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ABSTRACT. We prove that a C∗-crossed product A ×α G by a locally com-
pact group G is nuclear (respectively type I or liminal) if and only if certain
hereditary C∗-subalgebras, Sπ , Iπ ⊂ A×α G π ∈ K̂, are nuclear (respectively
type I or liminal). Analog characterizations are proved for C∗-crossed prod-
ucts by compact quantum groups. These subalgebras are the analogs of the
algebras of spherical functions considered by R. Godement for groups with
large compact subgroups. If K = G is a compact group or a compact quan-
tum group, the algebras Sπ are stably isomorphic with the fixed point algebras
A⊗ B(Hπ)α⊗adπ where Hπ is the Hilbert space of the representation π.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a locally compact group and K ⊂ G a compact subgroup. In [12]
(see also [22]) the study of Ĝ, the set of equivalence classes of irreducible rep-
resentations of G is reduced to the study of K̂ and of representations of certain
classes of spherical functions. In this paper we extend this approach to the case
of crossed products of C∗-algebras by locally compact group and compact quan-
tum group actions. Let (A, G, α) be a C∗-dynamical system and let K ⊂ G be a
compact subgroup.

In [17] we defined the C∗-algebras Sπ , Iπ ⊂ A×α G, π ∈ K̂. These are the
analogs of the algebras of spherical functions. For the case K = G, these algebras
were previously defined by Landstad in [15].

Recently, in [7], [9], we have extended the study of these algebras to the
case of compact quantum group actions on C∗-algebras. If K = G is a compact
group or a compact quantum group, the algebras Sπ are stably isomorphic with
the fixed point algebras A ⊗ B(Hπ)α⊗adπ where Hπ is the Hilbert space of the
representation π. In this section we will review some definitions and preliminary
results.
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1.1. PRELIMINARIES ON ACTIONS OF COMPACT GROUPS ON C∗-ALGEBRAS. Let
K be a compact group and let δ : K → Aut(A) be an action of K on a C∗-algebra
A. Let π ∈ K̂. If πij(g) are the coefficients of πg in a fixed basis of the Hilbert
space Hπ of the representation π, 1 6 i, j 6 dπ we define the character of π,
χπ(g) = dπtr(πg−1), g ∈ K where dπ is the dimension of the representation π.
We consider the following mapping from B into itself :

(1.1) Pπ,δ(a) =
∫
K

χπ(k)δk(a)dk.

We define the spectral subspaces of the action δ

(1.2) Aδ
1(π) = {a ∈ A : Pπ,δ(a) = a}, π ∈ K̂.

In particular, if π = π0 is the trivial one dimensional representation, then
Aδ

1(π0) = Aδ is the algebra of fixed elements under the action δ. In this case, the
projection Pπ0,δ of A onto Aδ is a conditional expectation since Pπ0,δ =

∫
K

δk(a)dk

and the Haar measure is invariant. In particular, Pπ0,δ is a completely positive
map.

1.2. ALGEBRAS OF SPHERICAL FUNCTIONS INSIDE THE CROSSED PRODUCT. Let
now (A, G, α) be a C∗-dynamical system with G a locally compact group and K ⊂
G a compact subgroup. Denote by A ×α G the corresponding crossed product
(see for instance [16]). Then the algebra C(K) of all continuous functions on G
can be embedded as follows in the multiplier algebra M(A ×α G) of A ×α G:
If ϕ ∈ C(K) and y ∈ Cc(G, A), the dense subalgebra of A ×α G consisting of
continuous functions with compact support from G to A, then

(1.3) (ϕy)(g) =
∫
K

ϕ(k)αk(y(k−1g))dk, and (yϕ)(g) =
∫
K

ϕ(k)y(gk)dk.

