QUASI-REPRESENTATIONS OF FINSLER MODULES OVER C*-ALGEBRAS

MARYAM AMYARI, MAHNAZ CHAKOSHI, and MOHAMMAD SAL MOSLEHIAN

Dedicated to the memory of Professor William B. Arveson

Communicated by Şerban Strătilă

ABSTRACT. We show that every Finsler module over a C^* -algebra has a quasirepresentation into the Banach space $\mathbb{B}(\mathcal{H}, \mathcal{K})$ of all bounded linear operators between some Hilbert spaces \mathcal{H} and \mathcal{K} . We define the notion of completely positive φ -morphism and establish a Stinespring type theorem in the framework of Finsler modules over C^* -algebras. We also investigate the nondegeneracy and the irreducibility of quasi-representations.

KEYWORDS: Finsler module, C^* -algebra, φ -morphism, quasi-representation, nondegenerate quasi-representation, irreducible quasi-representation.

MSC (2010): Primary 46L08; Secondary 46L05.

1. INTRODUCTION

The notation of Finsler module is an interesting generalization of that of Hilbert C^* -module. It is a useful tool in the operator theory and the theory of operator algebras and may be served as a noncommutative version of the concept of Banach bundle, which is an essential concept in the Finsler geometry. In 1995 Phillips and Weaver [11] showed that if a C^* -algebra \mathscr{A} has no nonzero commutative ideal, then any Finsler \mathscr{A} -module must be a Hilbert C^* -module. If \mathscr{A} is the commutative C^* -algebra $C_0(X)$ of all continuous complex-valued functions vanishing at infinity on a locally compact Hausdorff space X, then any Finsler \mathscr{A} -module is isomorphic to the module of continuous sections of a bundle of Banach spaces over X. The concept of a φ -morphism between Finsler modules was introduced in [1].

The Gelfand–Naimark–Segal (GNS) representation theorem is one of the most useful theorems, which is applied in operator algebras and mathematical physics. That provides a procedure to construct representations of C^* -algebras. A generalization of GNS construction to a topological *-algebra established by

Borchers, Uhlmann and Powers leading to unbounded *-representations of *algebras; see [12]. Another is a generalization of a positive linear functional to a completely positive map studied by Stinespring [14], see also [6].

Let \mathscr{A} be a C^* -algebra and let \mathscr{A}^+ denote the positive cone of all positive elements of \mathscr{A} . We define a Finsler \mathscr{A} -module to be a right \mathscr{A} -module \mathscr{E} equipped with a map $\rho : \mathscr{E} \to \mathscr{A}^+$ (denoted by $\rho_{\mathscr{A}}$ if there is an ambiguity) satisfying the following conditions:

(i) The map $\|\cdot\|_{\mathscr{E}} : x \mapsto \|\rho(x)\|$ makes \mathscr{E} into a Banach space.

(ii) $\rho(xa)^2 = a^* \rho(x)^2 a$, for all $a \in \mathscr{A}$ and $x \in \mathscr{E}$.

A Finsler module \mathscr{E} over a C^* -algebra \mathscr{A} is said to be full if the linear span of $\{\rho(x)^2 : x \in \mathscr{E}\}$ is dense in \mathscr{A} . For example, if \mathscr{E} is a (full) Hilbert C^* -module over \mathscr{A} (see [7]), then \mathscr{E} together with $\rho(x) = \langle x, x \rangle^{1/2}$ is a (full) Finsler module over \mathscr{A} , since

$$\rho(xa)^2 = \langle xa, xa \rangle = a^* \langle x, x \rangle a = a^* \rho(x)^2 a.$$

In particular, every *C*^{*}-algebra \mathscr{A} is a full Finsler module over \mathscr{A} under the mapping $\rho(x) = (x^*x)^{1/2}$.

Our goal is to extend the notion of a representation of a Hilbert C^* -module to the framework of Finsler \mathscr{A} -modules. We show that every Finsler \mathscr{A} -module has a quasi-representation into the Banach space $\mathbb{B}(\mathscr{H}, \mathscr{K})$ of all bounded linear operators between some Hilbert spaces \mathscr{H} and \mathscr{K} . We define the notion of completely positive φ -morphism and establish a Stinespring type theorem in the framework of Finsler modules over C^* -algebras. We also introduce the notions of the nondegeneracy and the irreducibility of quasi-representations and study some interrelations between them.

