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ABSTRACT. A subideal is an ideal of an ideal of B(H) and a principal subideal
is a principal ideal of an ideal of B(H). We determine necessary and sufficient
conditions for a principal subideal to be an ideal of B(H). This generalizes to
arbitrary ideals the 1983 work of Fong and Radjavi characterizing principal
subideals of the ideal of compact operators that are also ideals of B(H). We
then characterize all principal subideals. We also investigate the lattice struc-
ture of subideals as part of the general study of ideal lattices such as the often
studied lattice structure of ideals of B(H). This study of subideals and the
study of elementary operators with coefficient constraints are closely related.
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1. INTRODUCTION

This paper investigates the subideal structure of B(H) following the spirit
of Calkin’s well-known singular number characterization of ideals of B(H) (i.e.,
henceforth called B(H)-ideals) [1]. A subideal is an ideal of an ideal J (henceforth
called a J-ideal) for the B(H)-ideal J. Recall for general rings, an ideal is an addi-
tive commutative subgroup which is closed under left and right multiplication by
elements of the ring. Ideals in the ring B(H) are ubiquitous throughout operator
theory. Some well-known B(H)-ideals are the compact operators K(H), the finite
rank operators F(H), principal ideals, Banach ideals, the Hilbert–Schmidt class,
the trace class, Orlicz ideals, Marcinkiewicz ideals and Lorentz ideals, to name a
few. Definitions of these ideals may be found in [3]. Recall also that all proper
B(H)-ideals lie in K(H). Here and throughout this paper H denotes a separable
infinite-dimensional complex Hilbert space, B(H) the algebra of all bounded lin-
ear operators on H, and C,R,N,Z, respectively, the classes of complex numbers,
real numbers, positive integers and integers.

There are three natural kinds of principal J-ideals, namely, the classical prin-
cipal J-ideals (S)J which we call principal linear J-ideals; principal J-ideals 〈S〉J
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and principal real linear J-ideals (S)RJ (Definition 2.1). Standard notation then
dictates that we denote (S) = (S)B(H). It is immediate that B(H)-ideals inside ideals
J are always J-ideals but, as we shall see later, often not conversely ([4], see also Exam-
ple 1.3 below).

The main results of this paper, generalizing the 1983 work of Fong and Rad-
javi [4] and characterizing the principal subideals of B(H) that is the principal
ideals of K(H), are summarized in the following two theorems.

For compact operators S, T, s(S) denotes the sequence of singular numbers
(s-numbers) for S, and the product s(S)s(T) denote their pointwise product.

THEOREM 1.1. For S ∈ J, the following are equivalent:
(i) Any of the three types of principal J-ideals generated by S, (S)J , 〈S〉J or (S)RJ , is a

B(H)-ideal.
(ii) The principal B(H)-ideal (S) is J-soft, i.e., (S) = J(S) (equivalently, (S) = (S)J).

(iii) S = AS + SB +
m
∑

i=1
AiSBi for some A, B, Ai, Bi ∈ J, m ∈ N.

(iv) s(S) = O(Dk(s(S))s(T)) for some T ∈ J and k ∈ N.

Denoting JS + SJ + J(S)J := {AS + SB + CS′D : A, B, C, D ∈ J, S′ ∈ (S)},

THEOREM 1.2. The principal J-ideal, the principal linear J-ideal and the principal
real linear J-ideal generated by S ∈ J are respectively given by

〈S〉J=ZS+ JS+SJ+ J(S)J, (S)J=CS+ JS+SJ+ J(S)J, (S)RJ =RS+ JS+SJ+ J(S)J;

so J(S)J ⊆ JS + SJ + J(S)J ⊆ 〈S〉J ⊆ (S)RJ ⊆ (S)J ⊆ (S),

which first two, J(S)J and JS + SJ + J(S)J respectively, are a B(H)-ideal and a J-ideal.
Consequently, each of these three kinds of principal J-ideals have the common B(H)-ideal
“nucleus” J(S)J, with the common J-ideal JS + SJ + J(S)J containing it.

All these principal J-ideals, 〈S〉J ⊆ (S)RJ ⊆ (S)J , are distinct except under the
following equivalent conditions. They all collapse to merely

J(S)J = (S) = 〈S〉J = (S)J = (S)RJ
if and only if the principal B(H)-ideal (S) is J-soft (that is, (S)= J(S) (Definition 2.5) in
which case (S)= J(S)= J(S)J) if and only if any, and hence all of them, is a B(H)-ideal.

