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ABSTRACT. Let (A, G, σ) be a C∗-dynamical system, where G is compact. We
show that every irreducible covariant representation (π, U) of (A, G, σ) is in-
duced from an irreducible covariant representation (π0, U0) of a subsystem
(A, G0, σ) such that π0 is a factor representation. We show that if (π, U) is an
irreducible covariant representation of (A, GP, σ) with ker π = P, then π is a
homogenous representation. Hence, (A, G, σ) satisfies the strong-EHI prop-
erty.
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1. INTRODUCTION

Let G be a locally compact group, A a C∗-algebra, and σ a point-wise norm
continuous homomorphism of G into the automorphism group of A. We call the
triple (A, G, σ) a C∗-dynamical system. Given a C∗-dynamical system we can
construct the crossed product C∗-algebra A×σ G that encodes the action of G on
A. It is well known that there exists a one to one correspondence between the
nondegenerate covariant representations of the system (A, G, σ) and the nonde-
generate ∗-representations of A×σ G. Therefore, the study of representations of
A×σ G is equivalent to that of covariant representations of (A, G, σ).

Our goal is to study induced covariant representations of systems involving
compact groups. The study of induced representations was initiated by Mackey
in [8], [9] in the context of unitary representations of locally compact groups.
Using Mackey’s approach, Takesaki extended the theory to covariant represen-
tations of C∗-dynamical systems in [12]. Subsequently, Rieffel recast that theory
in terms of Hilbert modules and Morita equivalence with [11]. It follows from
Proposition 5.4 in [13] that the construction of induced representations for crossed
products by Rieffel is equivalent to that of Takesaki.
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The importance of induced representations arises from the fact that the fun-
damental structure of a crossed product A×σ G is reflected in the structure of the
orbit space for the G-action on Prim A together with the subsystems (A, GP, σ),
where GP is the stability group at P ∈ Prim A. In particular, one gets a complete
description of the primitive ideal space and its topology for transformation group
C∗-algebra C0(X)×σ G when G is abelian. In many important cases we also get
a characterization of when A ×σ G is GCR or CCR. Williams presents all these
results and more in his book [13].

Although induced representations have been studied extensively there re-
main many natural questions in the theory. We outline below two questions for
which answers are not known. Using structure theorems obtained in this paper
we give a positive answer to both questions in the case of separable C∗-dynamical
systems with compact groups.

One of the key ingredients in building the connection between Prim A×σ G
and the G-action on Prim A is establishing that every primitive ideal of A×σ G
is induced from a stability group ([13], p. 235). The latter result was conjectured
by Effros and Hahn, and systems for which the conjecture holds are called EH-
regular. The proof that the Effros–Hahn conjecture holds for amenable groups is
due to Gootman, Rosenberg and Sauvageot and it is one of the major results in
the theory [7]. There exists a stronger notion of EH-regularity namely the require-
ment that every irreducible representation of A×σ G is induced from a stability
group. The latter requirement is known to hold in a number of instances ([13],
Theorem 8.16), but the general case remains open.

Another natural question that arises is the connection between irreducibil-
ity of a representation of a subsystem and irreducibility of the induced repre-
sentation. Following the nomenclature proposed by Echterhoff and Williams in
[4], we say that (A, G, σ) satisfies strong Effros–Hahn induction property (strong-
EHI), if, for each primitive ideal P of A and a covariant irreducible representation
(π, U) of (A, GP, σ) with ker π = P the corresponding induced representation of
(A, G, σ) is irreducible. It was shown in [4] that the strong-EHI property holds in
many instances including when A is a type I C∗-algebra or G is an abelian group.
Nevertheless, we do not know if the strong-EHI holds in general even with an
additional assumption that G is amenable.

In this paper, we use Takesaki’s approach to the theory of induced represen-
tations for crossed products. As in [12] we will often assume basic countability
conditions. These assumptions are necessary since the direct integral decompo-
sition theory works best in the separable case. If G is a second countable, locally
compact group acting on a separable C∗-algebra A, then we call (A, G, σ) a sepa-
rable system.

In Section 2, we give a brief background about topological and Borel dy-
namical systems necessary for Section 3. In Section 3, we study Borel dynamical
systems. In particular, we prove that if G is a compact group and (Γ, µ) is an
ergodic standard Borel G-measure space, then G acts transitively on (Γ, µ). The
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last statement is false if G is not compact. For instance, the action of Z on T by an
irrational rotation is ergodic, but it is not transitive.

