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ABSTRACT. Let y ≡ y(2d) = {yi}i∈Zn
+ ,|i|62d denote a real n-dimensional mul-

tisequence of degree 2d, y0 > 0. Let Ly : R2d[x1, . . . , xn] 7→ R denote the
Riesz functional, defined by Ly(∑|i|62d aixi) = ∑ aiyi, and let Md(y) denote
the corresponding moment matrix. Positivity of Ly plays a significant role
in the Truncated Moment Problem and in the Polynomial Optimization Prob-
lem, but concrete conditions for positivity are unknown in general. Md(y) is
flat if rankMd(y) = rankMd−1(y); it is known that if Md(y) is positive semi-
definite and flat, then y has a representing measure (and Ly is positive). Let
Fd := {y ≡ y(2d) : Md(y) � 0 is flat}. If y ∈ F d (the closure), then y does
not necessarily have a representing measure, but Ly is positive, so Md(y) � 0
and, moreover, rankMd(y) 6 dimRd−1[x1, . . . , xn]. We prove, conversely, that
these positivity and rank conditions for Md(y) are sufficient for membership
in F d in two basic cases: when n = 1, d > 1, and when n = d = 2.

KEYWORDS: Truncated moment sequence, Riesz functional, K-positivity, flat mo-
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1. INTRODUCTION

Let y ≡ y(2d) = {yi}i∈Zn
+ ,|i|62d denote a real n-dimensional multisequence

of degree 2d, y0 > 0, and let K ⊆ Rn be a closed set. The Truncated K-Moment
Problem (TKMP, cf. [7]) asks for conditions which insure that there exists a posi-
tive Borel measure µ on Rn, with support in K, such that

(1.1) yj =
∫

xjdµ (|j| 6 2d).

(Here, i ≡ (i1, . . . , in) ∈ Zn
+, |i| = i1 + · · · + in, x ≡ (x1, . . . , xn) ∈ Rn, and

xi = xi1
1 · · · x

in
n .) We refer to a measure µ as in (1.1) as a K-representing measure for

y. In the case K = Rn, we refer to (1.1) simply as the Truncated Moment Problem
(TMP) and to µ as a representing measure. As we discuss below, TKMP is closely
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related to the classical Polynomial Optimization Problem (cf. [14], [15], [16], [17])
which, for p ∈ P ≡ R[x1, . . . , xn], seeks to compute (or estimate)

p∗ := inf
x∈K

p(x).

Let Pm := {p ∈ P : degp 6 m}. We associate to y the Riesz functional Ly :
P2d 7→ R defined by Ly(∑|i|62d aixi) = ∑ aiyi. If y has a K-representing mea-
sure, then Ly is K-positive, i.e., p ∈ P2d, p|K > 0 ⇒ Ly(p) > 0; indeed, in this
case, Ly(p) =

∫
K

pdµ > 0. For K = Rn, we say simply that Ly is positive. For

K compact, a result of Tchakaloff [21] implies that if Ly is K-positive, then y has
a K-representing measure, but for K noncompact, this implication fails (see (1.2)
below). Nevertheless, the following result of [9] reveals the central role of K-
positivity in TKMP.

THEOREM 1.1. y ≡ y(2d) admits a K-representing measure if and only if y can be
extended to a sequence ỹ ≡ ỹ(2d+2) for which Lỹ is K-positive.

Further, Theorem 2.2 in [10] shows that Ly is K-positive if and only if y
is the limit of multisequences having K-representing measures. In this case, y
admits approximate K-representing measures, and, as we show in the proof of
Theorem 1.5, this is significant for the Polynomial Optimization Problem. Un-
fortunately, in general it is quite difficult to determine whether or not a given
sequence y is K-positive, even for K = Rn. In the present note we define a class
of sequences y, not necessarily admitting representing measures, for which posi-
tivity is obvious, and we study a possible concrete characterization of this class.

Following [5], we associate to y the moment matrix Md(y). For p ∈ Pd,
p = ∑

|i|6d
aixi, let p̂ ≡ (ai) denote the vector of coefficients of p with respect to the

basis for Pd consisting of the monomials in degree-lexicographic order. Let ρd =
dimPd. Then the moment matrix Md ≡ Md(y) is the ρd × ρd matrix defined by

〈Md(y) p̂, q̂〉 = Ly(pq) (p, q ∈ Pd).

If y has a representing measure µ, we sometimes denote Md(y) by Md[µ]; as noted
above, in this case, Ly is positive. Further, if Ly is positive, then Md(y) is positive
semidefinite (Md(y) � 0), since 〈Md(y) p̂, p̂〉 = Ly(p2) > 0 (p ∈ Pd). Neither of
the preceding implications is reversible; the simplest counterexample, illustrating
Ly positive, but with no representing measure, occurs with n = 1 and y given by

(1.2) y(4) = {a, a, a, a, b} 0 < a < b;

(cf. [4], Theorem 2.2 below). The existence of y such that Md � 0 but Ly is not
positive is established by Proposition 1.6 below. There is, however, a subclass of
positive moment matrices Md(y) for which it is easy to detect the existence of
representing measures (and hence positivity of Ly). Recall from [5] that Md(y) is
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flat if rankMd(y) = rankMd−1(y). The following result of [7] describes the role of
flat moment matrices in TMP.

THEOREM 1.2 (cf. [7]). y ≡ y(2d) has a representing measure if and only if y can
be extended to a sequence ỹ ≡ ỹ(2(d+k)) (for some k, 0 6 k 6 ρ2d − rankMd(y) + 1) for
which Md+k(ỹ) is positive semidefinite and flat. In particular, if Md(y) � 0 is flat, then
y admits a unique representing measure, which is rankMd(y)-atomic.

(The result in [7] is stated in terms of finitely atomic representing measures,
but in [1] it is proved that the existence of a representing measure implies the
existence of a finitely atomic representing measure.)