In 1941, Calkin [1] characterized B(H)-ideals via his lattice preserving iso-
morphism between B(H)-ideals and characteristic sets Σ ⊆ c∗0 : I → Σ(I) induced
by I 3 X → s(X) ∈ Σ(I). Here c∗0 denotes the cone of non-negative sequences
decreasing to zero; characteristic sets Σ are those subsets of c∗0 that are additive,
hereditary (solid) and ampliation invariant (invariant under each m-fold ampli-
ation Dmξ := 〈ξ1, . . . , ξ1, ξ2, . . . , ξ2, . . .〉 with each entry ξi repeated m times); the
characteristic set Σ(I) := {η ∈ c∗0 : diag η ∈ I}; and s(X) denotes the c∗0-sequence
of s-numbers of compact operator X.

Motivated by this characterization, a natural question to ask and the subject
of this paper is:
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What can be said about subideals, i.e., is it possible to characterize them in some way?

In 1983, Fong and Radjavi [4] investigated those subideals that are princi-
pal linear K(H)-ideals, perhaps in part because of the distinguished role K(H)
plays as the unique norm closed proper B(H)-ideal. Though unstated there, “lin-
earity” was assumed as recently clarified to us (private communications). They
found principal linear K(H)-ideals that are not B(H)-ideals (Example 1.3) by de-
termining necessary and sufficient conditions for a principal linear K(H)-ideal to
be a B(H)-ideal ([4], Theorem 2). And in doing so, at least for the authors of this
paper, they initiated the study of subideals.

THEOREM ([4], Theorem 2). Let T be a compact operator of infinite rank and let
P = (T∗T)1/2. Let T and P be the ideals in K(H) generated by T and P, respectively.
Then the following are mutually equivalent:

(i) T is an ideal in B(H).
(ii) P is an ideal in B(H).

(iii) T = A1TB1 + · · ·+ AkTBk for some k and some Ai ∈ K(H), Bi ∈ B(H).
(iv) T = A1TB1 + · · ·+ AkTBk for some k and some Ai ∈ K(H), Bi ∈ K(H).

Fong and Radjavi proved this via the positive case employing the Lie ideal
condition (ii) below.

THEOREM ([4], Theorem 1). Let P be a positive compact operator of infinite rank,
and let I be the ideal in K(H) generated by P. Then the following are equivalent:

(i) I is an ideal in B(H).
(ii) I is a Lie ideal in B(H).

(iii) P = A1PA∗1 + · · ·+ AkPA∗k for some k and some compact operators Ai.
(iv) P = A1PB1 + · · ·+ AkPBk for some k and some compact operators Ai and Bi.
(v) P = A1PB1 + · · ·+ AkPBk for some k, where Ai, Bi ∈ B(H) and either the Ai

or the Bi are compact.
(vi) For some integer k > 1, snk(P) = o(sn(P)) as n→ ∞.

EXAMPLE 1.3. Condition (vi) of Theorem 1 of [4] shows that if the singular
number sequence of the operator P is given by s(P) = 〈 1

2n 〉, then the principal
linear K(H)-ideal generated by P is a B(H)-ideal. But if s(P) = 〈 1

n 〉, then the
principal linear K(H)-ideal generated by P is not a B(H)-ideal.

This paper fully generalizes Theorem 2 of [4] from principal K(H)-ideals
to arbitrary principal J-ideals and all but the Lie ideal condition in Theorem 1
of [4]. We investigate all three types of principal J-ideals, whereas Fong–Radjavi
considered only the principal linear J-ideals and for only the case J = K(H) [4].
We determine necessary and sufficient conditions for when a principal J-ideal is a
B(H)-ideal and we employ these conditions to characterize them (Theorems 1.1–
1.2). We also investigate the lattice structure of subideals and principal subideals
(building blocks of subideals just as principal ideals are building blocks for ideals
in all rings, see Remark 2.2(iv)). Our methods are largely purely algebraic.
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Motivated by the advances on ideals of the last decade (for example the
semiring structure of the lattice of B(H)-ideals, especially their additive and mul-
tiplicative structure, see Remark 2.2(iv)), we found that bypassing the Lie ideal
considerations of Fong–Radjavi ([4], Theorem 1), the positive operator case, we
can prove the main theorem Theorem 2 of [4] more generally, and we believe
more simply and directly. These advances, to be sure, evolved from works such
as [4]. Indeed, the proof of Lemma 6.3 of [3] shares some of the attributes of the
proof of Theorem 1 of [4], in particular, the use of a unitary from H → H⊕m, and
their use of Proposition 2.3(i) below for principal K(H)-ideals is implicit in their
proofs.

