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ABSTRACT. We study the connection between operator valued central limits
for monotone, Boolean and free probability theory, which we shall call the arc-
sine, Bernoulli and semicircle distributions, respectively. In scalar-valued non-
commutative probability these distributions are known to satisfy certain arith-
metic relations with respect to Boolean and free convolutions. We show that,
generally, the corresponding operator-valued distributions satisfy the same
relations only when we consider them in the fully matricial sense introduced
by Voiculescu. In addition, we provide a combinatorial description in terms
of moments of the operator valued arcsine distribution and we show that its
reciprocal Cauchy transform satisfies a version of the Abel equation similar to
the one satisfied in the scalar-valued case.
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1. INTRODUCTION

By a non-commutative probability space we shall understand a pair (A, ϕ)
where A is a unital ∗-algebra over the complex numbers and ϕ : A −→ C is a
positive functional with ϕ(1) = 1. If B is a unital C∗-algebra, a B-valued non-
commutative probability space is a double (A, EB), where A is a ∗-algebra con-
taining B as a ∗-subalgebra and EB is a positive conditional expectation from A
onto B. If B ⊂ A is an inclusion of unital C∗-algebras, then (A, EB) will be called
a B-valued non-commutative C∗-probability space. Elements X ∈ A are called
random variables or (in the second context) B-valued (or operator-valued) random
variables.

We will denote by B〈X 〉 the ∗-algebra freely generated by B and the self-
adjoint symbol X (that is the ∗-algebra of non-commutative polynomials in X
and with coefficients in B). We will also use the notations B〈X 〉0 for the ∗-
subalgebra of B〈X 〉 of all polynomials without a free term, and the notation
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B〈X1,X2, . . . 〉 for the ∗-algebra freely generated by B and the non-commutating
self-adjoint symbols X1,X2, . . . . If X ∈ A is a self-adjoint element, then we will
also use the notations B〈X〉 and B〈X〉0 for the ∗-algebra generated as above by X
and B. The set of all positive conditional expectations from B〈X 〉 to B will be de-
noted by ΣB . The fully matricial extension of µ ∈ ΣB is the sequence µ̃ = {µ⊗ 1n}n,
where 1n stands for the identity in Mn(C). Note that µ is uniquely determined
by the symmetric moments of its fully matricial extension, since (see [6], [16]) for

b =


0 b1 0 · · · 0
0 0 b2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · bn
0 0 0 · · · 0

 ∈ Mn+1(B)

we have that

µ̃([X · b]n) =


0 · · · 0 µ(X b1X b2 · · · X bn)
0 · · · 0 0
· · · · · · · · · · · ·
0 · · · 0 0

 ,

where B〈X 〉 acts at left and right on B〈X 〉⊗Mm(C) by entrywise multiplication.
We will also denote Σ0

B the set of all µ ∈ ΣB whose moments do not grow
faster than exponentially, that is there exists some M > 0 such that, for all positive
integers m, all b1, . . . , bn ∈ Mm(B) we have that

‖µ̃(X b1X b2 · · · X bnX )‖ < Mn+1‖b1‖ · · · ‖bn‖.

If (A, ϕ) is a non-commutative C∗-probability space, the distribution of a
self-adjoint element (or non-commutative random variable) X of A is a real mea-
sure µX described via ∫

tndµX(t) = ϕ(Xn).

In the more general case of a B-valued non-commutative probability space, as
shown in [14], the appropriate analogue for the distribution of a self-adjoint X ∈
A is µX ∈ ΣB , given by

µX( f (X )) = EB( f (X)) for all f (X ) ∈ B〈X 〉.

If X is an element of a B-valued non-commutative C∗-probability space, then
µX ∈ Σ0

B ; moreover, for each µ ∈ Σ0
B , there exist some elements X in a B-valued

C∗-non-commutative probability space such that µX = µ (see Proposition 1.2 of
[12] and [14]).

This material presents some properties of three remarkable elements from
Σ0
B , namely the operator-valued semicircular, Bernoulli and arcsine distributions,

which are the central limit laws for free, Boolean and monotone independence.
We shall denote them by s, Ber and a, respectively. It is known that in scalar-
valued non-commutative probability, we have a = s]2 = Ber�2, where ] and �
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denote the Boolean and free additive convolutions, respectively. We show that
these relations extend to the operator valued context only when properly under-
stood in the fully matricial set-up introduced by Voiculescu [15], [16] (Proposi-
tion 3.3). In addition, we provide a new combinatorial description (in terms of
moments) of a (Theorem 2.5). Moreover, as monotone convolution of operator-
valued distributions is shown [10] to be described in terms of the composition of
reciprocals of operator-valued Cauchy transforms, it is natural to inquire whether
a linearization of this composition of functions similar to the Abel equation de-
scribed in [2], [9] holds in the operator-valued case. The positive answer is pro-
vided in Theorem 3.2.

The rest of the introduction is dedicated to defining the main notions and
tools to be used in the paper. In the second section we give brief descriptions
of the operator-valued Bernoulli and semicircular distributions and some of their
transforms, as well as a new characterization of the moments of the arcsine distri-
bution. Finally, in the third section we discuss the connection between the three
central limits and show that the reciprocal of the Cauchy transform of the arcsine
distribution satisfies a version of the Abel equation.

1.1. INDEPENDENCE RELATIONS AND TRANSFORMS. Since the paper deals with
relevant elements from Σ0

B , we will present the free, Boolean and monotone in-
dependences in a C∗-algebraic context.

DEFINITION 1.1. Suppose that (A, EB) is a B-valued non-commutative C∗-
probability space and that {Xi}i∈I is a family of self-adjoint elements from A.