Let Fd := {y ≡ y(2d) : Md(y) � 0 is flat}, which we regard as a subset of
Rρ2d (equipped with the Euclidean norm). In view of the ease of detecting flat-
ness (by simply checking the positivity and rank conditions), we are motivated
to study F d, the closure of Fd in Rρ2d ; equivalently, we seek to characterize in
concrete terms the closure of {Md(y) : y ∈ Fd} relative to any of the (equivalent)
norms on the ρd × ρd matrices. Now suppose Md(y) = lim

k→∞
Md(y[k]) with each

Md(y[k]) positive and flat. Theorem 1.2 implies that for each k, y[k] has a repre-
senting measure, so Ly[k] is positive; since |Ly[k](p) − Ly(p)| 6 ‖y[k] − y‖∞‖ p̂‖1,
we see that Ly is positive. It follows that Md(y) � 0, and lower semicontinuity of
rank ([12], Proposition 1.12(i)) implies that

(1.3) rankMd(y) 6 lim inf
k→∞

rankMd(y[k]) = lim inf
k→∞

rankMd−1(y[k]) 6 ρd−1.

These considerations lead to the following question that we study in the sequel.

QUESTION 1.3. If Md(y) � 0 and rankMd(y) 6 ρd−1, does y belong to F d?

An affirmative answer to Question 1.3 would provide a concrete sufficient
condition, more general than flatness, for positivity of Ly.

Our main result provides a positive answer to Question 1.3 in two basic
cases.

THEOREM 1.4. Let n = 1 and d > 1, or let n = d = 2. If Md(y) � 0
and rankMd(y) 6 ρd−1, then y ∈ F d. In this case, there exist moment matrices
Md(y[k]) (k > 1) such that lim

k→∞
Md(y[k]) = Md(y) and for each k, rankMd(y[k]) =

rankMd−1(y[k]) = rankMd(y).

We note that for y satisfying the conditions of Theorem 1.4, although Ly is
positive, y does not necessarily have a representing measure; such is the case for
the sequence in (1.2).

We prove the univariate case of Theorem 1.4 in Section 3 and the bivariate
quartic case in Section 4. In an appendix (Section 5), we present an example
with n = 2, d = 3 which also provides positive evidence for Question 1.3, but
which displays behavior not present in Sections 3 and 4. Section 2 contains some
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background results concerning the structure of positive moment matrices. In the
remainder of this section we relate Question 1.3 to the polynomial optimization
problem in the case when K is semialgebraic; it is this connection which provided
the original motivation for this work.

For Q ≡ {q0, q1, . . . , qm} ⊆ P , with q0 = 1, consider the closed semialge-
braic set K ≡ KQ := {x ∈ Rn : qj(x) > 0, 1 6 j 6 m}. For p ∈ P , the optimization
problem entails estimating

(1.4) p∗ := inf
x∈KQ

p(x).

We recall the “moment relaxations" for (1.4) introduced by J.-B. Lasserre [14]. Set-
ting degqj = 2k j or 2k j − 1, degp = 2d or 2d− 1, let α = max{k1, . . . , km, d}. Fix
t > α, so that 2t > degp, degqj (1 6 j 6 m). For y ≡ y(2t) and 0 6 j 6 m, the local-

izing matrix M(qj) ≡ M
(qj)
t (y) is defined by 〈M(qj) f̂ , ĝ〉 = Ly(qj f g) ( f , g ∈ Pt−kj

)

(cf. [7]). Note that for j = 0, M(1) coincides with the moment matrix Mt(y) associ-
ated with y. We may now define the t-th Lasserre moment relaxation for (1.4) by

(1.5) pt := inf{Ly(p) : y ≡ y(2t), y0 = 1, M
(qj)
t (y) � 0 (0 6 j 6 m)}.

It is not difficult to verify that pt 6 p∗ and that for t′ > t, pt′ > pt; thus,
{pt} is convergent, and pmom ≡ lim

t→∞
pt 6 p∗. A result of Lasserre [14] (cf. The-

orem 6.8 of [17]) shows that pmom = p∗ if the quadratic module associated to
KQ is Archimedian (so that KQ is compact). In some cases of KQ there is even
finite convergence to p∗. This is the case if the algebraic variety associated to KQ is
finite [18] (cf. Theorem 6.5 of [17]), or if TKMP for KQ can always be solved via
a degree-bounded number of positive moment matrix extensions (without the
requirement for a flat extension in Theorem 1.2) (cf. Proposition 3.2 of [9]).

In the general case, for fixed t, the infimum in (1.5) is not necessarily at-
tained. Assuming that the infimum is attained, at some optimal sequence y ≡
y{t}, we are interested in criteria which imply that Ly(p) = p∗, so that we have
finite convergence of {ps}s>α to p∗ at stage s = t. A basic result of [11] shows that
this is the case if rankMt(y) = rankMt−α(y) (cf. Theorem 6.18 in [17]). Indeed, in
this case, Corollary 1.4 in [7] implies that y has a K-representing measure, which
always implies convergence at stage t; to see this last point, note that if µ is a
K-representing measure for y ≡ y{t}, then

p∗ = p∗y0 = p∗
∫
K

1dµ 6
∫
K

pdµ = Ly(p) = pt 6 p∗.

The following result (proved in Section 5) shows that whether or not an
optimizing sequence y ≡ y{t} at stage t has a K-representing measure, if the
functional Ly is merely K-positive, then we do have convergence of {ps} to p∗ at
stage t.
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THEOREM 1.5. Suppose pt = Ly(p) for some sequence y ≡ y(2t) for which y0 =

1 and M(qi)(y) � 0 (0 6 i 6 m). If Ly is K-positive, then pt = p∗.

In view of this result, Question 1.3 is motivated by the desire to have a
concrete condition (more general than flatness) for Ly to be K-positive, particularly
if y does not have (or is not known to have) a representing measure.

Note that Question 1.3 also has an affirmative answer when n > 1, d = 1;
indeed, in this case, since ρ0 = 1, if M1(y) � 0 and rankM1(y) 6 ρ0, then clearly
M1(y) is flat. This observation, and the results of Theorem 1.4, contribute positive
evidence for Question 1.3, but they have no new impact on positivity for Ly[t]

in the optimization problem. This is because, in these cases, positivity of Ly(2d)

can always be derived from the positivity of Md(y) via sums of squares, as the
following result shows.