2. PRELIMINARIES

Every B(H)-ideal J is linear because for each α ∈ C, αI ∈ B(H) so that for
each A ∈ J, (αI)A = αA ∈ J. But a subideal (i.e., a J-ideal) may not be linear
(Example 3.5). This led the authors to introduce linear J-ideals in addition to J-
ideals. Much the same can be said for real linear J-ideals (ideals closed under real
scalar multiplication) but we will say little more about these. We start with the
following definitions, noting the obvious fact that intersections of ideals in any
ring are themselves ideals.

DEFINITION 2.1. Let J be a B(H)-ideal and S ∈ J.
(i) The principal B(H)-ideal generated by the single operator S is given by

(S) :=
⋂
{I : I is a B(H)-ideal containing S}.

(ii) The principal linear J-ideal generated by S is given by

(S)J :=
⋂
{I : I is a linear J-ideal containing S}.

(iii) The principal J-ideal generated by S is given by

〈S〉J :=
⋂
{I : I is a J-ideal containing S}.

(iv) The principal real linear J-ideal generated by S is given by

(S)RJ :=
⋂
{I : I is real linear J-ideal containing S}.

To make precise the notion of ideal generation by a set beyond single operator
generation, we give the following natural standard definition.

(v) As above for principal J-ideals, likewise for an arbitrary subset S ⊆ J,
(S), (S)J , 〈S〉J and (S)RJ denote respectively, the smallest B(H)-ideal, the smallest
linear J-ideal, the smallest J-ideal, and the smallest real linear J-ideal generated
by the set S.

REMARK 2.2. [Standard facts on operator ideals] (i) ([3], Sections 2.8, 4.3;
see also Section 4 of [7]) If I, J are B(H)-ideals then the product I J, which is both
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associative and commutative, is the B(H)-ideal given by the characteristic set
Σ(I J) = {ξ ∈ c∗o : ξ 6 ηρ for some η ∈ Σ(I) and ρ ∈ Σ(J)}.

In abstract rings, the ideal product is defined as the class of finite sums of
products of two elements, I J := {∑finiteaibi : ai ∈ I, bi ∈ J}, but in B(H) the
next lemma shows finite sums of operator products defining I J can be reduced to
single products.

(ii) ([3], Lemma 6.3) Let I and J be proper ideals of B(H). If A ∈ I J, then
A = XY for some X ∈ I and Y ∈ J.

(iii) ([7], Section 1) For T ∈ B(H), s(T) denotes the sequence of s-numbers of
T. Then A ∈ (T) if and only if s(A) = O(Dm(s(T))) for some m ∈ N. Moreover,
A ∈ I a B(H)-ideal if and only if A∗ ∈ I if and only if |A| ∈ I (via the polar
decomposition A = U|A| and U∗A = |A| = (A∗A)1/2), with all equivalent to
diag s(A) ∈ I.

(iv) The lattice of B(H)-ideals forms a commutative semiring with multiplica-
tive identity B(H). That is, the lattice is commutative and associative under ideal
addition and multiplication (see Section 2.8 of [3]) and it is distributive. Distribu-
tivity with multiplier K(H) is stated without proof in Lemma 5.6, preceding com-
ments of [7]. The general proof is simple and is as follows. For B(H)-ideals I, J, K,
one has I, J ⊆ I + J := {A + B : A ∈ I, B ∈ J} and so IK, JK ⊆ (I + J)K, so one
has IK + JK ⊆ (I + J)K. The reverse inclusion follows more simply if one invokes
(ii) above: X ∈ (I + J)K if and only if X = (A+ B)C for some A ∈ I, B ∈ J, C ∈ K.

The lattice of B(H)-ideals is not a ring because, for instance, {0} is the only
B(H)-ideal with an additive inverse, namely, {0} itself, so it is not an additive
group. It is also clear that B(H) is the multiplicative identity but no B(H)-ideal
has a multiplicative inverse.

One importance of principal ideals in a general ring is that they are building
blocks for all ideals I that contain them in that: I =

⋃
r1,...,rn∈I, n∈N

(r1) + · · ·+ (rn)

(v) When T =
n
∑

i=1
AiTBi with each Ai or Bi ∈ J, the important s-number rela-

tion holds: s(T) = O(Dm(T)s(C)) for some C ∈ J (since then T ∈ (T)J and so
follows from Section 1, p. 6 of [7] and Remark 2.2(i)).