(i) The family {Xi}i∈I is said to be free independent over B if

EB(A1 · · · An) = 0

whenever Aj ∈ B〈Xε(j)〉 ∩Ker(EB), ε(j) ∈ I, ε(k) 6= ε(k + 1).
(ii) The family {Xi}i∈I is said to be Boolean independent over B if

EB(A1 · · · An) = EB(A1) · · · EB(An)

whenever Aj ∈ B〈Xε(j)〉0, ε(j) ∈ I, ε(k) 6= ε(k + 1).
(iii) If the set of indices I is totally ordered, then the family {Xi}i∈I is said to be

monotone independent over B if

EB(A1 · · · Aj−1 · Aj · Aj+1 · · · An) = EB(A1 · · · Aj−1 · EB(Aj) · Aj+1 · · · An)

whenever Al ∈ B〈Xε(l)〉0, ε(l) ∈ I, ε(l) 6= ε(l + 1) and ε(j− 1) < ε(j) > ε(j + 1),
1 6 j 6 n.

If X, Y are two free (Boolean, respectively monotone independent) B-valued
non-commutative random variables, then µX+Y depends only on µX and µY and
is said to be the additive free convolution µX � µY (additive Boolean convolution
µX ] µY, respectively additive monotone convolution µX . µY) of µX and µY.
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Note that EMn(B) = EB ⊗ 1n : Mn(A) −→ Mn(B) is still a positive condi-
tional expectation for all positive integers n and any linear functional (in particu-
lar any trace τ) on B extends to τ⊗ trn : B ⊗Mn(C)→ C, where trn is the canon-
ical normalized trace on Mn(C). Note also that if X, Y ∈ A are free, Boolean,
respectively monotone independent with respect to EB , then so are X ⊗ 1n and
Y⊗ 1n with respect to EMn(B).

We will denote Nilp(B) =
∞
ä

n=1
Nilp(B, n), where Nilp(B, n) is the set of all

T ∈ Mn(B) such that Tr = 0 for some r, where we view T as a matrix over the
tensor algebra over B (see [3], [12]). For a given µ ∈ Σ0

B , we define its moment-
generating series as the function Mµ given, for b ∈ Mn(B), by

Mµ(b) =
∞

∑
k=0

(µ̃([X · b]k) = 1n + (µ⊗ 1n)(X · b) + (µ⊗ 1n)(X · b · X · b) + · · · .

We define the R-, B-, respectively H-transforms of µ via the functional equations

Mµ(b)− 1 = Rµ(b ·Mµ(b)),(1.1)

Mµ(b)− 1 = Bµ(b) ·Mµ(b),(1.2)

Hµ(b) = b ·Mµ(b),

where the notation 1 stands for 1n on each component from Mn(B).
As shown in [12], each Mµ, Rµ, Bµ, Hµ is well defined on Nilp(B) and on a

correspondent small open ball around the origine from Bnc which is mapped in
another open ball around the origine from Bnc.

If X is a selfadjoint element in a B-valued non-commutative C∗-probability
space (A, EB), we will denote MX , RX etc. for the correspondent transforms of
µX . The main reason for which we have introduced the R and B-transforms is
their linearizing property. Namely, if X, Y are free independent over B, then (see
[14], [16])

RX+Y(b) = RX(b) + RY(b)

and if X, Y are Boolean independent over B, then (see [11])

BX+Y(b) = BX(b) + BY(b).

Moreover, if X, Y are monotone independent over B (in this order), we have that
(see [10])

HX+Y(b) = HX ◦HY(b).

Another object that will be used in the following sections is the generalized
resolvent, or operator-valued Cauchy transform (see [15] and for new applications,
[3]), namely the map

Gµ : H+(Bnc) −→ H−(Bnc),

Gµ(b) = µ̃([b−X · 1]−1) if b ∈ H(Mn(B)),
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where if C is a ∗-algebra, then H+(C) =
{

a ∈ C : =a = a−a∗
2i > 0

}
and H+(Bnc) =

∞
ä

n=1
H+(Mn(B)).

We will denote the first component of Gµ with Gµ : H+(B) −→ H−(B).

Whenever ‖b−1‖ < 1
‖X‖ we can write GX(b) =

∞
∑

n=0
b−1φ[(Xb−1)n] as a convergent

serie. Thus, it follows easily that for b ∈ H+(Mn(B)), we shall write,

Gµ(b) =
∞

∑
n=0

(µ⊗ 1n)(b−1[X · b−1]n) = (µ⊗ 1n)([b−X · 1n]
−1];

(of course, these equalities require that we consider an extension of µ to B〈〈X 〉〉,
the algebra of formal power series generated freely by B and the selfadjoint sym-
bol X ). This also indicates a very important equality, namely

(1.3) Gµ(b−1) = Hµ(b), b ∈ H+(Mn(B)).

Moreover, Gµ(b∗) = [Gµ(b)]∗ extends Gµ to the lower half-planes, analytically
through points b with inverse of small norm.

Consequently, for FX , the reciprocal of GX , namely

FX(b) = [GX(b)]−1, FX(b) = [GX(b)]−1,

we have that if X, Y are monotone independent over B, then

FX+Y(b) = FX ◦ FY(b).

We would like also to mention the connection between F and B:

(1.4) 1−Fµ(b−1)b = Bµ(b), b−1 ∈ H+(Bnc).

Henceforth, if the non-commutative random variables Y, X are Boolean indepen-
dent with amalgamation over B, then, for b ∈ H+(Bnc) we have

FX+Y(b)− b = FX(b)− b +FY(b)− b.

Finally, the R-transform of X can be defined in terms of the Cauchy transform as
RX(b) = G−1(b)− b−1 for any invertible b so that ‖b‖ is small.

