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uct in the sense of Larsen.
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1. INTRODUCTION

In [4], Cuntz constructed the crossed product of a C∗-algebra A by an endo-
morphism α as a corner in an ordinary group crossed product. Since that time,
there have been many efforts (see [14], [18], for example) to develop a theory of
crossed products of C∗-algebras by single endomorphisms as well as by semi-
groups of endomorphisms. In [5], Exel proposed a new definition for the crossed
product of A by α that depends not only on the pair (A, α) but also on the choice
of a transfer operator (i.e., a positive continuous linear map L : A → A satisfying
L(α(a)b) = aL(b)). Exel shows that the Cuntz–Krieger algebra of a given {0, 1}-
matrix may be realized as the crossed product arising from the associated Markov
sub-shift and a naturally defined transfer operator.

Extending Exel’s construction to non-unital C∗-algebras, Brownlowe, Rae-
burn, and Vittadello in [2] model directed graph C∗-algebras as crossed products.
In particular, they show that if E is a locally finite directed graph with no sources,
then C∗(E) ∼= C0(E∞)oα,L N where E∞ is the infinite-path space of E and α is the
shift map on E∞.

In another extension of Exel’s construction, Larsen (in [13]) develops a the-
ory of crossed products associated to dynamical systems (A, S, α, L) where A is a
(not necessarily unital) C∗-algebra, S is an abelian semigroup with identity, α is
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an action of S by endomorphisms, L is an action of S by transfer operators, and
for all s ∈ S, the maps αs, Ls are extendible to M(A) in an appropriate sense.

Given a locally compact Hausdorff space Ω and a family {Ti}k
i=1 of local

homeomorphisms of Ω that pairwise commute, Yeend ([21]) described the con-
struction of an associated topological k-graph (Λ(Ω, {Ti}k

i=1), d). Motivated in
part by the ideas in [2] described above, we show that if Λ = (Λ(Ω, {Ti}k

i=1), d)
is the topological k-graph constructed from the data (Ω, {Ti}k

i=1), then C∗(Λ) has
a crossed product structure in the sense of Larsen in [13].

Given a general topological k-graph, it is not always the case than an as-
sociated graph C∗-algebra may be constructed. We show that Λ is compactly
aligned, a condition that ensures C∗(Λ) exists. This generalizes a result of Willis
in [19] in which she essentially shows that the result holds when k = 2, Ω is com-
pact, and the maps T1, T2 ∗-commute. In [3], Brownlowe et al. show that when
Λ is a compactly aligned topological k-graph, the C∗-algebra C∗(Λ) constructed
from the boundary path groupoid is isomorphic to the Cuntz–Pimsner algebra
NOXΛ where XΛ is the topological k-graph correspondence associated to Λ. We
show that the product system XLar associated to the dynamical system (in the
sense of Larsen) arising from the data (Ω, {Ti}k

i=1) is isomorphic to the topolog-
ical k-graph correspondence XΛ so that the associated Cuntz–Pimsner algebras
are isomorphic.

To show that NOX is isomorphic to the Larsen crossed product, we show
that certain notions of covariance agree for representations of the product systems
XΛ and XLar. Our isomorphism result then follows from the universal properties
of the associated C∗-algebras.

Brownlowe has shown in [1] that the C∗-algebra of a finitely-aligned dis-
crete k-graph has a crossed product structure. He has suggested that the Cuntz–
Nica–Pimsner algebra NOX should be used to define a general crossed product
by a quasi-lattice ordered semigroup of partial endomorphisms and partially-
defined transfer operators. The fact that, in our setting, NOX is isomorphic to
the Larsen crossed product supports his proposal.

The paper is organized as follows: We begin with some preliminaries in Sec-
tion 2. We state some necessary definitions about product systems of C∗-corre-
spondences, various notions of Cuntz–Pimsner covariance appearing in the liter-
ature, and the C∗-algebras that are universal for such representations. We review
several definitions about the topological k-graphs and the dynamical systems de-
scribed by Larsen in [13], as well as the C∗-algebras associated to each of these
constructions.

In Section 3, we define what we mean by a topological dynamical system
and describe a uniform boundedness condition that is key to our results. We de-
scribe Yeend’s construction of a topological k-graph from a topological dynam-
ical system and show that this topological k-graph is always compactly aligned
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(in the sense of Definition 2.3 of [21]). We then show how an Exel–Larsen sys-
tem may be associated to a topological dynamical system satisfying our uniform
boundedness condition.

In Section 4, we define two product systems over Nk of C∗-correspondences:
the topological k-graph correspondence XΛ and the product system XLar associ-
ated to the Exel–Larsen system. We then show that these two product systems are
isomorphic. Finally, in Section 5, we prove that the C∗-algebras associated to the
topological k-graph and the Exel–Larsen system arising from a given topological
dynamical system are isomorphic.

2. PRELIMINARIES

2.1. PRODUCT SYSTEMS OF C∗-CORRESPONDENCES. In this subsection, we give
some key definitions for product systems of C∗-correspondences, many of which
may be found in Section 2 of [17]. For more details on right-Hilbert C∗-modules
and C∗-correspondences, we refer the reader to [12], [16].

Given a C∗-algebra A and a countable semigroup S with identity e, a product
system over S of C∗-correspondences is a semigroup X equipped with a semigroup
homomorphism p : X → S such that Xs := p−1(s) is an C∗-correspondence for
each s ∈ S, Xe = A (viewed as an C∗-correspondence), the multiplication in X
implements isomorphisms βs,t : Xs ⊗A Xt → Xst for s, t ∈ S \ {e}, and multi-
plication in X by elements of Xe = A induces maps βs,e : Xs ⊗A Xe → Xs and
βe,s : Xe ⊗A Xs → Xs that give the right and left (respectively) actions of A on Xs.
For each s ∈ S, βs,e is an isomorphism by Corollary 2.7 of [16].

For each s ∈ S and ξ, η ∈ Xs, the operator Θξ,η : Xs → Xs defined by
Θξ,η(ζ) := ξ · 〈η, ζ〉A is adjointable with Θ∗ξ,η = Θη,ξ . The space K(Xs) :=
span{Θξ,η : ξ, η ∈ Xs} is a closed two-sided ideal in L(Xs) which we call the
generalized compact operators on Xs.

