therefore, since

lim
n→∞

|g̃( fn)| 6 lim
n→∞

S1(n, N) + sup
n∈N

S2(n, N) 6 c ∑
|v|>N

|g(v)|,

letting N → ∞, we deduce that lim
n→∞

g̃( fn) = 0.

Hence, if fn(o) = 0, then fn converges to 0 weakly. In the general case,
define Fn = fn − fn(o). By the previous part, Fn → 0 weakly. Since fn(o)→ 0, we
conclude that fn → 0 weakly as well.

Denote by χA the characteristic function of the set A and use the simpler
notation χv for the function χ{v}.
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PROPOSITION 2.8. The set

P =
{ N

∑
k=1

ak pvk : N ∈ N, ak ∈ C, vk ∈ T, 1 6 k 6 N
}

,

is dense in Lw,0, where pv = χSv for v ∈ T.

Proof. Fix v ∈ T and observe that Dpv = χv, so that for w ∈ T∗, we have

|w|Dpv(w) =

{
0 if w 6= v,
|v| if w = v.

Thus, as |w| → ∞, |w|Dpv(w)→ 0, proving that pv ∈ Lw,0.
Let f ∈ Lw,0 and for n ∈ N, define

fn(v) =

{
f (v) if |v| 6 n,
f (vn) if |v| > n,

where vn is the ancestor of v of length n. Observe that for v ∈ T∗,

χv = pv − ∑
w∈v+

pw,(2.6)

where v+ = {w ∈ T : w− = v}. Therefore, for n ∈ N, we have

fn = ∑
|v|<n

f (v)χv + ∑
|v|=n

f (v)pv = ∑
|v|<n

f (v)
(

pv − ∑
w∈v+

pw

)
+ ∑
|v|=n

f (v)pv

= ∑
|v|6n

f (v)pv − ∑
|v|<n

f (v) ∑
w∈v+

pw.

Thus, fn is a finite linear combination of the functions pv and

‖ fn − f ‖w = sup
|v|>n

|v|D f (v)→ 0

as n→ ∞, proving the result.

REMARK 2.9. Since Q[i] = {z ∈ C : Re z, Im z ∈ Q} is dense in C, and T
is countable, the subset of P consisting of the finite linear combinations of the
functions pv with coefficients in Z[i] is countable and dense in Lw,0. Therefore,
Lw,0 is a closed separable subspace of Lw.

3. CYCLIC VECTORS IN THE WEIGHTED LITTLE LIPSCHITZ SPACE

DEFINITION 3.1. Let X be a Banach space of functions on T such that P is
dense in X. A function f in X is called a cyclic vector if X is the closure [ f ] of the
functions of the form pv f .

If f ∈ Lw,0 vanishes at some vertex u, then f cannot be a cyclic vector since
the function χu cannot be the limit in Lw,0 of multiples of f . For the converse, we
have the following result.
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THEOREM 3.2. Let f ∈ Lw,0 be such that | f (v)| > δ > 0 for all v ∈ T. Then f
is a cyclic vector in Lw,0.

Proof. First observe that to prove the result, it suffices to show that the con-
stant function 1 is a limit in Lw,0 of functions of the form pv f . Indeed, observe
that if v, u ∈ T, then

pv pu =


0 if Sv ∩ Su = ∅,
pv if u is an ancestor of v,
pu if v is an ancestor of u or v = u.

Thus, 1 ∈ [ f ] implies that pv ∈ [ f ] for all v ∈ T. By Proposition 2.8, it follows that
f is a cyclic vector in Lw,0.

For n ∈ N, define fn as in the proof of Proposition 2.8. Then∥∥∥ f
fn
− 1
∥∥∥

w
= sup
|v|>n

|v| D f (v)
| f (vn)|

6
1
δ

sup
|v|>n

|v|D f (v)→ 0

as n→ ∞. On the other hand, letting

gn = ∑
|v|6n2

1
fn(v)

χv,

we see that ∥∥∥gn f − f
fn

∥∥∥
w
= sup
|v|>n2

|v|D f (v)
| f (vn)|

6
1
δ

sup
|v|>n2

|v|D f (v)→ 0

as n → ∞. Thus, ‖gn f − 1‖w → 0 as n → ∞. For v ∈ T∗, recalling (2.6), we see
that the functions gn f belong to [ f ]. Therefore, f is a cyclic vector.

It is still an open question as to whether there exist cyclic vectors that are
not bounded away from 0.