In Section 4, we study the structure of covariant representations of (A, G, σ).
Given a system of imprimitivity A for a covariant representation (π, U) there
exists an essentially unique standard Borel G-measure space (Γ, µ) such that
L∞(Γ, µ) is isomorphic to A. If G acts ergodically on A, then the corresponding
action on (Γ, µ) is also ergodic. In particular, by the main result in Section 3, if G
acts ergodically on A, then G acts transitively on (Γ, µ) and we can identify the
space Γ with the right coset space G0/G for an appropriate closed subgroup G0 of
G. Then following Mackey’s construction it can be shown that (π, U) is induced
from a representation of (A, G0, σ) ([12], Theorem 4.2). Our key result in this sec-
tion is Theorem 4.2 regarding covariant factor representations of C∗-dynamical
systems with compact groups. This theorem extends a similar result for finite
groups obtained by Arias and Latremoliere ([2], Theorem 3.4). As a corollary of
Theorem 4.2 we show that every irreducible representation of (A, G, σ) is induced
from a stability group.

In Section 5, we study irreducible representations (π, U) of (A, GP, σ) with
ker π = P, where P ∈ Prim A. We show that in this case π must be a homoge-
neous representation. Using a theorem of [4], we get that (A, G, σ) satisfies the
strong-EHI property.

2. PRELIMINARIES

Suppose that G is a topological (respectively Borel) group; that is, G is a
topological (respectively Borel) space and a group such that the map (s, t) ∈ G×
G 7→ s−1t ∈ G is continuous (respectively Borel). When G is a topological group,
G is often considered as a Borel group equipped with the Borel structure deter-
mined by its topology. Let Γ be a topological (respectively Borel) space. Suppose
that an anti-homomorphism of G into the group of all homeomorphisms (respec-
tively Borel-automorphisms) of Γ is given. Denote the homeomorphism (respec-
tively Borel-automorphism) of Γ corresponding to s ∈ G by γ ∈ Γ 7→ γ · s ∈ Γ.
If the map: (γ, s) ∈ Γ × G 7→ γ · s ∈ Γ is continuous (respectively Borel), then
Γ is said to be a topological (respectively Borel) G-space. By a measure µ on
a Borel space Γ, we shall mean a complete measure determined by a σ-finite
measure on the Borel sets of Γ. For each s ∈ G define a measure s(µ) on Γ by
s(µ)(E) = µ(E · s). We say that µ is quasi-invariant if s(µ) is equivalent to µ for
each s ∈ G and we call the measure space (Γ, µ) a G-measure space.

If a quasi-invariant measure µ on a Borel G-space Γ satisfies the condition
that µ(E) = 0 or µ(Γ− E) = 0 for every Borel set E of Γ with µ(E4(E · s)) = 0
for every s ∈ G, then µ is said to be ergodic. Given a unital C∗-dynamical system
(A, G, σ) we say the group action is ergodic if the only fixed elements of A under
the group action are the scalars. Similarly, given a W∗-dynamical system (A, G, τ)
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(defined at the beginning of Section 3) we say that the action of G on A is ergodic
if the only fixed elements are the scalars. Suppose that (Γ, µ) is a standard Borel
G-measure space such that the corresponding action of G on L∞(Γ, µ) given by
(τs f )(γ) = f (γ · s) is continuous in the strong operator topology (SOT), then
we can form a W∗-dynamical system (L∞(Γ, µ), G, τ). In this case, (Γ, µ) is an
ergodic G-measure space if and only if the action of G on L∞(Γ, µ) is ergodic.

REMARK 2.1. We can express the continuity of group action on L∞(Γ, µ) on
the space level by requiring that µ(E4 (E · s))→ 0 as s→ e for each measurable
set E with µ(E) < ∞ ([3], p. 285).

Let (Γ, µ) be a Borel G-measure space. For each γ ∈ Γ, define

Oγ = {γ · s : s ∈ G}

to be the orbit of γ under the group action. If there is γ ∈ Γ such that µ(Γ−Oγ) =
0, then (Γ, µ) is said to be transitive. Clearly, transitivity implies ergodicity. As
mentioned in the introduction, the converse is not true in general.

3. ERGODIC ACTIONS OF COMPACT GROUPS

In Lemma 3.4, we will connect ergodicity and transitivity for a compact
group acting on an abelian C∗-algebra. Our first goal is to identify a suitable
C∗-algebra in the von Neumann algebra context.

Let G be a locally compact group, A a von Neumann algebra, and τ a point-
wise SOT-continuous homomorphism of G into the automorphism group of A.
We call the triple (A, G, τ) a W∗-dynamical system. Given a W∗-dynamical sys-
tem (A, G, τ) the set Ac of x ∈ A such that the function s 7→ τs(x) is norm con-
tinuous is a G-invariant C∗-algebra and it is σ-weakly dense in A ([3], Proposi-
tion III.3.2.4). Since Ac is unital it follows from the double commutant theorem
that Ac is SOT-dense in A. We will use Ac to study W∗-dynamical systems of
the form (L∞(Γ, µ), G, τ). First, we need the following version of the spectral
theorem.