2. QUASI-REPRESENTATIONS OF FINSLER MODULES

We start our work by giving the definition of a φ -morphism of a Finsler module.

DEFINITION 2.1. Suppose that $(\mathscr{E}, \rho_{\mathscr{A}})$ and $(\mathscr{F}, \rho_{\mathscr{B}})$ are Finsler modules over C^* -algebras \mathscr{A} and \mathscr{B} , respectively, and $\varphi : \mathscr{A} \to \mathscr{B}$ is a *-homomorphism of C^* -algebras. A (not necessarily linear) map $\Phi : \mathscr{E} \to \mathscr{F}$ is said to be a φ *morphism of Finsler modules* if the following conditions are satisfied:

(i) $\rho_{\mathscr{B}}(\Phi(x)) = \varphi(\rho_{\mathscr{A}}(x));$

(ii) $\Phi(xa) = \Phi(x)\varphi(a);$

for all $x \in \mathscr{E}$ and $a \in \mathscr{A}$. In the case of Hilbert *C*^{*}-modules, Φ is assumed to be linear and then condition (ii) is deduced from (i).

Now we introduce the notion of a quasi-representation of a Finsler module. Due to $\mathbb{B}(\mathcal{H}, \mathcal{K})$ is a Hilbert *C*^{*}-module over $\mathbb{B}(\mathcal{H})$ via $\langle T, S \rangle = T^*S$, we can endow $\mathbb{B}(\mathcal{H}, \mathcal{K})$ a Finsler structure by

(2.1)
$$\rho_0(T) = (T^*T)^{1/2}.$$

DEFINITION 2.2. Let (\mathscr{E}, ρ) be a Finsler module over a C^* -algebra \mathscr{A} . A map $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$, where $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ is a representation of \mathscr{A} is called a *quasi-representation* of \mathscr{E} if $\rho_0(\Phi(x)) = \varphi(\rho(x))$ for all $x \in \mathscr{E}$.

We are going to show that for every Finsler \mathscr{A} -module there is a quasirepresentation into $\mathbb{B}(\mathscr{H}, \mathscr{K})$ for some Hilbert spaces \mathscr{H} and \mathscr{K} , see also [9].

THEOREM 2.3. Suppose \mathscr{E} is a Finsler \mathscr{A} -module with the associated map ρ : $\mathscr{E} \to \mathscr{A}^+$. Then there is a quasi-representation $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ for some Hilbert spaces \mathscr{H} and \mathscr{K} .

Proof. By the Gelfand–Naimark theorem for C^* -algebras, there is a representation $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ for some Hilbert space \mathscr{H} . We want to construct a Hilbert space \mathscr{K} . Put

 $\mathscr{K}_0 := \operatorname{span}\{\varphi(a)f : a \in \mathscr{A}, f : \mathscr{E} \to \mathscr{H} \text{ is a map with a finite support}\}$

and define on \mathcal{K}_0 an inner product by

$$\langle \varphi(a)f, \varphi(b)g \rangle = \sum_{x \in \mathscr{E}} \langle \varphi(a)f(x), \varphi(b)g(x) \rangle.$$

Note that if $\langle \sum_{i=1}^{n} \varphi(a_i) f_i, \sum_{i=1}^{n} \varphi(a_i) f_i \rangle = 0$, then

$$\sum_{\mathbf{x}\in\mathscr{E}}\left\langle\sum_{i=1}^{n}\varphi(a_i)f_i(\mathbf{x}),\sum_{i=1}^{n}\varphi(a_i)f_i(\mathbf{x})\right\rangle=0.$$

Thus $\sum_{i=1}^{n} \varphi(a_i) f_i(x) = 0$ for each $x \in \mathscr{E}$, whence $\sum_{i=1}^{n} \varphi(a_i) f_i = 0$.