4. BOUNDEDNESS OF Mψ

In this section, we characterize the bounded multiplication operators acting
on Lw and Lw,0. This characterization provides a big-oh criterion for bound-
edness, which corresponds to a little-oh criterion for compactness developed in
Section 7.

THEOREM 4.1. For a function ψ on T the following statements are equivalent:
(i) Mψ is bounded on Lw.

(ii) Mψ is bounded on Lw,0.
(iii) ψ ∈ L∞ and sup

v∈T∗
|v| log |v|Dψ(v) < ∞.
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Proof. We first prove (i)⇒ (iii). Assume Mψ is bounded on Lw. The bound-
edness of ψ follows immediately from Corollary 2.5.

For v ∈ T, define

f (v) =

{
0 if v = o,
log |v| if v ∈ T∗.

Then, for |v| = 1, we have D f (v) = 0, while for |v| > 2, by Lemma 2.2, we obtain

D f (v) = log
( |v|
|v| − 1

)
6

1
|v| − 1

.

Thus, |v|D f (v) 6 |v|
|v|−1 6 2. Therefore, f ∈ Lw. Furthermore, for v ∈ T∗ we have

Dψ(v)| f (v)| 6 |ψ(v) f (v)− ψ(v−) f (v−)|+ |ψ(v−) f (v−)− ψ(v−) f (v)|
= D(ψ f )(v) + |ψ(v−)|D f (v).(4.1)

Thus, by the boundedness of Mψ, for v ∈ T∗, we obtain

|v|Dψ(v)| f (v)| 6 |v|D(ψ f )(v) + |ψ(v−)||v|D f (v) 6 ‖Mψ f ‖w + ‖ψ‖∞‖ f ‖w.

Hence

sup
v∈T∗
|v| log |v|Dψ(v) < ∞.(4.2)

Next, we prove (iii)⇒ (i). Assume ψ is bounded and (4.2) holds. Let f ∈ Lw
and v ∈ T∗. Note that

D(ψ f )(v) 6 |ψ(v) f (v)− ψ(v−) f (v)|+ |ψ(v−) f (v)− ψ(v−) f (v−)|
= Dψ(v)| f (v)|+ |ψ(v−)|D f (v).(4.3)

Thus, by Proposition 2.1, we have

|v|D(ψ f )(v) 6 |v|Dψ(v)| f (v)|+ |ψ(v−)||v|D f (v)

6 |v|(1 + log |v|)Dψ(v)‖ f ‖w + ‖ψ‖∞‖ f ‖w.

In particular, for |v| > 3, we have

|v|D(ψ f )(v) 6 (2|v| log |v|Dψ(v) + ‖ψ‖∞)‖ f ‖w,

proving that ψ f ∈ Lw. The boundedness of Mψ follows from Lemma 2.4.
Now, we prove (ii)⇒ (iii). Assume Mψ is bounded on Lw,0. For 0 < α < 1,

define

fα(v) =

{
0 if v = o,
(log |v|)α if v ∈ T∗.

Then |v|D fα(v) → 0 as |v| → ∞, so that fα ∈ Lw,0. Since for 0 < α < 1,
the function x 7→ x − xα is increasing for x > 1, it follows that for |v| > 2,
D fα(v) 6 log(|v|)− log(|v| − 1), so by Lemma 2.2, we have

|v|D fα(v) 6 |v|(log |v| − log(|v| − 1)) 6
|v|
|v| − 1

6 2.
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Furthermore, for |v| = 1, |v|D fα(v) = 0. Thus, ‖ fα‖w 6 2 for all α ∈ (0, 1).
Moreover, by Lemma 2.4, the function ψ is bounded, so by (4.1), for v ∈ T∗, we
have

|v|Dψ(v)| fα(v)| 6 |v|D(ψ fα)(v) + |v||ψ(v−)|D fα(v) 6 ‖Mψ fα‖w + ‖ψ‖∞‖ fα‖w.

This implies that

|v|Dψ(v)(log |v|)α 6 (‖Mψ‖+ ‖ψ‖∞)‖ fα‖w.

Letting α approach 1, by the boundedness of ‖ fα‖w, we obtain (4.2).
Lastly, we prove (iii) ⇒ (ii). Assume (iii) holds and let f ∈ Lw,0. By (4.3)

and Proposition 2.6, for |v| > 1 we have

|v|D(ψ f )(v) 6 |v|Dψ(v)| f (v)|+ |v||ψ(v−)|D f (v)

6 |v| log |v|Dψ(v)
| f (v)|
log |v| + ‖ψ‖∞|v|D f (v)→ 0

as |v| → ∞. Therefore, ψ f ∈ Lw,0. The boundedness of Mψ on Lw,0 follows from
Lemma 2.4.