LEMMA 3.1. Let N be a masa on a separable Hilbert space K and ζ ∈ K be a
cyclic, separating vector for N. Suppose M is a unital C∗-subalgebra of N such that
Mζ = K. Then there exists a compact Hausdorff space Y, finite Radon measure ν and
unitary V : K → L2(Y, ν) such that VNV∗ = L∞(Y, ν) and VMV∗ = C(Y).

Proof. Let ρ : M → C(Y) be the Gelfand isomorphism. Define a positive
linear functional φ on M by φ(x) = 〈xζ, ζ〉. Then there is a finite Radon measure
ν on Y such that

φ(x) =
∫
Y

ρ(x)dν

for all x ∈ M.
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Let πφ : M → B(L2(Y, ν)) be the corresponding GNS representation with
1Y as the cyclic vector. Since ζ is a separating vector then the map V : Mζ →
πφ(M)1Y given by V(xζ) = πφ(x)1Y is well defined. Clearly, V is an isometry.
Hence, we can extend V to a unitary from K onto L2(Y, ν). Moreover, πφ(x) =
VxV∗ for all x ∈ M so that VMV∗ = πφ(M) = C(Y). To see that VNV∗ =
L∞(Y, ν) let x1 ∈ M and x2 ∈ N, then

(Vx1V∗)(Vx2V∗) = (Vx2V∗)(Vx1V∗).

So (Vx2V∗) ⊆ (VMV∗)′ = C(Y)′ = L∞(Y, ν). Conversely, if T ∈ L∞(Y, ν) ⊆
(VNV∗)′, then T(VxV∗) = (VxV∗)T, for all x ∈ N. So (V∗TV)x = x(V∗TV), for
all x ∈ N. Thus V∗TV ∈ N′ = N and T = V(V∗TV)V∗ ∈ VNV∗.

Suppose that (Γ, µ) is a standard Borel G-measure space with the group
action continuous in the sense of Remark 2.1. Consider the corresponding W∗-
dynamical system (L∞(Γ, µ), G, τ). Then L∞(Γ, µ)c is SOT-dense in L∞(Γ, µ).
Let ζ ∈ L2(Γ, µ) be a cyclic, separating vector for L∞(Γ, µ). Then we can apply
Lemma 3.1 to N = L∞(Γ, µ), M = L∞(Γ, µ)c, and ζ.

COROLLARY 3.2. Let G be a locally compact group and let (Γ, µ) be a standard
Borel G-measure space. Then there is a compact Hausdorff space Y together with a finite
Radon measure ν and a unitary V : L2(Γ, µ) → L2(Y, ν) such that VL∞(Γ, µ)V∗ =
L∞(Y, ν) and VL∞(Γ, µ)cV∗ = C(Y).

Consider the W∗-dynamical system (L∞(Y, ν), G, τ′), where τ′s(V f V∗) =
V(τs f )V∗ for all s ∈ G and f ∈ L∞(Γ, µ). Then by construction we get that
L∞(Y, ν)c = C(Y). In particular, (C(Y), G, τ′) is a C∗-dynamical system. Hence,
there is an action of G on Y so that Y is a topological G-space and

(τ′s f )(y) = f (y · s)

for all y ∈ Y, s ∈ G and f ∈ C(Y) ([13], Proposition 2.7). We would like to show
that the above equality extends to projections in L∞(Y, ν).

LEMMA 3.3. In the above situation, let E be a Borel subset of Y and s ∈ G. Then
(τ′sχE)(y) = χE(y · s) for almost all y ∈ Y. In particular, ν is a quasi-invariant measure.

Proof. By the Urysohn lemma there is a sequence { fi} in C(Y) with 0 6 fi 6
1 such that fi(y) → χE(y) for almost every y. We can assume, without the loss
generality, that χE(y) = 1 (respectively 0) whenever fi(y) → 1 (respectively 0).
It follows from the dominated convergence theorem that fi → χE in the strong
operator topology as multiplication operators. Since an automorphism of a von
Neumann algebra is SOT-continuous on bounded sets ([3], Proposition III.2.2.2),
then τ′s fi → τ′sχE in the strong operator topology. In particular, τ′s fi → τ′sχE in
L1(Y, µ). Therefore, there exists a subsequence such that τ′s fij(y) → τ′sχE(y) for
almost every y. By replacing the original sequence with the subsequence we can
assume without loss of generality that τ′s fi → τ′sχE almost everywhere. Since fi ∈
C(Y) then (τ′s fi)(y) = fi(y · s) for all y ∈ Y and i. It follows (τ′sχE)(y) = χE(y · s)
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for almost all y ∈ Y. In particular, ν(E) = 0 ⇐⇒ χE = 0 ⇐⇒ τ′s(χE) = 0 ⇐⇒
χ(E·s−1) = 0 ⇐⇒ ν(E · s−1) = 0.

