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ABSTRACT. This paper contains new results on Lebesgue type decomposi-
tions of nonnegative forms on complex algebras. We introduce the concept
of representable forms, and we discuss the representability of the regular and
the singular parts. A result on topologically irreducible representations in the
context of the Lebesgue decomposition is included.

We prove a general Lebesgue decomposition theorem for representable
positive functionals on ∗-algebras by the above-mentioned results on repre-
sentable forms. This theory was studied by other authors in very different
ways. We also clarify the correspondence of this kind of decompositions.

The Lebesgue decomposition theorem for measures follows from our re-
sults.

A completion of the proof of a theorem due to S. Hassi, Z. Sebestyén and
H. de Snoo is included.
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INTRODUCTION

Recently S. Hassi, Z. Sebestyén and H. de Snoo presented a general Lebes-
gue type decomposition theorem on complex vector spaces [6]. A given semi-
inner product t (form, for short) on a complex vector space D is decomposed to a
sum of forms

(0.1) t = treg + tsing

with respect to another form w on D. The main point of this decomposition is
that the so-called regular part treg is closable with respect to w, i.e. for any sequence
(xn)n∈N in D the property

w(xn, xn)→ 0∧ treg(xn − xm, xn − xm)→ 0
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implies that treg(xn, xn) → 0, while the so-called singular part tsing and w are
singular, i.e. for any form p on D the property

(p(x, x) 6 w(x, x)) ∧ (p(x, x) 6 tsing(x, x)) (∀x ∈ D)

implies that p = 0.
The main purpose of this paper is to gain new results on this type of Lebes-

gue decomposition on complex algebras. The interesting case is that when the
algebra’s multiplication is involved to the investigations, namely we study de-
composition of forms t such that the left multiplication operators are well-defined
and bounded with respect to the form t. For this we introduce the concept of
representable forms. These forms induce representations of the algebra. It will
turn out that the regular part of a representable form t is always representable.
Furthermore, we give a characterization theorem for the representability of the
singular part. In this result closed invariant subspaces of the generated represen-
tation appear. From this we can study the Lebesgue decomposition of forms such
that the induced representation is topologically irreducible. It is important to note
that we do not make any assumptions for the algebra, neither the commutativity,
nor the existence of unit element.

The case of involutive algebras (throughout the paper ∗-algebra) and repre-
sentable positive functionals is also interesting. We introduce a general Lebesgue
decomposition theorem for representable positive functionals. We will prove that
for a representable positive functional the Lebesgue decomposition related to
forms always yields regular and singular parts that were derived from repre-
sentable positive functionals.

There are other authors who studied the ∗-algebra case previously, in vari-
ous approaches. H. Kosaki in [8] presented a Lebesgue decomposition for normal
states on σ-finite von Neumann algebras. S. Gudder in [5] proved a Lebesgue de-
composition theorem for positive functionals on unital Banach ∗-algebras. We
will show that our result coincides with Kosaki’s decomposition on σ-finite von
Neumann algebras and with Gudder’s on unital Banach ∗-algebras, respectively.
Hence our theorem generalizes these two results. According to non-uniqueness
of Kosaki’s decomposition, this fact allows us to show that our decomposition is
not unique, as well as Gudder’s.

It is also a natural question what is the connection between the decompo-
sition (0.1) and the famous Lebesgue decomposition related to measures. We
will present a theorem on the existence of the Lebesgue decomposition related
to positive finite measures, directly from the decomposition that we claimed for
representable positive functonals on ∗-algebras. This result will imply a theorem
of Hassi, Sebestyén and de Snoo. They proved that if we take forms induced by
measures, then treg (respectively tsing) in the decomposition (0.1) coincides with
the form generated by the absolutely (respectively singular) part of the decom-
posed measure ([6], Theorem 5.5). However, there is a gap in their proof. We will
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introduce a counterexample to illustrate this problem, moreover we will fill the
gap in the original proof.

We have to mention other papers concerning with Lebesgue decomposi-
tion. We mentioned before H. Kosaki’s [8] and S. Gudder’s [5] results. T. Ando
[1] decomposed a bounded positive linear operator into a sum of positive lin-
ear operators (almost dominated and singular part, respectively) with respect to
another bounded positive operator. In [15] B. Simon claimed a decomposition
similar to (0.1) for a densely defined form on a Hilbert space. A. Inoue [7] proved
a Lebesgue decomposition theorem for positive invariant sesquilinear forms on
∗-algebras.

The set-up of the paper is the following. Section 1 includes essential defi-
nitions and achievements on the Lebesgue decomposition of forms (all of these
results were taken from the work of Hassi, Sebestyén and de Snoo [6]). In Sec-
tion 2 we present new results for representable forms on complex algebras. We
do not make any assumptions for the algebra. We prove that the regular part of a
representable form is always representable, and we give a characterization for the
representability of the singular part by means of closed invariant subspaces. With
the aid of this result we discuss the Lebesgue decomposition of representable
forms which generate topologically irreducible representations. Section 3 deals
with the ∗-algebra case. With the help of the involution and the characterization
theorem for the singular part we show that the regular part and the singular part
in the decomposition of a representable positive functional with respect to a rep-
resentable form are always derived from representable positive functionals. This
is a general Lebesgue type decomposition for representable positive functionals.
In the second part of Section 3 we prove that this decomposition coincides with
Kosaki’s decomposition on σ-finite von Neumann algebras [8] and with Gud-
der’s decomposition on unital Banach ∗-algebras [5]. We also give an answer to
the question of uniqueness. Section 4 contains a new proof to the well-known
Lebesgue theorem for positive measures, directly from our results. Section 5 in-
troduces a completion for the proof of a theorem due to Hassi, Sebestyén and de
Snoo. A counterexample to the original proof’s deficiency is also given in the last
section of the paper.

NOTATIONS

If t is a form on the complex vector spaceD, then for x ∈ D let t[x] := t(x, x),
i.e. the quadratic form generated by t. The kernel of t will be denoted by ker t, i.e.
ker t := {x ∈ D : t[x] = 0}. If w is another form on D, then w 6 t means that
w[x] 6 t[x] holds true for all x ∈ D.

A form t induces an inner product on the quotient space D/ ker t, that is
for any x, y ∈ D, 〈x + ker t, y + ker t〉t := t(x, y). Then (Ht, 〈·, ·〉t) stands for the
Hilbert space associated to the form t, i.e. the completion of the pre-Hilbert space
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(D/ ker t, 〈·, ·〉t). If w is another form onD, thenHt⊕Hw denotes the orthogonal
sum of the Hilbert spaceHt andHw, with scalar product

〈(x1, y1), (x2, y2)〉t⊕w := 〈x1, x2〉t + 〈y1, y2〉w (x1, x2 ∈ Ht, y1, y2 ∈ Hw).

For a Hilbert spaceH, B(H) stands for the space of bounded linear operators.
If A is a ∗-algebra and f is positive linear functional on A (i.e. f (a∗a) > 0

for all a ∈ A ), then f̃ stands for the semi inner product generated by f on A ,
namely f̃ (a, b) := f (b∗a) for all a, b ∈ A . For positive functionals f and g, f 6 g
denotes the natural ordering, i.e. f̃ 6 g̃. A positive functional f is said to be
representable, if there exists a cyclic representation π : A → B(H) on a Hilbert
spaceH with cyclic vector ξ ∈ H (i.e. π(A )ξ = H) such that for any a ∈ A

f (a) = 〈π(a)ξ, ξ〉

holds true. By the aid of the remarkable Gelfand–Naimark–Segal (GNS) con-
struction there are simple equivalent conditions to this property (see [9], [14]).
The usual notations (H f , 〈·, ·〉 f ), π f and ξ f stand for the associated Hilbert space,
representation and the distinguished cyclic vector from the GNS-construction,
respectively. If A is unital, then the unit element of A will be denoted by 1.

For ∗-algebras, positive functionals and the GNS-construction the reader is
also referred to [2], [10], [13].

1. A GENERAL LEBESGUE TYPE DECOMPOSITION THEOREM FOR FORMS

This part of the paper contains the main tools and results that we need to
gain new results in the latter sections. All of the definitions and theorems are
adopted from article [6].

DEFINITION 1.1. Let D be a complex vector space, t and w forms on D.
(i) w is closable with respect to t if for any sequence (xn)n∈N in D:

(limn→+∞ t[xn] = 0∧ limn,m→+∞ w[xn − xm] = 0)⇒ lim
n→+∞

w[xn] = 0.

(i) w and t are singular if for any form p on D:

(p 6 w∧ p 6 t)⇒ p = 0.

For positive linear functionals f and g on a ∗-algebra we say that f is clos-
able with respect to g, if the induced form f̃ is closable with respect to the other
induced form g̃. We say that f and g are singular, if the induced forms f̃ and g̃ are
singular.