ALGEBRAIC DESCRIPTION OF PRINCIPAL SUBIDEALS OF B(H).

PROPOSITION 2.3. (i) For S ∈ J, an algebraic description of principal linear J-
ideal (S)J , principal real linear J-ideal (S)RJ and principal J-ideal 〈S〉J are given by:

(S)J =
{

αS + AS + SB +
m

∑
i=1

AiSBi : A, B, Ai, Bi ∈ J, α ∈ C, m ∈ N
}

,

(S)RJ =
{

rS + AS + SB +
m

∑
i=1

AiSBi : A, B, Ai, Bi ∈ J, r ∈ R, m ∈ N
}

,
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〈S〉J =
{

nS + AS + SB +
m

∑
i=1

AiSBi : A, B, Ai, Bi ∈ J, n ∈ Z, m ∈ N
}

.

(ii) J(S)J =
{ m

∑
i=1

AiSBi : Ai, Bi ∈ J and m ∈ N
}

= J2(S).

Proof. (i) Define S :=
{

αS+AS+SB+
m
∑

i=1
AiSBi : A, B, Ai, Bi∈ J, α∈C, m∈N

}
.

It is easy to check that S is a linear J-ideal containing S and that S ⊆ (S)J .
The reverse inclusion holds since, as an intersection of linear J-ideals, (S)J

is the smallest linear J-ideal containing S.
Similar are the proofs for the forms for (S)RJ and 〈S〉J .

(ii) Clearly
{ m

∑
i=1

AiSBi : Ai, Bi ∈ J
}
⊆ J(S)J. For the reverse inclusion, every

element of J(S)J is of the form AXB for A, B ∈ J and X ∈ (S) (Remark 2.2(ii))

and elements of (S) = (S)B(H) are of the form X =
n
∑

i=1
CiSDi for Ci, Di ∈ B(H).

So AXB =
n
∑

i=1
ACiSDiB ∈

{ m
∑

i=1
AiSBi : Ai, Bi ∈ J

}
. That J(S)J = J2(S) follows

from B(H)-ideal product commutativity (Remark 2.2(i)).

Immediate from this proposition one has the explicit descriptions of (S)J ,
〈S〉J and (S)RJ :

COROLLARY 2.4. For S ∈ J,

(S)J =CS+JS+SJ+J(S)J, 〈S〉J =ZS+JS+SJ +J(S)J, (S)RJ =RS+JS+SJ+J(S)J.

An extension of an ideal notion called soft-edged is essential for our gen-
eralization of Fong–Radjavi’s work [4]. Soft-edged ideals (soft ideals for short),
that is, B(H)-ideals I for which IK(H) = I, were first introduced by Kaftal and
Weiss in [6] and Section 3, especially, Definition 3.1 of [9] and studied further in
[7] as part of a study on traces motivated in part by Dixmier’s implicit use of soft-
ness to construct the so-called Dixmier trace [2]. However, as Remark 2.6 below
indicates, these softness notions involving K(H) appeared some years earlier.

DEFINITION 2.5. For B(H)-ideals I and J, the ideal I is called J-soft if I J = I.
Equivalently in the language of s-numbers (see Remark 2.2(i), (ii), (v)):
For every A ∈ I, sn(A) = O(sn(B)sn(C)) for some B ∈ I, C ∈ J.

Clearly J-softness of I implies I ⊆ J, so this notion applies only to those
B(H)-ideals already in J.

REMARK 2.6. Recently A. Pietsch alerted us that notions of softness, soft in-
terior and soft complement in particular, arose years earlier in Banach spaces and
called by other names (private communication). Soft-edged ideals (K(H)-soft)
are those B(H)-ideals I that are equal to their soft interiors IK(H) as defined in
Definition 3.1 of [9]. “For Banach ideals over the Hilbert space, B.S. Mityagin [11]
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introduced the properties of being “minimal” and “maximal”. These concepts
were generalized to arbitrary operator ideals over Banach spaces by A. Pietsch
([12], 4.8.2+6 and 4.9.2+6). It turned out that because of their local structure, max-
imal quasi-Banach operator ideals are of particular importance. Obviously, the
following equations hold: minimal kernel = soft interior and maximal hull = soft
cover.” (As defined in Definition 3.1 and succeeding paragraph of [9] and Defini-
tion 4.1 of [7], the soft cover of I denoted there scI is the quotient ideal I/K(H).)

3. PROOFS OF MAIN RESULTS

We first reduce condition (i) of Theorem 1.1 to the principal linear J-ideal case
via the following lemma.