In particular, if ϕ = χπ , ϕ is a projection in M(A×α G) and if π1 and π2 are
distinct elements in K̂, the projections χπ1 and χπ2 are orthogonal. We need the
following results from Lemma 2.5. of [17]:

REMARK 1.1. The following statements hold:
(i) If π1 6=π2 in K̂ then the projections χπ1 and χπ2 are orthogonal in M(A×αG).

(ii) ∑
π

χπ = I, where I is the identity of the bidual (A×α G)∗∗ of A×α G.

If π ∈ K̂, denote Sπ = χπ(A×α G)χπ , where the closure is taken in the
norm topology of A×α G. Then, it is immediate that Sπ is strongly Morita equiv-
alent with the two sided ideal Jπ = (A×α G)χπ(A×α G). Indeed, it can be easily
verified that X = (A×α G)χπ is an Sπ − Jπ imprimitivity bimodule. We will
consider next the action, δ of K on A×α G defined as follows: If y ∈ Cc(G, A) set
δk(y) = αk(y(k−1gk)). Then δk extend to automorphisms of A×α G and thus δ is
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an action of K on A×α G. The fixed point algebra I =(A×α G)δ is called in [17]
the algebra of K-central elements of the crossed product A×α G. Denote:

(1.4) Iπ = I∩Sπ .

Then, ([17], Proposition 2.7) we have

REMARK 1.2. Sπ is ∗-isomorphic with Iπ ⊗ B(Hπ).

If G = K is a compact group, then by Lemma 3 of [15] we have:

REMARK 1.3. For every π ∈ Ĝ, Iπ is ∗-isomorphic with (A⊗ B(Hπ))α⊗adπ .

1.3. COMPACT QUANTUM GROUP ACTIONS ON C∗-ALGEBRAS. Let G = (B, ∆)
be a compact quantum group [23], [24]. Here, B is a unital C∗-algebra (which
is the analog of the C∗-algebra of continuous functions in the group case) and
∆ : B→ B⊗min B a ∗-homomorphism such that:

(i) (∆⊗ ι)∆ = (ι⊗∆)∆, where ι : B→ B is the identity map, and
(ii) ∆(B)(1⊗ B) = ∆(B)(B⊗ 1) = B⊗min B.

Let Ĝ denote the set of all equivalence classes of unitary representations
of G or equivalently, the set of all equivalence classes of irreducible unitary co-
representations of B. For each π ∈ Ĝ, π = [πij], πij ∈ B 1 6 i, j 6 dπ , where dπ

is the dimension of π, let χπ = ∑
i

πii be the character of π and let Fπ ∈ B(Hπ) be

the positive, invertible matrix that intertwines π with its double contragredient
representation and such that tr(Fπ) = tr(F−1

π ) = Mπ . Then, with the notations in
[23], Fπ = [ f1(πij)] where f1 is a linear functional on the ∗-subalgebra B ⊂B that
is linearly spanned by {πij : π ∈ Ĝ, 1 6 i, j 6 dπ}. If a ∈ B (respectively B) and ξ
is a linear functional on B (respectively B) we denote ([23], [24]):

(1.5) a ∗ ξ = (ξ ⊗ ι)(∆(a)) ∈ B.

Denote also by ξ · a the following linear functional on B (respectively B):

(1.6) (ξ · a)(b) = ξ(ab).

If h is the Haar state on B let hπ = Mπh · (χπ ∗ f1). If vr is the right regular
representation of G, the Fourier transform of a ∈ B is defined as follows (see [24]):

(1.7) â = Fvr(a) = (ι⊗ h · a)(v∗r ).

Then the norm closure of the set B̂ = {â : a ∈ B} is a C∗-algebra called the
dual of B ([1], [24]) and B̂ is a subalgebra of the algebra of compact operators,
C(Hh) on the Hilbert space Hh of the GNS representation of B associated with the
Haar state h.