The following theorem ([6], Proposition 2.2) presents a concept of funda-
mental importance in this theory.
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THEOREM 1.2. Let D be a complex vector space, and let t,w be forms on D. Then
the formula

(t : w)[x] := inf{t[x− z] +w[z] : z ∈ D} (x ∈ D).

defines a quadratic form on D, hence uniquely determines a form (t : w) on D.

DEFINITION 1.3. The form (t : w) is the parallel sum of the forms t and w.

REMARK 1.4. It is easy to see that (t : w) 6 t and (t : w) 6 w. For other
properties of the parallel sum, the reader is referred to Lemma 2.3 of [6].

The next proposition shows the connection between singularity and the par-
allel sum ([6], Proposition 2.10).

THEOREM 1.5. If t and w are two forms on the complex vector space D, then the
following statements are equivalent:

(i) t and w are singular.
(ii) (t : w) = 0.

According to the previous theorem, the following statement ([6], Corol-
lary 3.2) introduces a geometric characterization of singularity. This property
plays a key role in our paper, therefore we give the sketch of the proof.

THEOREM 1.6. Let D be a complex vector space and let t, w be forms on D. Then
for the densely defined linear isometry

(1.1) U : Ht+w → Ht ⊕Hw; U(x + ker(t+w)) := (x + ker t, x + kerw)

the following statements are equivalent:
(i) (t : w) = 0.

(ii) ranU = Ht ⊕Hw.

Proof. (i) ⇒ (ii) It is enough to prove that {(x + ker t, y + kerw) : x, y ∈
D} ⊆ ranU, since it is a dense subspace of Ht ⊕Hw. Let x, y ∈ D be arbitrary
vectors. Since (t : w) = 0, we have that 0 = (t : w)[x] = inf{t[x − z] + w[z] :
z ∈ D}. This implies the existence of a sequence (xn)n∈N such that t[x − xn] +
w[xn] → 0. Similarly, there exists a sequence (yn)n∈N such that t[yn] + w[y −
yn]→ 0. Then for the sequence (xn + yn)n∈N we conclude that

U(xn+yn+ker(t+w))=(xn+yn+ker t, xn+yn+kerw)→ (x+ker t, y+kerw).

(ii)⇒ (i) Fix an arbitrary x ∈ D. By (ii) there exists a sequence (xn)n∈N such
that (xn + ker t, xn + kerw)→ (x + ker t, 0 + kerw), hence

(t : w)[x] = inf{t[x− z] +w[z] : z ∈ D} 6 t[x− xn] +w[xn]→ 0.

The following remarkable theorem is the main achievement in this decom-
position theory of forms ([6], Theorems 2.11, 3.6, 3.8 and 3.9). This statement is
the basis of our results.
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THEOREM 1.7 (Lebesgue decomposition of forms). Let t,w be forms on the
complex vector space D. Define a form treg by the equation

(1.2) treg[x] := sup
n∈N

(t : nw)[x] (x ∈ D)

and let tsing := t − treg. Then in the decomposition t = treg + tsing the form treg is
closable with respect to w, and the forms tsing and w are singular. Moreover, the form
treg is the greatest among all of the forms p such that p 6 t and p is closable with respect
to w.

The forms treg and tsing are called the regular and singular part of t, respec-
tively.

REMARK 1.8. In Theorem 2.11 of [6] for a form the property almost dominated
by w appears, but this attribute is equivalent to that the form is closable with respect
to w ([6], Theorem 3.8). In our results only the latter property plays role, that is
why the previous theorem was stated in that form.

We note that the terminology almost dominated has also appeared in [8].

The last statement shows a connection between the regular part and the
singular part ([6], Proposition 3.13):

PROPOSITION 1.9. Let t,w be forms on the complex vector space D. Then

(1.3) (tsing : (w+ treg)) = 0,

i.e. the forms tsing and w+ treg are singular.

REMARK 1.10. The previous proposition implies that (treg : tsing) = 0. An
easy consequence of this fact is that if a form t simultaneously singular and clos-
able with respect to a non-zero form w, then t = 0. Indeed, singularity implies
in the Lebesgue decomposition of t with respect to w that t = tsing, meanwhile
closability yields that t = treg. Thus t = 2(t : t) = 2(treg : tsing) = 0.

2. THE DECOMPOSITION OF REPRESENTABLE FORMS ON ALGEBRAS

We introduce new results on the Lebesgue decomposition of forms over
complex algebras. The interesting case is that when the multiplication of the
algebra is involved to the investigations, hence let us begin this section with a
definition. As we mentioned before, we do not assume that the algebra has a unit
element.

DEFINITION 2.1. Let A be a complex algebra. Then a form t on A is repre-
sentable, if

(2.1) (∀a ∈ A )(∃λa ∈ [0,+∞)) (∀b ∈ A ) : t[ab] 6 λat[b],
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i.e. for any a ∈ A the left multiplication operators

La : A / ker t→ A / ker t; La(b + ker t) := ab + ker t (b ∈ A )

are well-defined and bounded on the pre-Hilbert space (A / ker t, 〈·, ·〉t).
Denote by πt(a) the unique bounded linear extension of La toHt.

It is easy to prove the following proposition. This result justifies the use of
the term representable.

PROPOSITION 2.2. The map πt : A → B(Ht) is a representation of A on the
Hilbert space (Ht, 〈·, ·〉t).

Let us call πt the representation generated (or induced) by the representable
form t.

The importance of representable forms lies on the following simple fact: ev-
ery cyclic representation π : A → B(H) of a complex algebra A on a Hilbert
space (H, 〈·, ·〉) is unitarily equivalent to a representation induced by a repre-
sentable form. Indeed, let x0 ∈ H be a cyclic vector and define a form on A by

t : A ×A → C; t(a, b) := 〈π(a)x0, π(b)x0〉.

This is a representable form, since for any a, b ∈ A we have

t[ab] = 〈π(ab)x0, π(ab)x0〉 = 〈π(a)π(b)x0, π(a)π(b)x0〉
6 ‖π(a)‖2〈π(b)x0, π(b)x0〉 = ‖π(a)‖2t[b].

To see that π and πt are unitarily equivalent, let V be the densely defined operator

V : π(A )x0 → Ht; V(π(a)x0) := a + ker t.

It is easy to check that V is a linear isometry, hence the unique linear extension V
of V to H is unitary. Moreover, for every a ∈ A and arbitrary element π(b)x0 of
the dense subspace π(A )x0 we obtain

(Vπ(a))(π(b)x0)=V(π(ab)x0)= ab+ker t=πt(a)(b+ker t)=(πt(a)V)(π(b)x0),

that is for any a ∈ A

Vπ(a) = πt(a)V

holds true, namely π and πt are unitarily equivalent representations (and obvi-
ously πt is also cyclic with the vector Vx0).

REMARK 2.3. We note here that when A is commutative, then

t∗(a, b) := 〈π(b)∗x0, π(a)∗x0〉

is also a representable form on A . It is easy to see that t∗ is a form, and the
representability follows from the validity of the next inequality for any a, b ∈ A :

t∗[ab]=〈π(ab)∗x0, π(ab)∗x0〉 = 〈π(b)∗π(a)∗x0, π(b)∗π(a)∗x0〉
=〈π(a)∗π(b)∗x0, π(a)∗π(b)∗x0〉6‖π(a)∗‖2〈π(b)∗x0, π(b)∗x0〉=‖π(a)‖2t∗[b].
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The term representable is also motivated by the well-known representable
positive functionals on ∗-algebras. This kind of functionals induce a form and a
cyclic representation on a Hilbert space via the GNS-construction. This induced
form is obviously representable in the sense of Definition 2.1. The difference in
our terminology is that we do not assume the representations to be cyclic. For
instance, 9.4.25 in [9] gives an example to a positive linear functional ω such that
is not representable in the classical sense, while the induced form ω̃ is repre-
sentable in the sense of Definition 2.1. But we note that if the algebra has unit
element 1, then a representable form t induces a cyclic representation with cyclic
vector 1 + ker t.

The primary question in terms of the Lebesgue decomposition for repre-
sentable forms is whether or not the regular part and the singular part are repre-
sentable. The purpose of this section is to answer this.

With the aid of our results we will be able to study the case of forms such
that the generated representation is topologically irreducible. Moreover, Theo-
rem 2.6, our main theorem gives the opportunity to get a general Lebesgue de-
composition theorem for representable positive functionals on ∗-algebras (Corol-
lary 3.2). The latter will be discussed in Section 3.

First we prove a lemma on the parallel sum of representable forms.

