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ABSTRACT. In this paper some properties of continuous representable linear
functionals on a quasi ∗-algebra are investigated. Moreover we give properties
of operators acting on a Hilbert algebra, whose role will reveal to be crucial for
proving a Radon–Nikodym type theorem for positive linear functionals.
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1. INTRODUCTION AND PRELIMINARIES

As it is well-known, the classical Radon–Nikodym theorem states that if
µ and λ are bounded positive measures on a σ-algebra M in a set X and λ is
absolutely continuous with respect to µ (i.e. if E ∈ M and µ(E) = 0, then λ(E) =
0), then there exists h ∈ L1(µ) such that

λ(E) =
∫
E

hdµ.

We may look at the r.h.s. as to a linear functional defined on the (normed) quasi ∗-
algebra (L1(µ), L∞(µ)). Also the l.h.s. can be thought as the value of a functional
on L∞, due to the fact that

λ(E) =
∫
X

χEdλ.

Since L∞(µ) is an abelian von Neumann algebra, in a natural way, the question
arises, whether one can find generalizations of the Radon–Nikodym theorem in
the contest of more general topological ∗-algebras.

In 1973 Pedersen and Takesaki [10] obtained a Radon–Nikodym theorem
for von Neumann algebras. The case of arbitrary ∗-algebras was considered first
by Gudder in [6]. He proved that if a positive linear functional ψ on a ∗-algebra A

with identity e, is strongly absolutely continuous with respect to a positive linear
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functional ϕ on A (that is, the map λϕ(x) 7→ λψ(x) is closable) then there exists a
positive self-adjoint operator H onHϕ such that

(1.1) ψ(x) = 〈Hλϕ(x)|Hλϕ(e)〉, ∀ x ∈ A,

where λϕ is a linear map from A into the Hilbert space Hϕ defined via GNS
representation. Some counterexamples show that one cannot hope for a Radon–
Nikodym theorem with arbitrary functionals. In 1983 Inoue [7] obtained a similar
result for two positive invariant sesquilinear forms Φ and Ψ on a ∗-algebra A,
under the hypothesis that Ψ is strongly Φ-absolutely continuous. Inoue’s result
will be the starting point of our analysis. Some of these results have also been
extended to partial ∗-algebras (we refer to [1] for a detailed discussion).

In this paper we consider the following situation: given a locally convex ∗-
algebra A0[τ], if by A we denote its completion, then the pair (A,A0) is a locally
convex quasi ∗-algebra. Certain linear functionals on A, called representable, allow
a generalized version of the GNS construction [12]. If ϕ is representable and ψ
is a positive linear functional absolutely continuous with respect to ϕ (in a sense
that will be specified later), it is natural to pose the question as to whether the
representation of ψ as in (1.1) can be improved so to have a form which is more
reminiscent of the classical one for functions. This means, in other words: Does
there exist a positive element h ∈ A such that

(1.2) ψ(a∗a) = ϕ(a∗ha), ∀ a ∈ A0?

The paper is organized as follows. After some basic preliminaries, we pro-
vide in Section 2 a series of properties of continuous representable linear func-
tionals on a locally convex quasi ∗-algebra (A,A0) and of the associated positive
sesquilinear forms.

In Section 3 we give a sufficient condition for the representation (1.2) to
hold. To this aim, we first give some properties of operators acting on a Hilbert
algebra, whose role will reveal to be crucial for proving our variant of the Radon–
Nikodym theorem.

In what follows we recall some definitions and facts needed in the sequel.

DEFINITION 1.1. Let A be a complex vector space and A0 a ∗-algebra con-
tained in A. A is said a quasi ∗-algebra with distinguished ∗-algebra A0 (or, simply,
over A0) if

(i) the left multiplication ax and the right multiplication xa of an element a
of A and an element x of A0 which extend the multiplication of A0 are always
defined and bilinear;

(ii) x1(x2a) = (x1x2)a and x1(ax2) = (x1a)x2, for each x1, x2 ∈ A0 and a ∈ A;
(iii) an involution ∗which extends the involution of A0 is defined in A with the

property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ for each x ∈ A0 and a ∈ A.