2. THE OPERATOR-VALUED SEMICIRCULAR, BERNOULLI AND ARCSINE LAWS

2.1. THE OPERATOR-VALUED BERNOULLI LAW Ber.

THEOREM 2.1. Let {Xi}∞
i=1 be a family of centered, identically distributed (i.e.

µXi = µ(Xj) for all i, j > 0), Boolean independent self-adjoint elements from a B-valued
non-commutative C∗-probability space (A, EB). Consider

η : B −→ B, η(b) = EB(XibXi)
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the common variance of Xi’s. Then the law of SN = X1+···+XN√
N

converges weakly to an

element of Σ0
B , that will be called Ber, given by

(2.1) BBer(b) = η(b) · b.

Proof. Since Boolean independence is preserved by tensoring with Mn(C),
we only need to prove the property for the first components of the B-transforms.

From the equation (1.2), we have that BX(b) =
∞
∑

m=1
BX,m(b), where BX,m(b)

are given by the recurrences

EB([Xb]m) =
m

∑
k=1

BX,k(b)EB([Xb]m−k).

It follows that for any λ ∈ R, BλX,m(b) = λmBX,m(b), so

BSN ,m(b) =
N

∑
k=1

BXk/
√

N,m(b) = N(m−2)/2BXi ,m(b).

Therefore, if m > 2, we have that lim
N→∞

BSN ,m(b) = 0, hence the conclusion.

Utilizing the result (2.1) in equations (1.2) and (1.4) we obtain the following:

COROLLARY 2.2. With the above notations, we have that

MBer(b) = [1− η(b)b]−1,(2.2)

GBer(b) = [b− η(b−1)]−1.(2.3)

2.2. THE OPERATOR-VALUED SEMICIRCULAR LAW s. The central limit theorem
law for free independence over B have been described in [14]. We will just quote
the result; the proof is analogue to the one of Theorem 2.1 above.

THEOREM 2.3. Let {Xi}∞
i=1 be a family of centered, identically distributed, free in-

dependent self-adjoint elements from a B-valued non-commutative C∗-probability space
(A, EB). Consider

η : B −→ B, η(b) = EB(XibXi)

the common variance of Xi’s. Then the law of X1+···+XN√
N

converges weakly to an element

of Σ0
B , that will be called s, given by

Rs(b) = η(b) · b.

Using the equations (1.1), (1.2) and the definition of RX in terms of GX , the
above theorem gives the following two analytic characterizations of s, the second
also shown in [5]:

COROLLARY 2.4. With the above notations, we have that

Bs(b) = η(Ms(b)) · b,(2.4)

b = Fs(b) + η(Gs(b)), b ∈ H+(B).(2.5)
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A combinatorial, more explicit, description of s is done by R. Speicher [13]
in terms of non-crossing pair partitions. We cite the result, with the notations
from the present material, in the next section (Proposition 2.9).

2.3. THE OPERATOR-VALUED ARCSINE LAW a. The general description of a will
be made in combinatorial terms.

First we need some notations. NC(n) will denote the set of all non-crossing
partitions on an ordered set with n elements (we can identify it notationally with
〈n〉 = {1, 2, . . . , n}). NC2(n) will denote the subset of NC(n) with the property
that all their blocks contain exactly 2 elements; if n is odd, then NC2(n) is the
void set.

For γ ∈ NC2(n), we will denote by γ̃ the element in NC2(n + 2) such
that (1, n + 2) is a block in γ̃ and γ̃ \ {(1, n + 2)} ∼= γ. For example, if γ =
{(1, 4), (2, 3), (5, 6)} ∈ NC2(6), then γ̃ = {(1, 8), (2, 5), (3, 4), (6, 7)}. Also, if
γ1 ∈ NC2(n) and γ2 ∈ NC2(m), we will denote by γ1 ⊕ γ2 the element of
NC2(n + m) obtained by juxtaposing γ1 and γ2 in this order. Finally, if π =
(B1, . . . , Bq) ∈ NC(n), then we denote by F(π) the set of all bijections from
{B1, . . . , Bq} to {1, . . . , q}.

The next theorem will give a combinatoric description of the central limit
theorem law for monotone independence, refining the result from [10].

THEOREM 2.5. Let {Xi}∞
i=1 be a family of centered, identically distributed, mono-

tone independent self-adjoint elements from a B-valued non-commutative C∗-probability
space (A, EB).

Denote by SN = X1+···+XN√
N

, σN = µSN and by

η : B −→ B, η(b) = EB(XibXi)

the common variance of Xi’s.
With the above notations, the sequence of conditional expectations σN converges

weakly to a conditional expectation a which depends only on η and its fully matrical
extension ã is described by

ã([Xb]n) = ∑
γ∈NC2(n)

V(γ, b) · b

where V(γ, b) are given by the following recurrences:
(1a) V((1, 2), b) = η(b);
(2a) V(γ1 ⊕ γ2, b) = V(γ1, b) · b ·V(γ2, b);
(3a) V(γ̃) = 1

|γ|+1 η(b ·V(γ, b) · b).

Proof. Since, as also stated above, the montoone independence is preserved
under tensoring with Mn(C), it suffices the prove the result for a. Also, eventu-
ally replacing each Xj with Xjb, we can suppose that b = 1, henceforth we need
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to compute

mn = lim
N−→∞

EB
((X1+ · · ·+XN√

N

)n)
= lim

N−→∞
∑

16εj6N ,16j6n

1
Nn/2 · EB(Xε1 · · ·Xεn).

To each −→ε = (ε1, . . . , εn) ∈ 〈N〉n we associate a pair (π−→ε , f−→ε ) ∈ NC(N) ×
F(NC(N)) by putting all εj’s that are equal in the same block and, for B ∈ π−→ε ,
defining f−→ε (B) = s if there are exactly s− 1 blocks in π−→ε containing εj’s smaller
than the ones in B. Note that if (π−→ε , f−→ε ) = (π−→

ε′
, f−→

ε′
), then

EB(Xε1 · · ·Xεn) = EB(Xε′1
· · ·Xε′n) = V(π−→ε , f−→ε ).