LEMMA 2.4. Let A be a complex algebra and let t,w be representable forms on A .
Then their parallel sum (t : w) is also a representable form on A :

(2.2) ‖π(t:w)(a)‖ 6 max{‖πt(a)‖, ‖πw(a)‖} (a ∈ A ).

Proof. We prove that for every a, b ∈ A

(t : w)[ab] 6 max{‖πt(a)‖2, ‖πw(a)‖2}(t : w)[b],

holds, and this implies the desired result. By definition we have

(t : w)[ab] = inf{t[ab− c] +w[c] : c ∈ A } 6 inf{t[ab− ac] +w[ac]} : c ∈ A }
6 inf{‖πt(a)‖2t[b− c] + ‖πw(a)‖2w[c]} : c ∈ A }
6 max{‖πt(a)‖2, ‖πw(a)‖2} inf{t[b− c] +w[c] : c ∈ A }
= max{‖πt(a)‖2, ‖πw(a)‖2}(t : w)[b],

thus (2.2) follows.

The regular part was defined by supremum of parallel sums, hence the pre-
vious lemma provides that the regular part is always representable:

THEOREM 2.5. Let A be a complex algebra and let t,w be representable forms on
A . Let t = treg + tsing be the Lebesgue decomposition of t with respect to w. Then the
form treg is a representable form on A , moreover for every a ∈ A we infer that

(2.3) ‖πtreg(a)‖ 6 max{‖πt(a)‖, ‖πw(a)‖}.
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Proof. The regular part treg was defined in Theorem 1.7 by the formula

treg[a] := sup
n∈N

(t : nw)[a] (a ∈ A ),

hence it is enough to prove the next inequality for every n ∈ N and a, b ∈ A :

(t : nw)[ab] 6 max{‖πt(a)‖2, ‖πw(a)‖2}(t : nw)[b].

Fix an arbitrary n ∈ N and two elements a, b ∈ A . For the form w we have
that

nw[ab] 6 n‖πw(a)‖2w[b],

hence ‖πw(a)‖ = ‖πnw(a)‖. From Lemma 2.4 it follows that

(t : nw)[ab] 6 max{‖πt(a)‖2, ‖πw(a)‖2}(t : nw)[b],

and taking supremum in n on both sides of this inequality gives (2.3).

The following theorem is our main result in the context of the Lebesgue
decomposition of representable forms on algebras. It turns out that the regular
part and the singular part are closely connected to closed invariant subspaces of
the representation induced by the decomposition of forms.

In Section 3 by means of involution, this theorem allows us to gain a stronger
statement for ∗-algebras (Theorem 3.1).

THEOREM 2.6. Let A be a complex algebra and let t,w be representable forms on
A , and let t = treg + tsing be the Lebesgue decomposition of t with respect to w. Then
the densely defined linear isometry

U : A / ker t→ Htreg ⊕Htsing ,

U(a + ker t) := (a + ker treg, a + ker tsing) (a ∈ A ),
(2.4)

admits an unitary extension U toHt, and:
(i) The closed linear subspace U−1({0 + ker treg} ⊕Htsing) is πt-invariant.

(ii) For the πt-invariance of the closed linear subspace U−1(Htreg ⊕ {0 + ker tsing})
it is necessary and sufficient that the form tsing is representable.

If tsing is representable, then the following estimates are valid for every a ∈ A :

‖πtreg(a)‖ 6 ‖πt(a)‖, ‖πtsing(a)‖ 6 ‖πt(a)‖.

Moreover, for all a ∈ A

(2.5) Uπt(a)U−1 = πtreg(a)⊕ πtsing(a).

Proof. The forms treg and tsing are singular (Remark 1.10), and by Theo-
rem 1.6 this is equivalent to ranU = Htreg ⊕Htsing , hence U has an unitary ex-
tension U. Define a representation of A by

(2.6) ψt : A → B(Htreg ⊕Htsing), ψt(a) := Uπt(a)U−1,

which is a representation unitarily equivalent to πt.
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(i) The closed linear subspace U−1({0 + ker treg} ⊕Htsing) is πt-invariant if
and only if {0 + ker treg} ⊕Htsing is ψt-invariant. Fix an a ∈ A . We show that for
the dense linear subspace

Y = {(0 + ker treg, b + ker tsing) : b ∈ A }

of {0 + ker treg} ⊕ Htsing the relation ψt(a)(Y) ⊆ {0 + ker treg} ⊕ Htsing holds
true, thus the closure of Y is also an invariant subspace, since the operator ψt(a)
is continuous.

Let b ∈ A be an arbitrary element. Since ranU = Htreg ⊕Htsing , there exists
a sequence (bn)n∈N in A such that

(bn + ker treg, bn + ker tsing)→ (0 + ker treg, b + ker tsing).

The sequence (bn + ker t)n∈N = (U−1(bn + ker treg, bn + ker tsing))n∈N is conver-
gent in Ht, so by the continuity of the operator πt(a) the sequence (πt(a)(bn +
ker t))n∈N = (abn + ker t)n∈N is also convergent. This implies that the sequence
(abn + ker tsing)n∈N is Cauchy, since tsing 6 t. From this it follows that (abn +
ker tsing)n∈N converges to a vector ξab ∈ Htsing . Furthermore, treg is representable
according to Theorem 2.5, hence

abn + ker treg = πtreg(a)(bn + ker treg)→ 0 + ker treg.

Then for the continuous operator ψt(a) we infer that

ψt(a)(0+ker treg, b+ker tsing)= lim
n→+∞

ψt(a)(bn + ker treg, bn + ker tsing)

= lim
n→+∞

U(πt(a)(bn+ker t))= lim
n→+∞

U(abn+ker t)

= lim
n→+∞

(abn + ker treg, abn + ker tsing)

=(0 + ker treg, ξab + ker tsing),

that is ψt(a)(Y) ⊆ {0 + ker treg} ⊕Htsing .
(ii) For the necessity assume that U−1(Htreg ⊕ {0 + ker tsing}) is πt-inva-

riant, which is equivalent to the ψt-invariance of Htreg ⊕ {0 + ker tsing}. Let
a, c ∈ A be arbitrary elements. By the invariance for the vector (c + ker treg, 0 +
ker tsing) we have that

ψt(a)(c + ker treg, 0 + ker tsing) ∈ Htreg ⊕ {0 + ker tsing},

hence there exists a ξac ∈ Htreg such that

ψt(a)(c + ker treg, 0 + ker tsing) = (ξac, 0 + ker tsing).

Since ranU = Htreg ⊕Htsing , there exists a sequence (cn)n∈N in A such that

(cn + ker treg, cn + ker tsing)→ (0 + ker treg, c + ker tsing).

By Theorem 2.5 the form treg is representable, hence treg[acn]→ 0, so

ac− acn + ker treg = πtreg(a)(c− cn + ker treg)→ ac + ker treg.
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Then we have that

(ξac, 0 + ker tsing) = ψt(a)(c + ker treg, 0 + ker tsing)

= ψt(a)(limn→+∞(c− cn + ker treg, c− cn + ker tsing))

= lim
n→+∞

ψt(a)(c− cn + ker treg, c− cn + ker tsing)

= lim
n→+∞

(ac− acn + ker treg, ac− acn + ker tsing),

hence ac − acn + ker tsing → 0 + ker tsing. As a consequence we conclude that
tsing[acn]→ tsing[ac]. From this and treg[acn]→ 0 it follows that

tsing[ac] = lim
n→+∞

tsing[acn] = lim
n→+∞

(treg[acn] + tsing[acn])

= lim
n→+∞

t[acn] 6 ‖πt(a)‖2 lim
n→+∞

t[cn]

= ‖πt(a)‖2 lim
n→+∞

(treg[cn] + tsing[cn]) = ‖πt(a)‖2tsing[c],(2.7)

that is the form tsing is representable, and

‖πtsing(a)‖ 6 ‖πt(a)‖.

Similarly, since treg[a(c− cn)]→ treg[ac] and tsing[a(c− cn)]→ 0, then

treg[ac] = lim
n→+∞

treg[a(c− cn)] = lim
n→+∞

(treg[a(c− cn)] + tsing[a(c− cn)])

= lim
n→+∞

t[a(c− cn)] 6 ‖πt(a)‖2 lim
n→+∞

t[c− cn]

= ‖πt(a)‖2 lim
n→+∞

(treg[c− cn] + tsing[c− cn]) = ‖πt(a)‖2treg[c],(2.8)

that is

‖πtreg(a)‖ 6 ‖πt(a)‖.

The argument for the sufficiency will be similar to the proof of (i). Assume
that tsing is representable, and let a ∈ A be an arbitrary element. It is enough to
prove that the dense linear subspace

Z = {(d + ker treg, 0 + ker tsing) : d ∈ A }

ofHtreg ⊕ {0 + ker tsing} is a ψt(a) invariant subspace.
Let (d + ker treg, 0 + ker tsing) ∈ Z arbitrary. Since ranU is dense in Htreg ⊕

Htsing , there exists a sequence (dn)n∈N in A such that

(dn + ker treg, dn + ker tsing)→ (d + ker treg, 0 + ker tsing).