Let us consider the closure $\overline{\mathscr{K}}_0$ of \mathscr{K}_0 to get a Hilbert space, which is denoted by \mathscr{K} . For any $y \in \mathscr{E}$ and $h \in \mathscr{H}$, the map $h_y : \mathscr{E} \to \mathscr{H}$ defined by

$$h_y(x) = \begin{cases} h & x = y, \\ 0 & x \neq y, \end{cases}$$

has a finite support. For $x \in \mathscr{E}$, define $\Phi(x) : \mathscr{H} \to \mathscr{H}$ by $\Phi(x)h = \varphi(\rho(x))h_x$. We show that $\Phi(x) \in \mathbb{B}(\mathscr{H}, \mathscr{H})$. Clearly $\Phi(x)$ is linear. Also $\Phi(x)$ is bounded, since

$$\begin{split} \|\Phi(x)h\|^2 &= \langle \Phi(x)h, \Phi(x)h \rangle = \langle \varphi(\rho(x))h_x, \varphi(\rho(x))h_x \rangle \\ &= \sum_{y \in \mathscr{E}} \langle \varphi(\rho(x))h_x(y), \varphi(\rho(x))h_x(y) \rangle = \langle \varphi(\rho(x))h, \varphi(\rho(x))h \rangle \\ &\leqslant \|\varphi(\rho(x))\|^2 \|h\|^2, \end{split}$$

whence $\|\Phi(x)\| \leq \|\varphi(\rho(x))\|$.

Further,

$$\begin{split} \langle \Phi(x)^* \Phi(x)h, h' \rangle &= \langle \Phi(x)h, \Phi(x)h' \rangle = \langle \varphi(\rho(x))h_x, \varphi(\rho(x))h'_x \rangle \\ &= \sum_{y \in \mathscr{E}} \langle \varphi(\rho(x))h_x(y), \varphi(\rho(x))h'_x(y) \rangle \\ &= \langle \varphi(\rho(x))h, \varphi(\rho(x))h' \rangle = \langle \varphi(\rho(x)^2)h, h' \rangle, \end{split}$$

for all $h, h' \in \mathscr{H}$ and $x \in \mathscr{E}$. Hence $\Phi(x)^* \Phi(x) = \varphi(\rho(x)^2)$. Hence

(2.2) $(\Phi(x)^*\Phi(x))^{1/2} = \varphi(\rho(x)).$

It follows from (2.1) and equality (2.2) that $\rho_0(\Phi(x)) = \varphi(\rho(x))$.

REMARK 2.4. If Φ is surjective and $\mathbb{B}(\mathcal{H}, \mathcal{H})$ is a full Finsler $\mathbb{B}(\mathcal{H})$ -module, then by Theorem 3.4(iv) of [1], φ is surjective.

In the next section the notion of completely positive φ -morphism is introduced and a construction of Stinespring's theorem for Finsler modules is given.

3. A STINESPRING TYPE THEOREM FOR FINSLER MODULES

The Stinespring theorem was first introduced in the work of Stinespring in 1995 that described the structure of completely positive maps of a C^* -algebra into the C^* -algebra of all bounded linear operators on a Hilbert space; see [14]. Recently Asadi [3] proved this theorem for Hilbert C^* -modules. Further, Bhat et al. [4] improved the result of [3] with omitting a technical condition. In this section we intend to establish a Stinespring type theorem in the framework of Finsler modules over C^* -algebras.

Let $(\mathscr{E}, \rho_{\mathscr{A}})$ be a Finsler module over a C^* -algebra \mathscr{A} . A map $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ is called completely positive if there is a completely positive map $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ such that (i) and (ii) of Definition 2.1 hold with $\rho_{\mathscr{B}} = \rho_0$.

THEOREM 3.1. Let (\mathscr{E}, ρ) be a Finsler module over a unital C^* -algebra \mathscr{A} , let \mathscr{H}, \mathscr{K} be Hilbert spaces and let $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ be a completely positive map associated to a completely positive map $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$. Then there exist Hilbert spaces $\mathscr{H}', \mathscr{K}'$ and isometries $V : \mathscr{H} \to \mathscr{H}', W : \mathscr{K} \to \mathscr{K}', a *-homomorphism \theta : \mathscr{A} \to \mathbb{B}(\mathscr{H}')$ and a θ -morphism $\Psi : \mathscr{E} \to \mathbb{B}(\mathscr{H}', \mathscr{K}')$ such that $\varphi(a) = V^*\theta(a)V, \Phi(x) = W^*\Psi(x)V$ for all $x \in \mathscr{E}$ and $a \in \mathscr{A}$.

Proof. By Theorem 4.1 of [10] there exist a Hilbert space $\mathscr{H}' = \mathscr{A} \otimes \mathscr{H}$, a representation $\theta : \mathscr{A} \to \mathbb{B}(\mathscr{H}')$ and an isometry $V : \mathscr{H} \to \mathscr{H}'$ defined by $V(h) = 1 \otimes h$ such that $\varphi(a) = V^* \theta(a) V$. We may consider a minimal Stinespring representation for θ , where \mathscr{H}' is the closed linear span of $\{\theta(a)Vh : a \in \mathscr{A}, h \in \mathscr{H}\}$.