5. NORM OF Mψ

In this section, we provide estimates on the norm of the bounded multipli-
cation operators on Lw and Lw,0.

THEOREM 5.1. Let Mψ be a bounded multiplication operator on Lw or Lw,0.
Then

max{‖ψ‖w, ‖ψ‖∞} 6 ‖Mψ‖ 6 ‖ψ‖∞ + sup
v∈T∗
|v|(1 + log |v|)Dψ(v).

Proof. Let f be the function identically equal to 1 on T. Since D f is iden-
tically 0, f ∈ Lw, and ‖ f ‖w = 1. Thus, ψ = ψ f ∈ Lw and ‖Mψ f ‖w = ‖ψ‖w.
Therefore, ‖ψ‖w 6 ‖Mψ‖. Moreover, by Lemma 2.4, ψ ∈ L∞ and ‖ψ‖∞ 6 ‖Mψ‖,
proving the lower estimate.

Let f ∈ Lw such that ‖ f ‖w = 1. Then, using (4.3), Proposition 2.1, and the
fact that sup

v∈T∗
|v|D f (v) = 1− | f (o)|, we obtain

‖Mψ f ‖ 6 |ψ(o)|| f (o)|+ sup
v∈T∗
|v|| f (v)|Dψ(v) + sup

v∈T∗
|v||ψ(v−)|D f (v)

6 |ψ(o)|| f (o)|+ sup
v∈T∗
|v|(1 + log |v|)Dψ(v) + ‖ψ‖∞ sup

v∈T∗
|v|D f (v)

= |ψ(o)|| f (o)|+ sup
v∈T∗
|v|(1 + log |v|)Dψ(v) + ‖ψ‖∞(1− | f (o)|)

6 ‖ψ‖∞ + sup
v∈T∗
|v|(1 + log |v|)Dψ(v),

proving the upper estimate.
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6. SPECTRUM OF Mψ

In this section, we study the spectra of the bounded multiplication operator
Mψ on Lw and Lw,0. We show that the point spectrum is nonempty and, in fact,
it is a dense subset of the spectrum. We also show that the spectrum and the
approximate point spectrum are equal to the closure of the range of the symbol.
We deduce a characterization of the bounded multiplications operators that are
bounded below.

Recall that for a bounded operator S on a Banach space X, the spectrum of S
is defined as

σ(S) = {λ ∈ C : S− λI is not invertible},
where I is the identity operator on X. The point spectrum of S is defined as

σp(S) = {λ ∈ C : ker(S− λI) 6= {0}}.
The approximate point spectrum of S is defined as

σap(S) = {λ ∈ C : ∃{xn} ⊆ X, such that ‖xn‖ = 1 ∀n, and ‖(S− λI)xn‖ → 0}.
The following inclusions hold:

σp(S) ⊆ σap(S) ⊆ σ(S).(6.1)

THEOREM 6.1. Let Mψ be a bounded multiplication operator on Lw or Lw,0.
Then:

(i) σp(Mψ) = ψ(T).
(ii) σ(Mψ) = ψ(T).

Proof. To prove (i), suppose λ ∈ σp(Mψ). Then there exists a non-zero func-
tion f ∈ Lw such that Mψ−λ f is identically zero. Since f is not identically zero,
there exists w ∈ T such that f (w) 6= 0. Then 0 = (Mψ−λ f )(w) = (ψ(w)−λ) f (w),
and so ψ(w) = λ, proving that λ is in the image of ψ.

Conversely, suppose λ is in the image of ψ. Then there exists w ∈ T such
that ψ(w) = λ. So we see that Mψ−λχw is identically zero. Thus λ ∈ σp(Mψ).
Therefore σp(Mψ) = ψ(T).

To prove (ii), observe that since the spectrum is closed, the inclusion ψ(T) ⊆
σ(Mψ) follows at once from part (i) by passing to the closure.

Conversely, if λ /∈ ψ(T), then |ψ(v)− λ| > c for some positive constant c
and all v ∈ T. Thus, the function g = (ψ− λ)−1 is bounded on T. Furthermore,

sup
v∈T∗
|v| log |v|Dg(v) = sup

v∈T∗
|v| log |v|

∣∣∣ 1
ψ(v)− λ

− 1
ψ(v−)− λ

∣∣∣
6

1
c2 sup

v∈T∗
|v| log |v|Dψ(v) < ∞.