Both of the forms treg and tsing are representable, hence it follows that

ψt(a)(d+ker treg, 0 + ker tsing)= lim
n→+∞

ψt(a)(dn + ker treg, dn + ker tsing)
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= lim
n→+∞

Uπt(a)(dn + ker t)

= lim
n→+∞

U(adn + ker t)

= lim
n→+∞

(πtreg(a)(dn+ker treg), πtsing(a)(dn+ker tsing))

=(ad + ker treg, 0 + ker tsing),

that is ψt(a)(Z) ⊆ Z .
Finally let a, x, y ∈ A arbitrary elements, and let (zn)n∈N be a sequence in

A such that

(zn + ker treg, zn + ker tsing)→ (x + ker treg, y + ker tsing).

If tsing is representable, then

(Uπt(a)U−1)(x + ker treg, y + ker tsing)

= ψt(a)(x + ker treg, y + ker tsing) = lim
n→+∞

ψt(a)(zn + ker treg, zn + ker tsing)

= lim
n→+∞

U(πt(a)(zn + ker t)) = lim
n→+∞

U(azn + ker t)

= lim
n→+∞

(πtreg(a)(zn + ker treg), πtsing(a)(zn + ker tsing))

= (ax + ker treg, ay + ker tsing) = (πtreg(a)⊕ πtsing(a))(x + ker treg, y + ker tsing),

hence the bounded operators Uπt(a)U−1 and πtreg(a)⊕ πtsing(a) are equal on a
dense subspace ofHtreg ⊕Htsing , thus (2.5) follows. The proof is complete.

In Section 3 we will prove that the singular part of a form generated by a
representable positive functional on a ∗-algebra is always a representable form.
However, the following example demonstrates that the singular part is not nec-
essarily representable in general, moreover, this can occur over unital commuta-
tive algebras. Hence for an arbitrary algebra the statement in part (ii) cannot be
strengthened.

EXAMPLE 2.7. Let (H, 〈·, ·〉) be an infinite dimensional separable Hilbert
space and let (en)n∈N be a complete orthonormal system in H. Denote by S the
shift operator associated to (en)n∈N, i.e. the bounded linear operator such that
Sen = en+1 for all n ∈ N, and let A be the subalgebra of B(H) generated by S and
the identity I. Furthermore, let P be the one-dimensional orthogonal projection
onto the subspace spanned by e1. Now we define two forms on A :

v(A, B) = 〈PAe1, PBe1〉, w(A, B) = 〈(I − P)Ae1, (I − P)Be1〉 (A, B ∈ A ).

It is clear that v and w are truly forms on A . Moreover,

t(A, B) := v(A, B) +w(A, B) = 〈Ae1, Be1〉
is also a form, which is representable (t[AB] 6 ‖A‖2t[B]). We will prove the
following three statements:

(a) The form v is representable.
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(b) The form w is not representable.
(c) The Lebesgue decomposition of t with respect to v is t = v+w, where the

regular part is v = treg, the singular part is w = tsing, respectively.

(a) We have to show that for every A ∈ A there exists a positive number λA
such that for every B ∈ A the inequality v[AB] 6 λAv[B] holds. Fix an A ∈ A ;

then A has the form A =
n
∑

j=0
λjSj for some n ∈ N and λj ∈ C (j = 0, . . . , n). Since

every positive power of S has its range in ker P, therefore PA = λ0P. Hence it
follows that

v[AB] = 〈PABe1, PABe1〉 = |λ0|2〈PBe1, PBe1〉 = |λ0|2v[B],

that is |λ0|2 is suitable for λA.
(b) Assume that w is representable. Then for S there exists λS > 0 such that

for all B ∈ A we have w[SB] 6 λSw[B]. If we take B = I, then we obtain

1= 〈e2, e2〉= 〈(I−P)Se1, (I−P)Se1〉=w[SI]6λSw[I]=λS〈(I−P)e1, (I−P)e1〉=0,

which is a contradiction.
(c) The form v is closable with respect to itself and smaller than t, thus by

the extremal property of treg the inequality v 6 treg holds (Theorem 1.7). Con-
sequently it is enough to prove that the inequality (t : nv)[A] 6 v[A] is true for
every A ∈ A and n ∈ N, since the regular part of t is treg = sup

n∈N
(t : nv) (and in

this case w = tsing also follows).
Let us fix an arbitrary A ∈ A and n ∈ N. The operator A has the form

A =
m
∑

j=0
λjSj for some m ∈ N and λj ∈ C (j = 0, . . . , m). Let C ∈ A be the

operator
m
∑

j=1
λjSj. Then

(t : nv)[A] = inf{v[A− B] +w[A− B] + nv[B] : B ∈ A }

6 v[A− C] +w[A− C] + nv[C] = v[λ0 I] +w[λ0 I] + nv
[ m

∑
j=1

λjSj
]

= ‖Pλ0 Ie1‖2 + ‖(I − P)λ0 Ie1‖2 + n
∥∥∥P
( m

∑
j=1

λjSj
)

e1

∥∥∥2

=
∥∥∥(Pλ0 I + P

( m

∑
j=1

λjSj
))

e1

∥∥∥2
+ 0 + 0 = v[A],

and whereby follows that treg = v.
Therefore t and v are representable forms on the unital commutative algebra

A such that the singular part in the Lebesgue decomposition of t with respect to
v is not a representable form.
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We have seen at the beginning of this section that every cyclic representation
of an algebra on a Hilbert space is unitarily equivalent to a representation induced
by a representable form. A non-zero topologically irreducible representation is
cyclic, so it is an interesting question what can we assert about the decomposition
of forms t such that πt is a topologically irreducible representation of the algebra.
The last theorem of the section gives the answer to this.

THEOREM 2.8. Let t and w be non-zero representable forms on a complex algebra
A , where πt is topologically irreducible. Then either

(i) t is closable with respect to w,
or

(ii) t and w are singular.
If πw is also topologically irreducible, then the occurence of (i) implies that w is

closable with respect to t as well.

Proof. Let t = treg + tsing be the Lebesgue decomposition of t with respect
to w. Using the notations of (2.4) in Theorem 2.6, we conclude by Theorem 2.6(i)
that the closed linear subspace U−1({0 + ker treg} ⊕Htsing) of Ht is πt-invariant.
But πt is topologically irreducible, hence this subspace must be trivial:

(i) If U−1({0 + ker treg} ⊕ Htsing) = {0 + ker t}, then t = treg, namely t is
closable with respect to w.

(ii) If U−1({0+ ker treg}⊕Htsing) = Ht, then t = tsing, i.e. t and w are singular.

Now suppose that πw is also topologically irreducible and case (i) holds,
that is t is closable with respect to w. The above proved results imply that w is
closable with respect to t, or w and t are singular, but by Remark 1.10 we conlude
that the latter case never occurs for non-zero forms.

3. THE ∗-ALGEBRA CASE

In this section we apply the previously claimed results on ∗-algebras. The
especially interesting case is that when the representable forms are derived from
positive functionals. Other authors dealt with this case before. H. Kosaki in [8]
studied the Lebesgue decomposition of normal positive functionals on σ-finite
von Neumann algebras. S. Gudder in [5] proved a decomposition theorem on
unital Banach ∗-algebras. Our results give the opportunity to gain a more gen-
eral theorem, wherein no assumptions needed for the ∗-algebra, even the uni-
tality. The first part contains this general Lebesgue decomposition theorem for
representable positive linear functionals. In the second part we show that our
decomposition corresponds with Kosaki’s result on σ-finite von Neumann alge-
bras and with Gudder’s result on Banach ∗-algebras, as well. Since on an unital
Banach ∗-algebra (and of course, on a von Neumann algebra) every positive lin-
ear functional is representable (see Theorem 11.3.7 of [9]), therefore our result,
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Corollary 3.2, generalizes these decomposition theorems to arbitrary ∗-algebras.
We also discuss the question of the decompositions’ uniqueness.

As we mentioned in the Introduction, for a positive functional f we will
use the term representable in the classical sense, just like the notations (H f , 〈·, ·〉 f ),
ξ f ∈ H f and π f : A → B(H f ) for the associated Hilbert space, distinguished
cyclic vector and ∗-representation given by the GNS-construction.

3.1. THE DECOMPOSITION OF POSITIVE LINEAR FUNCTIONALS. We have seen
in Example 2.7 that the singular part of a representable form is not necessarily
representable. But it will turn out that if we proceed from forms generated by
representable positive functionals, then the singular part is representable. More-
over, both of the regular and singular parts is derived from positive functionals.
Hence the following result stengthens Theorem 2.6 for positive functionals on ∗-
algebras. We note that we do not assume any conditions for the ∗-algebra, neither
the existence of unit element.