Let L∞(Γ, µ) and C(Y) be as in Corollary 3.2. Suppose the action of G on
L∞(Γ, µ) is ergodic, then the action of G on C(Y) must also be ergodic. In general,
ergodic actions are far from being transitive. However, we will show that if G is
a compact group, then the two notions coincide. The first part of Lemma 3.4 is
similar, with a different proof, to a result by Albeverio and Høegh-Krohn ([1],
Lemma 2.1).

LEMMA 3.4. Let G be a compact group. Let X be a compact, Hausdorff topological
G-space. Suppose the action of G on C(X) given by (σs f )(x) = f (x · s) is ergodic. Then
the action of G on X is transitive.

Moreover, there exists a closed subgroup G0 of G such that the right coset space
G0/G with the quotient topology is homeomorphic to X.

Proof. Recall that Ox denotes the orbit of x, for each x ∈ X. Since the map
s 7→ x · s is continuous from G to X and G is compact, then Ox is compact for each
x ∈ X. In particular, Ox is closed for each x ∈ X.

Fix x0 ∈ X. Suppose there is x1 ∈ X −Ox0 , then Ox0 and Ox1 are disjoint
closed subsets of X. By the Urysohn lemma there exists a continuous function
f : X → [0, 1] such that f (x0 · s) = 0 and f (x1 · s) = 1 for all s ∈ G. Define
a function g : X → [0, 1] by g(x) =

∫
G

f (x · s)dµ(s) integrating with respect

to the Haar measure. We want to show that g is continuous. To this end, let
ε > 0 be given; extend f to f : X × G → [0, 1] by defining f (x, s) = f (x · s).
Then f is continuous function with compact support so we can find a finite open
cover {Fi × Gi}n

i=1 of X × G such that | f (x · s) − f (y · t)| < ε whenever (x, s)
and (y, t) are both in Fi × Gi for some i = 1, . . . , n. Given any x ∈ X define
Fx =

⋂{Fi : x ∈ Fi}. It is not hard to check that | f (x · s) − f (y · s)| < ε for all
y ∈ Fx and s ∈ G. Then |g(x) − g(y)| 6

∫
G
| f (x · s) − f (y · s)|dµ(s) 6 ε for all

y ∈ Fx. It follows that g is continuous.
Moreover, g is G-invariant and hence must be constant on X. But g(x0) = 0

and g(x1) = 1, contradiction. It follows that Ox0 = X.
To prove the second part, let Gx0 = {s ∈ G : x0 · s = x0}. Then Gx0 is a

closed subgroup of G and the right coset space Gx0 /G is compact in the quotient
topology. Moreover, it is easy to see that the map Gx0 · s 7→ x0 · s is a continu-
ous bijection from Gx0 /G onto X. Since Gx0 /G is compact and X is Hausdorff it
follows that Gx0 /G is in fact homeomorphic to X.

COROLLARY 3.5. Let G be a second countable compact group. Let X be a compact,
Hausdorff topological G-space. Suppose the action of G on C(X) given by (σs f )(x) =
f (x · s) is ergodic. Then X is a second countable topological space.
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Applying Lemma 3.4 to (C(Y), G, τ′) we see that G acts transitively on Y.
We are now ready to prove the main result of this section.

THEOREM 3.6. Let G be a second countable, compact group. Let (Γ, µ) be a stan-
dard Borel G-measure space. Suppose the action of G on (Γ, µ) is ergodic and the cor-
responding action of G on L∞(Γ, µ) is SOT-continuous. Then G acts transitively on
(Γ, µ).

Proof. We know by Corollary 3.2 that there is a compact, Hausdorff space Y
together with a Radon measure ν and a unitary V : L2(Γ, µ)→ L2(Y, ν) such that
VL∞(Γ, µ)V∗ = L∞(Y, ν) and VL∞(Γ, µ)cV∗ = C(Y). We define the action of G
on L∞(Y, ν) as in Lemma 3.3, then (Y, ν) becomes a Borel G-measure space. Since
G is a second countable, compact group then Y is a second countable topological
space by Corollary 3.5. In particular, (Y, ν) is a standard Borel G-measure space.

It follows from Mackey’s Theorem 2 in [10] that there are invariant Borel
subsets Y′ ⊆ Y and Γ′ ⊆ Γ and a Borel isomorphism θ : Y′ → Γ′ such that:

(i) µ(Γ− Γ′) = ν(Y−Y′) = 0.
(ii) θ(y · s) = θ(y) · s for all y ∈ Y′, s ∈ G.