A quasi ∗-algebra will be denoted by (A,A0).
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DEFINITION 1.2. A quasi ∗-algebra (A,A0) is said a topological (respectively
locally convex) quasi ∗-algebra, if A is endowed with a topology τ which makes of
it a topological (respectively locally convex) space with the properties:

(i) the involution a→ a∗ is continuous;
(ii) for every x ∈ A0 the maps a 7→ ax, a 7→ xa are continuous from A[τ] into

itself;
(iii) A0 is dense in A[τ].

Now letD be a dense subspace of a Hilbert spaceH. We denote byL†(D,H)
the set of all (closable) linear operators X such that D(X) = D, D(X∗) ⊇ D.

We recall that the set L†(D,H) is a partial ∗-algebra ([1]) with respect to the
following operations: the usual sum X1 + X2, the scalar multiplication λX, the
involution X 7→ X† = X∗ � D and the (weak) partial multiplication X1 �X2 =

X1
†∗X2, defined whenever X2 is a weak right multiplier of X1 (we shall write

X2 ∈ Rw(X1) or X1 ∈ Lw(X2)), that is, if and only if X2D ⊂ D(X1
†∗) and X∗1D ⊂

D(X∗2 ).
Let L†(D) be the subspace of L†(D,H) consisting of all its elements which

leave, together with their adjoints, the domain D invariant. Then L†(D) is a ∗-
algebra with respect to the usual operations.

DEFINITION 1.3. Let (A,A0) be a quasi ∗-algebra (with identity e) and Dπ a
dense domain in a Hilbert spaceHπ .

A linear map π from A into L†(Dπ ,Hπ) such that:
(i) π(a∗) = π(a)†, ∀ a ∈ A,
(ii) for a ∈ A, x ∈ A0, π(a)�π(x) is well defined and

π(ax) = π(a)�π(x),

is called a ∗-representation of A. Moreover, if
(iii) π(A0) ⊂ L†(Dπ),

then π is said to be a ∗-representation of the quasi ∗-algebra (A,A0).

If π is a ∗-representation of (A,A0), then the closure π̃ of π is defined, for
each x ∈ A, as the restriction of π(x) to the domain D̃π , which is the completion of
Dπ under the graph topology tπ [11] defined by the seminorms ξ ∈ Dπ → ‖π(a)ξ‖,
a ∈ A. If π = π̃ the representation is said to be closed. The representation π is said
to be ultra-cyclic if there exists ξ0 ∈ Dπ such that Dπ = π(A0)ξ0, while is said to
be cyclic if there exists ξ0∈Dπ such that π(A0)ξ0 is dense inDπ with respect to tπ .

The following proposition, proved in [12], extends the GNS construction to
quasi ∗-algebras.

PROPOSITION 1.4. Let ω be a linear functional on A satisfying the following re-
quirements:

(L1) ω(a∗a) > 0, for all a ∈ A0;
(L2) ω(b∗x∗a) = ω(a∗xb), ∀ a, b ∈ A0, x ∈ A;
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(L3) ∀ x ∈ A there exists γx > 0 such that |ω(x∗a)| 6 γx ω(a∗a)1/2.
Then there exists a triple (πω, λω,Hω) with the properties:

• πω is an ultra-cyclic ∗-representation of A with ultra-cyclic vector ξω;
• λω is a linear map of A into Hω with λω(A0) = Dπω , ξω = λω(e) and

πω(x)λω(a) = λω(xa), for every x ∈ A, a ∈ A0;
• ω(x) = 〈πω(x)ξω |ξω〉, for every x ∈ A;
• πω0 = πω �A0 , with ω0 = ω �A0 ;
• πω(x)λω(a) = λω(xa), x ∈ A, a ∈ A0.