Given s, t ∈ S with s 6= e, we have a homomorphism ιst
s : L(Xs) → L(Xst)

characterized by

ιst
s (T)(ξη) = T(ξ)η for all ξ ∈ Xs, η ∈ Xt, T ∈ L(Xs).

Via the identification of K(Xe) with A, there also exists a homomorphism ιse :
K(Xe) → L(Xs) given by ιse = φs, where φs is the homomorphism of A to L(Xs)
implementing the left action.

REMARK 2.1. For a C∗-algebra A, we will use the term A-correspondence
to refer to a C∗-correspondence over A.

2.2. REPRESENTATIONS OF PRODUCT SYSTEMS AND ASSOCIATED C∗-ALGEBRAS.
Given a product system X over S of C∗-correspondences, a (Toeplitz) representation
of X in a C∗-algebra B is a map ψ : X → B such that:
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(i) For each s ∈ S, the pair (ψs, ψe) := (ψ|Xs , ψ|Xe) is a Toeplitz representation
of Xs in the sense that ψs : Xs → B is linear and ψe : A → B is a homomorphism
satisfying

ψs(ξ · a) = ψs(ξ)ψe(a), ψs(ξ)
∗ψ(η) = ψe(〈ξ, η〉Xs), ψs(a · ξ) = ψe(a)ψs(ξ),

for ξ, η ∈ Xs, a ∈ A, and
(ii) ψ(ξη) = ψ(ξ)ψ(η), for ξ, η ∈ X.

For each s ∈ S, there is a homomorphism ψ(s) : K(Xs)→ B satisfying

ψ(s)(Θξ,η) = ψs(ξ)ψs(η)
∗ for ξ, η ∈ Xs.

We say that a representation ψ : X → B is Cuntz–Pimsner covariant if for each
s ∈ S the (Toeplitz) representation (ψs, ψe) is Cuntz–Pimsner covariant, that is

(CP-K) ψ(s)(φs(a)) = ψe(a) for a ∈ φ−1
s (K(Xs)) ∩ (ker φs)

⊥.

REMARK 2.2. Different definitions exist in the literature for Cuntz–Pimsner
covariant representations. The one used above is sometimes referred to as the
“Katsura convention” and differs from the definition originally introduced by
Fowler in [8] where (CP-K) is instead required to hold for a ∈ φ−1(K(X)). The
two definitions coincide when the left action on each fibre is injective.

DEFINITION 2.3. For a product system X the Cuntz–Pimsner algebra OX is
the universal C∗-algebra generated by a representation j Fow : X → OX that satis-
fies (CP-K).

A (Toeplitz) representation ψ : X → B is said to be coisometric on K =
{Ks}s∈S, where each Ks is an ideal in φ−1

s (K(Xs)), if each (ψs, ψe) is coisomet-
ric on Ks; that is,

(2.1) ψ(s)(φs(a)) = ψe(a), for all a ∈ Ks.

DEFINITION 2.4. The relative Cuntz–Pimsner algebraO(X, K) is the universal
C∗-algebra generated by a representation j relCP : X → O(X, K) that is coisometric
on K = {Ks}s∈S.

A quasi-lattice ordered group (G, P) is a discrete group G and a subsemi-
group P such that: P ∩ P−1 = {e}, and any two elements p, q ∈ G that have a
common upper bound in P have a least upper bound p ∨ q ∈ P under the or-
der p 6 q ⇐⇒ p−1q ∈ P. We write p ∨ q = ∞ to indicate that p, q ∈ G have
no common upper bound in P, and we write p ∨ q < ∞ otherwise. Since some
of the results we discuss are true for arbitrary abelian semigroups with identity,
we will use the notation S to highlight when this is the case. We will reserve the
notation P to indicate that the semigroup is sitting inside a quasi-lattice ordered
group (G, P).
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DEFINITION 2.5. Given a quasi-lattice ordered group and a product system
X over P of C∗-correspondences, we say that X is compactly aligned if whenever
p ∨ q < ∞, the map ι

p∨q
p (S)ιp∨q

q (T) ∈ K(Xp∨q) for all S ∈ K(Xp), T ∈ K(Xq).

A (Toeplitz) representation ψ : X → B is Nica covariant if, for each p, q ∈ P
and for all S ∈ K(Xp), T ∈ K(Xq), we have

(N) ψ(p)(S)ψ(q)(T) =

{
ψ(p∨q)(ι

(p∨q)
p (S)ι(p∨q)

q (T)) if p ∨ q < ∞,
0 otherwise.

In [17], Sims and Yeend introduced a new notion of Cuntz–Pimsner covari-
ance for compactly aligned product systems. In order to define their notion of
Cuntz–Pimsner covariance, we need to consider the space X̃ which serves as a
sort of “boundary” of X (see Remark 3.10 of [17]).

Given a quasi-lattice ordered group (G, P) and a product system X over P
of C∗-correspondences, let Ie = A and for p ∈ P \ {e} let Ip =

⋂
e<r6p

ker(φr). Note

that Ip is an ideal of A. For q ∈ P, define

X̃q =
⊕
p6q

Xp · Ip−1q.

Each X̃q is an C∗-correspondence with left action implemented by φ̃q : A →
L(X̃q) where (φ̃q(a)ξ)(p) = φp(a)ξ(p), for p 6 q. There is a homomorphism
ι̃

q
p : L(Xp)→ L(X̃q) defined by

(ι̃
q

p (S)ξ)(r) = ιrp(S)ξ(r).

Let (G, P) be a quasi-lattice ordered group and let X be a compactly aligned
product system over P of C∗-correspondences such that φ̃q is injective for each
q ∈ P. A (Toeplitz) representation ψ : X → B of X in a C∗-algebra B is said to be
Cuntz–Pimsner covariant if

for every finite F ⊂ P, and every choice {Tp ∈ K(Xp) : p ∈ F}(CP-SY)

such that ∑
p∈F

ι̃ s
p (Tp) = 0 for large s, we have ∑

p∈F
ψ(p)(Tp) = 0B.

See Definition 3.8 of [17] for the definition of for large s. If ψ : X → B satisfies
both (CP-SY) and (N), then ψ is said to be Cuntz–Nica–Pimsner covariant or CNP-
covariant.