PROPOSITION 1.6. The following are equivalent:
(i) Md(y) � 0⇒ Ly is positive;

(ii) each polynomial in P2d that is nonnegative on Rn can be expressed as a sum of
squares of polynomials;

(iii) n > 1 and d = 1, or n = 1 and d > 1, or n = d = 2.

Proposition 1.6 (ii)⇔ (iii) is a well-known result of Hilbert (cf. [19]), and (i)
⇔ (ii) may be known, but we could not find a reference, so we include a proof
in Section 5. In view of Proposition 1.6, the first case where Question 1.3 could
impact the optimization problem via Theorem 1.5 is n = 2, d = 3. For this case, in
Example 5.2 we illustrate a sequence y ≡ y(6) for which positivity of Ly cannot be
derived from representing measures or sums of squares, but instead is established
through membership in F 3.

2. POSITIVE MOMENT MATRICES

In this section we recall some results concerning the structure of positive
moment matrices. We begin, more generally, with a real symmetric block matrix
of the form

(2.1) M =

(
A B
BT C

)
.

It is well known that M is positive semidefinite if and only if A � 0 and B = AW
for some matrix W satisfying C �WT AW (= BTW), or, equivalently, C � BT A+B,
where A+ denotes the Moore–Penrose pseudoinverse of A (cf. [13]). In this case,
let ∆ ≡ C −WT AW denote the Schur complement, so that rankM = rankA +
rank∆. We have rankM = rankA, and we say that M is a flat extension of A, if and
only if C = WT AW. Flat extensions are uniquely determined by A and B, for if
there are matrices W and V such that AW = B = AV, then WT AW − VT AV =
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WT AV − VT AV = (AW − AV)TV = 0. Given A � 0 and B = AW as above, if
we set C[ = WT AW and

(2.2) M[ =

(
A B
BT C[

)
,

then clearly M[ is a positive flat extension of A.
Let us denote the moment matrix Md ≡ Md(y) as

(2.3) Md(y) =
(

Md−1(y) B(d)
B(d)T C(d)

)
.

Following [5] say that Md is flat if rankMd = rankMd−1. If, additionally, Md is
positive, then the preceding remarks show that Md is a flat extension of Md−1.
Theorem 2.19 of [7] implies that in this case, Md has unique successive flat (posi-
tive) moment matrix extensions Md+1, Md+2, . . ., and that Md has a unique rep-
resenting measure, which is rankMd-atomic. In the sequel, if µ is a positive Borel
measure with convergent moments y ≡ y(2d), we sometimes denote Md(y) by
Md[µ]; moreover, for a moment matrix Md(y), we sometimes refer to a represent-
ing measure for y as a representing measure for Md(y).

Let n = 2 and suppose M2(y) � 0, so that B(2) = M1(y)W for some matrix
W (as above). Since n = 2, C(2) is a Hankel matrix. In Section 4 it will be im-
portant to know that in the cases that we consider, C[ ≡ WTM1W is also Hankel.
Here we note that in general this is not the case. Indeed, for the positive moment
matrix M2(y) defined by

M2(y) =



1 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
1 0 0 1 0 1

 ,

a calculation shows that

C[ =

 1 0 1
0 0 0
1 0 1

 .

Assuming that C[ is Hankel, in Section 4 it will also be an issue as to whether the
Schur complement ∆ ≡ C(2)− C[ admits a representing measure. We note here
that in general this may fail. Consider

M2(y) =



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 4 4 4
1 1 1 4 4 4
1 1 1 4 4 5

 .
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We see that M2 � 0, and

∆ =

 1 1 1
1 1 1
1 1 2

 ,

so Theorem 2.2(iii) (just below) implies that the univariate moment sequence as-
sociated with ∆ does not have a representing measure.

In the sequel we denote the successive columns of Md(y) by Xi (|i| 6 d) in
degree-lexicographic order. Let p ∈ Pd, p = ∑ aixi. We define a corresponding
element of ColMd(y), the column space of Md(y), by p(X) = ∑ aiXi. Thus, each
column dependence relation in Md(y) can be expressed as p(X) = 0 for some p ∈
Pd, p 6= 0. Following [5], we say that Md(y) is recursively generated if p, q, pq ∈ Pd,
p(X) = 0 ⇒ (pq)(X) = 0. Positivity and recursiveness are necessary conditions
for y to have a representing measure [5], and for n = 1 these conditions are also
sufficient [4]. In the sequel we will repeatedly employ the following result, often
without further reference.

THEOREM 2.1 (Structure Theorem [5]). If Md(y) is positive semidefinite, then
the following properties hold:

(i) Md−1(y) is recursively generated.
(ii) If p ∈ Pd−1 and p(X) = 0 in ColMd−1, then p(X) = 0 in ColMd.

(iii) If p ∈ Pd−1 satisfies p(X) = 0 in ColMd and q ∈ Pd satisfies degpq = d, then
(pq)(X) = 0 in Col

(
Md−1(y) B(d)

)
. Further, if Md is flat, then (pq)(X) = 0 in

ColMd.

For n = 1, with y(2d) = {y0, . . . , y2d}, Md(y) is a Hankel matrix, which we
henceforth denote by Hd ≡ Hd(y). The structure and existence of representing
measures for Hd � 0 is described by the following result.

THEOREM 2.2 ([4], Theorem 2.4, Theorem 3.9). Suppose Hd ≡ Hd(y) is pos-
itive semidefinite, with y0 > 0. If Hd is positive definite, then y has a d + 1-atomic
representing measure. If Hd is singular, let r := min{s : 1 6 s 6 d : Hs is singular};
let v = (yr, . . . , y2r−1)

T, and set c ≡ (c0, . . . , cr−1)
T = M−1

r−1v. Then
(a) yj = c0yj−r + · · ·+ cr−1yj−1 (r 6 j 6 2d− 1); and
(b) y2d > c0y2d−r + · · ·+ cr−1y2d−1.