THEOREM 3.1. Let A be a ∗-algebra, let t be a representable positive linear func-
tional on A and let w be a representable form on A . Let t̃ = treg + tsing be the Lebesgue
decomposition of t̃ with respect to w. Then the forms treg and tsing are representable, and
in addition, there exist positive functionals tr and ts on A such that t̃r = treg, t̃s = tsing.
Moreover, the following two estimates hold true for every a ∈ A :

‖πtr(a)‖ 6 ‖πt(a)‖, ‖πts(a)‖ 6 ‖πt(a)‖.

Proof. We use the notations of Theorem 2.6. It follows from Theorem 2.5
that treg is representable. In Theorem 2.6 it was proved that U−1({0 + ker treg} ⊕
Htsing) is a πt-invariant subspace. But πt is a ∗-representation, thus we obtain
that the orthogonal complementary subspace U−1(Htreg ⊕ {0 + ker tsing}) is also
a πt-invariant subspace. By Theorem 2.6 this implies that tsing is representable,
and for any a ∈ A we have

‖πtreg(a)‖ 6 ‖πt(a)‖, ‖πtsing(a)‖ 6 ‖πt(a)‖.

We only have to prove that the forms treg and tsing are derived from positive
functionals. The positive functional t is representable, i.e. there is a cyclic vector
ξt ∈ Ht such that πt(a)ξt = a + ker t̃, t(a) = 〈πt(a)ξt, ξt〉t hold true for all a ∈ A .
Since Htreg ⊕Htsing is an orthogonal sum, there exist unique vectors ξr ∈ Htreg ,
ξs ∈ Htsing such that U(ξt) = (ξr, ξs). Then for all a ∈ A we obtain that

(3.1) (Uπt(a)U−1)(ξr, ξs)=U(πt(a)ξt)=U(a+ker t̃)=(a+ker treg, a+ker tsing).

We have seen in (2.5) of Theorem 2.6 such that for every a ∈ A

Uπt(a)U−1 = πtreg(a)⊕ πtsing(a),

hence combining this and (3.1)

(πtreg(a)⊕πtsing(a))(ξr, ξs) = (πtreg(a)ξr, πtsing(a)ξs) = (a+ ker treg, a+ ker tsing)
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follows. As a consequence we have that ξr and ξs are cylic vectors for the repre-
sentations πtreg and πtsing , respectively.

Define the linear functionals tr and ts on A by the following equations:

tr(a) := 〈πtreg(a)ξr, ξr〉treg , ts(a) := 〈πtsing(a)ξs, ξs〉tsing

We show that for any a, b ∈ A

tr(b∗a) = treg(a, b), ts(b∗a) = tsing(a, b)

holds true, hence tr and ts are positive, and the regular and singular parts are
derived from the positive functionals tr and ts, respectively.

Let a, b ∈ A be arbitrary elements. Then we conclude that

tr(b∗a) = 〈πtreg(b
∗a)ξr, ξr〉treg=〈(πtreg(b

∗a)ξr, 0+kertsing), (ξr, 0+kertsing)〉treg⊕tsing

= 〈Uπt(b∗a)U−1(ξr, 0 + kertsing), (ξr, 0 + kertsing)〉treg⊕tsing

= 〈Uπt(b∗)U−1Uπt(a)U−1(ξr, 0 + kertsing), (ξr, 0 + kertsing)〉treg⊕tsing

= 〈Uπt(a)U−1(ξr, 0 + kertsing), Uπt(b)U−1(ξr, 0 + kertsing)〉treg⊕tsing

= 〈(πtreg(a)ξr, 0 + kertsing), (πtreg(b)ξr, 0 + kertsing)〉treg⊕tsing

= 〈(a + ker treg, 0 + kertsing), (b + ker tsing, 0 + kertsing)〉treg⊕tsing=treg(a, b).

The proof is analogous for the singular part:

ts(b∗a)= 〈πtsing(b
∗a)ξs, ξs〉tsing=〈(0+kertreg , πtsing(b

∗a)ξs), (0+kertreg , ξs)〉treg⊕tsing

= 〈Uπt(b∗a)U−1(0 + kertreg , ξs), (0 + kertreg , ξs)〉treg⊕tsing

= 〈Uπt(b∗)U−1Uπt(a)U−1(0 + kertreg , ξs), (0 + kertsing , ξs)〉treg⊕tsing

= 〈Uπt(a)U−1(0 + kertreg , ξs), Uπt(b)U−1(0 + kertreg , ξs)〉treg⊕tsing

= 〈(0 + kertreg , πtsing(a)ξs), (0 + kertreg , πtsing(b)ξs)〉treg⊕tsing

= 〈(0+kertreg , a + ker tsing), (0+kertreg , b+ker tsing)〉treg⊕tsing = tsing(a, b).

This finishes the proof.

COROLLARY 3.2 (Lebesgue decomposition of representable positive func-
tionals). Let A be a ∗-algebra and let f , g be representable positive functionals on A .
Then f admits a Lebesgue decomposition f = freg + fsing to a sum of representable pos-
itive functionals such that fsing and g are singular, while freg is closable with respect to
g. The form induced by freg is

f̃reg[a] = sup
n∈N

( f̃ : ng̃)[a] (a ∈ A ).

Moreover, the form f̃reg is the greatest among all of the forms p such that p 6 f̃ and p is
closable with respect to g̃.

The proof is clear by Theorem 1.7 and Theorem 3.1.
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REMARK 3.3. We note that the decomposition is not necessarily unique, see
Proposition 3.21.

3.2. THE CORRESPONDENCE OF THE DECOMPOSITIONS FOR POSITIVE FUNCTION-
ALS. In this part we prove that our result, Corollary 3.2 yields the same decom-
position that H. Kosaki obtained on σ-finite von Neumann algebras ([8], Theo-
rem 3.5) and that S. Gudder found on unital Banach ∗-algebras ([5], Corollary 3).
These facts and an example due to Kosaki ([8], 10.6) imply that our decomposi-
tion is not unique, as well as Gudder’s.

Kosaki’s and Gudder’s definitions for singularity differs from ours, but the
coincidence of the decompositions implies that all of these definitions result the
same concept.

We note that for positive functionals f and g the terminology f is closable
with respect g appears as f is strongly g-absolutely continuous in Gudder’s paper
([5], (ii) p. 142), while in Kosaki’s article it appears as f is g-absolutely continuous
([8], Theorem 2.2, Definition 2.5).

THE DECOMPOSITION OF KOSAKI. Now we recall Kosaki’s result from [8]. He
dealt with the case of σ-finite von Neumann algebras, and normal positive func-
tionals appeared in his decomposition theorem. For von Neumann algebras, the
reader is referred to [3], [9] and [13].

DEFINITION 3.4. Let A be a von Neumann algebra. Then a positive linear
functional f on A is called

(i) normal, if f (a) = sup
β∈B

f (aβ) holds true whenever (aβ)β∈B is a norm-bounded

increasing net of self-adjoint elements with supremum a;
(ii) faithful, if for any a ∈ A , f (a∗a) = 0 implies that a = 0;

(iii) state, if f (1) = 1.

DEFINITION 3.5. Let A be a von Neumann algebra, f a normal positive
functional, g a normal faithful state on A . Then f is said to be g-singular, if p = 0
is true for every normal positive functional p which simultaneously satisfies p 6
f and p 6 g.

Before the next theorem we recall that a von Neumann algebra is σ-finite, if
for every family of non-zero pairwise orthogonal projections of A is countable.
Below is in our terms Kosaki’s result on normal positive functionals ([8], Theo-
rem 3.3 and Theorem 3.5).

THEOREM 3.6 (Kosaki). Let A be a σ-finite von Neumann algebra, let f be a
normal positive linear functional on A and let g be a normal faithful state on A . Then f
admits a decomposition f = fr + fs to a sum of normal positive functionals, where fr is
closable with respect to g while fs is g-singular. Moreover, fr is the greatest among all of
the normal positive functionals p such that p 6 f and p is closable with respect to g.
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The following simple fact allows us to prove the coincidence of Kosaki’s
and our decomposition: for positive functionals f and p, where f is normal, the
assumption p 6 f implies that p is normal. Namely, let (aβ)β∈B be a norm-
bounded increasing net of self-adjoint elements with supremum a. Then from the
positivity of p we obtain that sup

β∈B
p(aβ) 6 p(a). Furthermore, by the normality of

f for any ε > 0 there exists β0 ∈ B such that 0 6 f (a)− f (aβ0) 6 ε, consequently

0 6 p(a)− p(aβ0) = p(a− aβ0) 6 f (a− aβ0) = f (a)− f (aβ0) 6 ε,

hence p(a) = sup
β∈B

p(aβ) follows.