Let A be a C∗-algebra and δ : A → M(A⊗ B) be a ∗-homomorphism of A
into the multiplier algebra of the minimal tensor product A⊗ B. Then δ is called
an action of G on A (or a coaction of B on A) if the following two conditions hold:

(a) (ι⊗∆)δ = (δ⊗ ι)δ, and
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(b) δ(A)(1⊗ B) = A⊗ B.

Let π ∈ Ĝ. Denote Pπ,δ(a) = (ι ⊗ hπ)(δ(a)), a ∈ A. Then Pπ,δ is a con-
tractive linear map from A into itself. In particular, if π = π0 is the trivial one
dimensional representation, then Pπ0,δ = (ι⊗ h)δ is the completely positive pro-
jection of norm 1 of A onto the fixed point C∗-subalgebra Aδ.

The crossed product A×δ G is by definition, ([1], [2]), the norm closure of
the set {(πu ⊗ πh)(δ(a)(1⊗ b̂)) : a ∈ A, b ∈ B}, where πu is the universal rep-
resentation of A and πh is the GNS representation of B associated with the Haar
state h.

Let π ∈ Ĝ. If we denote pπ = (ι ⊗ hπ)(v∗r ), then {pπ}π∈Ĝ are mutually
orthogonal projections in B̂ and therefore in A×δ G ([2], [7]). For π ∈ Ĝ denote
Sπ = pπ(A×δ G)pπ . In Lemma 3.3 of [7] it is shown that ad(vr) is an action of
G on the crossed product A×δ G and the fixed point algebra I = (A×δ G)ad(vr)

of this action plays the role of the K-central elements in the case of groups. Let
Iπ = I ∩ Sπ . Let δπ be the following action of G on A⊗ B(Hπ):

(1.8) δπ(a⊗m) = (π)23(δ(a))13(1⊗m⊗ 1)(π∗)23

where the leg-numbering notation is the usual one [1], [24]. The above δπ equals
δ⊗ ad(π) in the case of compact groups. Then, we have:

REMARK 1.4. The following statements hold true:
(i) The projections {pπ}π∈Ĝ are mutually orthogonal and ∑

π
pπ = 1 in the

bidual (A×δ G)∗∗.
(ii) Sπ is ∗-isomorphic with Iπ ⊗ B(Hπ).

(iii) Iπ is ∗-isomorphic with A⊗ B(Hπ)δπ .

Part (i) is Section 2.1., Equation (2) and the discussion after that equation in
[7]. Part (ii) is Remark 3.5. of [7], and part (iii) is Proposition 4.8 of [7].

2. NUCLEAR AND TYPE I CROSSED PRODUCTS

In this section we will state and prove our main results. We give necessary
and sufficient conditions for a crossed product to be nuclear or type I. Our condi-
tions are given in terms of the algebras of spherical functions inside the crossed
product and in case of compact groups or compact quantum groups, in terms of
the fixed point algebras of A⊗ B(Hπ) for the actions δ⊗ ad(π).

Recall that a C∗-algebra C is said to be of type I if for every factor represen-
tation T of C the von Neumann factor T(C)′′ is a type I factor. C is called liminal
if for every irreducible representation T of C, T(C) consists of compact operators.

A C∗-algebra is called nuclear if its bidual, C∗∗, is an injective von Neu-
mann algebra, i.e. if and only if there is a projection of norm one from B(Hu) onto
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C∗∗, where Hu is the Hilbert space of the universal representation of C. With the
notations from Section 1, we have the following :

REMARK 2.1. Let (A, G, α) be a C∗-dynamical system with G a locally com-
pact group and let K ⊂ G be a compact subgroup. The following three statements
hold:

(i) Sπ is nuclear if and only if Iπ is nuclear;
(ii) Sπ is liminal if and only if Iπ is liminal;

(iii) Sπ is type I if and only if Iπ is type I.