By Lemma 3.4, we know that G acts transitively on Y. In particular, Y′ = Y.
Let y be any point in Y. Then Γ′ is equal to the orbit of θ(y).

4. COVARIANT REPRESENTATIONS OF (A, G, σ) WITH G COMPACT

Our goal in this section is to show that an irreducible representation (π, U)
of a separable system is induced from an irreducible representation (π0, U0) of
a subsystem with the key additional property that π0 is a factor representation
of A. As a corollary, we get a strengthening of the GRS theorem for compact
groups. First, we need to describe the construction of induced representations
and systems of imprimitivity.

In this section we will assume that (A, G, σ) is a separable system and all
Hilbert spaces are separable. A covariant representation of (A, G, σ) on a Hilbert
space H is a pair (π, U), where π is a non-degenerate representation of A on H
and U is a SOT-continuous homomorphism of G into the unitary group of B(H)
such that

U(s)π(a)U(s)∗ = π(σsa)

for all a ∈ A and s ∈ G.
Let G0 be a closed subgroup of G and G0/G be the corresponding right coset

space endowed with the quotient topology. Let (π0, U0) be a covariant represen-
tation of (A, G0, σ) on a Hilbert space H0. Following Mackey and Takesaki, we
can construct a new covariant representation (π, U) of (A, G, σ), which is called
the induced covariant representation.
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The construction of the induced covariant representation is simplified when
G is compact. If G is a locally compact group, G0/G does not always admit a G-
invariant measure so the construction of induced representations for such groups
involves the use of a quasi-invariant measure on G0/G. However, if G is com-
pact, there exists a unique (up to a scalar multiple) G-invariant Radon measure
on G0/G ([6], Corollary 2.51). Since the induced representation is independent,
up to a unitary equivalence, of the choice of the quasi-invariant measure ([8],
Theorem 2.1) we can assume that we have a G-invariant measure on G0/G.

We now describe induced covariant representations following the construc-
tion given in [12]. Let G0 be a closed subgroup of a compact group G and let
(π0, U0) be a covariant representation of (A, G0, σ) on a Hilbert space H0. Let µ
be a fixed G-invariant Radon measure on G0/G. LetH denote the induced repre-
sentation space that is,H is the space of allH0-valued functions ξ on G satisfying
the following conditions:

(i) 〈ξ(s), h0〉 is Borel function of s for all h0 ∈ H0.
(ii) ξ(ts) = U0(t)ξ(s) for all t ∈ G0 and all s ∈ G.

(iii)
∫

G0/G
〈ξ(s), ξ(s)〉dµ(s) < ∞ .

Define U to be the homomorphism of G into the unitary group of B(H)
given by

(U(t)ξ)(s) = ξ(st)

for all ξ ∈ H and s, t ∈ G. For each a ∈ A, define an operator π(a) onH by

(π(a)ξ)(s) = π0(σsa)ξ(s)

for all ξ ∈ H and s ∈ G. Then (π, U) is easily checked to be a covariant represen-
tation of (A, G, σ):

U(t)π(a)U(t−1)ξ(s) = (π(a)U(t−1)ξ)(st) = π0(σsta)(U(t−1)ξ)(st)

= π0(σsta)ξ(s) = (π(σta)ξ)(s)

for all s, t ∈ G and a ∈ A. Since the G-invariant measure µ is unique up to a scalar
multiple, the induced representation is independent of the choice of the measure.

Let (π, U) be a covariant representation of (A, G, σ) on H. We say that
(π, U) is irreducible if the only operators that commute with π(a) and U(s) for
all a ∈ A, s ∈ G are the scalars. Note that (π, U) is an irreducible representation
of (A, G, σ) if and only if π ×σ U is an irreducible representation of A×σ G.

Following [12], we define a system of imprimitivity for (π, U) to be a com-
mutative von Neumann algebra A acting onH such that:

(i) A ⊆ π(A)′.
(ii) U(s)AU(s)∗ = A for all s ∈ G.

Note that (ii) implies that G acts by automorphisms on A. Since U is as-
sumed to be strongly continuous, for each x ∈ A the map s 7→ U(s)xU(s)∗ is
continuous in the strong operator topology. We obtain a W∗-dynamical system
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(A, G, Ad U). We call A an ergodic system of imprimitivity if the action of G on A
is ergodic. In particular, if (π, U) is an irreducible covariant representation, then
A is always an ergodic system of imprimitivity. Given a system of imprimitiv-
ity A for (π, U), not necessarily ergodic, there exists a standard Borel G-measure
space (Γ, µ) and an isomorphism i of the algebra L∞(Γ, µ) onto A such that

U(s)i( f )U(s)∗ = i(τs f )

for each f ∈ L∞(Γ, µ) and s ∈ G, where (τs f )(γ) = f (γ · s) ([10], Theorem 4). In
the above situation we say that the system of imprimitivity A for (π, U) is based
on the G-measure space (Γ, µ) with respect to i. As in [12] we say that a system
of imprimitivity A is transitive if the corresponding Borel G-measure space is
transitive. It follows from Theorem 2 in [10] that the definition of transitivity is
independent of the choice of G-space (Γ, µ).