By Theorem 4.1, we deduce that Mg = M(ψ−λ)−1 is a bounded operator on Lw or

Lw,0, which implies that λ /∈ σ(Mψ). Therefore σ(Mψ) = ψ(T).
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The following proposition relates the boundary of the spectrum to the ap-
proximate point spectrum.

PROPOSITION 6.2 (Proposition 6.7 of [7]). If S is a bounded operator on a Ba-
nach space, then the boundary of σ(S) is a subset of σap(S).

Using Theorem 6.1, the inclusions (6.1) and Proposition 6.2, we obtain the
following result.

COROLLARY 6.3. Let Mψ be a bounded multiplication operator on Lw or Lw,0.
Then σap(Mψ) = ψ(T).

A bounded operator S on a Banach space X is said to be bounded below if
there exists a positive constant c such that ‖Sx‖ > c‖x‖ for all x ∈ X. Note that a
bounded operator that is bounded below is necessarily injective.

The following result connects the approximate point spectrum and the op-
erators that are bounded below.

PROPOSITION 6.4 (Proposition 6.4 of [7]). If S is a bounded operator on a Ba-
nach space, then λ 6∈ σap(S) if and only if S− λI is bounded below.

We next characterize the bounded multiplication operators on Lw or Lw,0
which are bounded below.

THEOREM 6.5. If Mψ is a bounded multiplication operator on Lw or Lw,0, then
Mψ is bounded below if and only if inf

v∈T
|ψ(v)| > 0.

Proof. By Proposition 6.4, if Mψ is a bounded operator on Lw or Lw,0, then
Mψ is bounded below if and only if 0 /∈ σap(Mψ). By Corollary 6.3, this condition
is equivalent to 0 /∈ ψ(T), i.e. inf

v∈T
|ψ(v)| > 0.

7. COMPACTNESS OF Mψ

In this section, we characterize the compact multiplication operators on Lw
and Lw,0.

LEMMA 7.1. A bounded multiplication operator Mψ on Lw (respectively, Lw,0)
is compact if and only if ‖ψ fn‖w → 0 as n → ∞ for every bounded sequence { fn} in
Lw (respectively, Lw,0) converging to 0 pointwise.

Proof. We shall prove the result for the bounded operator Mψ acting on Lw.
The proof for the case of Lw,0 is analogous.

Assume Mψ is compact on Lw and let { fn} be a bounded sequence in Lw
converging to 0 pointwise. By rescaling the sequence, if necessary, we may as-
sume ‖ fn‖w 6 1 for all n ∈ N. By the compactness of Mψ, { fn} has a subsequence
{ fnk} such that {ψ fnk} converges in norm to some function f ∈ Lw. Observe that
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ψ(o) fnk (o) → f (o) and for v ∈ T∗, by Proposition 2.1 applied to the function
ψ fnk − f , we have

|ψ(v) fnk (v)− f (v)| 6 (1 + log |v|)‖ψ fnk − f ‖w.

Therefore, ψ fnk → f pointwise. Since by assumption, fn → 0 pointwise, it fol-
lows that f must be identically 0, whence ‖ψ fn‖w → 0. Since 0 is the only limit
point in Lw of the sequence {ψ fn}, it follows that ‖ψ fn‖w → 0 as n→ ∞.

Conversely, suppose that for every bounded sequence { fn} in Lw converg-
ing to 0 pointwise, ‖ψ fn‖w → 0 as n → ∞. Let {gn} be a sequence in Lw with
‖gn‖w 6 1. Then |gn(o)| 6 1 and by Proposition 2.1, for each v ∈ T∗, we have
|gn(v)| 6 1 + log |v|. Therefore, gn is uniformly bounded on finite subsets of T
and so some subsequence, which for notational convenience we reindex as the
original sequence, converges to some function g. Then, for v ∈ T∗, we have

Dg(v) 6 |g(v)− g(v−)− (gn(v)− gn(v−))|+ Dgn(v).

Fix ε > 0 and v ∈ T, |v| > 2. Since gn → g pointwise,

|gn(v)− g(v)| < ε

2|v| and |gn(v−)− g(v−)| < ε

2|v−|

for all n sufficiently large. Therefore |v|Dg(v) < ε + |v|Dgn(v) for n sufficiently
large, so g ∈ Lw. Therefore, the sequence { fn} defined by fn = gn− g is bounded
in Lw and converges to 0 pointwise; hence, by the hypothesis, ‖ψ fn‖w → 0 as
n→ ∞. We conclude that ψgn → ψg in norm, proving the compactness of Mψ.