Now, we put \mathscr{K}' to be the closed linear span of $\{\Phi(x)h : x \in \mathscr{E}, h \in \mathscr{H}\}$ and define the mapping $\Psi : \mathscr{E} \to \mathbb{B}(\mathscr{H}', \mathscr{K}'), x \mapsto \Psi(x)$, where $\Psi(x) :$

 $span\{\theta(a)Vh, a \in \mathcal{A}, h \in \mathcal{H}\} \to \mathcal{H}' \text{ is defined by } \Psi(x)\Big(\sum_{i=1}^n \theta(a_i)Vh_i\Big) = \sum_{i=1}^n \Phi(xa_i)h_i \text{ for } x \in \mathcal{E}, a_i \in \mathcal{A}, h_i \in \mathcal{H}.$

The map $\Psi(x)$ is well-defined and bounded, since

$$\begin{split} \left\| \Psi(x) \Big(\sum_{i=1}^{n} \theta(a_{i}) Vh_{i} \Big) \right\|^{2} \\ &= \left\| \sum_{i=1}^{n} \Phi(xa_{i})h_{i} \right\|^{2} = \sum_{i,j=1}^{n} \langle \Phi(xa_{j})^{*} \Phi(xa_{i})h_{i}, h_{j} \rangle \\ &= \sum_{i,j=1}^{n} \langle \phi(a_{j}^{*}) \Phi(x)^{*} \Phi(x) \phi(a_{i})h_{i}, h_{j} \rangle = \sum_{i,j=1}^{n} \langle \phi(a_{j}^{*}) \phi(\rho(x)^{2}) \phi(a_{i})h_{i}, h_{j} \rangle \\ &= \sum_{i,j=1}^{n} \langle \phi(a_{j}^{*} \rho(x)^{2}a_{i})h_{i}, h_{j} \rangle = \sum_{i,j=1}^{n} \langle V^{*} \theta(a_{j}^{*} \rho(x)^{2}a_{i}) Vh_{i}, h_{j} \rangle \\ &= \sum_{i,j=1}^{n} \langle \theta(\rho(x)^{2}) \theta(a_{i}) Vh_{i}, \theta(a_{j}) Vh_{j} \rangle \leqslant \| \theta(\rho(x)^{2}) \| \| \sum_{i=1}^{n} \theta(a_{i}) Vh_{i} \|^{2} \\ &\leqslant \| \rho(x) \|^{2} \| \sum_{i=1}^{n} \theta(a_{i}) Vh_{i} \|^{2} = \| x \|^{2} \| \sum_{i=1}^{n} \theta(a_{i}) Vh_{i} \|^{2}. \end{split}$$

The mapping Ψ is a θ -morphism, since for all $a, b \in \mathscr{A}$ and $h, g \in \mathscr{H}$

$$\begin{split} \langle \Psi(x)^*\Psi(x)(\theta(a)Vh), \theta(b)Vg \rangle \\ &= \langle \Psi(x)(\theta(a)Vh), \Psi(x)(\theta(b)Vg) \rangle = \langle \Phi(xa)h, \Phi(xb)g \rangle \\ &= \langle \Phi(x)\varphi(a)h, \Phi(x)\varphi(b)g \rangle = \langle \Phi(x)^*\Phi(x)\varphi(a)h, \varphi(b)g \rangle \\ &= \langle \varphi(\rho(x)^2)\varphi(a)h, \varphi(b)g \rangle = \langle \varphi(b^*\rho(x)^2a)h, g \rangle \\ &= \langle V^*\theta(b^*\rho(x)^2a)Vh, g \rangle = \langle \theta(\rho(x)^2)\theta(a)Vh, \theta(b)Vg \rangle, \end{split}$$

whence $\Psi(x)^*\Psi(x) = \theta(\rho(x)^2)$. Moreover

$$\Psi(x)\theta(a)(\theta(b)Vh) = \Psi(x)(\theta(ab)Vh) = \Phi(x(ab))h = \Phi((xa)b)h = \Psi(xa)(\theta(b)Vh),$$

so that $\Psi(x)\theta(a) = \Psi(xa)$.