Suppose that A is an ergodic system of imprimitivity for (π, U) on a Hilbert
spaceH. Then we can assumeH = L2(Γ, µ)⊗H0 for some Hilbert spaceH0 and
A = L∞(Γ, µ)⊗ IH0 ([12], p. 285). The action of A onH is given by

i( f )ξ)(γ) = f (γ)ξ(γ)

for all f ∈ L∞(Γ, µ) and ξ ∈ L2(H0, Γ, µ). Since π(A) ⊆ A′, there exists a Rep(A :
H0)-valued measurable function γ ∈ Γ 7→ πγ ∈ Rep(A : H0) such that

(π(a)ξ)(γ) = πγ(a)ξ(γ)

for each a ∈ A, ξ ∈ H and almost all γ ∈ Γ. Since the action of G on A is
SOT-continuous in B(H), then the corresponding action of G on L∞(Γ, µ) is SOT-
continuous in B(L2(Γ, µ)). The action of G on L∞(Γ, µ) is ergodic. Hence, by
Theorem 3.6, G acts transitively on (Γ, µ). We obtain the following result.

PROPOSITION 4.1. Let (π, U) be an irreducible covariant representation of a sep-
arable system (A, G, σ), where G is compact. If A is a system of imprimitivity for (π, U),
then A is transitive.

Let (π, U) be a covariant representation of (A, G, σ) on H. Suppose that
A is a transitive system of imprimitivity for (π, U), then by Theorem 6.1 of [9],
the associated G-measure space (Γ, µ) can be identified with the right coset space
G0/G of a closed subgroup of G. As it was shown in [9], there exists a represen-
tation U0 of G0 such that U is equivalent to the induced representation by U0.
Takesaki showed that this result can be extended to covariant representations, i.e.
there exists a covariant representation (π0, U0) of (A, G0, σ) such that (π, U) is
equivalent to the representation induced by (π0, U0) ([12], Theorem 4.2).

A natural choice for a system of imprimitivity for (π, U) is the center of
the commutant of π(A), which we denote Z(π(A)′). If (π, U) is a factor repre-
sentation, then Z(π(A)′) is automatically an ergodic system of imprimitivity for
(π, U). In this case, (π, U) is particularly easy to describe, using Theorem 3.6 in
Section 3 and Theorem 5.2 in [12].
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THEOREM 4.2. Let (π, U) be a factor (respectively irreducible) representation of
a separable system (A, G, σ), where G is compact. Then there exists a closed subgroup
G0 of G and a unique covariant representation (π0, U0) of the subsystem (A, G0, σ) such
that (π, U) is equivalent to the representation induced by (π0, U0), where the uniqueness
is up to equivalence. Moreover,

(i) (π0, U0) is a factor (respectively irreducible) representation.
(ii) π0 is a factor representation.

(iii) There is an isomorphism i : L∞(G0/G, µ) → Z(π(A)′) given by (i( f )ξ)(s) =
f (s)ξ(s).

We can view Theorem 4.2 as a generalization of a similar result for finite
groups obtained by Arias and Latremoliere ([2], Theorem 3.4). Let G be a finite
group and (π, U) be an irreducible representation of (A, G, σ). Then we know by
Theorem 4.2 that (π, U) is induced from an irreducible representation (π0, U0) of
(A, G0, σ), where π0 is a factor representation. Define an action of G0 on π0(A)′

by τs(T) = U0(s)TU0(s)∗ for all s ∈ G0 and T ∈ π0(A)′. Since G0 is finite and acts
ergodically on π0(A)′, then π0(A)′ must be finite dimensional. It follows that π0
is a direct sum of finitely many equivalent irreducible representations.

Next, we give a corollary that strengthens the GRS theorem in the case of
compact groups. Let P be a primitive ideal of A and define GP := {s ∈ G : σsP =
P}. Note that GP is a closed subgroup of G.

COROLLARY 4.3. Let (π, U) be an irreducible representation of (A, G, σ). Then
there exists a primitive ideal P of A and a covariant representation (πP, UP) of the sub-
system (A, GP, σ) such that (π, U) is induced by (πP, UP). Moreover, ker πP = P.