THEOREM 7.2. For Mψ a bounded multiplication operator on Lw, the following
are equivalent statements:

(i) Mψ is compact on Lw.
(ii) Mψ is compact on Lw,0.

(iii) lim
|v|→∞

ψ(v) = 0 and lim
|v|→∞

|v| log |v|Dψ(v) = 0.

Proof. First, we prove (i)⇒ (iii). Assume Mψ is compact on Lw. Let {vn} be
a sequence in T such that 2 < |vn| → ∞. We are going to show that

lim
n→∞

ψ(vn) = 0,(7.1)

lim
n→∞

|vn| log |vn|Dψ(vn) = 0.(7.2)

Let fn = 1
|vn |χvn . Then fn → 0 pointwise and

‖ fn‖w = sup
v∈T∗
|v|D fn(v) =

|vn|+ 1
|vn|

<
3
2

,

so that by Lemma 7.1, we obtain |ψ(vn)| 6 ‖ψ fn‖w → 0 as n→ ∞, proving (7.1).
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To prove (7.2), for n ∈ N let

gn(v) =


0 if |v| <

√
|vn|,

2 log |v| − log |vn| if
√
|vn| 6 |v| < |vn| − 1,

log |vn| if |v| > |vn| − 1.

Then Dgn(v) = 0 if |v| 6
√
|vn| or |v| > |vn|, and if

√
|vn| < |v| < |vn| − 1 then

|v|Dgn(v) 6 4. Thus, {‖gn‖w} is bounded and gn → 0 pointwise as n → ∞. By
Lemma 7.1, we get |vn| log |vn||ψ(vn)| 6 ‖ψgn‖w → 0 as n→ ∞.

Next, we prove (iii)⇒ (i). Assume the conditions in (iii) hold and set aside
the case when ψ is the constant 0. By Lemma 7.1, to prove that Mψ is compact on
Lw, it suffices to show that if { fn} is a sequence in Lw converging to 0 pointwise
and such that s = sup

n∈N
‖ fn‖w < ∞, then ‖ψ fn‖w → 0 as n→ ∞. Let { fn} be such

a sequence and fix a positive number ε. Then | fn(o)| < ε
3‖ψ‖w

for all n sufficiently
large, and there exists M ∈ N such that

|ψ(v)| < ε

3s
and |v| log |v|Dψ(v) <

ε

3s
for |v| > M.

If |v| > M, then |v−| > M, and |ψ(v−)| < ε
3s . Thus, by (4.3) and Proposition 2.1,

we obtain

|v|D(ψ fn)(v) 6 |v|Dψ(v)(1 + log |v|)‖ fn‖w +
ε

3
.

In particular, for |v| > M, we get

|v|D(ψ fn)(v) 6 2|v| log |v|Dψ(v)s +
ε

3
< ε.

Since fn → 0 uniformly on {v ∈ T : |v| 6 M} as n → ∞, then for |v| 6
M, |v|D(ψ fn)(v) < ε for all n sufficiently large. Therefore, for n sufficiently large
and for each v ∈ T∗, |v|D(ψ fn)(v) < ε. On the other hand, fn(o) → 0, and so
‖ψ fn‖w → 0, as n→ ∞.

Note that for n ∈ N the functions fn and gn defined to prove (i)⇒ (iii) are
in Lw,0. Therefore the proof of (ii)⇒ (iii) is analogous. The converse can also be
proved similarly.

8. ESSENTIAL NORM OF Mψ

In this section, we provide estimates on the essential norm of the bounded
multiplication operators on Lw. We recall that the essential norm ‖S‖e of an oper-
ator S on a Banach space X is defined as

‖S‖e = inf{‖S− K‖ : K compact operator on X}.
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DEFINITION 8.1. Given a bounded multiplication operator Mψ on Lw or
Lw,0, define

A(ψ) = lim
n→∞

sup
|v|> n

|ψ(v)|, B(ψ) = lim
n→∞

sup
|v|> n

|v| log |v|Dψ(v).

THEOREM 8.2. Let Mψ be bounded on Lw or Lw,0. Then

‖Mψ‖e > max{A(ψ), B(ψ)}.

Proof. For each n ∈ N and v ∈ T, define fn = 1
n χ{v: |v|=n}. Then fn ∈ Lw,0,

‖ fn‖w = n+1
n 6 2, and fn → 0 pointwise. Therefore, by Proposition 2.7, the

sequence { fn} converges weakly to 0 in Lw,0. Since compact operators are com-
pletely continuous [7], it follows that lim

n→∞
‖K fn‖w = 0 for any compact operator

K on Lw,0. Therefore, if K is a compact operator on Lw,0, then

‖Mψ − K‖ > lim sup
n→∞

‖(Mψ − K) fn‖w > lim sup
n→∞

‖Mψ fn‖w.