Since $\mathscr{H}' \subseteq \mathscr{H}$ we can consider a map W as the orthogonal projection of \mathscr{H} onto \mathscr{H}' . Hence $W^* : \mathscr{H}' \to \mathscr{H}$ is the inclusion map, whence for any $k' \in \mathscr{H}'$ we have $WW^*(k') = W(k') = k'$, that is $WW^* = I_{\mathscr{H}'}$.

Finally we observe that $W^*\Psi(x)Vh = \Psi(x)Vh = \Psi(x)(\theta(1)Vh) = \Phi(x)h$, that is $W^*\Psi(x)V = \Phi(x)$.

4. NONDEGENERATE AND IRREDUCIBLE QUASI-REPRESENTATIONS

In this section we define the notions of nondegenerate and irreducible quasirepresentations of Finsler modules and describe relations between the nondegeneracy and the irreduciblity, see [2]. Throughout this section we assume that the quasi-representations satisfy condition (ii) of Definition 2.1.

DEFINITION 4.1. Let $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ be a quasi-representation of a Finsler module \mathscr{E} over a C^* -algebra \mathscr{A} . The map Φ is said to be *nondegenerate* if $\overline{\Phi(\mathscr{E})\mathscr{H}} = \mathscr{K}$ and $\overline{\Phi(\mathscr{E})^*\mathscr{K}} = \mathscr{H}$ (or equivalently, if there exist $\xi \in \mathscr{H}, \eta \in \mathscr{K}$ such that $\Phi(\mathscr{E})\xi = 0$ and $\Phi(\mathscr{E})^*\eta = 0$, then $\xi = \eta = 0$). Recall that a representation $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ of a C^* -algebra \mathscr{A} is nondegenerate if $\overline{\varphi(\mathscr{A})\mathscr{H}} = \mathscr{H}$ (or equivalently, if there exists $\xi \in \mathscr{H}$ such that $\varphi(\mathscr{A})\xi = 0$, then $\xi = 0$), see Definition A.1. of [13].

THEOREM 4.2. If $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ is a nondegenerate quasi-representation, then $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ is a nondegenerate representation. If \mathscr{E} is full and φ is nondegenerate, then Φ is also nondegenerate.

Proof. Suppose that Φ is nondegenerate and $\varphi(\mathscr{A})\xi = 0$. It follows from the Hewitt–Cohen factorization theorem that $\Phi(\mathscr{E})\xi = \Phi(\mathscr{E}\mathscr{A})\xi = \Phi(\mathscr{E})\varphi(\mathscr{A})\xi = 0$. We conclude that $\xi = 0$. Thus φ is nondegenerate.

Suppose that $\Phi(\mathscr{E})\xi = 0$ for some $\xi \in \mathscr{H}$. Then for any $x \in \mathscr{E}$ we have $\|\Phi(x)\xi\|^2 = \langle \Phi(x)^*\Phi(x)\xi,\xi\rangle = \langle \varphi(\rho(x)^2)\xi,\xi\rangle = \|\varphi(\rho(x))\|^2 = 0$. Since \mathscr{E} is a full Finsler \mathscr{A} -module, $a = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})^2$ for some $k_n \in \mathbb{N}$, $x_{i,n} \in \mathscr{E}$ and $\lambda_{i,n} \in \mathbb{C}$. Hence

$$\varphi(a)\xi = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \varphi(\rho(x_{i,n}))^2 \xi = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \varphi(\rho(x_{i,n})) \varphi(\rho(x_{i,n})) \xi = 0,$$

whence $\xi = 0$.

REMARK 4.3. The second result of Theorem 4.2 may fail, if the condition of being full is dropped. To see this take \mathscr{A} to be a nondegenerate von Neumann algebra acting on a Hilbert space, which has a nontrivial central projection *P*. Hence the identity map $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ is assumed to be nondegenerate.

Put $\mathscr{E} = \mathscr{A}P = \{aP : a \in \mathscr{A}\}\$ as a Finsler \mathscr{A} -module equipped with $\rho(aP) = |aP|$. Clearly $\mathscr{A}P$ is not full. The identity map $\Phi : \mathscr{A}P \to \mathbb{B}(\mathscr{H})$ satisfies the following:

(i) $\rho_0 \Phi(aP) = \rho_0(aP) = |aP| = \varphi(|aP|) = \varphi(aP)$, where ρ_0 is defined as in (2.1).