DEFINITION 2.6. The Cuntz–Nica–Pimsner algebra NOX is the universal C∗-
algebra generated by a CNP-covariant representation j CNP : X → NOX .

2.3. TOPOLOGICAL k-GRAPHS AND THEIR C∗-ALGEBRAS. For k ∈ N, a topolog-
ical k-graph is a pair (Λ, d) consisting of: (1) a small category Λ endowed with
a second countable locally compact Hausdorff topology under which composi-
tion is continuous and open, the range map r is continuous, and the source map
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s is a local homeomorphism; and (2) a continuous functor d : Λ → Nk, called
the degree map, satisfying the factorization property: if λ ∈ Λ with d(λ) = m + n,
then there are unique µ, ν ∈ Λ with d(µ) = m, d(ν) = n, and λ = µν. For
m ∈ Nk, let Λm = d−1({m}) denote the paths of degree m; we identify Λ0

with the vertex space Obj(Λ). If U and V are subsets of Λ, then we define
UV = {λµ ∈ Λ : λ ∈ U, µ ∈ V, and s(λ) = r(µ)}. In particular, for v ∈ Λ0

and U ⊆ Λ, we denote {v}U by vU and U{v} by Uv. For more details about
topological k-graphs, see [20].

Given a compactly aligned topological k-graph Λ, the topological k-graph
C∗-algebra C∗(Λ) is the full groupoid C∗-algebra C∗(GΛ) of the boundary path
groupoid GΛ defined in Definition 4.1 of [21]. It is shown in Theorem 5.20 of [3]
that C∗(Λ) is isomorphic to the Cuntz–Nica–Pimsner algebra NOXΛ associated
to the topological k-graph correspondence XΛ (for details of the construction of
XΛ, see [17] for example), whereNOXΛ is the universal C∗-algebra generated by
a CNP-covariant representation j CNP : XΛ → NOXΛ .

2.4. EXEL–LARSEN SYSTEMS AND THEIR RELATIVE CUNTZ–PIMSNER ALGEBRAS.
Let A be a (not necessarily unital) C∗-algebra, S an abelian semigroup with iden-
tity e. Let α : S → End(A) be an action such that each αs is extendible, meaning
that it extends uniquely to an endomorphism αs of M(A) such that

(2.2) αs(1M(A)) = lim αs(uλ)

for some (and hence every) approximate unit (uλ) in A and all s ∈ S. Finally, let
L be an action of S by continuous, linear, positive maps Ls : A → A which have
linear continuous extensions Ls : M(A) → M(A) satisfying the transfer operator
identity

(2.3) Ls(αs(a)u) = aLs(u), for all a ∈ A, u ∈ M(A), s ∈ S.

We call the quadruple (A, S, α, L) an Exel–Larsen system.
Given an Exel–Larsen system (A, S, α, L) there is an associated product sys-

tem over S of C∗-correspondences which we will denote XLar (for details of the
general construction, see [13]). The Larsen crossed product A oα,L S is the relative
Cuntz–Pimsner algebra of XLar and K = {Ks}s∈S where

(2.4) Ks = Aαs(A)A ∩ φ−1
s (K(XLar

s )).

We denote by j Lar the universal representation of XLar that generates A oα,L S.

3. CONSTRUCTIONS ASSOCIATED TO THE TOPOLOGICAL DYNAMICAL SYSTEM (Ω, {Ti}k
i=1)

DEFINITION 3.1. A topological dynamical system (TDS) is a pair (Ω, {Ti}k
i=1)

consisting of a locally compact Hausdorff space Ω and pairwise commuting local
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homeomorphisms T1, . . . , Tk : Ω → Ω. For each m = (m1, . . . , mk) ∈ Nk, let
Θm : Ω→ Ω be the local homeomorphism defined by

Θm(x) = Tm1
1 · · · T

mk
k (x).

DEFINITION 3.2. Let X and Y be sets. A function f : X → Y has uniformly
bounded cardinality on inverse images if there exists N ∈ N such that

sup
y∈Y
|{x ∈ X : f (x) = y}| 6 N.

The number N is called the uniform bound on the cardinality of the inverse image
of f .

We say that a topological dynamical system (Ω, {Ti}k
i=1) satisfies condition

(UBC) if each Ti, 1 6 i 6 k, has uniformly bounded cardinalities on inverse
images.

If (Ω, {Ti}k
i=1) satisfies condition (UBC), then for each m ∈ Nk, the local

homeomorphism Θm also has uniformly bounded cardinality on inverse images.

EXAMPLE 3.3. (i) Let T denote the unit circle and fix n0 ∈ N. Define T : T→
T by z 7→ zn0 . Then (T, T) is a TDS and for m ∈ N, the local homeomorphism Θm
is given by z 7→ znm

0 . The system (T, T) satisfies condition (UBC) since

sup
y∈T
|{z ∈ T : T(z) = zn0 = y}| 6 n0.

(ii) Given any n1, . . . , nk ∈ N we may define Ti : T → T by z 7→ zni to obtain
k pairwise commuting local homeomorphisms. Then (T, {Ti}k

i=1) is a topological
dynamical system and for each m ∈ Nk, the local homeomorphism Θm is given

by z 7→ zn
m1
1 +···+n

mk
k . The system (T, {Ti}k

i=1) satisfies condition (UBC) since, for
each i = 1, 2, . . . k,

sup
y∈T
|{z ∈ T : Ti(z) = zni = y}| 6 ni.

(iii) Let A be a finite alphabet and for n ∈ N, let An denote the space of words
of length n. We let AN denote the one-sided infinite sequence space, which is
compact by Tychonoff’s theorem. The shift map σ : AN → AN defined by

σ(x1x2x3 · · · ) = x2x3 · · ·
is a local homeomorphism of AN. Given a block map d : An → A for some n ∈ N,
we may define a sliding block code τd : AN → AN via

τd(x)i = d(xi · · · xi+n−1).