Further, for Hd positive and singular, the following are equivalent:
(i) y has a representing measure;

(ii) equality holds in (b) (above);
(iii) Hd is recursively generated;
(iv) rankHd = r;
(v) Hd is a flat extension of Hr−1;

(vi) y has an r-atomic representing measure.
For Hd positive and singular, there is strict inequality in (b) (above) if and only if
rankHd = r + 1.
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The conditions of Theorem 2.2 for representing measures when n = 1 do
not extend to several variables. For the bivariate quartic case that we consider
in Section 4, y ≡ y(4) has a representing measure if and only if M2(y) is positive
semidefinite and recursively generated, and the algebraic variety V associated
to y satisfies rankM2(y) 6 cardV . The singular case of this result appears in
[6], and generalizations to bivariate truncated K-moment problems with K a qua-
dratic curve appear in [9]. The nonsingular case, where the conditions reduce to
M2(y) � 0, appears in [10].

3. THE CLOSURE OF THE POSITIVE FLAT HANKEL MATRICES

In this section we prove Theorem 1.4 for the case n = 1.

THEOREM 3.1. If Hd(y) is positive semidefinite and singular, with y0 > 0, then
Hd(y) ∈ F d. If ρ ≡ rankHd(y) 6 d, then there exist positive semidefinite Han-
kel matrices Hd(y[k]) (k > 1) such that rankHd(y[k]) = rankHd−1(y[k]) = ρ and
lim
k→∞

Hd(y[k]) = Hd(y).

Proof. We may assume y0 = 1 and write Hd(y) in the block form

Hd(y) =
[

Hd−1(y) b(y)
b(y)T y2d

]
.

Of course, we have Hd−1(y) � 0. If Hd−1(y) � 0 or y2d = b(y)THd−1(y)+b(y),
then Hd(y) is already flat, and we are done. In view of Theorem 2.2, we need only
consider the case when

r ≡ rank Hd−1(y) = ρ− 1 < d, y2d > ŷ2d := b(y)THd−1(y)+b(y).

Define a new moment vector ŷ = (y0, y1, . . . , y2d−1, ŷ2d). Then

Hd(y) = Hd(ŷ) + ηed+1eT
d+1, η := y2d − ŷ2d > 0.

(In the above equation, ed+1 denotes the (d + 1)-st unit column vector.) Since
Hd(ŷ) is a flat extension of Hd−1(y), Theorem 2.2(vi) implies that the moment
sequence ŷ has a rank Hd(ŷ)-atomic representing measure, i.e., there exist distinct
real numbers u1, . . . , ur such that

Hd(ŷ) = c1[u1]d[u1]
T
d + · · ·+ cr[ur]d[ur]

T
d , c1 + · · ·+ cr = 1, c1, . . . , cr > 0,

where
[u]d :=

[
1 u u2 · · · ud]T .

For k > 1, define the moment vector y[k] by

y[k] =
1

1 + ηk−2d (ŷ + η · k−2d(1, k, k2, . . . , k2d)).
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Clearly, we have

y[k]0 = 1, lim
k→∞

y[k] = y, Hd(y[k]) =
1

1 + ηk−2d Hd(ŷ) +
ηk−2d

1 + ηk−2d [k]d[k]
T
d .

Note that

Hd(y[k]) =
1

1 + ηk−2d {c1[u1]d[u1]
T
d + · · ·+ cr[ur]d[ur]

T
d + ηk−2d[k]d[k]Td},

so each Hd(y[k]) has rank at most ρ = r + 1.
To complete the proof, we will show that Hd(y[k]) is flat when

(3.1) k > max{u1, . . . , ur}.
Let V be the following Vandermonde matrix,

V =
[
[u1]d−1 · · · [ur]d−1 [k]d−1

]
,

let D denote the diagonal matrix

diag
(√

c1, . . . ,
√

cr,
√

η

kd

)
,

and let P ≡ Pk := VD, so that

(3.2) Hd−1(y[k]) =
1

1 + ηk−2d PPT.

Now V has r + 1 columns and d rows, and r + 1 6 d; thus, when u1, . . . , ur, k
are distinct, V must have full column rank. From (3.2), we see that rankHd−1(y[k])
= rankPPT = rankP = rankV = r + 1 > rankHd(y[k]) > rankHd−1(y[k]). Thus,
rankHd(y[k]) = rankHd−1(y[k]) = r + 1 when (3.1) holds, which completes the
proof.

Theorem 3.1 provides flat approximants H[k]
d for Hd of minimal rank con-

sistent with (1.3), namely, rankH[k]
d = rankHd. It is also possible to approximate

a singular positive Hankel matrix Hd(y) with flat positive Hankel matrices of
maximal rank d. This is the content of the following result.

THEOREM 3.2. If Hd(y) is positive semidefinite and singular, then there exist pos-
itive flat Hankel matrices Hd(y[k]) (k > 1) such that rankHd(y[k]) = rankHd−1(y[k]) =
d and lim

k→∞
Hd(y[k]) = Hd(y).

Proof. The proof is almost the same as for Theorem 3.1; we follow the same
approach and use the same notation. Assuming y0 = 1, we define y[k] as

Hd(y[k]) =
1

1 + ηk−2d

{ r

∑
i=1

ci[ui]d[ui]
T
d +

η

(d− r)k2d

d−r−1

∑
j=0

[k + j]d[k + j]Td
}

.

Clearly, y[k]0 = 1, lim
k→∞

Hd(y[k]) = Hd(y), and each Hd(y[k]) has rank at most d. As

in the preceding proof, we can show that when (3.1) holds (so that u1, . . . , ur, k, k+
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1, . . . , k + d− r− 1 are distinct), then Hd−1(y[k]) has rank d, so that Hd(y[k]) is flat,
with rank d.

4. THE CLOSURE OF THE POSITIVE FLAT BIVARIATE QUARTIC MOMENT MATRICES

In this section we prove Theorem 1.4 for the case n = d = 2. Let J denote a
real symmetric positive definite matrix. If J is at least 2× 2, then J is of the form

(4.1) J =
(

A b
bT γ

)
,

where A � 0 (positive definite), b is a column vector, and γ > bT A−1b. A calcu-
lation shows that

(4.2) J−1 =

(
P v
vt ξ

)
,

where

(4.3) P = A−1(1 + ξbbT A−1), v = −ξ A−1b, ξ =
1

γ− bT A−1b
.