For shortness, a linear functional ω on A satisfying (L1)–(L3) will be called
a representable functional on A. If ω is representable, (πω, λω,Hω) will be called,
as usual, the GNS construction for ω.

2. REPRESENTABLE FUNCTIONALS AND POSITIVE SESQUILINEAR FORMS
ASSOCIATED TO THEM

Let (A[τ],A0) be a locally convex quasi ∗-algebra. Put

A+
0 =

{ n

∑
i=1

x∗i xi : xi ∈ A0, n ∈ N
}

.

This set (which is a cone) is usually called the set of positive elements of A0. We

define A+ = A+
0

τ
, the τ-closure of A+

0 in A.

DEFINITION 2.1. A linear functional ω on A is said to be positive if ω(x) > 0
for every x ∈ A+.

We recall that if (A,A0) is a locally convex quasi ∗-algebra with topology
τ on A and D(Φ) is a subspace of A, a positive sesquilinear form Φ is a map Φ :
D(Φ)× D(Φ)→ C with the properties:

(i) Φ(a, a) > 0, ∀ a ∈ D(Φ);
(ii) Φ(a + λb, c) = Φ(a, c) + λΦ(b, c), ∀ a, b, c ∈ D(Φ), ∀ λ ∈ C;

(iii) Φ(a, b + λc) = Φ(a, b) + λΦ(a, c), ∀ a, b, c ∈ D(Φ), ∀ λ ∈ C.
Note that for positive sesquilinear forms the Cauchy–Schwarz inequality

holds:

|Φ(a, b)|2 6 Φ(a, a)Φ(b, b), ∀ a, b ∈ D(Φ).

We denote by N(Φ) the null subspace of Φ; i.e.,

N(Φ) = {a ∈ D(Φ) : Φ(a, a) = 0}.

The quotient space D(Φ)/N(Φ) can be made into a pre-Hilbert space by
defining

〈λΦ(a)|λΦ(b)〉Φ =Φ(a, b), a, b∈D(Φ) and ‖λΦ(a)‖Φ =Φ(a, a)1/2, a∈D(Φ),
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where λΦ(a) denotes the coset corresponding to a ∈ D(Φ). For shortness we put
λΦ(D(Φ)) := D(Φ)/N(Φ). We observe that the completion of λΦ(D(Φ))[‖ · ‖Φ]
is a Hilbert space, which we denote byHΦ.

DEFINITION 2.2. Let Φ be defined as above on D(Φ)× D(Φ).
The form Φ is said to be closed [5] if for a net {aδ}δ∈∆ in D(Φ), one has:

{aδ}δ∈∆
τ→ a, and Φ(aδ − aγ, aδ − aγ)→ 0

⇒ a ∈ D(Φ) and Φ(aδ, aδ)→ Φ(a, a).

Assume the following two conditions:

(C1) Let aδ, b ∈ D(Φ), δ ∈ ∆. If aδ
τ→ a and Φ(aδ− b, aδ− b)→ 0, then a ∈ D(Φ)

and Φ(a− b, a− b) = 0.
(C2) Let {aδ}δ∈∆ be a net of elements of D(Φ) such that the infinite sum ∑

δ
Φ(aδ, aδ)

is convergent, then the infinite sum ∑
δ∈∆

aδ converges with respect to τ to an ele-

ment a ∈ A.
Under these conditions, that establish a sort of compatibility of Φ with the

topology τ of A, the following lemma holds.

LEMMA 2.3 ([3]). The space λΦ(D(Φ))[‖ · ‖Φ] is complete if and only if Φ is
closed.

Now we give two examples, one from the classical theory of integration and
the other from the noncommutative integration theory.

EXAMPLE 2.4. IfM(E) is the algebra of Lebesgue measurable functions on
a Lebesgue measurable subset E of R, the conditions (C1) and (C2) given above,
are satisfied when Φ is defined onM(E)×M(E) by

Φ( f , g) =
∫
E

f (x)g(x)dx.