A function φ : AN → AN is continuous and commutes with the shift map σ if
and only if φ = τd is the sliding block code associated to some block map d (see
Lemma 3.3.3 and Lemma 3.3.7 of [19] for a proof, or Theorem 3.4 of [9] for an
earlier proof in the two-sided setting). Exel and Renault prove in Theorem 14.3
of [6] that τd is a local homeomorphism whenever d is progressive (also called



198 CYNTHIA FARTHING, NURA PATANI AND PAULETTE N. WILLIS

right permutive) in the sense that for each x1 · · · xn−1 ∈ An−1 the function a 7→
d(x1 · · · xn−1a) is bijective. It follows that if τd is a sliding block code associated
to a progressive block map, then (AN, {σ, τd}) is a TDS and for (a, b) ∈ N2 the
local homeomorphism Θ(a,b) is given by

Θ(a,b)(x) = σaτb
d (x).

A block map d is said to be regressive (also called left permutive) if for each
x1 · · · xn−1 ∈ An−1 the function a 7→ d(ax1 · · · xn−1) is bijective. In Theorems 6.6
and 6.7 of [9], Hedlund shows that if τd is a sliding block code associated to a
block map that is both progressive and regressive, then τd is |A|n−1-to-1 and sur-
jective. Therefore the system (AN, {σ, τd}) satisfies condition (UBC) whenever
the block map d is progressive and regressive.

(iv) Let Λ be a row-finite k-graph with no sources such that for each i = 1, . . . , k,

|Λei v| < ∞, for all v ∈ Λ0.

Since Λ is row-finite with no sources, the boundary path space ∂Λ coincides with
the infinite path space Λ∞ (see Examples 5.13, 1. of [7]). For each i = 1, . . . , k, let
Ti : ∂Λ→ ∂Λ denote the shift by ei, that is,

Ti(x)(n) = x(n + ei) for n ∈ Nk.

Then (∂Λ, {Ti}k
i=1) is a topological dynamical system and for m ∈ Nk, the local

homeomorphism Θm is given by Θm(x)(n) = x(n + m) for n ∈ Nk. It is straight-
forward to see that the condition |Λei v| < ∞ for each i = 1, . . . , k and every v ∈ Λ0

ensures the system (∂Λ, {Ti}k
i=1) satisfies condition (UBC).

3.1. THE TOPOLOGICAL k-GRAPH ASSOCIATED TO (Ω, {Ti}k
i=1). Given a topo-

logical dynamical system (Ω, {Ti}k
i=1) with local homeomorphisms Θm as de-

fined above, we construct a topological k-graph Λ = (Λ(Ω, {Ti}k
i=1), d) as in Ex-

ample 2.5(iv) of [21]. Specifically, we have:

(i) Obj(Λ) = Ω.
(ii) Mor(Λ) = Nk ×Ω, with the product topology.

(iii) r(n, x) = x and s(n, x) = Θn(x).
(iv) Composition is given by

(n, x) ◦ (m, Θn(x)) = (n + m, x).

(v) The degree map is defined by d(n, x) = n.

EXAMPLE 3.4. (i) Fix n0 ∈ N. Let (T, T) be the topological dynamical sys-
tem described in Example 3.3(i). The associated topological 1-graph is visualized
below.
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( ]T
zn(k+l)

0 z

(k + l, z)
>

znk
0

(k, z)
>

(l, znk
0)

>

(ii) For n1, n2 ∈ N, we obtain a topological dynamical system (T, {T1, T2}) in
Example 3.3(ii) where Ti : T → T is given by Ti(z) = zni . The 1-skeleton of the
associated 2-graph is visualized below.

( ]T
zn2 zzn1

((1, 0), z)
>

((0, 1), z)
>

(iii) Let Λ = Ωk be the discrete k-graph with Obj(Ωk) = Nk, Mor(Ωk) =
{(p, q) ∈ Nk×Nk : p 6 q} (where p 6 q if pi 6 qi for all i), r(p, q) = p, s(p, q) = q,
d(p, q) = q− p, and composition defined by (p, q)(q, r) = (p, r). This is a locally-
finite k-graph with no sources such that |Λei v| < ∞ for each i = 1, . . . , k and every
λ. For k = 2, the 1-skeleton of Λ is shown below:

Let (∂Λ, {Ti}k) be the topological dynamical system presented in Exam-
ple 3.3(iv). To visualize the associated topological k-graph Γ, note that, since Λ =
Ωk, each x ∈ Λ∞ is uniquely determined by a point p = r(x) = x(0) ∈ Obj(Λ).
So we may regard Λ∞ as Nk. Modifying notation to reflect this gives:

• Obj(Γ) = Nk;
• Mor(Γ) = Nk ×Nk;
• r(m, p) = p and s(m, p) = p + m;
• d(m, p) = m;
• (m, p)(n, p + m) = (m + n, p).

The 1-skeleton of Γ is
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Given a general topological dynamical system (Ω, {Ti}k
i=1), it is important

to verify that we may in fact construct the topological k-graph C∗-algebra C∗(Λ)
associated to the topological k-graph Λ = (Λ(Ω, {Ti}k

i=1), d). In order to establish
this, we begin by showing that Λ is proper. We then prove that every proper
topological k-graph is compactly aligned.

DEFINITION 3.5 ([21], Definition 6.4). A topological k-graph Λ is said to be
proper if for all m ∈ Nk, the map r|Λm is a proper map. That is, if for every m ∈ Nk

and compact U ⊂ Λ0, the set UΛm is compact.

DEFINITION 3.6 ([21], Definition 2.3). A topological k-graph Λ is said to be
compactly aligned if for all p, q ∈ Nk and for all compact U ⊂ Λp and V ⊂ Λq, the
set U ∨V := UΛ(p∨q)−p ∩VΛ(p∨q)−q ⊂ Λp∨q is compact.

This compactly aligned condition ensures that the boundary path groupoid
GΛ is a locally compact r-discrete groupoid admitting a Haar system and hence
that the associated C∗-algebra C∗(Λ) may be defined.

LEMMA 3.7. Let (Ω, {Ti}k
i=1) be a topological dynamical system. Then the asso-

ciated topological k-graph Λ = (Λ(Ω, {Ti}k
i=1), d) is proper.

Proof. Fix m ∈ Nk and let U ⊂ Λ0 be compact. We want to show that UΛm is
compact. Let C = {Ci}i∈I be an open cover of UΛm. Note that UΛm = {m} ×U
so for each i, we have Ci = {m} × Bi for an open set Bi containing U. Then
B = {Bi}i∈I is an open cover of U.