Let r = rank(A) and [k] ≡ [k]r =
(

1 k k2 . . . kr )T, and for fixed
q > 2r and τ > 0, let

(4.4) L ≡ L(k, r, q, τ) =
τ

kq [k][k]
T = τ


1
kq . . . 1

kq−r

... . . .
...

1
kq−r . . . 1

kq−2r

 .

Note that [k][k]T is the rank-one moment matrix Hr[δk] for the atomic measure δk.
The following result will be used in the sequel to establish that certain small per-
turbations of Hankel matrices are flat; in the Appendix we will sketch an alternate
proof of Theorem 3.1 based on this result.

LEMMA 4.1. Suppose H =

(
A b
bT c

)
is an (r + 1) × (r + 1) positive semi-

definite real matrix with rankH = rankA = r, i.e., A � 0 and c = bT A−1b.
For fixed q > 2r and τ > 0, let L ≡ L(k, r, q, τ). Then for k sufficiently large,
rank(H + L) = r + 1, i.e., H + L � 0.

Proof. Let J ≡ Jk =

(
A b
bT c + τ

kq−2r

)
; thus J � 0, and from (4.2)–(4.3)

we can write J−1 in the form J−1 =

(
P v
vt ξ

)
, where P = A−1(1 + ξbbT A−1),

v = −ξ A−1b, and ξ = kq−2r

τ . It follows that there is a constant C (independent of
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k, depending only on τ, A, and (b) such that ‖J−1‖ 6 Ckq−2r. (Here ‖ · ‖ denotes
the standard 2-norm.) Now let

X ≡ Xk = τ


1
kq . . . 1

kq−r+1
1

kq−r

... . . .
...

...
1

kq−r+1 . . . 1
kq−2r+2

1
kq−2r+1

1
kq−r . . . 1

kq−2r+1 0

 .

For A ≡ (aij)(r+1)×(r+1), let ‖A‖∞ = max |aij|, so that ‖A‖ 6 (r + 1)‖A‖∞. Thus,

‖X‖ 6 (r + 1)‖X‖∞ = (r+1)τ
kq−2r+1 . For k > τC(r + 1), we have ‖X‖ 6 (r+1)τ

kq−2r+1 <
1

Ckq−2r 6 1
‖J−1‖ , whence ‖X‖ < 1

‖J−1‖ . Since the operator norm is a Banach algebra
norm, it now follows that J + X is invertible (cf. Chapter 12 (Problem K) in [3]).
Thus, H + L (= J + X) is invertible, i.e., rank(H + L) = r + 1.

Now we are ready to prove Theorem 1.4 for n = d = 2, which we restate for
ease of reference.

THEOREM 4.2. Let n = 2 and suppose y ≡ y(4) satisfies y00 > 0. Then
M ≡ M2(y) ∈ F 2 if and only if M � 0 and rankM 6 3; in this case, there ex-
ist quartic sequences y[k] (k > 1) such that lim

k→∞
M2(y[k]) = M and rankM2(y[k]) =

rankM1(y[k]) = rankM.

Proof. Since the necessity of the positivity and rank conditions is clear, we
focus on sufficiency. We normalize y so that y00 = 1. If M is flat, then we are done.
Since ρ ≡ rankM 6 3, we may assume that r ≡ rankM1(y) satisfies 1 6 r 6 2
and r < ρ. Write M as

(4.5) M =

(
M1(y) B(2)
B(2)T C(2)

)
.

Since M � 0, we have RanB(2) ⊆ RanM1, so there is a matrix W such that

(4.6) B(2) = M1W.

Positivity of M1 implies that

(4.7) C[ := B(2)TW = WTM1W

is independent of W satisfying (4.6), and we define M[ by

M[ ≡
(

M1(y) B(2)
B(2)T C[

)
.

In the sequel we will repeatedly use the fact that

(4.8) rankM[ = rankM1(y),
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often without further reference (cf. Section 2). We denote C[ by

C[ ≡

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 .

LEMMA 4.3. The matrix C[ is a Hankel matrix, and so M[ is a moment matrix.

Proof. Since C[ � 0, we have c21 = c12, c31 = c13, and c32 = c23, so it suffices
to show that c31 = c22.

First, consider the case when r = 1, so there are column dependence rela-
tions in M1(y) of the form

(4.9) X = α1, Y = β1.

Since M � 0, Theorem 2.1 implies that these relations extend to the columns of
M and that in the columns of [M1 B(2)] we have

X2 = αX,(4.10)

XY = αY = βX,(4.11)

Y2 = βY.(4.12)

By the definition of M[, (4.9)–(4.12) also hold in ColM[, so M[ assumes the form

(4.13) M[ =



1 α β α2 αβ β2

α α2 αβ α3 α2β αβ2

β αβ β2 α2β αβ2 β3

α2 α3 α2β c11 c12 c13
αβ α2β αβ2 c21 c22 c23
β2 αβ2 β3 c31 c32 c33

 .

From (4.10), we have c31 = α(αβ2) and from (4.11), c22 = β(α2β), so c31 = c22, as
claimed.

Next, consider the case when r = 2, {1, X} is a basis for ColM1(y), and

(4.14) Y = α1 + βX.

Positivity for M implies that the last relation holds in ColM and that in
Col[M1 B(2)],

(4.15) XY = αX + βX2.

Further, since RanB(2) ⊆ RanM1, there is a dependence relation in Col[M1 B(2)]
of the form

(4.16) X2 = r1 + sX.

Now, (4.14)–(4.16) must also hold in ColM[, so we have c31 = ry02 + sy12 (from
(4.16)) and, from (4.15)–(4.16), c22 = αy21 + βc21 = α(ry01 + sy11) + β(ry11 + sy21)
= r(αy01 + βy11) + s(αy11 + βy21) = ry02 + sy12 = c31.
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Finally, consider the case when r = 2, X = α1, and {1, Y} is a basis for
ColM1. Then, as above, in M[ we must have column relations X = α1, X2 = αX,
and XY = αY, and these relations imply c31 = αy12 = c22.