In fact, (C2) is nothing but an abstract extension of Beppo Levi’s theorem. It is
clear that in this case D(Φ) = L2(E).

EXAMPLE 2.5. LetM be a von Neumann algebra and ω a normal faithful
semifinite trace defined onM+ the set of all positive elements ofM. Following
Nelson [8], we define for ε, δ > 0, N(ε, δ) = {A ∈ M : for some projection P ∈
M, ‖AP‖ 6 ε and ω(P⊥) 6 δ}. We give M the translation-invariant topology
τ in which the N(ε, δ)’s from a fundamental system of neighborhoods of 0. We
denote by A the space obtained by completion ofMwith respect to τ. It is known
that A is a ∗-algebra of operators affiliated withM, called the ∗-algebra of strictly
ω-measurable operators. One denotes by L2 the completion of the ideal J2 =
{X ∈ M : ω(|X|2) < ∞} with respect to the norm ‖X‖2 = ω(|X|2)1/2. We
consider

Φω(X, Y) = ω(Y∗X), X, Y ∈ D(Φω) = L2.
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It is easily shown with the usual techniques of (noncommutative) integration that
Φω enjoys the conditions (C1) and (C2); (see [3] and [4]).

DEFINITION 2.6. Let Φ be a positive sesquilinear form defined on A0 ×A0.
We say that Φ is closable, if for a net {xδ}δ∈∆ in A0, one has ([5]):

xδ
τ→ 0 and Φ(xδ − xγ, xδ − xγ)→ 0⇒ Φ(xδ, xδ)→ 0.

We recall that if Φ is closable, then it can be extended to a positive sesquilin-
ear form Φ defined on D(Φ)× D(Φ), where

D(Φ) = {a ∈ A : ∃ {xδ}δ∈∆ ⊂ A0, xδ
τ→ a, and Φ(xδ − xγ, xδ − xγ)→ 0},

by

Φ(a, a) = lim
δ∈∆

Φ(xδ, xδ).

This definition extends in obvious way to pairs (a, b) with a, b ∈ D(Φ).
By Lemma 2.3, the space λΦ(D(Φ))[‖ · ‖Φ] is complete.
If ω is a positive linear functional on A, we can define a positive sesquilinear

form Φω on A0 ×A0 by

Φω(a, b) = ω(b∗a).

Note that Φω is invariant, i.e. Φω(ab, c) = Φω(b, a∗c).
Even if ω is continuous, Φω may fail to be continuous, due to the fact that

the multiplication in A0 is only separately continuous.
The following proposition may be proved in a standard way.

PROPOSITION 2.7. Let ω be a positive continuous linear functional on A0. Then
Φω is closable.

Therefore, if ω is a positive continuous linear functional on A0, then the
closure Φω of Φω is well defined. Moreover Φω is a closed positive sesquilinear
form on D(Φω)× D(Φω).

LEMMA 2.8. Let (A[τ],A0) be a locally convex quasi ∗-algebra and ω a positive
continuous linear functional on A. Then ω satisfies the conditions (L1), (L2), (L3), and
therefore it is representable.

Proof. Since ω is a positive continuous linear functional on A0, (i.e. the con-
dition (L1) is satisfied), it is hermitian on A0.

By the continuity of ω and of the involution, it follows that ω is hermitian
and positive on A. Thus (L2) holds.

The positive sesquilinear form Φω(x, y) := ω(x, y) is everywhere defined
on A0. Hence for every x, a ∈ A0, by the Cauchy–Schwarz inequality we have

|ω(x∗a)| = |Φω(a, x)| 6 Φω(x, x)1/2Φω(a, a)1/2.
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If x ∈ A there exists a net {xδ}δ∈∆ ⊂ A0 such that xδ
τ→ x. By the continuity of ω

and by Proposition 2.7 we have

|ω(x∗a)|= lim
δ∈∆
|ω(x∗δ a)|6 lim

δ∈∆
Φω(xδ, xδ)

1/2Φω(a, a)1/2=Φω(x, x)1/2Φω(a, a)1/2.