From the relations defining the monotone independence, if there exists some j
with εj 6= εk if j 6= k, then EB(Xε1 · · ·Xεn) = 0. i.e. if π has block with only one
element, then V(π−→ε , f−→ε ) = 0 for all −→ε with π−→ε = π. Particularly, for n = 2, the
limit is

m2 = lim
N−→∞

N

∑
j=1

1
N

EB(X2
j ) = EB(1),

so the relation (1a) is proved.
Denoting by NC′(n) the set of all π ∈ NC(n) with each of their blocks

containing at least two elements and using the above notations, we have:

mn = ∑
π∈NC′(n)

lim
N−→∞

1
Nn/2 ∑

−→ε ∈〈N〉 ,π−→ε =π

V(π, f−→ε )

6 ∑
π∈NC(n)

lim
N−→∞

1
Nn/2 · N

|π| max
f∈F(π)

V(π, f ).

Since π ∈ NC′(n), we have that |π| < n
2 and the limit is 0, unless π ∈ NC2(n),

hence

(2.6) mn = ∑
π∈NC′(n)

lim
N−→∞

1
Nn/2 · ∑

−→ε ∈〈N〉 ,π−→ε =π

V(π, f−→ε ).

With the notation Vn(π) = ∑
−→ε ∈〈N〉n ,π−→ε =π

V(π, f−→ε ), if suffices to prove that

lim
N−→∞

1
Nn/2 VN(π) = V(π)

exists for all π ∈ NC2(n) and satisfies (1.2) and (1.3).
For (2a), note first that

(2.7) VN(π1 ⊕ π2) = VN(π1) ·VN−|π1|(π2).

Indeed, if −→ε is such that π−→ε = π1 ⊕ π2, then it is the concatenation of some −→ε1
and−→ε2 with disjoint set of components such that π−→ε1

= π1 and π−→ε2
= π2. Choos-

ing the components of −→ε from 〈N〉 can be seen as first choosing the components



ON THE OPERATOR-VALUED ANALOGUES OF THE SEMICIRCLE, ARCSINE AND BERNOULLI LAWS 247

of−→ε1 from 〈N〉, then choosing the components of−→ε2 from the remaining N− |π1|
posibilities, hence (2.7).

It follows that

V(π1 ⊕ π2) = lim
N−→∞

1
N|π1|+|π2|

VN(π1 ⊕ π2)

= lim
N−→∞

1
N|π1|

VN(π1) ·
1

N|π2|
VN−|π1|(π2)

= V(π1) · lim
N−→∞

(N − |π1|)|π2|

N|π2|
· 1
(N − |π1|)|π2|

VN−|π1|(π2)

= V(π1) ·V(π2), hence (1.2).

For (3a), note first that if π ∈ NC2(n) and −→ε = (ε1, . . . , εn+2) is such that
π−→ε = π̃, then V(π̃, f−→ε ) = 0 unless ε1 = εn+2 < εj for all j = 2, . . . , n− 1.

Indeed, if the smallest components of −→ε are some εj, εl with 1 < j < l <
n+ 2, then, from the relations defining the monotone independence, we have that

V(π̃, f−→ε )=EB(Xε1 · · ·Xεn+2)=EB(Xε1 · · ·Xεj EB(Xεj+1· · ·Xεl−1)Xεl ·Xεl+1· · ·Xn+2)

=EB(Xε1 · · ·Xεj−1) · EB(Xεj EB(Xεj+1 · · ·Xεl−1)Xεl ) · EB(Xεl+1 · · ·Xn+2).

The set {ε1, . . . , εj − 1} does not have any other elements equal to ε1 therefore
EB(Xε1 · · ·Xεj−1) = 0 hence V(π̃, f−→ε ) cancels.

Moreover, if ε1 = εn+2 < εj for all j = 2, . . . , n − 1, then the monotone
independence gives

V(π̃, f−→ε ) = EB(Xε1 · EB(Xε2 · · ·Xεn+1) · Xεn+2) = η(V(π, f(ε2,...,εn+1
)).(2.8)

Next we will prove (3a) together with the following relation: that for all
π ∈ NC2(n) (n > 2, even) and all N > n we have that

(2.9) VN(π) = V(π) · Nn/2 + Pπ(N)

where Pπ is a polynomial of degree at most n
2 − 1. Remark that (2.9) implies the

existence of V(π).
For n = 2, the relation (2.9) is equivalent to (1.1). Suppose now (2.9) true for

n 6 2m and fix π ∈ NC2(2m + 2). Then π is either of the form π1 ⊕ π2 for some
non-crossing pair partitions π1 and π2 with |π1|+ |π2| = m + 1 or of the form σ̃
for some σ ∈ NC2(2m).

If π = π1 ⊕ π2 then the equation (2.7) gives

VN(π) = VN(π1) ·VN−|π1|(π2)

= (V(π1) · N|π1| + Pπ1(N)) · (V(π2) · (N − |π1|)|π2| + Pπ2(N − |π1|))

= [V(π1)V(π2)] · N|π1|+|π2| + Pπ(N)

and the conclusion follows from (2a).
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If π = σ̃ for some σ ∈ NC2(2m), the definition of VN(π) is

(2.10) VN(π) = ∑
−→ε ∈〈N〉2m+2 ,π−→ε =π

V(π, f−→ε ),

but, as seen above, the terms V(π, f−→ε ) cancel unless−→ε = (l, η1, . . . η2m+1, l), with
l smaller than all ηj (henceforth l < N−m) and π−→η = σ for−→η = (η1, . . . , η2m+1).
Also, the ordered set 〈N〉l = {l + 1, . . . , N} is isomorphic to 〈N− l〉, therefore the
equality (2.10) becomes

VN(π)=
N−m

∑
l=1

∑
−→η ∈〈N〉2m

l ,π−→η =σ

V(π, f(l,η1,...,η2m+1,l))=
N−m

∑
l=1

∑
−→η ∈〈N−l〉2m ,π−→η =σ

η(V(σ, f−→η ))

where for the last equality we used the argument above and equation (2.8). It
follows that

VN(π)=
N−m

∑
l=1

η
(

∑
−→η ∈〈N−l〉2m ,π−→η =σ

V(σ, f−→η )
)
=

N−m

∑
l=1

η(VN−l(σ))=η
(N−m

∑
l=1

VN−l(σ)
)

.