Since U is compact, there is a finite subset J of I such that U ⊆ ⋃
i∈J

Bi. Then

UΛm = {m} ×U ⊆ {m} ×
⋃
i∈J

Bi =
⋃
i∈J

({m} × Bi) =
⋃
i∈J

Ci .

Then C ′ = {Ci}i∈J is a finite subset of C that covers UΛm. It follows that UΛm is
compact and hence Λ is proper.

To show that Λ = (Λ(Ω, {Ti}k
i=1), d) is compactly aligned, we use the fol-

lowing lemma which is stated without proof in Remark 6.5 of [21].

LEMMA 3.8. Every proper topological k-graph is compactly aligned.

Proof. Let p, q ∈ Nk and let U ⊂ Λp and V ⊆ Λq be compact. Since s is
continuous, s(U) and s(V) are both compact. By the assumption that Λ is proper,
it follows that s(U)Λ(p∨q)−p and s(V)Λ(p∨q)−q are both compact. Moreover, since
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Λ ∗Λ has the relative topology inherited from the product topology on Λ×Λ, the
sets U ∗ s(U)Λ(p∨q)−p and V ∗ s(V)Λ(p∨q)−q are compact. Since the composition
map is continuous, it follows that the images of these sets under the composition
map, namely UΛ(p∨q)−p and VΛ(p∨q)−q, are compact. Hence

U ∨V = UΛ(p∨q)−p ∩VΛ(p∨q)−q

is compact and therefore Λ is compactly aligned.

PROPOSITION 3.9. Let (Ω, {Ti}k
i=1) be a topological dynamical system. Then the

associated topological k-graph Λ = (Λ(Ω, {Ti}k
i=1), d) is compactly aligned.

This follows directly from Lemma 3.7 and Lemma 3.8.

3.2. THE EXEL–LARSEN SYSTEM ASSOCIATED TO (Ω, {Ti}k
i=1). Given a topolog-

ical dynamical system (Ω, {Ti}k
i=1) that satisfies condition (UBC), we may con-

struct an Exel–Larsen system.

LEMMA 3.10. Let (Ω, {Ti}k
i=1) be a topological dynamical system. For m ∈ Nk,

define αm ∈ End(C0(Ω)) by

αm( f ) = f ◦Θm, for f ∈ C0(Ω)

so that α is an action of Nk on C0(Ω). Then α extends uniquely to an endomorphism αs
of Cb(Ω) satisfying (2.2).

Proof. First note that each αm is nondegenerate, i.e., αm(C0(Ω))C0(Ω) =
C0(Ω). To see this, it is enough to show that for g ∈ Cc(Ω) there is f ∈ Cc(Ω)
such that α( f )g = g. Since Θm is continuous and g is compactly supported, the
set Θm(supp(g)) is compact. By Urysohn’s lemma for locally compact Hausdorff
spaces, we may choose f ∈ Cc(Ω) such that f |Θm(supp(g)) = 1. It follows that
αm( f )g = g.

Since αm(C0(Ω))C0(Ω) = C0(Ω), the unique strictly continuous extension
αm defined by αm( f ) = f ◦Θm, for f ∈ Cb(Ω) is unital (see Proposition 1.1.13 of
[10]) so that αm satisfies (2.2) as desired.

LEMMA 3.11. Let (Ω, {Ti}k
i=1) be a topological dynamical system that satisfies

condition (UBC). For m ∈ Nk, f ∈ C0(Ω), and x ∈ Ω define Lm by

Lm( f )(x) =

 ∑
Θm(y)=x

f (y) if x ∈ Θm(Ω),

0 else,

and similarly define Lm for f ∈ Cb(Ω). Then each Lm is a continuous, linear, positive
map on C0(Ω) with continuous linear extension Lm satisfying

Lm(αm( f )g) = f Lm(g).
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Proof. Fix m ∈ Nk. To see that Lm maps C0(Ω) into C0(Ω), let x ∈ Ω. Then
there is an open neighborhood V of x and an open neighborhood Uy for each
y ∈ Θ−1

m ({x}) such that Θm|Uy : Uy → V is a homeomorphism. Condition (UBC)
ensures that there are finitely many such sets Uy. It follows then that Lm( f ) is the
finite sum of the functions f |Uy and is hence in C0(Ω).

It is straightforward to see that, for each m ∈ Nk, Lm is continuous, linear,
and positive. We must show that Lm is a continuous linear extension of Lm sat-
isfying (2.3). By an argument similar to the one above, we know that Lm maps
Cb(Ω) to Cb(Ω). Suppose f , g ∈ Cb(Ω), a, b ∈ C, x ∈ Θm(Ω). Then

(aLm( f )− bLm(g))(x) = aLm( f )(x)− bLm(g)(x) = ∑
Θm(y)=x

a f (y)− ∑
Θm(y)=x

bg(y)

= ∑
Θm(y)=x

(a f − bg)(y) = Lm(a f − by)(x).

If x /∈ Θm(Ω), then both (aLm( f ) − bLm(g))(x) and Lm(a f − by)(x) are zero.
Thus, Lm is linear. Continuity of Lm follows from the fact that (Ω, {Ti}k

i=1) satis-
fies condition (UBC) because for any x ∈ Θm(Ω), we have

|Lm( f )(x)| =
∣∣∣ ∑

Θm(y)=x
f (y)

∣∣∣ 6 ∑
Θm(y)=x

| f (y)| 6 Nm · ‖ f ‖∞,

where Nm ∈ N is the uniform bound on the cardinality of the inverse image of
Θm. If x /∈ Θm(Ω), then |Lm( f )(x)| = 0, and the inequality

|Lm( f )(x)| 6 Nm‖ f ‖∞

holds for all x ∈ Ω. Taking the supremum over all x ∈ Ω gives that

‖Lm( f )‖ 6 Nm‖ f ‖∞

so that Lm is bounded. Since Lm is a linear map on a normed space, it follows that
it is continuous.

Now if f ∈ C0(Ω), g ∈ Cb(Ω), and x ∈ Θm(Ω), it follows that

Lm(α( f )g)(x) = ∑
Θm(y)=x

(αm( f )g)(y) = ∑
Θm(y)=x

f (Θm(y))g(y)

= f (x) ∑
Θm(y)=x

g(y) = ( f Lm(g))(x).