Thus (L3) also holds. By Proposition 1.4, it follows that ω is representable.

Assume that A[τ] is a topological ∗-algebra, A0 a dense ∗-subalgebra of A.
In addition, let us suppose that A0 carries a norm ‖ · ‖0 which makes of A0 a C∗-
algebra. Then what has been said above, applies also in this situation, but we get
something more. In particular if ω is a positive linear functional on A0, then it is
‖ · ‖0-continuous. Moreover assume that Φω is closable. Then:

(i) D(Φω) is a left A0-module (a ∈ A0 and x ∈ D(Φω)⇒ ax ∈ D(Φω));
(ii) if ω is a trace (i.e. for each a, b ∈ A0, ω(ab) = ω(ba)), then (D(Φω),A0)

is a quasi ∗-algebra and by continuity of left and right multiplication (Defini-
tion 1.1(i)) ω(ax) = ω(xa), for each x ∈ A and a ∈ A0.

Moreover if Φω satisfies (C2), thenHω = D(Φω)/Nω.

DEFINITION 2.9. Let (A,A0) be a quasi ∗-algebra.
(i) If ϕ, ψ are positive linear functionals on A0, we say that ψ is ϕ-absolutely

continuous if:
(a) ϕ(x∗x) = 0, x ∈ A0, implies ψ(x∗x) = 0;
(b) λϕ(x) 7→ λψ(x), x ∈ A0 is a closable linear map of the pre-Hilbert

space λω(A0) into the Hilbert spaceHψ.
(ii) If ω is a representable linear functional on A and ψ is a positive linear

functional on A0, we say that ψ is ω-absolutely continuous if ψ is ω0-absolutely
continuous, where ω0 := ω � A0.

By Corollary 9.2.9 of [1] we have

THEOREM 2.10. Let ϕ and ψ be positive linear functionals on A0. Assume that
ψ is ϕ-absolutely continuous. Then there exists a positive self-adjoint operator H in Hφ

such that: λϕ(A0) ⊂ D(H); ψ(x∗x) = 〈Hλϕ(x)|Hλϕ(x)〉 for every x ∈ A0.

3. A RADON–NIKODYM TYPE THEOREM

Theorem 2.10 provides an abstract version of Radon–Nikodym theorem for
∗-algebras.

Let now (A,A0) be a quasi ∗-algebra, ω a representable linear functional
on (A,A0) and ψ a ω-absolutely continuous positive linear functional on A0. An
application of Theorem 2.10 yields the representation

ψ(x∗x) = 〈Hλω(x)|Hλω(x)〉,

for every x ∈ A0.
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We will now prove, that, under certain conditions, the operator H is an
operator of multiplication. In other words, there exists a ∈ A such that Hλω(x) =
λω(a)λω(x), for every x ∈ A0. This will be derived as a consequence of some
properties of operators acting on Hilbert algebras, since, if ω is a trace, λω(A0) is
a Hilbert algebra, in the following sense.

A Hilbert algebra ([9], Section 11.7) is a ∗-algebra A0 which is also a pre-
Hilbert space with inner product 〈·|·〉 such that:

(i) The map b 7→ ab is continuous with respect to the norm defined by the
inner product.

(ii) 〈a|b〉 = 〈b∗|a∗〉 for all a, b ∈ A0.
(iii) A2

0 is total in A0.

Let H(A0) denote the Hilbert space which is the completion of A0 with re-
spect to the norm defined by the inner product. The involution of A0 extends to
the whole of H(A0), since (ii) implies that ∗ is isometric. Then (H(A0),A0) is a
Banach quasi ∗-algebra.