(ii) $\Phi(aPb) = \Phi(aP)\varphi(b)$ for all $b \in \mathscr{A}$.

Hence Φ is a quasi-representation of \mathscr{E} , which is not nondegenerate, since

$$\overline{\Phi(\mathscr{E})\mathscr{H}} = \overline{\mathscr{A}P(\mathscr{H})} = \overline{P(\mathscr{A}\mathscr{H})} \subseteq \overline{P(\mathscr{H})} = P(\mathscr{H}) \neq \mathscr{H}.$$

In the following corollary we investigate a condition under which the representation φ and the quasi-representation Φ are nondegenerate.

COROLLARY 4.4. If $\varphi(\rho(x)) = I_{\mathcal{H}}$, then both Φ and φ are nondegenerate.

Proof. Suppose $\Phi(\mathscr{E})\xi = 0$ for some $\xi \in \mathscr{H}$. Then for all $x \in \mathscr{E}$ we have $\|\Phi(x)\xi\|^2 = \langle \Phi(x)^* \Phi(x)\xi, \xi \rangle = \langle \varphi(\rho(x)^2)\xi, \xi \rangle = \|\xi\|^2 = 0$, so that $\xi = 0$. The nondegeneracy of φ follows from Theorem 4.2.

DEFINITION 4.5. Let $\Phi : \mathscr{E} \to B(\mathscr{H}, \mathscr{H}')$ be a quasi-representation of a Finsler module \mathscr{E} over a C^* -algebra \mathscr{A} and let $\mathscr{H}, \mathscr{H}'$ be closed subspaces of \mathscr{H} and \mathscr{H}' , respectively. A pair of subspaces $(\mathscr{H}, \mathscr{H}')$ is said to be Φ -invariant if $\Phi(\mathscr{E})\mathscr{H} \subseteq \mathscr{H}'$ and $\Phi(\mathscr{E})^*\mathscr{H}' \subseteq \mathscr{H}$. The quasi-representation Φ is said to be *irreducible* if (0,0) and $(\mathscr{H}, \mathscr{H}')$ are the only Φ -invariant pairs. Recall that a representation $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ of a C^* -algebra \mathscr{A} is irreducible if 0 and \mathscr{H} are only closed subspaces of \mathscr{H} which are φ -invariant, i.e. are invariant for $\varphi(\mathscr{A})$.

THEOREM 4.6. Suppose that the quasi-representation $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ constructed in Theorem 2.3 is irreducible. Then so is $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$. If \mathscr{E} is full and φ is irreducible, then Φ is irreducible.

Proof. Suppose that Φ is irreducible and a closed subspace \mathscr{K} of \mathscr{H} is φ -invariant. Consider $\mathscr{H}' = \overline{\Phi(\mathscr{E})}\mathscr{H}$. Clearly $\Phi(\mathscr{E})\mathscr{H} \subseteq \mathscr{H}'$. Due to $\overline{\varphi(\mathscr{A})}\mathscr{H} \subseteq \mathscr{H}$ we observe that $\overline{\varphi(\rho(x)^2)}\mathscr{H} \subseteq \mathscr{H}$, whence $\overline{\Phi(x)}^* \Phi(x)\mathscr{H} \subseteq \mathscr{H}$ for all $x \in \mathscr{E}$. Now let $x \neq y$. In the notation of Theorem 2.3 we have

$$\begin{split} \langle \Phi(x)^* \Phi(y)h, h' \rangle &= \langle \Phi(y)h, \Phi(x)h' \rangle = \langle \varphi(\rho(y))h_y, \varphi(\rho(x))h'_x \rangle \\ &= \sum_{z \in \mathscr{E}} \langle \varphi(\rho(y))h_y(z), \varphi(\rho(x))h'_x(z) \rangle = 0, \end{split}$$

for all $h, h' \in \mathcal{H}$. Put $h' = \Phi(x)^* \Phi(y)h$ to get $\langle \Phi(x)^* \Phi(y)h, \Phi(x)^* \Phi(y)h \rangle = 0$. So that $\Phi(x)^* \Phi(y)h = 0$. Therefore $\Phi(x)^* \Phi(y)\mathcal{H} = 0\mathcal{H} \subseteq \mathcal{H}$. It follows that $\Phi(E)^* \overline{\Phi(E)\mathcal{H}} \subseteq \overline{\Phi(E)^* \Phi(E)\mathcal{H}} \subseteq \mathcal{H}$. Since Φ is irreducible, we conclude that $(\mathcal{H}, \mathcal{H}') = (0, 0)$ or $(\mathcal{H}, \mathcal{H}') = (\mathcal{H}, \mathcal{H}')$, hence either $\mathcal{H} = 0$ or $\mathcal{H} = \mathcal{H}$. This implies that φ is irreducible.