These statements follow from Remark 1.2.
The following is the analog of the above remark for the case of compact

quantum group actions:

REMARK 2.2. Let G = (B, ∆) be a compact quantum group and δ an action
of G on a C∗-algebra A. The following conditions are equivalent:

(i) Sπ is nuclear if and only if (A⊗ B(Hπ))δπ is nuclear;
(ii) Sπ is liminal if and only if (A⊗ B(Hπ))δπ is liminal;

(iii) Sπ is type I if and only if (A⊗ B(Hπ))δπ is type I.

The result follows from Remark 1.4.

2.1. TYPE I CROSSED PRODUCTS. We start with the following general result:

LEMMA 2.3. Let C be a C∗-algebra and M(C) the multiplier algebra of C. Let
{pλ} ⊂ M(C) be a family of mutually orthogonal projections of sum 1 in C∗∗. The
following conditions are equivalent:

(i) C is type I (respectively liminal).
(ii) The hereditary subalgebras Sλ = pλCpλ ⊂ C are type I (respectively liminal) for

every λ.

Proof. Assume that C is type I (respectively liminal). Then Sλ are type I
(respectively liminal) as C∗-subalgebras of a type I (liminal) C∗-algebra.

Assume now that all Sλ are type I (liminal). Let T be a nondegenerate fac-
tor representation (respectively an irreducible representation) of C. Since, by
assumption, ∑ pλ = 1 it follows that ∑ pλC is norm dense in C. Therefore,
there is a λ such that the restriction of T to pλC, T|pλC 6= 0. Then T|Jλ

6= 0,
where Jλ = CpλC is the two sided ideal of C generated by pλ. Since T is a fac-
tor representation of C (respectively an irreducible representation of C) and the
bicommutant T(Jλ)

′′
is a nonzero weakly closed ideal of T(C)′′ it follows that

T(Jλ)
′′
= T(C)′′. Therefore T has the same type with T|Jλ

. On the other hand, it
can be checked that Jλ is strongly Morita equivalent with Sλ in the sense of Rief-
fel, [20], with imprimitivity bimodule Cpλ. Therefore, since Sλ is assumed to be
type I (respectively liminal), it follows from the discussion in [20] (respectively
[11]) that Jλ is type I (respectively liminal). It then follows that the representation
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T is a type I representation (respectively T(C) consists of compact operators).
Since T was arbitrary, we are done.

We will state next some consequences of the above lemma.

THEOREM 2.4. Let (A, G, α) be a C∗-dynamical system with G a locally compact
group and let K ⊂ G be a compact subgroup. Then the following conditions are equiva-
lent:

(i) A×α G is type I (respectively liminal).
(ii) All hereditary C∗-subalgebras Sπ ⊂ A ×α G, π ∈ K̂ are type I (respectively

liminal).
(iii) All C∗-subalgebras of K-central elements, Iπ ⊂ Sπ , π ∈ K̂ are type I (respectively

liminal).

Proof. The equivalence of the conditions (i)–(iii) follows from Remarks 1.1
and 2.1 and Lemma 2.3.

If G = K is a compact group, then the conditions (i)–(iii) in the above theo-
rem are equivalent with:

(iv) The fixed point algebra Aα is type I (respectively liminal) ([13], Theorem 3.2).

We will prove next an analogous result for compact quantum group actions.
In Theorem 19 of [2] it is shown that the crossed product of a C∗-algebra by an
ergodic action of a compact quantum group is a direct sum of full algebras of
compact operators, hence a liminal C∗-algebra. Since, in the ergodic case, Sπ are
finite dimensional, the next result is an extension of Boca’s result to the case of
general compact quantum group actions.

For compact quantum groups we have the following result:

THEOREM 2.5. Let G = (B, ∆) be a compact quantum group and δ an action of G
on a C∗-algebra A. The following conditions are equivalent:

(i) A×δ G is type I (respectively liminal).
(ii) All hereditary C∗-subalgebras Sπ ⊂ A ×δ G, π ∈ Ĝ, are type I (respectively

liminal).
(iii) All C∗-subalgebras Iπ ⊂ Sπ , π ∈ Ĝ, are type I (respectively liminal).
(iv) All C∗-algebras A⊗ B(Hπ)δπ , π ∈ Ĝ are type I (respectively liminal).