(2.11)

From the induction hypothesis, equation (2.11) is equivalent to

VN(π)=η
(N−m

∑
l=1

[V(σ) · (N−l)m+Pσ(N−l)]
)
=η(V(σ)) ·

[ N−m

∑
l=1

(N−l)m
]
+Qσ(N)

where Qσ is a polynomial of degree at most m. The proof for (3a) and (2.9) is
now finished by noticing that, from the well-known approximation with Rie-

mann sums of
1∫

0
xmdx, the coefficient of Nm+1 in

N−m
∑

l=1
(N − l)m is 1

m+1 .

COROLLARY 2.6. a is stable with respect to the monotone convolution. More
precisely, if a2 is the dilation with

√
2 of a, then

Ha ◦Ha = Ha2 .

Proof. Let a1, b1, a2, b2, . . . be a sequence of centered, monotone independent
non-commutative random variables of variance η and Xi = ai + bi. It follows
that {Xi}i are also monotone independent, centered and of variance 2η, hence
S2N = X1+···+X2N√

2N
will converge in distribution to a2, but S2N = rN + tN , were

rN = a1+b1+···+aN+bN√
2N

and tN = aN+1+bN+1+···+a2N+b2N√
2N

. For all N we have that
rN and tN are monotone independent, and they converge to a; the conclusion
follows from the remark that the n-th moment of Ha ◦ Ha depends only on the
first n moments of a.
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PROPOSITION 2.7. Denote an(b) = ã([X b]n). The B-transforms of a satisfies
the following relation:

Ba(b) =
∞

∑
n=0

1
n

η(b · a2n−2(b)) · b.

Proof. Theorem 2.5 gives:

an(b) = ∑
π∈NC2(n)

V(π, b)b

=
[

∑
π∈NC2(n−2)

V(π̃, b)b
]
+
[ n−2

∑
p=2

(
∑

π∈NC2(p−2)
V(π̃, b)b · ∑

γ∈NC2(n−(p+2))
V(γ, b)b

)]
= ∑

π∈NC2(n)

1
n/2

η(b ·V(π, b) · b)b

+
n−2

∑
p=2

[
∑

π∈NC2(p−2)

1
p/2

η(b ·V(π1, b) · b)b · ∑
γ∈NC2(n−(p+2))

V(γ, b)b
]

=
1

n/2
η(b · an−2(b) · b) +

n−2

∑
p=2

[ 1
p/2

η(b · ap−2(b) · b) · an−(p+2)(b)
]
.

Comparing the above relation to the recurrence for the B-transform, we have that

B2n,a(b) =
1
n

η(b ·m2n−2(b)) · b

and all the coefficients of Ba of odd order are 0, we conclude.

COROLLARY 2.8. If a is given by the variance η(b) = aba for some self-adjoint
a ∈ B, then the Cauchy transform of a satisfies:

(bGa(b))2 = 1 + 4[aGa(b)]2.

Proof. IfB = C, we have that a = a, the classical arcsine law and [zGa(z)]2 =
1+ 4Ga(z)2. With the notation αn for the n-th moment of a, the equation becomes

(2.12)
( ∞

∑
k=0

αk

zk

)2
= 1 + 4

( ∞

∑
k=0

αp

zp+1

)2
.

Identifying the coefficients of z−n in both sides of (2.12), we obtain that for
all n > 1

(2.13)
n

∑
p=0

αpαn−p = 4
n−2

∑
l=0

αlαn−2−l .

Moreover, we have that

(2.14) αn = ∑
pi∈NC2(n)

Va(π) where Va(π) ∈ R are satisfying (1a)–(3a).
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If a is given by η(b) = aba for some self-adjoint a ∈ B, then (1a)–(3a) imply
that Va(π, b) = va(π)(ab)n−1a for some va(π) ∈ R. It is easy to see that va(π)
also satisfy (1a)–(3a), henceforth va(π) = Va(π) and (2.14) implies

a((Xb)n) = ∑
π∈NC2(n)

Va(π)(ab)n = αn(ab)n and

Ga(b) = ϕ(b−1[1− Xb−1]−1) = b−1
∞

∑
k=0

ϕ((Xb−1)k) = b−1
∞

∑
k=0

αk(ab−1)k.

Henceforth

(bGa(b))2 =
[ ∞

∑
k=0

αk(ab−1)k
]2

=
∞

∑
n=0

( n

∑
k=0

αkαn−k

)
(ab−1)n

= 1 +
∞

∑
n=2

[ n−2

∑
l=0

αlαn−l

]
(ab−1)n

= 1+
∞

∑
n=0

( n

∑
l=0

aαlb−1(ab−1)l · aαn−lb−1(ab−1)n−l
)
=1+4[aGa(b)]2.