LEMMA 3.1. Let T be a positive self-adjoint operator on H(A0) defined on the
dense domain D(T) ⊃ A0. Assume that D(T) has the properties:

(i) ξ ∈ D(T)⇒ ξ∗ ∈ D(T);
(ii) ξ ∈ D(T), x ∈ A0 ⇒ ξx ∈ D(T).

Then, T has the properties:
(a) T(ξx) = T(ξ)x, ∀ ξ ∈ D(T), x ∈ A0,
(b) T(ξ∗) = (Tξ)∗, ∀ ξ ∈ D(T),

if and only if the sesquilinear form

ΦT(ξ, η) := 〈Tξ|η〉, ξ, η ∈ D(T)

has the property

ΦT(ξx, y) = ΦT(x, ξ∗y), ∀ ξ ∈ D(T), x, y ∈ A0.

Proof. If T has the properties (a), (b) then for every ξ ∈ D(T), x, y ∈ A0 we
have

ΦT(ξx, y) = 〈T(ξ)x|y〉 = 〈x|T(ξ∗)y〉 = 〈T(x)|ξ∗y〉 = ΦT(x, ξ∗y).

Vice-versa, for each y, ξ ∈ A0 we have

〈T(ξx)− T(ξ)x|y〉 = 〈T(ξx)|y〉 − 〈T(ξ)x|y〉 = ΦT(ξx, y)− 〈T(ξ)|yx∗〉
= ΦT(ξx, y)−ΦT(ξ, yx∗) = ΦT(ξx, y)−ΦT(ξx, y) = 0.

Therefore T(ξx) − T(ξ)x = 0 for each x, ξ ∈ A0, hence by continuity we have
T(ξx) = T(ξ)x, ∀ ξ ∈ D(T), x ∈ A0. Moreover

〈T(ξ)x|y〉 = 〈T(ξx)|y〉 = ΦT(ξx, y) = ΦT(x, ξ∗y) = 〈Tx|ξ∗y〉 = 〈x|T(ξ∗)y〉.

THEOREM 3.2. Let Φ be a sesquilinear form on A0×A0. The following statements
are equivalent:
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(i) Φ enjoys the following properties:
(i.a) Φ(x, x) > 0, ∀ x ∈ A0;
(i.b) Φ(y∗, x∗) = Φ(x, y), ∀ x, y ∈ A0;
(i.c) Φ(xy, z) = Φ(y, x∗z), ∀ x, y, z ∈ A0;
(i.d) ∀ y ∈ A0, ∃ γy > 0 : |Φ(x, y)| 6 γy‖x‖, ∀ x ∈ A0.

(ii) There exists a symmetric operator T with D(T) = A0 such that:
(ii.a) Φ(x, y) = 〈x|Ty〉, ∀ x, y ∈ A0;
(ii.b) 〈Tx|x〉 > 0, ∀ x ∈ A0;
(ii.c) (Tx)∗ = Tx∗, ∀ x ∈ A0;
(ii.d) T(xy) = (Tx)y, ∀ x, y ∈ A0.

If, in addition, A0 has a unit e then T is a multiplication operator; i.e., there exists h ∈
H(A0), commuting with every x ∈ A0, such that

Tx = hx, ∀ x ∈ A0.

Proof. If T has the properties (ii.a)–(ii.d), then for each x, y, z ∈ A0:

• Φ(x, x) > 〈x|Tx〉 = 〈Tx|x〉 > 0;
• Φ(y∗, x∗) = 〈y∗|Tx∗〉 = 〈(Tx∗)∗|y)〉 = 〈Tx|y〉 = Φ(x, y);
• Φ(xy, z) = 〈xy|Tz〉 = 〈Txy|z〉 = 〈T(x)y|z〉 = 〈y|T(x)∗z〉 = 〈y|T(x∗)z〉 =

〈y|T(x∗z)〉 = Φ(y, x∗z);
• by the continuity of T, there exists C > 0 such that

‖Ty‖ 6 C‖y‖,

for each y ∈ A0.