Thus,

‖Mψ‖e> inf{‖Mψ − K‖ : K compact on Lw,0} > lim sup
n→∞

‖Mψ fn‖w

= lim sup
n→∞

sup
v∈T∗
|v||ψ(v) fn(v)−ψ(v−) fn(v−)|= lim

n→∞

n+1
n

sup
|v|>n
|ψ(v)|=A(ψ).

Next we show that ‖Mψ‖e > B(ψ). The result is immediate if B(ψ) = 0.
So assume {vn} is a sequence of vertices of length greater than 1 such that |vn| is
increasing unboundedly and

lim
n→∞

|vn| log |vn|Dψ(vn) = B(ψ).

Fix p ∈ (0, 1) and for n ∈ N, let

hp,n(v) =


(log(|v|+1))p+1

(log |vn |)p if 0 6 |v| < |vn|,
log |vn| if |v| > |vn|.

Then hp,n(o) = 0, hp,n(vn) = hp,n(v−n ) = log |vn|, and

|v|Dhp,n(v) =

{ |v|
log |vn |p [(log(|v|+ 1))p+1 − (log |v|)p+1] if 1 6 |v| < |vn|,
0 if |v| > |vn|.

The supremum of v 7→ |v|Dhn(v) is attained at the vertices of length |vn| − 1 and
by a straightforward calculation it can be written as

sp,n = (|vn| − 1)(log |vn| − log(|vn| − 1))
[ log(|vn| − 1)

log |vn|
1−

(
log(|vn |−1)

log |vn |

)p

1− log(|vn |−1)
log |vn |

+ 1
]
.

Since the product of the first two factors approaches 1 as n→ ∞ and the function
1−up

1−u approaches p as u → 1, we see that sp,n → p + 1 as n → ∞. In particular,
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‖hp,n‖w = sp,n yields a bounded sequence. Letting gp,n =
hp,n
sp,n

, we see that gp,n ∈
Lw,0, ‖gp,n‖w = 1, and gp,n → 0 pointwise. Consequently, by Proposition 2.7, the
sequence {gp,n} converges to 0 weakly. This implies that ‖Kgp,n‖w → 0 as n→ ∞
for any compact operator K on Lw,0. We deduce that for any such operator K

‖Mψ − K‖ > lim sup
n→∞

‖(Mψ − K)gp,n‖w > lim sup
n→∞

‖ψgp,n‖w.

Therefore

‖Mψ‖e > inf{‖Mψ − K‖ : K compact on Lw,0}
> lim sup

n→∞
sup
v∈T∗
|v|D(ψgp,n)(v).(8.1)

Next, observe that for each n ∈ N, gp,n(vn) = gp,n(v−n ) =
log |vn |

sp,n
, so

|vn|D(ψgp,n)(vn) = |vn||ψ(vn)gp,n(vn)− ψ(v−n )gp,n(v−n )|

= |vn|Dψ(vn)
log |vn|

sp,n
.(8.2)

Therefore, from (8.1) and (8.2), we obtain

‖Mψ‖e >
1

p + 1
lim

n→∞
|vn| log |vn|Dψ(vn) =

1
p + 1

B(ψ).

Finally, letting p approach 0, we deduce ‖Mψ‖e > B(ψ), completing the proof.

We now turn to the upper estimate.

THEOREM 8.3. If Mψ is bounded on Lw (or equivalently, Lw,0), then

‖Mψ‖e 6 A(ψ) + B(ψ).

Proof. Fix n ∈ N, define the operator Kn on Lw by

Kn f (v) =

{
f (v) if |v| 6 n,
f (vn) if |v| > n,

where f ∈Lw and vn is the ancestor of v of length n. In particular, Kn f ∈Lw,0 and

Kn f (o) = f (o).(8.3)

Furthermore, Kn f attains finitely many values, whose number does not exceed
the number of vertices in the closed ball centered at o of radius n. Observe that if
{gk} is a sequence in Lw with ‖gk‖w 6 1 for each k ∈ N, then, a = sup

k∈N
|gk(o)| 6 1

so that |Kngk(o)| 6 a. Furthermore, as a consequence of Proposition 2.1, for each
v ∈ T∗, and for each k ∈ N, we have |Kngk(v)| 6 1 + log n. Therefore, some
subsequence {Kngkj