LEMMA 3.1. 〈S〉J or (S)RJ is a B(H)-ideal if and only if (S)J is a B(H)-ideal. And
in this case,

〈S〉J = (S)RJ = (S)J = (S).

Proof. ⇒ If 〈S〉J is a B(H)-ideal, then 1
2 S ∈ 〈S〉J . For principal J-ideals,

Corollary 2.4 insures that

1
2

S = nS + AS + SB + A′S′B′ for some S′ ∈ (S), A, B, A′, B′ ∈ J,

hence ( 1
2 − n)S ∈ J(S). As J(S) is linear and 1

2 6= n one has S ∈ J(S) in which
case, by minimality, (S) ⊆ J(S), and since the reverse inclusion is automatic,
(S) = J(S) = J(S)J (the second equality follows from the first). But J(S)J ⊆ (S)J
(Corollary 2.4) so (S) ⊆ (S)J . And since (S) is a B(H)-ideal, it is also a J-ideal, so
by minimality, (S)J ⊆ (S), and hence (S) = (S)J is a B(H)-ideal.

Similarly, for principal real J-ideals, if (S)RJ is a B(H)-ideal, then iS ∈ (S)RJ
where i =

√
−1, so iS = rS + AS + SB + A′S′B′, and since i 6= r ∈ R, likewise

S ∈ J(S), then likewise (S) = (S)J .
That all three are equal is proved next by the reverse implication.
⇐ If (S)J is a B(H)-ideal, then (S) = J(S)J (see proof below for Theorem 1.1

(i)⇒ (ii)). Then from Corollary 2.4, (S)J ⊇ (S) (as above the reverse inclusion is
automatic), and likewise 〈S〉J = (S) and (S)RJ = (S). Therefore all three are the
same B(H)-ideal (S).

From this lemma we can now prove Theorem 1.1 replacing condition (i)
with its equivalent that the principal linear J-ideal (S)J is a B(H)-ideal.

Proof of Theorem 1.1. The proof follows the order:

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (ii)⇒ (i).

(i) ⇒ (ii) For this implication we give two proofs. The first is a primi-
tive proof using s-numbers. Distilled from this, the second is more modern and
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shorter reflecting the perspective from advances on ideals from the last decade.
Moreover it is the method (and notation) we use later to generalize this theo-
rem and its preliminary Lemma 3.1 to finitely generated J-ideals (Lemma 4.3–
Theorem 4.5).

Proof 1. Denoting ξ := s(S) the sequence of s-numbers of S, to show
J(S) = (S) it suffices to show diag ξ ∈ J(S) so S ∈ J(S) (Remark 2.2(iii)) and then
this equality holds as we saw above in the proof of Lemma 3.1. Since (S)J is a
B(H)-ideal containing S, then diag(ξ1, 0, ξ3, 0, . . . ), diag(0, ξ2, 0, ξ4, 0, . . . ) ∈ (S)J
by multiplying diag s(S) by suitable diagonal projections. Then by Corollary 2.4
for principal linear J-ideal (S)J ,

(1) diag(ξ1, 0, ξ3, 0, . . . ) = αS+ AS+ SB+CS′D for some α ∈ C, A, B, C, D ∈ J
and S′ ∈ (S).

(2) diag(0, ξ2, 0, ξ4, 0, . . . )=βS+A′S+SB′+C′S′′D′ for some β∈C, A′, B′, C′, D′

∈ J and S′′ ∈ (S).

If α = 0 or β = 0, then diag(ξ1, 0, ξ3, 0, . . . ) or diag(0, ξ2, 0, ξ4, 0, . . . ) ∈ J(S).
Then, in either case, because (ξ3, ξ5, . . . ) 6 (ξ2, ξ4, . . . ) 6 (ξ1, ξ3, . . . ), one

has diag ξ ∈ J(S) by the hereditariness of Σ(J(S)), hence S ∈ J(S) which again,
as in the proof of Lemma 3.1, is equivalent to condition (ii): (S) = J(S). So
without loss of generality assume α, β 6= 0. Multiplying (1) by −β, (2) by α
and adding, diag(−βξ1, αξ2,−βξ3, αξ4, . . . ) = (−βA + αA′)S + S(−βB + αB′) +
CS′D + C′S′′D′ ∈ J(S). Again multiplying by suitable diagonal projections,
diag(|β|ξ1, 0, |β|ξ3, 0, . . . ) ∈ J(S), and so likewise diag(ξ1, 0, ξ3, 0, . . . ) and then
also diag(ξ1, ξ3, . . . ). By hereditariness diag(0, ξ2, 0, ξ4, 0, . . . ) ∈ J(S) because
(ξ2, ξ4, . . . ) 6 (ξ1, ξ3, . . . ). Hence diag ξ ∈ J(S) which again is equivalent to
condition (ii).