In [13] a similar combinatorial treatment is done for the operator-valued
semicircular law s; with the above notations, s can be combinatorially described
as follows:

PROPOSITION 2.9. The op-valued free central limit law s of variance η (that is
η : B −→ B is the map b 7→ s(X bX )) is combinatorially described by

s̃([Xb]n) = ∑
γ∈NC2(n)

W(γ, b) · b

where W(γ, b) are given by the following recurrences:
(1s) W((1, 2), b) = η(b);
(2s) W(γ1 ⊕ γ2, b) = W(γ1, b) · b ·W(γ2, b);
(3s) W(γ̃) = η(b ·V(γ, b) · b).

3. RELATIONS BETWEEN OPERATOR-VALUED BERNOULLI, ARCSINE AND SEMICIRCULAR
DISTRIBUTIONS

As mentioned in the introduction, in scalar-valued noncommutative prob-
ability the free additive convolution of two Bernoulli distributions as well as the
Boolean convolution of two semicircular distributions is the arcsine distribution.
In this section we shall make explicit to what extent this connection holds for
operator-valued distributions.

It has been shown in [3] that the Boolean-to-free Bercovici–Pata bijection
sends Ber to s. One of the important results of Voiculescu used in the proof of
this result is the subordination property for free convolution [15]: if X and Y are
free over B, then there exists ω : H+(B) → H+(B) analytic so that GµX+Y (b) =
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GµX (ω(b)), b ∈ H+(B). This relation holds for the corresponding fully matricial
extensions.

We remind the reader one of the tools used for proving the Boolean-to-free
Bercovici–Pata bijection, namely Proposition 3.1 of [3]:

PROPOSITION 3.1. For any B-valued distribution µ, we denote ωn the subordi-
nation function for µ�n = µ� µ� · · ·� µ︸ ︷︷ ︸

n times

. Then the following functional equations

hold:

ωn(b) =
1
n

b +
(

1− 1
n

)
Fµ�n(b) =

1
n

b +
(

1− 1
n

)
Fµ(ωn(b)),(3.1)

Fµ�n(b) = Fµ

( 1
n

b +
(

1− 1
n

)
Fµ�n(b)

)
, b ∈ H+(Mn(B)).(3.2)

Our first result of this section is the following.

THEOREM 3.2. Assume that a ∈ Bsa and Ber is concentrated in the points −a
and a (i.e. Ber(X bX ) = aba). Then Ber� Ber = a, where a is the centered arcsine
distribution of variance b 7→ 2aba, b ∈ B. In addition, if a is invertible, then the
reciprocal of the Cauchy transform of a satisfies the Abel equation

φ(Fa(b)) = φ(b)− 4, b ∈ H+(B),
where φ(w) = wa−1wa−1, w ∈ B. All relations extend to Bnc.

Proof. It follows from its definition that FBer(b) = b− ab−1a, for invertible
b ∈ B. (Sometimes it will be more convenient to view this relation in the form
FBer(b) = (b + a)b−1(b− a).) Assume for the beginning that a is invertible. We
claim that FBer(b)a−1b = ba−1FBer(b), b ∈ H+(B). Indeed,

FBer(b)a−1b = (b− ab−1a)a−1b = ba−1b− a, and

ba−1FBer(b) = ba−1(b− ab−1a) = ba−1b− a,

from which we conclude.
Let us first note a few obvious properties of the transforms involved: first,

if ωt : H+(B) → H+(B) satisfies tωt(b) = b + (t − 1)FBer(ωt(b)), then we can
apply the above observation for b replaced by ωt(b) to conclude that

ba−1ωt(b) = tωt(b)a−1ωt(b)− (t− 1)FBer(ωt(b))a−1ωt(b)

= tωt(b)a−1ωt(b)− (t− 1)ωt(b)a−1FBer(ωt(b))

= ωt(b)a−1b, b ∈ H+(B).
Applying this to t = n ∈ N we obtain the equality

(3.3) ωn(b)a−1b = ba−1ωn(b), b ∈ H+(B),
for the omega function from (3.1). Since

FBer�n(b) =
n

n− 1
ωn(b)−

1
n− 1

b
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and (ba−1)b = b(a−1b), we also conclude that

(3.4) FBer�n(b)a−1b = ba−1FBer�n(b), b ∈ H+(B), n ∈ N.

We shall consider this relation particularly for n = 2. Writing relation (3.2) for
n = 2 and µ = Ber gives

FBer�Ber(b) =
1
2
(b + FBer�Ber(b))− 2a(b + FBer�Ber(b))−1a.

We simplify and multiply left with (b + FBer�Ber(b))a−1 to get

ba−1FBer�Ber(b) + FBer�Ber(b)a−1FBer�Ber(b) = ba−1b + FBer�Ber(b)a−1b− 4a.

We simplify according to equation (3.4) and multiply with a−1 to the right to
obtain

(3.5) FBer�Ber(b)a−1FBer�Ber(b)a−1 = ba−1ba−1 − 4.

We observe from this relation that

FBer�Ber(FBer�Ber(b))a−1FBer�Ber(FBer�Ber(b))a−1 =

FBer�Ber(b)a−1FBer�Ber(b)a−1 − 4 =

ba−1ba−1 − 8.

Generally,

(3.6) F◦nBer�Ber(b)a−1F◦nBer�Ber(b)a−1 = ba−1ba−1 − 4n, b ∈ H+(B), n ∈ N.