When x /∈ Θm(Ω), both Lm(α( f )g)(x) and ( f Lm(g))(x) are zero. It follows that
Lm(αm( f )g) = f Lm(g).

The above result shows that L is an action by transfer operators. It follows
from Lemma 3.10 and Lemma 3.11 that (C0(Ω),Nk, α, L) is an Exel–Larsen sys-
tem.

EXAMPLE 3.12. (i) Let A = {0, 1, 2, 3} and define d : A2 → A via (a, b) 7→
a + b mod 4. It is straightforward to see that d is both progressive and regressive
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and hence the associated sliding block code τd is a local homeomorphism that
has uniformly bounded cardinalities on inverse images. Then (AN, {σ, τd}) from
Example 3.3(iii) is a topological dynamical system that satisfies condition (UBC).
Define α : N2 → C(AN) by α(m,n)( f ) = f ◦Θ(m,n). For (m, n) ∈ N2, since Θ(m,n) is
surjective, we may define L(m,n) : C(AN)→ C(AN) by

L(m,n)( f )(x) = ∑
Θ(m,n)(y)=x

f (y).

The quadruple (AN,N2, α, L) is an Exel–Larsen system.
(ii) Let Λ = Ωk and let (∂Λ, {Ti}k

i=1) be the topological dynamical system in
Example 3.3(iv). We define the Exel–Larsen system (C0(Λ

∞),Nk, α, L) by setting

αm( f )(x) = f ◦ σm(x),

Lm( f )(x) =

 ∑
σm(y)=x

f (y) if x ∈ σm(Λ∞),

0 else .

Again regarding Λ∞ as Nk, it is straightforward to show that

αm( f )(n) = f (n + m),

Lm( f )(n) =

{
f (n−m) if n−m ∈ Nk,
0 else,

so that we obtain the Exel–Larsen system (C0(Nk),Nk, α, L).

4. THE ASSOCIATED PRODUCT SYSTEMS

Associated to the topological k-graph Λ = (Λ(Ω, {Ti}k
i=1), d) and the Exel–

Larsen system (C0(Ω),Nk, α, L) are two product systems over Nk of C0(Ω)-corre-
spondences, denoted XΛ and XLar respectively. We show in Theorem 4.4 that the
two product systems are, in fact, isomorphic.

DEFINITION 4.1. The topological k-graph correspondence XΛ associated to a
topological k-graph Λ is the product system over Nk of C0(Ω)-corresponden-
ces such that:

(i) For each m ∈ Nk, XΛ
m is the topological graph correspondence associated to

the topological graph

Em = (Λ0, Λm, r|Λm , s|Λm) = (Ω, {m} ×Ω, rm, sm).
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In particular, XΛ
m is a completion of Cc({m} ×Ω) (see [11] for details), and the

C0(Ω)-bimodule operations and C0(Ω)-valued inner product are given by

( f · ξ · g)(m, x) = f (r(m, x))ξ(m, x)g(s(m, x)) = f (x)ξ(m, x)g(Θm(x)), and

〈ξ, η〉m(x) = ∑
(m,y)∈s−1

m (x)

ξ(m, y)η(m, y).

(ii) For m, n ∈ Nk, βΛ
m,n : XΛ

m ⊗C0(Ω) XΛ
n → XΛ

m+n is defined by

βΛ
m,n(ξ ⊗ η)(m + n, x) = ξ(m, x)η(n, Θm(x)).

REMARK 4.2. It is important to note that a topological k-graph correspon-
dence is not a C∗-correspondence, but is instead a product system over Nk of
C∗-correspondences. We use the terminology topological k-graph correspondence
to agree with the existing notions of graph correspondence (see [15] for example)
and topological graph correspondence (see [11]). The Cuntz–Pimsner algebras of a
graph correspondence and a topological graph correspondence are isomorphic
to the graph C∗-algebra and topological graph C∗-algebra, respectively. Similarly,
a generalization of the Cuntz–Pimsner algebra of the topological k-graph corre-
spondence is isomorphic to the topological k-graph C∗-algebra (see Theorem 5.20
of [3]).

DEFINITION 4.3. Let (Ω, {Ti}k
i=1) be a topological dynamical system that

satisfies condition (UBC), and let (C0(Ω),Nk, α, L) be the Exel–Larsen system con-
structed from (Ω, {Ti}k

i=1) as in Section 3.2. The product system XLar associated to
(C0(Ω),Nk, α, L) is the product system over Nk of C0(Ω)-correspondences such
that :

(i) For each m ∈ Nk, XLar
m = {m} × C0(Ω) with C0(Ω)-bimodule operations

f · (m, g) · h = (m, f gαm(h)),

where ( f gαm(h)) is defined by x 7→ f (x)g(x)h(Θm(x)). The C0(Ω)-valued inner
product on XLar

m is given by

〈(m, f ), (n, g)〉m(x) = Lm( f ∗g)(x) =

 ∑
Θm(y)=x

f (y)g(y) if x ∈ Θm(Ω),

0 otherwise.

(ii) For m, n ∈ Nk, βLar
m,n : XLar

m ⊗C0(Ω) XLar
n → XLar

m+n is defined by

βLar
m,n((m, f )⊗ (n, g)) = (m + n, f αm(g)).

4.1. THE ISOMORPHISM OF PRODUCT SYSTEMS.

THEOREM 4.4. Let (Ω, {Ti}k
i=1) be a topological dynamical system satisfying

condition (UBC), let Λ = (Λ(Ω, {Ti}k
i=1), d) be the associated topological k-graph,

and let (C0(Ω),Nk, α, L) be the associated Exel–Larsen system. Then the topological
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k-graph correspondence XΛ is isomorphic to the product system XLar associated to the
Exel–Larsen system.

To show that the product systems are isomorphic we must show there is a
map ψ : XLar → XΛ satisfying:

(i) for each m ∈ Nk, the map ψm = ψ|XLar
m

: XLar
m → XΛ

m is a C0(Ω)-correspond-
ence isomorphism that preserves inner product, and

(ii) ψ respects the multiplication in the semigroups XLar and XΛ.
The following lemmas are helpful in proving our result.