Now assume that φ is irreducible. It follows from Remark 4.1.4 of [8] that φ is nondegenerate. By Theorem 4.2, Φ is nondegenerate.

Consider $(\mathcal{K}, \mathcal{K}')$ as a Φ -invariant pair of subspaces. Any $a \in \mathscr{A}$ can be represented as $a = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})^2$ for some $k_n \in \mathbb{N}$, $x_{i,n} \in \mathscr{E}$ and $\lambda_{i,n} \in \mathbb{C}$. Hence

$$\varphi(a)\mathscr{K} = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \varphi(\rho(x_{i,n}))^2 \mathscr{K} = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \Phi(x_{i,n})^* \Phi(x_{i,n}) \mathscr{K} \subseteq \mathscr{K},$$

Hence either $\mathscr{K} = 0$ or $\mathscr{K} = \mathscr{H}$.

If $\mathscr{K} = 0$ then $\Phi(\mathscr{E})^* \mathscr{K}' \subseteq \mathscr{K} = 0$, and for every $\xi' \in \mathscr{K}'$ we have $0 = \langle \Phi(x)^* \xi', \xi \rangle = \langle \xi', \Phi(x) \xi \rangle$ for $x \in \mathscr{E}$ and $\xi \in \mathscr{H}$, so that $\mathscr{K}' \perp \overline{\Phi(\mathscr{E})} \mathscr{H} = \mathscr{H}'$. Since $\mathscr{K}' \subseteq \mathscr{H}'$, we have $\mathscr{K}' = 0$.

If $\mathscr{K} = \mathscr{H}$, then $\mathscr{H}' = \overline{\Phi(\mathscr{E})\mathscr{H}} = \overline{\Phi(\mathscr{E})\mathscr{K}} \subseteq \mathscr{K}'$. Hence $\mathscr{K}' = \mathscr{H}'$. Therefore Φ is irreducible.

REMARK 4.7. The result may fail, if the condition of being full is dropped. The closed subspace $P(\mathcal{H})$ in Remark 4.3 when $\varphi : \mathcal{A} \to \mathbb{B}(\mathcal{H})$ is irreducible provides a counterexample.

Next we present some conditions under which the quasi-representation Φ is nondegenerate and irreducible.

COROLLARY 4.8. Let \mathscr{E} be a full Finsler \mathscr{A} -module and let $\varphi : \mathscr{A} \to \mathbb{B}(\mathscr{H})$ be irreducible. Then the quasi-representation $\Phi : \mathscr{E} \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ is nondegenerate and irreducible.

Proof. Since φ is irreducible, it is nondegenerate. Since \mathscr{E} is full, by Theorem 4.2, Φ is nondegenerate and by Theorem 4.6, Φ is irreducible.

THEOREM 4.9. Let \mathscr{E} be a full Finsler \mathscr{A} -module. Then $\Phi(\mathscr{E})$ is a subset of the space $\mathbb{K}(\mathscr{H}, \mathscr{H}')$ of all compact operators from \mathscr{H} into \mathscr{H}' if and only if $\varphi(\mathscr{A}) \subseteq \mathbb{K}(\mathscr{H})$.

Proof. Suppose $\varphi(\mathscr{A}) \subseteq \mathbb{K}(\mathscr{H})$. Applying the Hewitt–Cohen factorization theorem we have $\Phi(\mathscr{E}) = \Phi(\mathscr{E}\mathscr{A}) = \Phi(\mathscr{E})\varphi(\mathscr{A}) \subseteq \mathbb{K}(\mathscr{H}, \mathscr{H}')$.

Conversely, suppose that $\Phi(\mathscr{E}) \subseteq \mathbb{K}(\mathscr{H}, \mathscr{H}')$. Since \mathscr{E} is full we have

$$\varphi(a) = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \varphi(\rho(x_{i,n}))^2 = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \Phi(x_{i,n})^* \Phi(x_{i,n}) \in \mathbb{K}(\mathscr{H}),$$

where $a = \lim_{n \to \infty} \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})^2$ for some $k_n \in \mathbb{N}$, $x_{i,n} \in \mathscr{E}$ and $\lambda_{i,n} \in \mathbb{C}$.