This is the operator-valued version of Abel’s equation φ(F(b)) = φ(b) + c, with
φ(b) = ba−1ba−1, F = FBer�Ber and c = −4 · 1B . On the other hand,

√
nFBer�Ber

b√
n

a−1√nFBer�Ber
b√
n

a−1 = ba−1ba−1 − 4n,

so b 7→
√

nFBer�Ber
b√
n and b 7→ F◦nBer�Ber(b) satisfy exactly the same functional

equations and they both map the fully matricial upper half-plane into itself; by
analyticity, they must coincide:

√
nFBer�Ber

b√
n = F◦nBer�Ber(b) for all b with posi-

tive imaginary part. Moreover, re-normalizing in equation (3.6) and taking limit
gives us

Fa(b)a−1Fa(b)a−1 = lim
n→∞

F◦nBer�Ber(
√

nb)
√

n
a−1 F◦nBer�Ber(

√
nb)

√
n

a−1

= lim
n→∞

1
n
(
√

nba−1√nba−1 − 4n) = ba−1ba−1 − 4,

according to the monotonic central limit proved in [10] (see also Theorem 2.5
above). Thus, Fa satisfies also the same functional equation as FBer�Ber. We con-
clude that

F◦nBer�Ber(
√

nb)
√

n
= FBer�Ber(b) = Fa(b) =

F◦na (
√

nb)√
n

, b ∈ H+(B).
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This proves our proposition for the case when a is invertible in B. The general
case follows now easily: we approximate a with aε = fε(a), where fε : R → R is
defined by

fε(x) =

{
x if |x| > ε,
ε if |x| < ε.

Then recalling that FBer(b) = b− ab−1a,

lim
ε→0
‖b− ab−1a− b + aεb−1aε‖ = lim

ε→0
‖(a− aε)b−1aε + ab−1(a− aε)‖

6 lim
ε→0
‖a− aε‖‖b−1‖(‖aε‖+ ‖a‖)

6 2‖a‖‖b−1‖ lim
ε→0
‖a− aε‖

= 2‖a‖‖b−1‖ lim
ε→0

sup
x∈R
| f (x)− x|

= 4‖a‖‖b−1‖ lim
ε→0

ε = 0.

The limit is uniform for b in closed balls included in H+(B). This shows that
Ber� Ber = a whenever the variance of Ber is b 7→ aba.

It has been shown in Corollary 2.8 that the operator-valued Cauchy trans-
form of a of variance b 7→ aba is characterized by the equation

[bGa(b)]2 = 1 + 4[aGa(b)]2, b ∈ H+(B).

We note that the above proof provides us also with an argument proving exactly
the same result. When b = z1B ,

(z1B − 2a)Ga(z1B)(z1B + 2a)Ga(z1B) = 1B , z ∈ C+;

by choosing a = α1B we easily find here the equation of the Cauchy transform of
the classical usual arcsine distribution Ga(z) = [z2 − 4α]−1/2.

Of course, only “few” of all completely positive maps are of the form b 7→
aba. Using Voiculescu’s theory of fully matricial maps and Stinespring’s theorem,
the next proposition shows that nevertheless understanding arcsine distributions
with variances of the above form covers many cases of interest.

PROPOSITION 3.3. Let Ber be the Bernoulli concentrated in −a, a ∈ B, and a =
Ber� Ber.

(i) Then s = a]1/2 is a semicircular element with variance η(b) = aba.

(ii) Assume that η : B → B is given by η(b) = 1
m

m
∑

j=1
ajbaj for a selfadjoint n-

tuple (a1, . . . , an) ∈ Bn. Then the semicircular operator valued random variable s with
variance η satisfies s = trm(a]1/2), where a is the centered arcsine distribution with
values in Mm(B) having variance b 7→ diag(a1, . . . , am) · b · diag(a1, . . . , am), b ∈
Mm(B).
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Given an Mm(B)-valued distribution N, we define n = trm(N) as the distri-
bution satisfying

n(X b1X b2 · · · X bqX ) = trmN(X (b1 ⊗ 1m)X (b2 ⊗ 1m) · · · X (bq ⊗ 1m)X ).

This is a distribution over B. We observe that for any b ∈ B,

trmHN(b⊗ 1m) = trm

∞

∑
n=0

N((b⊗ 1m)[X (b⊗ 1m)]
n)

=
∞

∑
n=0

n((b⊗ 1m)[X (b⊗ 1m)]
n) = Hn(b).

Clearly, same result will hold for the generalized Cauchy transforms of N and
n. We note that the trace of a semicircular distribution with variance η((bij)) =
diag(a1, . . . , am) · (bij) ·diag(a1, . . . , am) is still semicircular: if we look at the char-
acterization from Corollary 2.9, it follows immediately from the nature of the re-
currences (1s)–(3s) that all elements S(X (b⊗ 1m)X (b⊗ 1m) · · · X (b⊗ 1m)X will
be diagonal matrices in Mm(B). Thus, taking trm in (2.5) from Corollary 2.4,
b⊗ 1m = FS(b⊗ 1m) + η(GS(b⊗ 1m)), will provide us with an equation

b =
1
m

m

∑
j=1

(FS(b⊗ 1m))jj +
1
m

m

∑
j=1

aj(GS(b⊗ 1m))jjaj.

We conclude that b 7→ 1
m

m
∑

j=1
(GS(b⊗ 1m))jj is the Cauchy transform of the semi-

circular distribution s = trm(S). This argument can be applied to the arcsine
distribution as well, according to Theorem 2.5.

Proof. The proof of (i) is straightforward. Let ω(b) = 1
2 (b + FBer�Ber(b)),

b ∈ H+(B). Expanding by using the definition of FBer and (3.1), (3.2) gives:

FBer�Ber(b) = FBer

(1
2
(b + FBer�Ber(b))

)
= [(b + FBer�Ber(b)− 2a)−1 + (b + FBer�Ber(b) + 2a)−1]−1

=
1
2
(b + FBer�Ber(b) + 2a)(b + FBer�Ber(b))−1(b + FBer�Ber(b)− 2a)

=
1
2
(b + FBer�Ber(b)) + a− a− 2a(b + FBer�Ber(b))−1a

=
1
2
(b + FBer�Ber(b))− 2a(b + FBer�Ber(b))−1a.