Now C[ is a positive Hankel matrix and M[ is a positive flat moment ma-
trix, whose moment sequence we denote by y[. Further, ∆ ≡ C(2) − C[ is also
a positive Hankel matrix and if σ := rank∆, then we have ρ ≡ rankM = r + σ.
Since ρ 6 3 and we may assume that M is not flat, then we have 1 6 r 6 2 and
1 6 σ 6 2. We denote ∆ by

∆ ≡

 u v w
v w f
w f g


and we define a block matrix (compatible in block sizes with (4.5)) by

M∆ ≡
(

0 0
0 ∆

)
,

so that M2(y) = M[ + M∆.
Case I. u = 0. Since ∆ � 0, it then follows that v = w = 0, so then f = 0 as

well, with g > 0. In this case, let ỹ[k] denote the moment sequence of the atomic
measure

µ[k] :=
g
k8 δ(k,k2),

and let

(4.17) y[k] := y[ + ỹ[k],

so that

(4.18) M[k]
2 ≡ M2(y[k]) = M[ + M2[µ

[k]].

Clearly, lim
k→∞

ỹ[k]ij = 0 for (i, j) 6= (0, 4), and ỹ[k]04 = g, so lim
k→∞

M[k]
2 = M. To show

that M[k]
2 is flat, we consider several cases.

Subcase I(a). In ColM1(y) there is a relation X = α1. So M1(y) is of the form

(4.19) M1(y) =

 1 α β
α α2 αβ
β αβ γ

 ,

with γ > β2. Calculations show that

det[M[k]
1 ]2×2 =

g(k− α)2

k8 , and(4.20)

detM[k]
1 =

g(k− α)2(γ− β2)

k8 .(4.21)



270 LAWRENCE FIALKOW AND JIAWANG NIE

If rankM1(y) = 1 (equivalently, γ = β2), then (4.20)–(4.21) imply rankM[k]
1 = 2

(for k > α), so, using (4.8) and (4.18),

2 = rankM[k]
1 6 rankM[k]

2 6 rankM[ + rankM2[δ(k,k2)] = 2,

whence M[k]
2 is flat.

Next, if rankM1(y) = 2, with column basis {1, Y} (equivalently, γ > β2),
then (4.21) implies that rankM[k]

1 = 3 for k > α, whence

(4.22) 3= rankM[k]
1 6rankM[k]

2 6rankM[+rankM2[δ(k,k2)]= rankM1(y)+1=3,

so again M[k]
2 is flat.

Subcase I(b). rankM1(y) = 2 and {1, X} is a column basis for ColM1(y). So
H ≡ M1(y) is a flat extension of [M1(y)]2×2. Since

M1[µ
[k]] = g


1
k8

1
k7

1
k6

1
k7

1
k6

1
k5

1
k6

1
k5

1
k4

 ,

it is of the form L ≡ L(k, 2, 8, g) (cf. (4.4)). Lemma 4.1 thus implies that M[k]
1 ≡

H + L has rank 3, so it follows exactly as in (4.22) that M[k]
2 is flat.

Case II. u > 0 and ∆ admits a representing measure. In this case, from Theo-
rem 2.2(vi), ∆ admits a σ-atomic representing measure, either of the form

(4.23) uδv/u

or of the form

(4.24) ξδx1 + τδx2 (ξ + τ = u).

Corresponding to (4.23), define a bivariate measure µ[k] by

(4.25) µ[k] :=
u
k4 δ(k,(v/u)k),

and corresponding to (4.24) define

(4.26) µ[k] :=
ξ

k4 δ(k,kx1)
+

τ

k4 δ(k,kx2)
.

It is straightforward to check that in both cases, the moments for µ[k] of degree
6 3 converge to 0 as k → ∞ and that the degree 4 moments coincide with those
of M∆. Note also that in both cases M1[µ

[k]] is of the form

(4.27) M1[µ
[k]] =

 u
k4

u
k3

v
k3

u
k3

u
k2

v
k2

v
k3

v
k2

w
k2

 .
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In the sequel, we denote M1(y) by

(4.28) M1(y) ≡

 1 a b
a c d
b d e

 .

A calculation now shows that D(k) := −k6det(M1(y) + M1[µ
[k]]) is a poly-

nomial in k of degree 6, for which the coefficients of k2 and k4 are equal, respec-
tively, to

κ2 ≡ (d2 − ce)u + v2 − uw, and(4.29)

κ4 ≡ −((c− a2)w + (e− b2)u + 2v(ab− d)).(4.30)

We will refer to (4.29) and (4.30) in the sequel. We now consider four subcases
based on the values of r ≡ rankM1(y) and σ ≡ rank∆.

Subcase II(1). r = 1, σ = 1. Since r = 1, we have

(4.31) c = a2, d = ab, ce = d2, e = b2.

Since σ = 1, we have

(4.32) w =
v2

u
, f =

v3

u2 , g =
v4

u3 .

Let ỹ[k] denote the moment sequence of the atomic measure µ[k] := u
k4 δ(k,(v/u)k),

and define y[k] and M[k] using (4.17) and (4.18), i.e., y[k] := y[ + ỹ[k] and M[k]
2 ≡

M2(y[k]) = M[ + M2(ỹ[k]). As noted above, the moments of degree 6 3 for µ[k]

converge to 0 as k → ∞ and the moments of degree 4 coincide with the degree
4 moments in M∆. It follows that lim

x→∞
M[k]

2 = M. Further, a calculation using

(4.27)–(4.28) now shows that

det[M[k]
1 ]2×2 =

u(k− a)2

k4 .

Thus, for k > α,

2 6 rankM[k]
1 6 rankM[k]

2 6 rankM[ + rankM2(ỹ[k]) = r + 1 = 2,

so M[k]
2 is flat.
Subcase II(2). r = 1, σ = 2. As in the previous case, ce = d2, but in

this case, since σ = 2 and ∆ has a representing measure, we have uw − v2 > 0
(cf. Theorem 2.2). Since σ = 2, we have a representing measure for ∆ of the form
ξδx1 + τδx2 (where x1 6= x2, ξ, τ > 0, ξ + τ = u), and, following as in (4.26), we
define

µ[k] :=
ξ

k4 δ(k,kx1)
+

τ

k4 δ(k,kx2)
.