THEOREM 3.7. Let A be a σ-finite von Neumann algebra, let f be a normal posi-
tive linear functional on A and let g be a normal faithful state on A . Let f = freg + fsing
be the Lebesgue decomposition of f with respect to g by Corollary 3.2 and f = fr + fs
by Theorem 3.6, respectively. Then freg = fr and fsing = fs, i.e. the two decompositions
correspond.

Proof. Since fr is closable with respect to g and fr 6 f holds true, thus the
maximality of freg implies that fr 6 freg. On the other hand, freg is also closable
with respect to g and freg 6 f , moreover the normality of f implies that freg is
normal. So the maximality of fr among the normal positive functionals infers that
freg 6 fr, whereby freg = fr and fsing = fs follows.

REMARK 3.8. For a von Neumann algebra the property σ-finite is equiva-
lent to the existence of a normal faithful state (that is why the assumption σ-finite
was needed in Theorem 3.6). Our decomposition does not need faithfulness, it is
valid for an arbitrary ∗-algebra.

COROLLARY 3.9. Let A be a σ-finite von Neumann algebra, let f be a normal
positive functional on A and let g be a normal faithful state on A . Then f is g-singular
if and only if f and g are singular.

Proof. The functional f is g-singular if and only if fr = 0 holds true in Theo-
rem 3.6 ([8], p. 706). By Theorem 3.7 this is equivalent to freg = 0 in Corollary 3.2,
namely f = fsing, and this case occurs if and only if f and g are singular ([6],
Corollary 3.11).

REMARK 3.10. Kosaki also obtained a remarkable result on g-singularity
([8], Theorem 8.1).

THE DECOMPOSITION OF GUDDER. In [5] Gudder proved a remarkable theorem
on the closability of positive functionals (Theorem 1). This result is very general,
since it is valid on arbitrary ∗-algebra. However, for his Lebesgue type decompo-
sition he assumed that the algebra is unital Banach ∗-algebra.
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We have seen that the regular part in our and Kosaki’s decomposition has a
maximal property with respect to the natural ordering. We will prove that Gud-
der’s result also yields this property (and this fact will imply the correspondence
of the decompositions).

First of all we take two definitions from Gudder’s paper (pages 141 and 146).

DEFINITION 3.11. Let A be a ∗-algebra and let f , g be positive functionals
on A . A sequence (an)n∈N in A with the property

(3.2) (limn→+∞ g̃[an] = 0∧ limn,m→+∞ f̃ [an − am] = 0)

is called (g, f ) sequence.

DEFINITION 3.12. Let A be a ∗-algebra and let f , g be positive functionals
on A . Then f is called g-semisingular if there exists a (g, f ) sequence (an)n∈N in
A such that for all a ∈ A the following holds true:

(3.3) lim
n→+∞

f (a∗na) = f (a).

Now we recall Gudder’s decomposition in our terms ([5], Corollary 3).

THEOREM 3.13 (Gudder). Let f and g be positive linear functionals on a Banach
∗-algebra A with unit. Then f admits a decomposition f = fr + fs to a sum of positive
functionals, where fr is closable with respect to g and fs is g-semisingular, moreover there
exists a (g, f ) sequence (an)n∈N in A which shows the g-semisingularity of fs.

For the correspondence, we will need the following characterization of semi-
singularity. It can be found in another paper of the author ([16]), but we introduce
the proof for the readers convenience.

PROPOSITION 3.14. Let A be a ∗-algebra with unit and let f , g be positive func-
tionals on A , and let (an)n∈N be a (g, f ) sequence in A . Then

(i) (3.3) holds if and only if f̃ [1− an]→ 0.
(ii) f is g-semisingular if and only if g is f -semisingular.

Proof. (i) Assume that first (3.3) holds. We have to prove that f̃ [1− an] →
0. The sequence (an + ker f̃ )n∈N is Cauchy in the Hilbert space H f , therefore it
converges to a vector ξ ∈ H f . Hence for every a ∈ A we have that

〈a + ker f̃ , an + ker f̃ 〉 f → 〈a + ker f̃ , ξ〉 f .

At the same time (3.3) implies that

〈a + ker f̃ , an + ker f̃ 〉 f = f (a∗na)→ f (a) = 〈a + ker f̃ , 1 + ker f̃ 〉 f ,

thus for every a ∈ A we obtain

〈a + ker f̃ , ξ − (1 + ker f̃ )〉 f = 0.
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This means that the vector ξ − (1 + ker f̃ ) is orthogonal to the elements of the
dense linear subspace A /ker f̃ , hence ξ − (1 + ker f̃ ) = 0, that is ξ = 1 + ker f̃ .
Consequently f̃ [1− an]→ 0.

Conversely assume for (an)n∈N that g̃[an]→ 0 and f̃ [1− an]→ 0, and fix an
arbitrary a ∈ A . By the Cauchy–Schwarz inequality we have

| f (a)− f (a∗na)|2= | f ((1−an)
∗a)|26 f ((1−an)

∗(1−an)) f (a∗a)= f̃ [1−an] f̃ [a]→0,

hence f (a∗na)→ f (a), i.e. (3.3) holds.
(ii) It is enough to prove that if f is g-semisingular then g is f -semisingular.

By (i) there is a sequence (an)n∈N such that g̃[an] → 0 and f̃ [1− an] → 0. Then
for the sequence (bn)n∈N = (1− an)n∈N we have that

f̃ [bn] = f̃ [1− an]→ 0, g̃[1− bn] = g̃[1− (1− an)] = g̃[an]→ 0,

thus g is f -semisingular according to (a).

The correspondence of Kosaki’s and our result depended on the fact that
the regular parts are maximal in a sort of sense in both decomposition. In the
next theorem we prove an analogous statement for Gudder’s result.

THEOREM 3.15. Let f and g be positive linear functionals on a Banach ∗-algebra
A with unit, and let f = fr + fs be the Lebesgue decomposition of f by Theorem 3.13.
Then fr is the greatest among all of the positive functionals p such that p 6 f and p is
closable with respect to g.

Proof. Let us fix a positive functional p closable with respect to g and let
p 6 f . Denote the positive functional f − p by q, and let (an)n∈N be a (g, f )
sequence which shows the g-semisingularity of fs. Then we have that

f = fr + fs = p + q,

and by Proposition 3.14(i) the following follows:

(3.4) lim
n→+∞

(an + ker f̃s) = 1 + ker f̃s.

The functional f dominates all of the functionals fr, fs, p and q, hence the
sequence (an)n∈N is a (g, fr), (g, fs), (g, p) and (g, q) sequence as well. From the
closability of fr and p it follows that

(3.5) 〈an+ker f̃r, an+ker f̃r〉 fr = fr[an]→0, 〈an+ker p̃, an+ker p̃〉p = p[an]→0.

As a consequence, from the Cauchy–Schwarz inequality for any a ∈ A we have

| fr(a∗na)|2 6 fr[an] fr[a]→ 0, |p(a∗na)|2 6 p[an]p[a]→ 0.

Thus for every a ∈ A we obtain that

fs(a) = lim
n→+∞

fs(a∗na) = lim
n→+∞

( fr(a∗na) + fs(a∗na))

= lim
n→+∞

f (a∗na) = lim
n→+∞

(p(a∗na) + q(a∗na)) = lim
n→+∞

q(a∗na).
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The sequence (an + ker q̃)n∈N is Cauchy inHq, hence there exists a vector ζ ∈ Hq
such that

(3.6) ζ = lim
n→+∞

(an + ker q̃).

Thus for every a ∈ A we have

(3.7) fs(a)= lim
n→+∞

q(a∗na)= lim
n→+∞

〈a+ker q̃, an+ker q̃〉q = 〈πq(a)(1+ker q̃), ζ〉q.

Since a positive functional on a unital Banach ∗-algebra is representable, all of
the operators π fr(a), π fs(a), πp(a) and πq(a) are continuous. Then from (3.5) we
infer that

fr(a∗naan) = 〈π fr(a)(an + ker f̃r), an + ker f̃r〉 fr → 0,

p(a∗naan) = 〈πp(a)(an + ker p̃), an + ker p̃〉p → 0.

On the other hand, (3.4) and (3.6) implies that

lim
n→+∞

fs(a∗naan) = lim
n→+∞

〈π fs(a)(an + ker f̃s), an + ker f̃s〉 fs

= 〈π fs(a)(1 + ker f̃s), 1 + ker f̃s〉 fs

= 〈a + ker f̃s, 1 + ker f̃s〉 fs = fs(a),(3.8)

and

lim
n→+∞

q(a∗naan) = lim
n→+∞

〈πq(a)(an + ker q̃), an + ker q̃〉q = lim
n→+∞

〈πq(a)ζ, ζ〉q.