Now replacing ω in the above yields

2ω(b)− b = ω(b)− aω(b)−1a,

or, equivalently

(3.7) ω(b) + aω(b)−1a = b, b ∈ H+(B).
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This is exactly equation (2.5) providing, according to Corollary 2.4, the reciprocal
of the operator-valued Cauchy transform of the centered semicircle with variance
η(b) = aba. This, together with Proposition 3.1 and Theorem 3.2, proves part (i).

To prove part (ii), let us define the distribution Ber on Mm(B) simply by

GBer(b) =
1
2
[(b− diag(a1, . . . , am))

−1 + (b + diag(a1, . . . , am))
−1],

for b ∈ H+(Mn(B)). Thus, now we view our scalar algebra to be directly Mm(B)
and build the fully matricial structure starting from Mm(A), Mm(B) and EMm(B).
As shown in the proof of part (i), it follows that there exists an Mm(B)-valued
semicircular random variable S which is centered and has variance ηm, where
ηm : Mm(B)→ Mm(B) is given by ηm(b) = diag(a1, . . . , am) · b · diag(a1, . . . , am),
for b ∈ Mm(B). We shall define s̃ to simply be S viewed as taking values in B.
This gives us a variance for s̃ equal to

EB⊗1m(s̃b⊗ 1ms̃)

=


a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · am




b 0 · · · 0
0 b · · · 0
· · · · · · · · · · · ·
0 0 · · · b




a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · am



=


a1ba1 0 · · · 0

0 a2ba2 · · · 0
· · · · · · · · · · · ·
0 0 · · · ambam

 .

Thus, taking partial traces gives

b= trm(b⊗1m)= trm(F̃s(b⊗1m))+trm(ηm(Gs̃(b⊗1m)))=Fs(b)+
1
m

m

∑
j=1

ajGs(b)aj.

This proves (ii) and completes our proof.

We note that whenever B is finite dimensional, the above proposition gives
a complete characterization of the correspondence between operator-valued semi-
circle, arcsine and Bernoulli distributions. This follows directly from Stinespring’s
dilation theorem.

We note that the relation described in Theorem 3.2 cannot hold unless the
variance is of the form b 7→ aba. Indeed, generally, this equality implies (by an
identification of moments of order 2 already) that

bη(b)bη(b)b
2

=
bη(b)bη(b) + bη(bη(b)b)b

4
.

This requires that η(b)bη(b) = η(bη(b)b), which (for example for a B which is a
factor) holds only when η(b) = aba.

We conclude with a remark about the dynamical system properties of the
reciprocal of the Cauchy transform of a.
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REMARK 3.4. (i) Fa embeds in a composition semigroup, i.e. there exists
F(t, b) : [0,+∞) × H+(B) → H+(B) so that F(1, b) = Fa(b), F(0, b) = b, and
F(t + s, b) = F(t, F(s, b)). In particular, F◦na (b) = F(n, b) for all n ∈ N. Indeed,
this follows from Corollary 2.6: replacing 2 in it with any other natural number
we relate F◦ma (b) =

√
mFa b√

m . This holds for a of any variance, so we have shown

that Fa embeds in a semigroup F(t, b) : Q+ ×H+(B) → H+(B) so that F(1, b) =
Fa(b), F(0, b) = b, and F(t+ s, b) = F(t, F(s, b)). The extension to [0,+∞) follows
by continuity.

(ii) A consequence of the above item is that F(t, b) =
√

tFa b√
t
. In particular, Fa

embeds in an analytic semigroup.
(iii) For any analytic composition semigroup F over H+(B) and any element

b ∈ H+(B), the linear operator ∂bF(1, b) on B is injective. Indeed, assume c ∈
B \ {0} is so that ∂bF(1, b)c = 0. Then

∂bF(1 + t, b)c = ∂bF(t, F(1, b))∂bF(1, b)c = 0,

so t 7→ ∂bF(1 + t, b)c is constant on [0,+∞). Since this function extends analyti-
cally to (−1,+∞), it must be constant on all this interval. But as (t, b) 7→ F(t, b)
is analytic, it follows that for t > 0 sufficiently small, ∂bF(t, b) is close in norm to
the identity, hence bijective. So for t > −1 close to −1, ∂bF(1 + t, b) is close to the
identity on B. This contradicts c 6= 0.

(iv) In particular, ∂tF(t, b) can never be zero. Otherwise,

∂tF(t + s, b) = ∂t(F(s, F(t, b))) = ∂bF(s, F(t, b))∂tF(t, b) = 0

for all s ∈ (−t,+∞), so that t 7→ F(t, b) is constant. Contradiction. (In fact, this
IS possible, namely when b is a fixed point for some, hence all, F(t, ·). However,
this would not allow =Fa(b) > =b for all b ∈ H+(B), a relation satisfied for any
invertible variance.)

(v) Fa is injective on all of H+(B). Indeed, assume that Fa(b) = Fa(c). Then
F(t− 1, Fa(b)) = F(t, b) =

√
tFa b√

t
implies that

√
tFa

b√
t
= F(t− 1, Fa(b)) = F(t− 1, Fa(c)) =

√
tFa

c√
t

for all t > 1, and hence, by analyticity, for all t > 0. Letting t tend to zero, we
obtain b = c, as claimed. (Observe that in fact this holds true for all analytic
semigroups.)

(vi) If a has variance EB(aba) = η(b), then Fa satisfies

Fa(b) = F′a(b)(b− 2η(b−1)), b ∈ H+(B).

If we let Ma(b) = Ga(b−1), then the equation above becomes

M′a(b)(b− 2bη(b)b) = Ma(b).
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(vii) Finally, we mention the partial differential equation is satisfied by Fa:

∂tF(t, b) =
1
2t
(F(t, b)− ∂bF(t, b)b), t > 0, b ∈ H+(B).
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