LEMMA 4.5. Let E = (E0, E1, r, s) be a topological graph such that the source map
s : E1 → E0 has uniformly bounded cardinalities on inverse images. Then the associated
graph correspondence XE = C0(E1) as an algebraic C0(E0)-bimodule.

Proof. By Lemma 1.6 of [11], Cc(E1) is dense in XE, hence XE ⊆ C0(E1).
For the reverse containment, let ξ ∈ C0(E1). Since s : E1 → E0 has uniformly
bounded cardinalities on inverse images, there is M ∈ N such that |{e ∈ E1 :
s(e) = v}| 6 M for every v ∈ E0.

To see that the map v 7→ ∑
e∈s−1(v)

|ξ(e)|2 is in C0(E0), note that for v ∈ E0

there is a neighborhood V of v and finitely many open sets Ue1 , . . . , Uen , n 6 M,
such that s restricts to a homeomorphism from Uei onto V. It follows that v 7→

∑
e∈s−1(v)

|ξ(e)|2 is a finite sum of continuous functions vanishing at infinity and is

therefore in C0(E0); hence ξ ∈ XE.

LEMMA 4.6. Fix m ∈ Nk. For each f ∈ C0(Ω), the function f̃ : {m} ×Ω → C
defined by

f̃ (m, x) = f (x)
is an element of XΛ

m.

Proof. Since XΛ
m = XEΛ

m
, by Lemma 4.5 it is sufficient to show that f̃ ∈

C0(E1
m) where E1

m = {m} × Ω. Note that f̃ is the composition of f with the
homeomorphism (m, x) 7→ x of {m} ×Ω onto Ω. Then f̃ is continuous since
f is. If ε > 0 and K is a compact set such that | f (x)| 6 ε for x ∈ Ω \ K, then
| f̃ (m, x)| < ε for (m, x) ∈ E1

m \ ({m} × K). Hence f̃ ∈ XΛ
m as desired.

By a similar argument, we see that for each ξ ∈ XΛ
m, the function ξ̂ = (m, η)

where
η(x) = ξ(m, x)

is an element of XLar
m .

We define ψ : XLar → XΛ by letting ψm : XLar
m → XΛ

m be given by

ψm(m, f ) = f̃

for each m ∈ Nk.
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Proof of Theorem 4.4. Fix m ∈ Nk. Straightforward arguments show that
ψm : XLar

m → XΛ
m is an injective C0(Ω)-correspondence morphism preserving the

inner product. For surjectivity, let ξ ∈ XΛ
m. Then (m, ξ̂) ∈ {m} × C0(Ω) satisfies

ψm(m, ξ̂) = ξ since

ψm(m, ξ̂)(m, x) = ˜̂ξ(m, x) = ξ̂(x) = ξ(m, x).

To see that ψ respects the semigroup multiplication, let (m, f ) ∈ XLar
m , (n, g) ∈

XLar
n , (m + n, x) ∈ {m + n} ×Ω. Then

(ψm(m, f )ψn(n, g))(m + n, x) = ψm(m, f )(m, x)ψn(n, g)(n, Θm(x))

= f̃ (m, x)g̃(n, Θm(x))= f (x)g(Θm(x))= f αm(g)(x)

= ψm+n(m + n, f αm(g))(m + n, x).

Hence ψm(m, f )ψn(n, g) = ψn+m(n + m, f αm(g)) as desired.

REMARK 4.7. We showed in Proposition 3.9 that the topological k-graph
Λ = (Λ(Ω, {Ti}k

i=1), d) is compactly aligned. By Proposition 5.15 of [3], this hap-
pens if and only if XΛ is compactly aligned in the sense of Definition 2.5. In
[19], Willis shows that if k = 2, Ω is compact, and T1 and T2 ∗-commute (mean-
ing that whenever T1(x) = T2(y), there is a unique z ∈ Ω with T1(z) = y and
T2(z) = x), then the product system XLar constructed from the Exel–Larsen sys-
tem (C(Ω),N2, α, L) is compactly aligned. Theorem 4.4 together with Proposi-
tion 3.9 then imply that the ∗-commuting restriction may be lifted and Willis’
result holds for arbitrary k ∈ N and locally compact Ω.

5. THE LARSEN CROSSED PRODUCT AND C∗(Λ)

In this section, we show that C∗(Λ), the C∗-algebra associated to the topo-
logical k-graph Λ = (Λ(Ω, {Ti}k

i=1), d), is isomorphic to C0(Ω)oα,L Nk , the C∗-
algebra associated to the Exel–Larsen system (C0(Ω),Nk, α, L). To accomplish
this, we show that C0(Ω)oα,L Nk is isomorphic to ∼= NOXΛ , which was shown
to be isomorphic to C∗(Λ) in [3].

REMARK 5.1. In Example 7.1(iii) of [21], Yeend describes the associated topo-
logical k-graph C∗-algebra in the case where the maps {Ti}k

i=1 are homeomor-
phisms. Surjectivity of the maps ensures that the associated topological k-graph
Λ has no sources. As a result, the boundary path groupoid is amenable. Since
the maps are homeomorphisms, there is an induced action α of Zk on C0(Ω) de-
fined by

αm( f )(x) = f (Θm(x)),

with universal crossed product (C0(Ω)oα Zk, jC0(Ω), jZk ). Yeend asserts that the
topological k-graph C∗-algebra is isomorphic to this crossed product. The main
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result in this section, Theorem 5.7, generalizes this to the setting where the maps
are local homeomorphisms that are not necessarily surjective.

PROPOSITION 5.2. Let (Ω, {Ti}k
i=1) be a topological dynamical system that sat-

isfies condition (UBC) and let (C0(Ω),Nk, α, L) be the Exel–Larsen system described
in Subsection 3.2. Let XLar be the product system over Nk of C0(Ω)-correspondences
from Definition 4.3. Let K = {Km}m∈Nk be the family of ideals defined by (2.4). Let
ψ : XLar → B be a (Toeplitz) representation of XLar in a C∗-algebra B. Then ψ is
Cuntz–Pimsner covariant in the sense of (CP-K) if and only if it is coisometric on K.

Proof. In the proof of Lemma 3.10, αm(C0(Ω))C0(Ω) = C0(Ω) hence

Km = C0(Ω)αm(C0(Ω))C0(Ω) ∩ φ−1
m (K(XLar

m ))

= C0(Ω) ∩ φ−1
m (K(XLar

m )) = φ−1
m (K(XLar

m )).