The result follows from Remark 1.4 and Lemma 2.3.

2.2. NUCLEAR CROSSED PRODUCTS. We start with the following lemma which
is certainly known but we could not find a reference for it:

LEMMA 2.6. A C∗-algebra C is nuclear if and only if for every state ϕ of C,
Tϕ(C)′′ is an injective von Neumann algebra, where Tϕ is the GNS representation of
C associated with ϕ.
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Proof. If C is nuclear then C∗∗ is an injective von Neumann algebra ([10],
Theorem 6.4). Therefore, so is Tϕ(C)′′ which is isomorphic with an algebra of the
form eC∗∗ for a certain projection, e ∈ (C∗∗)′.

Conversely, if Tϕ(C)′′ is injective for every state ϕ, let {ϕι} be a maximal
family of states for which the corresponding cyclic representations Tϕι are dis-
joint. Then Tϕι and T =

⊕
Tϕι can be extended to normal representations Tϕι

and T of C∗∗ with T a normal isomorphism. Therefore, C∗∗ is isomorphic with⊕
Tϕι(C)

′′. Since all Tϕι(C)
′′ are injective (by assumption), from Proposition 3.1

of [10] it follows that C∗∗ is injective and thus C is nuclear.

Throughout the rest of this section all algebras, groups and quantum groups
are assumed to be separable. The following lemma is the analog of Lemma 2.3
for the case of nuclear crossed products.

LEMMA 2.7. Let C be a separable C∗-algebra and {qλ} ⊂ M(C) be a family of
mutually orthogonal projections such that ∑

λ
qλ = 1 in C∗∗. The following statements

are equivalent:
(i) C is nuclear.

(ii) The hereditary C∗-subalgebras Sλ are nuclear for all λ.

Proof. Assume first that C is nuclear. Then, by Corollary 3.3 (4) of [4], every
hereditary subalgebra of C is nuclear. Hence Sλ is nuclear for every λ.

Assume now that (ii) holds that is: all Sλ are nuclear C∗-algebras. We will
show that for every cyclic representation Tϕ of C, Tϕ(C)′′ is injective and the result
will follow from the previous lemma. Let ϕ be a state of C. Then, by reduction
theory, Tϕ(C∗∗) = Tϕ(C)′′ is the direct integral of factors Tψ(C∗∗) = Tψ(C)′′

where ψ are factor states of C, Tϕ(C∗∗) =
∫

Tψ(C∗∗)dµ(ψ) where µ is the central
measure associated with the state ϕ and the integral is taken over the state space
of C ([21], Theorem 3.5.2). Applying Proposition 6.5 of [5] it follows that Tϕ(C)′′

is injective if and only if almost all of the factors Tψ(C)′′ are injective. We have,
therefore, reduced our problem to the following:

Assuming that all hereditary subalgebras Sλ are nuclear, show that for ev-
ery cyclic factor representation T of C we have that T(C)′′ is an injective von
Neumann algebra.

Let T be a non degenerate cyclic factor representation of C. Since ∑
λ

qλ = 1 in

C∗∗ there is a λ such that the restriction T|qλC 6= 0. Hence the restriction of T to the
closed two sided ideal Jλ = CqλC is non zero. Since T is a factor representation
and Jλ is a two sided ideal it follows that T(C)′′ = T(Jλ)

′′. We show next that
under our assumptions T(Jλ)

′′ is injective and thus T(C)′′ is injective. We noticed
above that Sλ is strongly Morita equivalent with Jλ. Since C is separable, so are Sλ

and Jλ. By Theorem 1.2 of [3] Sλ and Jλ are stably isomorphic. Since Sλ is nuclear
it follows that Jλ is nuclear. By Lemma 2.6 we have that T(Jλ)

′′ is injective and
the proof is complete.
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From the proof of the previous lemma it follows:

COROLLARY 2.8. A separable C∗-algebra C is nuclear if and only if for every
factor state ψ of C, Tψ(C)′′ is an injective von Neumann algebra, where Tψ is the GNS
representation of C associated with ψ.