Hence for any a ∈ A we conclude that

fs(a) = lim
n→+∞

fs(a∗naan) = lim
n→+∞

( fr(a∗naan) + fs(a∗naan)) = lim
n→+∞

f (a∗naan)

= lim
n→+∞

(p(a∗naan) + q(a∗naan)) = lim
n→+∞

q(a∗naan) = 〈πq(a)ζ, ζ〉q.(3.9)

If we combine (3.7) and (3.9), then we get the following equation:

〈πq(a)(1 + ker q̃), ζ〉q = fs(a) = 〈πq(a)ζ, ζ〉q.

Rearranging this we have that

〈πq(a)((1 + ker q̃)− ζ), ζ〉q = 0

holds true for every a ∈ A . Thus for b ∈ A replace a with b∗a in the previous
equality, and then we have

0 = 〈πq(b∗a)((1 + ker q̃)− ζ), ζ〉q = 〈πq(a)((1 + ker q̃)− ζ), πq(b)ζ〉q,

which implies that the closed πq-invariant subspaces πq(A )((1 + ker q̃)− ζ) and
πq(A )ζ are orthogonal.

To complete the proof, let P ∈ B(Hq) be the orthogonal projection onto
πq(A )ζ. Since ran P is a πq-invariant subspace, then for any a ∈ A the equality
Pπq(a) = πq(a)P holds true. Furthermore,

P(1 + ker q̃) = P((1 + ker q̃)− ζ + ζ) = P((1 + ker q̃)− ζ) + Pζ = Pζ = ζ,
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hence from (3.9) for every a ∈ A we obtain that

fs(a∗a) = 〈πq(a∗a)ζ, ζ〉q = 〈πq(a)ζ, πq(a)ζ〉q
= 〈πq(a)P(1 + ker q̃), πq(a)P(1 + ker q̃)〉q
= 〈Pπq(a)(1 + ker q̃), Pπq(a)(1 + ker q̃)〉q
6 ‖P‖2〈πq(a)(1 + ker q̃), πq(a)(1 + ker q̃)〉q
6 〈πq(a)(1 + ker q̃), πq(a)(1 + ker q̃)〉q
= 〈πq(a∗a)(1 + ker q̃), 1 + ker q̃〉q = q(a∗a),

namely fs 6 q, and this implies that 0 6 q− fs = fr− p. The proof is complete.

REMARK 3.16. The equality fs(a) = lim
n→+∞

fs(a∗naan) in (3.8) was noticed by

Gudder in [5], but the arguments were different than ours.

Now it is easy to prove the coincidence of Gudder’s and our decomposition.

COROLLARY 3.17. Let f and g be positive linear functionals on a Banach ∗-
algebra A with unit. Let f = freg + fsing be the Lebesgue decomposition of f with
respect to g by Corollary 3.2 and f = fr + fs by Theorem 3.13, respectively. Then
freg = fr and fsing = fs, i.e. the two decompositions correspond.

Proof. Straightforward, since Corollary 3.2 yields that fr 6 freg, meanwhile
Theorem 3.15 implies that freg 6 fr. Hence freg = fr and fsing = fs hold true.

REMARK 3.18. In [16] the author proved by techniques different from the
above that for positive functionals on unital Banach ∗-algebras Theorem 1.7 and
Theorem 3.13 yields the same decomposition.

As a consequence, we may conclude that the definitions of semisingularity
and singularity are equivalent. This result also can be found in [16].

COROLLARY 3.19. Let f and g be positive linear functionals on a Banach ∗-
algebra A with unit. Then f is g-semisingular if and only if f and g are singular.

For the proof see Corollary 2 in [16].
We state the following theorem wherein all of the three discussed decompo-

sitions are involved. This leads to non-uniqueness of Gudder’s and our decom-
position, as well.

THEOREM 3.20. Let A be a σ-finite von Neumann algebra. Then for a normal
positive functional f and a normal faithful state g on A the decomposition of Kosaki
(Theorem 3.6), the decomposition of Gudder (Theorem 3.13) and the decomposition by
Corollary 3.2 correspond.

The proof is clear by Theorem 3.7 and Corollary 3.17.
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PROPOSITION 3.21. There exist a σ-finite von Neumann algebra A and normal
positive functionals f and g on A such that g is a faithful state, and the above decompo-
sitions of f with respect to g is not unique.

Proof. According to the previous theorem all of the decompositions corre-
spond, hence Example 10.6 due to Kosaki ([8]) shows the non-uniqueness.

4. APPLICATION FOR POSITIVE MEASURES

In this section we prove the existence of the classical Lebesgue decomposi-
tion for positive measures with the aid of our results.

Henceforth let (X,M) be a measurable space (i.e. X is a non-void set,M is
a σ-algebra in X), and denote by A the unital, commutative ∗-algebra generated
by the characteristic functions of the measurable sets. We recall that if µ and ν are
positive measures on (X,M), then µ is absolutely continuous with respect to ν if
and only if for any A ∈ M, ν(A) = 0 implies µ(A) = 0; furthermore µ and ν are
singular if and only if there exists S ∈ M such that ν(S) = 0 and µ(X \ S) = 0
holds true.

We will need the following lemma, which shows the connection between
the absolute continuity (respectively singularity) of positive measures and the
closability (respectively singularity) of the positive functionals induced by the
measures. The decomposition will be a consequence of this lemma and Corol-
lary 3.2.

The key arguments of the proof are due to F. Riesz, and the second im-
plication of part (a) appears also in Lemma 5.1 of [6]. We include a proof for
completeness.

LEMMA 4.1. Let µ and ν be finite positive measures on (X,M). Then the linear
functionals defined on A by the formulas

f (a) :=
∫
X

a dµ, g(a) :=
∫
X

a dν

are positive and representable. Furthermore
(i) f is closable with respect to g⇔ µ is absolutely continuous with respect to ν.

(ii) f and g are singular⇔ µ and ν are singular.

Proof. The functionals are well-defined and positive linear, since they are
integrals by finite measures. The representability of a positive linear functional v
is equivalent to the following two properties (see [9] and [14]):

(1) There exists K > 0 such that for any a ∈ A : |v(a)|2 6 Kv(a∗a).
(2) For all a ∈ A there exists λa > 0 such that for every b ∈ A :

v(b∗a∗ab) 6 λav(b∗b).

Since A is unital, then for all a ∈ A the Cauchy–Schwarz inequality yields
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| f (a)|2 6 f (1) f (a∗a),

thus f (1) is suitable for K in (i). Furthermore,

f (b∗a∗ab) =
∫
X

|a|2|b|2 dµ 6 max
X
|a|2

∫
X

|b|2 dµ = max
X
|a|2 f (b∗b) (a, b ∈ A ),

thus for the element a ∈ A , max
X
|a|2 is suitable for λa in (ii). The very same

argument shows that g is representable.
(i) “⇒” Let A ∈ M be a set such that ν(A) = 0. Then for the constant

sequence (an)n∈N = (χA)n∈N we conclude that

g̃[an] = g(χAχA) = g(χA) =
∫
X

χA dν = 0,

meanwhile

f̃ [an − am] = f ((χA − χA)(χA − χA)) = f (0) = 0,

hence the closability of f implies that

0 = lim
n→+∞

f̃ [an] = f (χAχA) = f (χA) =
∫
X

χA dµ = µ(A),

that is, µ is absolutely continuous with respect to ν.
“⇐” Let (an)n∈N be a sequence in A such that∫
X

|an|2 dν = lim
n→+∞

g̃[an] = lim
n,m→+∞

f̃ [an − am] =
∫
X

|an − am|2 dµ = 0.

We will prove that f̃ [an] → 0. A standard result of Riesz on L2 convergence
yields that there exists a subsequence (akn)n∈N of (an)n∈N converging to zero
ν-almost everywhere. By the absolute continuity we obtain that µ({x ∈ X :
akn(x) 9 0}) = 0, namely akn → 0 µ-almost everywhere. But (akn)n∈N is a subse-
quence of the Cauchy sequence (an)n∈N in L2(µ), hence it follows that f̃ [an]→ 0.

(ii) “⇒” The singularity of f and g is equivalent to ( f̃ : g̃) = 0 according to
Theorem 1.5. From this it follows that ( f̃ : g̃)[1] = 0, so there exists a sequence
(bn)n∈N in A such that∫

X

|1− bn|2 dµ = f̃ [1− bn]→ 0,
∫
X

|bn|2 dν = g̃[bn]→ 0.