As in the previous case, the low order moments of µ[k] converge to 0 and the
degree 4 moments coincide with those of M∆. Thus, defining y[k] and M[k] as
above (using (4.17) and (4.18)), we have lim

x→∞
M[k]

2 = M. Further, M1[µ
[k]] has the
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same form as in (4.27), and since ce = d2, (4.29) shows that κ2 = v2 − uw > 0. It
follows that for all sufficiently large k, D(k) 6= 0, so

(4.33) 3 = rankM[k]
1 6 rankM[k]

2 6 rankM[ + rankM2[µ
[k]] 6 3,

whence M2(y[k]) is flat.
Subcase II(3). r = 2, σ = 1, {1, X} is dependent in ColM1(y), and {1, Y} is

independent. Since σ = 1, we have wu = v2. We define µ[k], with moment
sequence that we denote by ỹ[k], as in (4.25), and we define y[k] and M[k]

2 using

(4.17) and (4.18). Exactly as above, lim
x→∞

M[k]
2 = M, so it remains to show that M[k]

2

is flat. If ce− d2 > 0, then since wu = v2, using (4.29) we see that κ2 = −(ce−
d2)u < 0, and it follows as in (4.33) that rankM[k]

1 = rankM[k]
2 = rankM = 3.

Next, suppose ce− d2 = 0. Since {1, X} is dependent and r = 2, it follows that
X = 0, whence a = c = d = 0 and e − b2 > 0. Now (4.30) shows that κ4 =

−(e− b2)u2 < 0, so it follows as above (from (4.33)) that rankM[k]
1 = rankM[k]

2 =
rankM = 3.

Subcase II(4). r = 2, σ = 1, and {1, X} is a basis for ColM1(y). If ce > d2

(equivalently, {X, Y} is independent), we may proceed as in Subcase II(3) (using
wu = v2 and (4.29)) to see that κ2 < 0 and to thereby conclude from (4.33) that
M[k]

2 is flat, with rankM[k]
2 = rankM = 3. Thus, we may assume that ce = d2.

Since σ = 1, the relations of (4.32) hold, particularly wu = v2, whence κ2 ≡
(d2 − ce)u + v2 − uw = 0. Let us turn our attention to κ4 (cf. (4.30)). Of course, if
κ4 6= 0, then, as above, for k sufficiently large, we have D(k) 6= 0, whence (4.33)
implies that M[k]

2 is flat (with rank 3). Since ce = d2 and X 6= 0, positivity implies
that in ColM we have a dependence relation of the form Y = αX, whence

(4.34) b = αa, d = αc, e = α2c.

A calculation now shows that κ4 = 0 if and only if v = αu. In this case, since
σ = 1, it then follows that w = α2u, f = α3u, g = α4u. A further calculation
shows that in this case, D(k) ≡ 0, so rankM[k]

1 < 3; since lim
x→∞

M[k]
2 = M, we have

rankM[k]
2 > rankM = 3 (for large k), so we conclude that M[k]

2 is not flat. To rectify
this, if α 6= 0 we redefine µ[k] as

µ[k] :=
u
k4 δ(k,α(k+(1/k)))

and set M[k]
2 := M[ + M2[µ

[k]]. It follows readily that lim
x→∞

M2[µ
[k]] = M∆, so

lim
x→∞

M[k]
2 = M. Since {1, X} is a basis, c > a2; further, detM[k]

1 = (c−a2)α2u
k6 > 0,

so we conclude as in (4.33) that 3 = rankM[k]
1 = rankM[k]

2 = rankM. In the case
when α = 0, we redefine µ[k] as

µ[k] :=
u
k4 δ(k,(1/k)).
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Setting M[k]
2 := M[ + M2[µ

[k]], it follows that lim
x→∞

M[k]
2 = M, and since detM[k]

1 =

(c−a)2u
k6 > 0, we see that rankM[k]

1 = rankM[k]
2 = rankM = 3.

Case III. u > 0 and ∆ admits no representing measure. This occurs precisely
when ∆ is of the form

∆ ≡

 u v v2

u
v v2

u
v3

u2
v2

u
v3

u2 g

 ,

where g > v4

u3 (cf. Theorem 2.2). Since rank∆ = 2, we have r = 1, so c = a2,
d = ab, e = b2. We define

M[k]
2 := M[ + M2

[ u
k4 δ(k,(v/u)k)

]
+ M2

[ s
k4 δ(0,k)

]
,

where s = g− v4

u3 . It follows that lim
x→∞

M[k]
2 = M. Moreover, a calculation shows

that

detM[k]
1 =

s(au + bu− ku− av)2

k6u
,

and since u > 0, it follows that for large k we have

3= rankM[k]
1 6rankM[k]

2 6rankM[+rankM2

[ u
k4 δ(k, v

u k)

]
+rankM2

[ s
k4 δ(0,k)

]
=3,

whence M[k]
2 is flat.

5. APPENDIX

In this section we present the proofs of Theorem 1.5 and Proposition 1.6, an
alternate proof of Theorem 3.1 based on Lemma 4.1, and two examples concern-
ing Question 1.3 in the case n = 2, d = 3.

Proof of Theorem 1.5. Theorem 2.2 of [10] shows that Ly is K-positive if and
only if y is in the closure of the multisequences having K-representing measures.
Thus, for ε > 0, there exists a multisequence yε ≡ y(2t)

ε , having a K-representing
measure µε, such that

1− ε < (yε)0 < 1 + ε.

Since |Ly(p)− Lyε(p)| 6 ‖y− yε‖1‖ p̂‖∞, we may further assume that

Ly(p)− ε < Lyε(p) < Ly(p) + ε.

Consider first the case when p∗ > 0, and let ε > 0. Now pt = Ly(p) > Lyε(p)−
ε =

∫
pdµε − ε > p∗(yε)0 − ε > p∗(1− ε)− ε = p∗ − ε(p∗ + 1). Thus, it follows

that pt > p∗, as desired. In case p∗ < 0, we have pt = Ly(p) > Lyε(p) − ε =
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pdµε − ε > p∗(yε)0 − ε > p∗(1 + ε)− ε = p∗ + ε(p∗ − 1), whence pt > p∗, and

the result again follows.