Proof. By Theorem 4.2, there exists a closed subgroup G0 of G and a co-
variant representation (π0, U0) of the subsystem (A, G0, σ) such that (π, U) is in-
duced by (π0, U0). Since A is separable and π0 is a factor representation, ker π0 ∈
Prim A. Let P := ker π0. Then G0 ⊆ GP. We take (πP, UP) to be the repre-
sentation of (A, GP, σ) induced by the representation (π0, U0) of the subsystem
(A, G0, σ).

In addition, it follows from Lemma 5.1 in the next section that ker πP =⋂
r∈GP

σrP = P.

5. STRONG-EHI

In this section we assume that (A, G, σ) is a separable system and G is com-
pact. Our goal is to show that such systems satisfy strong-EHI. Let π be a repre-
sentation of A on a separable Hilbert space H. If E is a projection in π(A)′, then
we define πE to be the subrepresentation of π acting on EH.

Let G0 be a closed subgroup of G and (π0, U0) be a covariant representation
of (A, G0, σ) on H0. Let (π, U) be the covariant representation of (A, G, σ) on H
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induced by (π0, U0), then there is a natural family of projections in π(A)′ asso-
ciated with Borel subsets of G0/G. Consider the map i : L∞(G0/G, µ) → π(A)′

given by (i( f )ξ)(s) = f (s)ξ(s). For each nonzero Borel subset E of G0/G we
define πE to be the subrepresentation of π acting on i(χE)H.

LEMMA 5.1. In the context of the last paragraph, let Q := ker π0 and F be an
open subset of G0/G. Then ker πF =

⋂
s∈q−1(F)

σs−1 Q.

Proof. Clearly,
⋂

s∈q−1(F)
σs−1 Q ⊆ ker πF. Suppose there is a ∈ A such that

a /∈ ⋂
s∈q−1(F)

σs−1 Q. We will show that πF(a) 6= 0. Let s ∈ q−1(F) such that

π0(σsa) 6= 0. Choose a unit vector h ∈ H0 and ε > 0 so that

‖π0(σsa)h‖ > 2ε.

As in Lemma 6.19 in [13], we will construct ξ ∈ C(G,H0) ∩H such that

‖ξ(s)− h‖ 6 ε

‖a‖ .

To this end, using the strong continuity of U0, we can find an open neighborhood
N ⊆ G0 of e such that ‖U0(t)h− h‖ < ε/‖a‖ for all t ∈ N. We can assume without
loss of generality that N = N−1 (replaced with N ∩N−1). Let M be an open set in
G such that N = G0 ∩M. By the Urysohn lemma we can find a function g ∈ C(G)
such that g(e) = 1 and g(t) = 0 for all t in the complement of M in G. Note
that g−1(( 1

2 , ∞)) is an open neighborhood of e in G therefore its intersection with
G0 is open in the relative topology of G0. Since G0 is compact every nonempty
open set has a positive measure with respect to the Haar measure. In particular,
µG0(g−1(( 1

2 , ∞)) ∩ G0) > 0 so we can assume that
∫

G0

g(t)dµG0(t) = 1. Let f (r) =

g(rs−1). Define ξ : G → H0 by

ξ(r) =
∫
G0

f (tr)U0(t−1)(h)dµG0(t).

It is routine to verify, using for instance the dominated convergence theorem, that
ξ ∈ C(G,H0) and ξ satisfies all the conditions of an element ofH. Then

‖ξ(s)− h‖ =
∥∥∥ ∫

G0

f (ts)(U0(t−1)h−h)dµG0(t)
∥∥∥=∥∥∥ ∫

G0

g(t)(U0(t−1)h−h)dµG0(t)
∥∥∥

=
∥∥∥ ∫

N

g(t)(U0(t−1)h− h)dµG0(t)
∥∥∥ 6 ε

‖a‖ .

It follows that ‖π0(σsa)ξ(s)−π0(σsa)h‖ 6 ‖π0(σsa)‖ · ‖ξ(s)− h‖ 6 ‖a‖ · (ε/‖a‖)
= ε. By the reverse triangle inequality,

‖π0(σsa)ξ(s)‖ > ε.
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Since π0(σsj a) → π0(σsa) whenever sj → s and ξ ∈ C(G,H0), there exists an
open neighborhood Fs ⊆ G0/G of G0s such that

‖π0(σta)ξ(t)‖ >
ε

2

for all t ∈ q−1(Fs). Then πF(a)(χq−1(Fs∩F)ξ) 6= 0.