In the next two examples we illustrate the considered situations in the notation of Theorem 2.3.

EXAMPLE 4.10. By Theorem 1.10.2 of [5] the identity map $\varphi : \mathbb{K}(\mathscr{H}) \to \mathbb{B}(\mathscr{H})$ is irreducible. It is known that the *C**-algebra $\mathbb{K}(\mathscr{H})$ is a full Finsler module over $\mathbb{K}(\mathscr{H})$ with $\rho(T) = |T|$. Hence the quasi-representation $\Phi : \mathbb{K}(\mathscr{H}) \to \mathbb{B}(\mathscr{H}, \mathscr{K})$ is nondegenerate and irreducible.

EXAMPLE 4.11. Consider $\varphi = I : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$. Then $\varphi(\mathbb{B}(\mathcal{H}))^c = \{T \in \mathbb{B}(\mathcal{H}) : \varphi(S)T = T\varphi(S), \text{ for all } S \in \mathbb{B}(\mathcal{H})\} = \{T \in \mathbb{B}(\mathcal{H}) : ST = TS, \text{ for all } S \in \mathbb{B}(\mathcal{H})\} = \mathbb{C}I$. Hence φ is irreducible. Also $\mathbb{B}(\mathcal{H})$ is a full Finsler $\mathbb{B}(\mathcal{H})$ -module, so that the quasi-representation $\Phi : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H}, \mathcal{H})$ is non-degenerate and irreducible.

Acknowledgements. The authors would like to sincerely thank Professor M. Joiţa for some useful comments improving the paper.

REFERENCES

- M. AMYARI, A. NIKNAM, On homomorphisms of Finsler modules, *Internat. Math. J.* 3(2003), 277–281.
- [2] LJ. ARAMBAŠIĆ, Irreducible representations of Hilbert C*-modules, Math. Proc. R. Ir. Acad. 105A(2005), 11–24.
- [3] M.B. ASADI, Stinespring's theorem for Hilbert C*-modules, J. Operator Theory 62(2008), 235–238.
- [4] B.V.R. BHAT, G. RAMESH, K. SUMSH, Stinespring's theorem for maps on Hilbert C*-modules, J. Operator Theory, to appear.
- [5] K.R. DAVIDSON, C*-Algebra by Example, Fields Inst. Monographs, vol. 6, Amer. Math. Soc., Providence. RI 1996.
- [6] M. JOIȚA, Strict completely positive maps between locally C*-algebras and representations on Hilbert modules, *J. London Math. Soc.* (2) **66**(2002), 421–432.
- [7] V.M. MANUILOV, E.V. TROITSKY, *Hilbert C*-Modules*, Transl. Math. Monogr., vol. 226, Amer. Math. Soc., Providence, RI 2005.
- [8] G.J. MURPHY, C*-Algebras and Operator Theory, Academic press, New York 1990.
- [9] G.J. MURPHY, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh Math. Soc. 40(1997), 367–374.
- [10] V. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv. Math., vol. 78, Cambridge Univ. Press, Cambridge 2002.
- [11] N.C. PHILLIPS, N. WEAVER, Modules with norms which take values in a C*-algebra, Pacific J. Math. 185(1998), 163–181.
- [12] R.T. POWERS, Self-adjoint algebras of unbounded operators, Commun. Math. Phys. 21(1971), 85–124.
- [13] M. SKEIDE, Generalised matrix C*-algebras and representation of Hilbert modules, *Math. Proc. R. Ir. Acad.* 100A(2000), 11–38.
- [14] W.F. STINESPRING, Positive functions on C*-algebras, Proc. Amer. Math. Sci. 6(1955), 211–216.

MARYAM AMYARI, DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, IS-LAMIC AZAD UNIVERSITY, MASHHAD 91735, IRAN *E-mail address*: amyari@mshdiau.ac.ir *and* maryam_amyari@yahoo.com

MAHNAZ CHAKOSHI, DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD 91735, IRAN *E-mail address*: m-chakoshi@mshdiau.ac.ir

MOHAMMAD SAL MOSLEHIAN, DEPARTMENT OF PURE MATHEMATICS, CEN-TER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN *E-mail address*: moslehian@ferdowsi.um.ac.ir *and* moslehian@member.ams.org

Received May 20, 2011.