Proof of Proposition 1.6. The equivalence of (ii) and (iii) is Hilbert’s theorem
on sums of squares (cf. [19], [20]). Suppose (ii) holds and that Md(y) � 0. To
show that Ly is positive, suppose p ∈ P2d satisfies p|Rn > 0. Then p = ∑ p2

i
for certain pi ∈ Pd, whence Ly(p) = ∑〈Md(y) p̂i, p̂i〉 > 0; thus (ii) implies (i).
Conversely, suppose there is a polynomial p ∈ P2d such that p|Rn > 0, but p is
not in the convex cone Σ2 in P2d consisting of sums of squares. Corollary 3.50
in [17] shows that Σ2 is closed in P2d, so it follows from the Separation Theorem
(cf. Corollary 34.2 in [2]) that there is a linear functional L : P2d 7→ R such that
L|Σ2 > 0 and L(p) < 0. If y ≡ y(2d) is the moment sequence of L, i.e., yi = L(xi)
for |i| 6 2d, then clearly Md(y) � 0 and Ly = L, so Ly is not positive.

Alternate proof of Theorem 3.1. In the notation of the proof of Theorem 3.1, it
suffices to show that rankHd−1(y[k]) = r + 1. We apply Lemma 4.1 with H ≡
Hr(y) and M ≡ Hr−1(y). From Theorem 2.2, M � 0 and rankH = rankM =

r. Let q = 2d and set L ≡ L(k, r, q, η) = η
kq [k]r[k]Tr , so that Hr(y[k]) = H + L.

Lemma 4.1 implies that for k sufficiently large, rank(H + L) = r+ 1. Thus, r+ 1 =

rankHr(y[k]) 6 rankHd−1(y[k]) 6 rankHd(y[k]) 6 r + 1, so the result follows.

Recall from Section 4 that if M2(y) satisfies the hypothesis of Theorem 4.1,
then the Schur complement ∆ is Hankel, and this forms the basis for the proof. We
next present an example concerning the case n = 2, d = 3, in which the positivity
and rank conditions are satisfied, but ∆ is not Hankel.

EXAMPLE 5.1. Consider M ≡ M3(y) of the form

M =



1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 2 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
0 1 0 0 0 0 1 0 2 0
0 0 2 0 0 0 0 2 0 4


.

M is positive semidefinite, with column relations X2 = 1, X3 = X, X2Y = Y, and
Y3 = 2Y. Thus, rankM = 6, so M satisfies the positivity and rank conditions of
Question 1.3. It is easy to check that by propagating the column relations forward,
i.e., by defining X4 := X2, X3Y := XY, X2Y2 := Y2, XY3 := 2XY, Y4 := 2Y2, we
thereby construct a moment matrix M4(ỹ) that is a flat extension of M, so y has a
6-atomic representing measure by Theorem 1.2. Is M ∈ F 3? If we try to use the
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method of Section 4, we must verify that the Schur complement ∆ is Hankel. We
see that B(3) = M2(y)W where

W =



0 0 0 0
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

Thus, we see

C[ ≡WTM2W =


1 0 1 0
0 1 0 2
1 0 1 0
0 2 0 4

 , ∆ ≡ C(3)− C[ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

Despite the fact that the Schur complement is not Hankel, we can neverthe-
less show that M ∈ F 3. Indeed, let

M[k]
3 =



1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 + 1

k 0 1 0
0 0 1 0 0 0 0 1 0 2
1 0 0 1 + 1

k 0 1 0 0 1√
k

0

0 0 0 0 1 0 0 1√
k

0 0

1 0 0 1 0 2 1√
k

0 0 0

0 1 + 1
k 0 0 0 1√

k
(1 + 1

k )
2 + 1

k 0 1 + 1
k 0

0 0 1 0 1√
k

0 0 1 + 1
k 0 2

0 1 0 1√
k

0 0 1 + 1
k 0 2 0

0 0 2 0 0 0 0 2 0 4



.

Clearly, lim
k→∞

M[k]
3 = M, and it is straightforward to check that M[k]

3 � 0 and that

rankM[k]
3 = rankM[k]

2 = rankM = 6. Thus we see that M ∈ F 3.

In cases where y has no representing measure and where sums of squares
are not available (cf. Proposition 1.6), membership in F d provides an alternate
criterion for positivity of Ly. We illustrate this approach to positivity in the fol-
lowing example.

EXAMPLE 5.2. Let n = 2, d = 3, so sums of squares are not available. For
c ∈ R, κ > 0, consider y(6) defined by
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M≡M3(y)=



1 1 0 1 0 1 1 0 1 c
1 1 0 1 0 1 1 0 1 c
0 0 1 0 1 c 0 1 c 1 + c2

1 1 0 1 0 1 1 0 1 c
0 0 1 0 1 c 0 1 c 1 + c2

1 1 c 1 c 1 + c2 1 c 1 + c2 2c + c3

1 1 0 1 0 1 1 0 1 c
0 0 1 0 1 c 0 1 c 1 + c2

1 1 c 1 c 1 + c2 1 c 1 + c2 2c + c3

c c 1 + c2 c 1 + c2 2c + c3 c 1 + c2 2c + c3 γ


,

where γ = 1 + 3c2 + c4 + κ. Then M3 � 0, and there are column relations 1 =
X = X2 = X3, Y = XY = X2Y, X + cY = Y2 = Y2X, whence rankM = 3.
Since κ > 0, Y3 6= XY + cY2, so M is not recursively generated, whence y has
no representing measure. Let M[ be the flat positive moment matrix obtained
from M by replacing γ by 1 + 3c2 + c4. For k > 0, let M[k]

3 := M[ + M3[
κ
k6 δ(0,k)].

It is easy to check that lim
k→∞

M[k]
3 = M, and that M[k]

3 is positive and flat, with

rankM = rankM[k]
3 = rankM[k]

2 = 3. Thus, y ∈ F 3, so Ly is positive, but positivity
is not a consequence of representing measures or sums of squares.
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