}j∈N must converge to a function g on T attaining constant
values on the sectors determined by the vertices on the sphere centered at o of
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radius n. In particular, g ∈ Lw and since Kngkj
→ g uniformly on the closed ball

centered at o of radius n, and DKngkj
and Dg are 0 outside of the ball, we have

‖Kngkj
− g‖w = |gkj

(o)− g(o)|+ sup
|v|6n

|v|D(gkj
− g)(v)

6 |gkj
(o)− g(o)|+ n sup

|v|6n
[|gkj

(v)− g(v)|+ |gkj
(v−)− g(v−)|],

which converges to 0 as j→ ∞. Thus, Kn is compact.
Observe that the operator MψKn is also compact. Furthermore, for v ∈ T∗,

we have

|v|D[(I − Kn) f ](v) 6 |v|D f (v) 6 ‖ f ‖w.(8.4)

On the other hand, by Proposition 2.1, we see that

|[(I − Kn) f ](v)| 6 (1 + log |v|)‖ f ‖w.(8.5)

We now use (8.5) and (8.4) to estimate ‖ψ(I − Kn) f ‖w:

‖ψ(I − Kn) f ‖w = sup
|v|>n

|v||ψ(v)[(I − Kn) f ](v)− ψ(v−)[(I − Kn) f ](v−)|

6 sup
|v|>n
{|ψ(v−)||v|D[(I − Kn) f ](v) + |v|Dψ(v)|[(I − Kn) f ](v)|}

6 sup
|v|>n

|ψ(v−)||v|D[(I − Kn) f ](v)

+ sup
|v|>n

|v| log |v|Dψ(v)
|[(I − Kn) f ](v)|

1 + log |v|
1 + log |v|

log |v|

6 sup
|v|>n

|ψ(v−)|‖ f ‖w + sup
|v|>n

|v| log |v|Dψ(v)‖ f ‖w

(1 + log n
log n

)
.

Therefore, using this estimate and taking the limit as n→ ∞, we obtain

‖Mψ‖e6 lim sup
n→∞

‖Mψ−MψKn‖= lim sup
n→∞

sup
‖ f ‖w=1

‖ψ(I−Kn) f ‖w6A(ψ)+B(ψ),

completing the proof.

9. ISOMETRIES AND ISOMETRIC ZERO DIVISORS

In this section we show that, in analogy to the case of the multiplication
operators on the Lipschitz space of the tree [6], there are no nontrivial isometric
multiplication operators.

THEOREM 9.1. The only isometric multiplication operators on Lw or Lw,0 are
induced by the constant functions of modulus one.
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Proof. It is clear that the constant functions of modulus one are symbols
of isometric multiplication operators on Lw and Lw,0. Thus, assume Mψ is an
isometry on Lw or Lw,0 so that, in particular,

‖ψ‖w = ‖Mψ1‖w = 1.(9.1)

First we are going to show that ψ has constant modulus 1. Fix v ∈ T∗ and let
fv = 1

|v|+1 χv. Then ‖ fv‖w = 1 and so 1 = ‖ψ fv‖w = |ψ(v)|. On the other hand,

for g = 1
2 χo, ‖g‖w = 2|g(o)| = 1 and thus

1 = ‖ψg‖w = 2|ψ(o)g(o)| = |ψ(o)|.

Hence, |ψ(v)| = 1 for all v ∈ T. From (9.1) it follows that Dψ must be identically
0. Therefore, ψ is a constant function of modulus one.

Inspired by [1], we now define the notion of isometric zero divisor in a tree
setting.

DEFINITION 9.2. Let X be a Banach space of functions defined on a tree T
and let Z be a nonempty subset of T. A function ψ ∈ X is called a zero divisor
for Z if it vanishes precisely at the vertices in Z and g/ψ ∈ X for every g ∈ X
vanishing on Z. The function ψ is said to be an isometric zero divisor if ‖ g

ψ‖ = ‖g‖
for each g ∈ X which vanishes on Z.

Recalling the set P in Proposition 2.8, we now see that, under certain hy-
potheses on the space X, the isometric zero divisors induce isometric multiplica-
tion operators on X.

THEOREM 9.3. Let X be a functional Banach space on T containing P and satis-
fying the following properties:

(i) P is dense in X.
(ii) For each v ∈ T and each f ∈ X, pv f ∈ X.

If ψ ∈ X is an isometric zero divisor, then Mψ is an isometry on X.