Hence |Φ(x, y)| = Φ(x, Ty) 6 ‖Ty‖‖x‖ 6 C‖y‖‖x‖.
Suppose now, that Φ enjoys the properties (i.a)–(i.d).

Note that (i.d) implies that Φ is bounded; therefore, by Riesz’s theorem there
exists a symmetric operator T with D(T) = A0 such that Φ(x, y) = 〈x|Ty〉 for
x, y ∈ A0.

Moreover (i.a) implies that 〈Tx|x〉 > 0, for each x ∈ A0. The conditions (ii.c)
and (ii.d) follow by Lemma 3.1.

REMARK 3.3. The operator T commutes with the operator J : x ∈ A0 →
x∗ ∈ A0 which is a conjugation. This implies that T has self-adjoint extensions.

THEOREM 3.4. Let (A,A0) be a quasi ∗-algebra, ω a rapresentable linear func-
tional on A and f an ω-absolutely continuous linear functional on A0. If f and ω are
traces such that Φω satisfies the conditions (C1), (C2) and (i.d) then there exist a positive
element h ∈ A such that

f (a∗a) = ω(a∗ha), ∀ a ∈ A0.

Proof. If f is continuous on A0, we can construct the closure Φ f of Φ f . Of
course it is a closed positive sesquilinear form on D(Φ f )× D(Φ f ) such that for
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each a, b in A0 we have

Φ f (λω(a), λω(b)) = f (b∗a).

If λω(a) = 0 for a ∈ A0, then Φ f (λω(a), λω(a)) = f (a∗a) = 0, therefore ω(a∗a) =
0. Since ω is a trace, λω(A0) is a Hilbert algebra with unit.

Since Φ f satisfies conditions (i.a)–(i.d) of Theorem 3.2, with respect to the
inner product defined by ω on λω(A0), then there exists a positive operator of
multiplication T such that

Φ f (λω(a), λω(b)) = 〈λω(a)|Tλω(b)〉, ∀ a, b ∈ A0.

Let T̂ be a self-adjoint positive extension of T. Then, we may consider H = T̂1/2.
Thus f (b∗a) = 〈Hλω(a)|Hλω(b)〉 for each a, b ∈ A0. Therefore there exists ξ ∈
Hω = H(λω(A0)) such that

Φ f (λω(a), λω(b)) = 〈Hλω(a)|Hλω(b)〉 = 〈λω(a)|ξλω(b)〉 = f (b∗a).

Hence,

Hλω(b) ∈ D((H � λω(A0))
∗) and Hλω(A0) ⊆ D((H � λω(A0))

∗).

But Φω satisfies (C1) and (C2), whenceHω = D(Φω)/Nω = λω(A0). There-
fore, there exists h ∈ A such that

f (a∗a) = 〈λω(a)|λω(h)λω(a)〉 = ω(a∗ha).

REMARK 3.5. It is easily seen that the condition (1.d) holds if and only if
Hλω(A0) ⊂ D(H). A rather strong, but almost obvious condition is the follow-
ing:

∀ b ∈ A0, there exists γb > 0 such that | f (b∗a)| 6 γbω(b∗b)1/2.
Note that this condition is fulfilled if f is w-dominated i.e. there exists an M > 0
such that f (x∗x) 6 Mω(x∗x), for each x ∈ A0.

EXAMPLE 3.6. The conditions (C1), (C2) and (1.d) given in the previous the-
orem are satisfied in the case of commutative and noncommutative integration,
considered in Examples 2.4 and 2.5.

It is important to notice that our version of the Radon–Nikodym theorem
includes the classical statement for measure spaces and as in that case, when we
consider integrals as functionals on some space L∞(X, dµ) the Radon–Nikodym
derivative lives in a large space (in this example L1(X, dµ)). Moreover in the
noncommutative case, the Radon–Nikodym derivatives for functionals on a von
Neumann algebraM with a normal finite faithful trace is a closed, densely de-
fined operator affiliated withM.
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