Recall from the construction of XLar in Definition 4.3 that the left action on each
XLar

m is given by multiplication. Thus φm is injective so that (ker φm)⊥ = C0(Ω)
and hence coisometric on K is equivalent to (CP-K).

COROLLARY 5.3. Let (Ω, {Ti}k
i=1) be a topological dynamical system satisfying

condition (UBC) and let (C0(Ω),Nk, α, L) be the Exel–Larsen system described in Sub-
section 3.2. Let XLar be the product system over Nk of C0(Ω)-correspondences from
Definition 4.3. Then

C0(Ω)oα,L Nk ∼= OXLar .

Proof. Since a representation ψ : X → B is coisometric on K, where K =
{Km}m∈Nk is the family of ideals defined by (2.4), if and only if it is Cuntz–
Pimsner covariant in the sense of (CP-K), it follows that j Fow : XLar → OXLar is
coisometric on K and j Lar satisfies (CP-K). It follows from the universal proper-
ties of OXLar and the Larsen crossed product C0(Ω)oα,L Nk that there are unique
surjective homomorphisms

Πj Lar : OXLar → C0(Ω)oα,L Nk, Πj Fow : C0(Ω)oα,L Nk → OXLar ,

such that j Lar = Πj Lar ◦ j Fow and j Fow = Πj Fow ◦ j Lar. SinceOXLar and C0(Ω)oα,L

Nk are generated by j Fow and j Lar respectively, it follows that Πj Lar and Πj Fow

take generators to generators and hence

C0(Ω)oα,L Nk ∼= OXLar .

We now show that for any representation ψ : XΛ → B, Cuntz–Pimsner
covariance in the sense of (CP-K) is equivalent to CNP-covariance. In order for
CNP-covariance to make sense for a representation of XΛ, we must have that
XΛ is compactly aligned. Recall that XΛ is the topological k-graph correspond-
ence associated to the topological k-graph Λ = (Λ(Ω, Θ), d) which we showed
in Proposition 3.9 is compactly aligned. By Proposition 5.15 of [3], since Λ is
compactly aligned, so is XΛ.
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PROPOSITION 5.4. Let (Ω, {Ti}k
i=1) be a topological dynamical system and let Λ

be the associated topological k-graph. Let XΛ be the topological k-graph correspondence.
Let ψ : XΛ → B be a (Toeplitz) representation of XΛ in a C∗-algebra B. Then ψ is
Cuntz–Pimsner covariant in the sense of (CP-K) if and only if it is CNP-covariant.

We would like to apply Corollary 5.2 of [17] to obtain the desired result. In
order to do so, we need to establish that the left action on each fibre is by compact
operators.

LEMMA 5.5. Let (Ω, {Ti}k
i=1) be a topological dynamical system and Λ be the

associated topological k-graph. Then the left action of C0(Ω) on each fibre XΛ
m of the

topological k-graph correspondence is by compact operators.

Proof. It follows from Proposition 1.24 of [11], that φ−1
m (K(Xm)) = C0(Ωfin)

where

Ωfin = {v ∈ Ω : v has a neighborhood V such that r−1
m (V) is compact}.

Since Ω is a locally compact space, every point v ∈ Ω has a compact neighbor-
hood V. The range map is given by projection onto Ω so that r−1

m (V) = {m} ×V,
which is compact. It follows that Ωfin = Ω.

Proof of Proposition 5.4. Recall that (Zk,Nk) is a quasi-lattice ordered group
such that each pair s, t ∈ Nk has a least upper bound and that XΛ is compactly
aligned. It follows from the construction of XΛ in Definition 4.1 that the left action
on each fibre is given by multiplication and is therefore injective. By Lemma 5.5,
the left action on each fibre is by compact operators. Then by Corollary 5.2 of [17],
ψ is CNP-covariant if and only if

ψ(m) ◦ φm = ψ0 for all m ∈ Nk.

It follows that ψ is CNP-covariant if and only if ψ satisfies (CP-K).

COROLLARY 5.6. Let (Ω, {Ti}k
i=1) be a topological dynamical system and let Λ be

the topological k-graph described in Subsection 3.1. Let XΛ be the associated topological
k-graph correspondence as in Definition 4.1. Then

NOXΛ
∼= OXΛ .

Proof. Since a representation ψ : XΛ → B is Cuntz–Pimsner covariant in the
sense of (CP-K) if and only if it is CNP-covariant, it follows that j Fow : XΛ →
OXΛ is CNP-covariant and j CNP satisfies (CP-K). It follows from the universal
properties of OXΛ and NOXΛ that there are unique surjective homomorphisms

Πj CNP : OXΛ → NOXΛ , Πj Fow : NOXΛ → OXΛ ,

such that j CNP = Πj CNP ◦ j Fow and j Fow = Πj Fow ◦ j CNP. Since OXΛ and NOXΛ

are generated by j Fow and j CNP respectively, it follows that Πj CNP and Πj Fow take
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generators to generators and hence

NOXΛ
∼= OXΛ .

THEOREM 5.7. Let (Ω, {Ti}k
i=1) be a topological dynamical system satisfying

condition (UBC). Let C0(Ω)oα,L Nk be the Larsen crossed product and C∗(Λ) be the
topological k-graph C∗-algebra associated to (Ω, {Ti}k

i=1). Then

C∗(Λ) ∼= C0(Ω)oα,L Nk.

Proof. By Theorem 5.20 of [3], we have that C∗(Λ) ∼= NOXΛ . By Theo-
rem 4.4, XLar ∼= XΛ and hence the Cuntz–Pimsner algebras OXLar and OXΛ are
isomorphic. Thus, by Corollary 5.3

C∗(Λ) ∼= NOXΛ
∼= OXΛ

∼= OXLar ∼= C0(Ω)oα,L Nk.

EXAMPLE 5.8. It is known that C∗(Ωk) ∼= K(`2(Nk)). The result above,
together with our description of the Exel–Larsen system (C0(Nk),Nk, α, L) in Ex-
ample 3.12(ii) gives that K(`2(Nk)) ∼= C0(Nk)oα,L Nk.
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