We can now state our main results of this section.

THEOREM 2.9. Let (A, G, α) be a C∗-dynamical system with G a locally compact
group and let K ⊂ G be a compact subgroup. Then the following conditions are equiva-
lent:

(i) A×α G is a nuclear C∗-algebra.
(ii) All hereditary C∗-subalgebras Sπ ⊂ A×α G, π ∈ K̂ are nuclear.

(iii) All C∗-subalgebras of K-central elements, Iπ ⊂ Sπ , π ∈ K̂ are nuclear.
Furthermore, any of the previous three equivalent conditions implies:

(iv) A is nuclear.
In addition, if G is amenable, i.e. if the group C∗-algebra C∗(G) is nuclear the conditions
(i)–(iv) are equivalent.

Proof. The equivalence of the conditions (i)–(iii) follows from Remarks 1.1
and 2.1 and Lemma 2.7. On the other hand, if the crossed product, A ×α G is
nuclear, then, applying Theorem 4.6 of [19] it follows that A×α G×α̂ Ĝ is nuclear,
where α̂ is the dual coaction. Since by biduality ([18], Theorem 3.1) this latter
crossed product is isomorphic with A ⊗ C(H) where C(H) is the C∗-algebra of
compact operators on a certain Hilbert space H it follows that A is a nuclear C∗-
algebra. Finally, if G is amenable and A is nuclear, then by Proposition 14 of [14]
the crossed product A×α G is nuclear and therefore in this case (iv)⇒ (i).

In the proof of the implication (i)⇒ (iv) of the above theorem we have used
the fact that every locally compact group is co-amenable and Raeburn’s result.
The next result is the analog of the previous one for the case of compact quantum
groups. A compact quantum group G = (B, ∆) is automatically amenable since
B̂ is a subalgebra of compact operators, but not co-amenable, in general, since B
is not necessarily nuclear.

We will state next the corresponding result for compact quantum group ac-
tions.

THEOREM 2.10. Let (A,G, δ) be a quantum C∗-dynamical system, where G =
(B, ∆) is a compact quantum group. The following three conditions are equivalent:

(i) A×α G is nuclear.
(ii) All hereditary C∗-subalgebras Sπ ⊂ A×α G are nuclear.

(iii) All C∗-algebras (A⊗ B(Hπ))δπ are nuclear.
Furthermore, each of the above condition is implied by

(iv) A is a nuclear C∗-algebra.
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In addition, if the quantum group G is co-amenable, i.e. if B is a nuclear C∗-algebra, then
the conditions (i)–(iv) are equivalent with the following:

(v) Aδ is nuclear.

Proof. The equivalence of (i)–(iii) follows from Lemma 1.4 and Lemma 2.7.
We now prove that (iv) implies (iii). Let π ∈ Ĝ. If A is nuclear, then A⊗ B(Hπ)
is a nuclear C∗-algebra. The projection of A⊗ B(Hπ) onto the fixed point alge-
bra (A⊗ B(Hπ))δπ is obviously a completely positive map. Therefore, by Corol-
lary 3.4. (4) of [4] it follows that (A⊗ B(Hπ))δπ is nuclear. Assume now that G
is co-amenable. Therefore, B is nuclear. Then, by applying Corollary 7 of [6] it
follows that Aδ is nuclear if and only if A is nuclear and thus (v)⇔ (iv). Since Sπ0

is isomorphic with Aδ, we have that (iii )⇒ (iv) and the proof is completed.
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