Using the result of Riesz, there exists a subsequence (bkn)n∈N of (bn)n∈N converg-
ing to 1 µ-almost everywhere. Applying this result again, there exists a subse-
quence of (bkn)n∈N such that converges to zero ν-almost everywhere. We may
assume that (bn)n∈N already has these properties.

Denote by S the set {x ∈ X : bn(x) 9 0}. Then we infer that X = S ∪ (X \
S), ν(S) = 0 and µ(X \ S) 6 µ({x ∈ X : bn(x) 9 1}) = 0, thus µ and ν are
singular measures.
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“⇐” Assume that there exists S ∈ M such that ν(S) = 0 and µ(X \ S) = 0.
Then for any a ∈ A we obtain that

( f̃ : g̃)[a] = inf{ f̃ [a− b] + g̃[b] : b ∈ A } 6 f̃ [a− aχS ] + g̃[aχS ]

= f̃ [aχX\S ] + g̃[aχS ] =
∫

X\S

|a|2 dµ +
∫
S

|a|2 dν = 0,

hence f and g are singular.

Now we turn to the existence of the Lebesgue decomposition. In our result,
Corollary 3.2 not just forms but representable positive functionals appear, and
this fact allows us to prove the existence directly. We only deal with positive
finite measures, the other cases are consequences of the following result (see [4]
and [12]).

THEOREM 4.2 (Lebesgue decomposition of measures). Let µ and ν be finite
positive measures on (X,M). Then there exist µreg and µsing positive measures on
(X,M) such that µ = µreg + µsing, where µreg is absolutely continuous with respect to
ν, as well as µsing and ν are singular.

Proof. Let f and g be positive functionals on A defined by

f (a) :=
∫
X

a dµ, g(a) :=
∫
X

a dν.

We have seen in Lemma 4.1 that these functionals are representable. Then by
Corollary 3.2 we conclude that there exist representable positive linear function-
als on A such that f = freg + fsing, where freg is closable with respect to g, while
fsing and g are singular. Define the set-functions µreg, µsing : M → C by the
formulas

µreg(A) := freg(χA), µsing(A) := fsing(χA).

The functionals freg and fsing are positive linear, thus it follows that µreg and µsing
are positive finitely additive set-functions dominated by the finite measure µ. It is
well-known that these properties imply that µreg and µsing are σ-additive, namely
µreg and µsing are positive measures (see [4]). Furthermore, for any A ∈ M we
have

µ(A) =
∫
X

χA dµ = f (χA) = freg(χA) + fsing(χA) = µreg(A) + µsing(A),

as well as for every a ∈ A the linearity of freg and fsing implies that

freg(a) =
∫
X

a dµreg, fsing(a) =
∫
X

a dµsing.

Now from Lemma 4.1 we obtain that µreg is absolutely continuous with respect
to ν, moreover µsing and ν are singular.
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5. A COMPLETION TO THE PROOF OF THE MEASURE AND FORM DECOMPOSITIONS
CORRESPONDENCE IN THE PAPER OF HASSI, SEBESTYÉN AND DE SNOO

Hassi, Sebestyén and de Snoo presented the following noteworthy result in
Theorem 5.5 of [6]:

THEOREM 5.1. Let µ and ν be finite positive measures on the measurable space
(X,M), and let A be the vector space generated by the characteristic functions of the
measurable sets. Define the forms t,w : A ×A → C by the formulas

t(a, b) :=
∫
X

ab dµ, w(a, b) :=
∫
X

ab dν.

Let t = treg + tsing be the Lebesgue decomposition of t with respect to the form w by
Theorem 1.7. Let µ = µreg + µsing be the Lebesgue decomposition of µ with respect to
ν, where µreg is absolutely continuous with respect to ν, while µsing and ν are singular.
Then for any a ∈ A the followig hold true:

treg[a] =
∫
X

|a|2 dµreg, tsing[a] =
∫
X

|a|2 dµsing.

In other words, this theorem states that the regular part (respectively singu-
lar part) in the Lebesgue decomposition of forms induced by measures coincides
with the form induced by the absolutely continuous part (respectively singular
part) of the Lebesgue decomposition for measures.

First of all we note that this theorem is a consequence of our result, Theo-
rem 4.2. Indeed, we proved the existence of the measure decomposition directly
from the decomposition related to representable positive functionals (Corol-
lary 3.2), hence the uniqueness of the decomposition related to measures implies
Theorem 5.1.

Hassi, Sebestyén and de Snoo did not prove directly the Lebesgue decom-
position related to measures from their decomposition. For the existence they
used the result of von Neumann on the Radon–Nikodym derivative (see [11]),
and then they proved Theorem 5.1. However, there is a gap in their proof. They
pointed out that for any measurable set M ∈ M the inequality

(5.1) treg[χM ] 6
∫
X

|χM |
2 dµreg

holds true for the form treg. They stated that this implies

(5.2) treg[a] 6
∫
X

|a|2 dµreg

for every a ∈ A (see (5.5) in [6]). Unfortunately, this implication is false in gen-
eral, namely if a form generated by a measure is greater on the characteristic func-
tions than another form, then we cannot conclude the inequality on the whole
space of simple functions. The following example shows this fact.
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EXAMPLE 5.2. Let X = {x1, x2} be an arbitrary two-element set and letM
be the power-set of X. Denote by ν the counting measure on the measurable
space (X,M), moreover let A be the two dimensional vector space of the simple
functions on (X,M). Denote by w the form generated by ν on A , namely

w : A ×A → C, w(a, b) =
∫
X

ab dν.

Let e, f ∈ A be the vectors

e =
3
2

χ{x1}
, f =

3
2

χ{x1}
+

3
2

χ{x2}
=

3
2

χX .

These vectors are linearly independent, therefore the system {e, f } is a basis for
the linear space A . Hence for a, b ∈ A

a = αee + α f f , b = βee + β f f (αe, α f , βe, β f ∈ C)

the following formula defines a form on A :

t : A ×A → C, t(a, b) := αeβe + α f β f .

It is easy to calculate that for every M ∈ M the inequality t[χM ] 6 w[χM ]
holds true, moreover for the simple function a := −χ{x1}

+ χ{x2}
the inequality

t[a] > w[a] holds.

On the other hand, the proof of Theorem 5.1 in [6] can be corrected. To see
this, we will need the following simple lemma.

LEMMA 5.3. Let D be a complex vector space, and let t,w be forms on D such
that w 6 t holds true. Assume that x, y ∈ D are vectors such that w(x, y) = 0. If
t[x] 6 w[x] and t[y] 6 w[y] hold true, then t(x, y) = 0.

Proof. Suppose, by way of contradiction that t(x, y) 6= 0, and let λ ∈ C an
arbitrary number. Then by t[x] 6 w[x], t[y] 6 w[y], w(x, y) = 0 and w 6 t we
infer that

|λ|2t[x] + t[y] 6 |λ|2w[x] +w[y] = |λ|2w[x] +w[y] + 2<(λw(x, y))

= w[λx + y] 6 t[λx + y] = |λ|2t[x] + t[y] + 2<(λt(x, y)),

namely for any λ ∈ C
0 6 2<(λt(x, y))

holds true. Now if we take λ = −1/t(x, y) in this inequality, then we have that
0 6 −2, which is absurd.

Completion to the proof of Theorem 5.1. Denote by w the form on A generated
by µreg, i.e.

w(a, b) =
∫
X

ab dµreg (a, b ∈ A ).
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The maximality of treg (see (5.6) in [6]) implies that

(5.3) w 6 treg.

We have to prove that the inequality treg[a] 6 w[a] holds true for any a ∈ A . As
we mentioned previously, Hassi, Sebestyén and de Snoo showed the inequality

(5.4) treg[χM ] 6 w[χM ]

for every M ∈ M.
Let us fix an a ∈ A . Then there exists a finite disjoint system of measurable

sets {Mj}j∈J and a system of complex numbers {λj}j∈J such that

a = ∑
j∈J

λjχMj
.

Since the sets are disjoint, then for j, k ∈ J, j 6= k we infer that

(5.5) w(χMj
, χMk

) = 0.

From the properties in (5.3), (5.4) and (5.5) Lemma 5.3 implies

treg(χMj
, χMk

) = 0

for any j, k ∈ J, j 6= k. Hence we have

treg[a] = treg

[
∑
j∈J

λjχMj

]
= ∑

j∈J
|λj|2treg[χMj

] + ∑
j,k∈J, j 6=k

2<(λjλktreg(χMj
, χMk

))

= ∑
j∈J
|λj|2treg[χMj

] 6 ∑
j∈J
|λj|2w[χMj

]

= ∑
j∈J
|λj|2w[χMj

] + ∑
j,k∈J, j 6=k

2<(λjλkw(χMj
, χMk

)) = w
[
∑
j∈J

λjχMj

]
= w[a],

and this completes the proof.
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