We call π a homogeneous representation if ker πE = ker π for every nonzero
projection E ∈ π(A)′. It follows from Lemma G.3 in [13] that π is a homogeneous
representation if ker πE = ker π for every nonzero projection E ∈ π(A)′ ∩π(A)′′.
A very useful structure theory developed by Effros in [5] allows us to decompose
an arbitrary representation into a direct integral of homogeneous representations.
The value of homogeneous representations is highlighted in the following result:

THEOREM 5.2 (Echterhoff and Williams, [4]). Let (A, G, σ) be a separable sys-
tem. Suppose that ρ is a homogeneous representation of A with ker ρ = P, and that
ρ×σ V is an irreducible representation of A×σ GP. Then the representation of A×σ G
induced by ρ×σ V is irreducible.

We say that (A, G, σ) satisfies the strong-EHI if given P ∈ Prim A and an
irreducible covariant representation (πP, UP) of (A, GP, σ) with ker πP = P, then
the corresponding induced representation of (A, G, σ) is irreducible. We would
like to use Theorem 5.2 to prove the strong-EHI property for separable systems
involving compact groups. To this end we prove the following theorem.

THEOREM 5.3. Let (A, G, σ) be a separable system, where G is a compact group.
Suppose P is a primitive ideal of A and (π, U) is an irreducible covariant representation
of (A, GP, σ) onH with ker π = P. Then π is a homogeneous representation of A.

Proof. Note that GP is a closed subgroup of G so GP is compact. By The-
orem 4.2, there exists a closed subgroup G0 of GP and an irreducible covariant
representation (π0, U0) of the subsystem (A, G0, σ) such that (π, U) is equivalent
to the representation induced by (π0, U0). Moreover, there is an isomorphism
i : L∞(G0/GP, µ) → Z(π(A)′) given by (i( f )ξ)(s) = f (s)ξ(s). Let E be a Borel
subset of G0/GP of nonzero measure. By Lemma G.3 in [13], it is enough to show
that ker πE = ker π.

Let Q = ker π0. Suppose F is an open subset of G0/GP. Let F′ := {s−1 : s ∈
q−1(F)}. By Lemma 5.1, ker πF =

⋂
s∈F′

σsQ. Since GP is compact and F′ is open,

there is {tj}16j6n ⊆ GP such that GP =
⋃

tjF′. Then by Lemma 5.1,

P =
⋂

r∈GP

σrQ =
⋂

σtj

( ⋂
s∈F′

σsQ
)
=
⋂

σtj(ker πF).

Since P is a prime ideal and P is GP-invariant, it follows that P = ker πF. In
particular, ‖πF(a)‖ = ‖π(a)‖ for all a ∈ A.
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Now let K be a compact subset of G0/GP of nonzero measure. By a simple
compactness argument we can find G0s ∈ K such that every open neighborhood
of G0s intersects with K in a set of positive measure. We claim that ker πK ⊆
ker π0 ◦ σs. To this end, suppose that π0(σsa) 6= 0 for some a ∈ A. Then, as in
Lemma 5.1, we can construct a function ζ ∈ C(GP,H0) ∩H such that

‖π0(σsa)ξ(s)‖ > ε.

Similarly, there exists an open neighborhood Fs ⊆ G0/GP of G0s such that

‖π0(ta)ξ(t)‖ >
ε

2

for all t ∈ q−1(Fs). It follows that πK(a)(χq−1(Fs∩K)ξ) 6= 0.
Next we want to show that ker π0 ◦ σs ⊆ P. Suppose π0(σsa) = 0 for some

a ∈ A. Let ε > 0 be given. Since π0(σsj a) → 0 whenever sj → s we can find
an open neighborhood F′ of s in GP such that ‖π0(σta)‖ < ε for all t ∈ F′. Then
‖π(a)‖ = ‖πq(F′)(a)‖ < ε. Thus π(a) = 0 as claimed. It follows that ker πK = P.

Finally, if E a nonzero Borel subset of G0/GP, then we can choose a compact
subset K ⊆ E such that µ(K) > 0. Suppose πE(a) = 0. Then πK(a) = 0. It follows
‖π(a)‖ = ‖πK(a)‖ = 0. So ker πE = P.

Combining Theorem 5.2 and Theorem 5.3, we obtain the following corollary.

COROLLARY 5.4. Let (A, G, σ) be a separable C∗-dynamical system, where G is
compact. Then (A, G, σ) satisfies the strong-EHI property.

As mentioned in the introduction it remains unknown whether the strong-
EHI property holds for an arbitrary C∗-dynamical system. We can inquire about
a weaker property of C∗-dynamical systems, the EHI property [4]. We say that
(A, G, σ) satisfies the EHI if, given P ∈ Prim A and a primitive ideal J in A×σ GP
with Res J = P, then J induces to a primitive ideal in A ×σ G. However, even
with an additional assumption that G is amenable it is not known whether all
separable C∗-dynamical systems satisfy the EHI property.
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