Proof. Let ψ be an isometric zero divisor with zero set Z. Then, for each
p ∈ P , pψ ∈ X and vanishes at the vertices in Z, so

‖p‖ =
∥∥∥ pψ

ψ

∥∥∥ = ‖pψ‖.(9.2)

We wish to show that ψ f ∈ X and ‖ψ f ‖ = ‖ f ‖ for each f ∈ X. Fix f ∈ X
and using the density of P , let {pn} be a sequence in P such that ‖pn − f ‖ →
0 as n → ∞. Since P is closed under addition, using (9.2), for n, m ∈ N we
have ‖pnψ − pmψ‖ = ‖pn − pm‖, so {pnψ} is a Cauchy sequence in X. By the
completeness of X, there exists g ∈ X such that ‖pnψ− g‖ → 0 as n → ∞. Since
X is a functional Banach space, the point evaluation functionals are bounded,
hence pnψ → g and pn → f pointwise in T. Therefore g = ψ f , proving that
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ψ f ∈ X. Moreover, by the triangle inequality and (9.2), we have

|‖ψ f ‖ − ‖ f ‖| 6 |‖ψ f ‖ − ‖pnψ‖|+ |‖pnψ‖ − ‖pn‖|+ |‖pn‖ − ‖ f ‖|
6 ‖ψ f − pnψ‖+ ‖pn − f ‖ → 0,

as n→ ∞. Therefore, ‖ψ f ‖ = ‖ f ‖, as desired.

We now turn our attention to the existence of isometric zero divisors on the
spaces Lw and Lw,0.

COROLLARY 9.4. The space Lw,0 has no isometric zero divisors.

Proof. By Theorem 9.1, the only isometric multiplication operators are the
constants of modulus one, which do not vanish anywhere. Observe that for each
v ∈ T, recalling that pv is the characteristic function of the set consisting of v
and all its descendants, the set P is closed under multiplication by pv. Thus, by
Proposition 2.8, for each v ∈ T and each f ∈ Lw,0, the function pv f ∈ Lw,0.
Therefore, since Lw,0 is a functional Banach space, the space Lw,0 satisfies the
hypotheses of Theorem 9.3 and thus, no isometric zero divisors can exist.

THEOREM 9.5. The space Lw has no isometric zero-divisors.

Proof. By Corollary 9.4, it suffices to show that the isometric zero divisors of
Lw are in Lw,0.

Assume ψ is an isometric zero divisor of Lw. We begin by showing that ψ

is bounded. Fix w ∈ T∗ and define fw = 1
|w| pw. Then, fw ∈ P and for v ∈ T∗, we

have

|v|| fw(v)− fw(v−)| =
|v|
|w|χw(v) = χw(v),

so ‖ fw‖w = 1. Therefore, ‖ψ fw‖w = 1. Letting Dw be the set of descendants of w,
we have

‖ψ fw‖w = max
{
|ψ(w)|, sup

v∈Dw

|v|
|w| |ψ(v)− ψ(v−)|

}
> |ψ(w)|.

Hence, |ψ(w)| 6 1, proving the boundedness of ψ.
For |w| > 2, let us define

gw(v) =


0 if v = o,

1
|w| log |v| if 1 6 |v| < |w|,
1
|w| log |w| if |v| > |w|.

Since gw has finite support and by (2.6), the function χv is in P , we deduce that
gw ∈ P , so by (9.2), we obtain

‖ψgw‖w = ‖gw‖w = sup
26|v|6|w|

|v|
|w| (log |v| − log(|v| − 1)) 6

2 log 2
|w| .(9.3)
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On the other hand,

‖ψgw‖w > sup
26|v|6|w|

|v|
|w|

∣∣∣(ψ(v)− ψ(v−)) log |v|+ ψ(v−) log
|v|
|v| − 1

∣∣∣
> sup

26|v|6|w|

|v|
|w| |ψ(v)− ψ(v−)| log |v| − sup

26|v|6|w|

|v|
|w| |ψ(v

−)| log
|v|
|v| − 1

> sup
26|v|6|w|

|v|
|w| |ψ(v)− ψ(v−)| log |v| − 2 log 2

|w| ‖ψ‖∞.

Therefore, using (9.3), we get

sup
26|v|6|w|

|v|
|w| |ψ(v)− ψ(v−)| log |v| 6 2 log 2(1 + ‖ψ‖∞)

|w| .

Multiplying both sides by |w| and letting |w| → ∞, we obtain

sup
|v|>2
|v||ψ(v)− ψ(v−)| log |v| < ∞.

Hence lim
|v|→∞

|v||ψ(v)− ψ(v−)| = 0, proving that ψ ∈ Lw,0.
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