Proof 2. For any unitary map φ : H → H ⊕ H, S → φSφ−1 preserves
s-number sequences and ideals via Calkin’s representation. Since (S)J is a B(H)-
ideal containing S, φ−1(S⊕ 0)φ, φ−1(0⊕ S)φ ∈ (S)J since they possess the same
s-numbers as S. Then by Corollary 2.4 for principal linear J-ideal (S)J ,

(3) φ−1(S⊕ 0)φ = αS + AS + SB + CS′D for some α ∈ C, A, B, C, D ∈ J and
S′ ∈ (S).

(4) φ−1(0⊕ S)φ = βS + A′S + SB′ + C′S′′D′ for some β ∈ C, A′, B′, C′, D′ ∈ J
and S′′ ∈ (S).

If α = 0 or β = 0, then φ−1(S⊕ 0)φ or φ−1(0⊕ S)φ ∈ J(S). Then, in either case,
S ∈ J(S) which, as we saw in the proof of Lemma 3.1, is equivalent to condition
(ii): (S) = J(S). Finally if α, β 6= 0, multiplying (3) by −β, (4) by α and adding
obtains φ−1(−βS ⊕ αS)φ = (−βA + αA′)S + S(−βB + αB′) + CS′D + C′S′′D′

which belong to J(S). Multiplying in B(H⊕ H) by a suitable diagonal projection
one obtains φ−1(S⊕ 0)φ ∈ J(S). Hence, also S ∈ J(S), again equivalent to (ii).

(ii)⇒ (iii) If (S) = J(S), since B(H)-ideals commute and their semiring mul-
tiplication is associative, J(S)J = {J(S)}J = (S)J = J(S) = (S). Therefore,
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S = X
( k

∑
i=1

CiSDi

)
Y, for some X, Y ∈ J and Ci, Di ∈ B(H) ([3], Lemma 6.3), hence

(iii): S =
k
∑

i=1
(XCi)S(DiY) ∈ J(S)J.

(iii)⇒ (iv) This is Remark 2.2(v).
(iv) ⇒ (ii) This follows directly from the definition of the characteristic set

of the product Σ((S)J) and then that s(S) = O(Dk(s(S))s(T)) for some T ∈ J
implies diag(s(S)) ∈ (S)J. Therefore, S ∈ (S)J and (ii) follows.

(ii)⇒ (i) (S) = (S)J implies (S) = J(S)J. Therefore, S =
n
∑

i=1
AiSBi for some

Ai and Bi in J. By Corollary 2.4 (S)J = CS + JS + SJ + J(S)J so (S)J ⊆ J(S)J, and

substituting S by
n
∑

i=1
AiSBi in the right-hand side equation one obtains J(S)J ⊆

(S)J , so (S)J = J(S)J. Since J(S)J is a B(H)-ideal, (S)J is a B(H)-ideal. Moreover,
(S)J = (S) = J(S)J.

Remark on Theorem 1.1–Proof (i)⇒(ii): Proof 2 may seem simpler or shorter
but Proof 1 keeps the analysis in the same Hilbert space, it is more constructive,
and it appears to us more useful.

Proof of Theorem 1.2. Corollary 2.4 gives directly the explicit descriptions of
(S)J , 〈S〉J and (S)RJ :

〈S〉J =ZS+JS+SJ+J(S)J, (S)J =CS+JS+SJ+J(S)J, (S)RJ =RS+JS+SJ+J(S)J,

from which it follows that

J(S)J ⊆ JS + SJ + J(S)J ⊆ 〈S〉J ⊆ (S)RJ ⊆ (S)J ⊆ (S).

That J(S)J is a B(H)-ideal and JS+ SJ + J(S)J is a J-ideal is clear. An imme-
diate consequence of Lemma 3.1 is that J-softness of (S) is equivalent to having
at least one and hence all three principal J-ideals be the B(H)-ideal (S).

COROLLARY 3.2. Equality of at least one of the inclusions in

〈S〉J ⊆ (S)RJ ⊆ (S)J ⊆ (S)

implies equality throughout. In that case, all three types of principal J-ideals are the
B(H)-ideal (S).

Proof. If 〈S〉J = (S)RJ , then 1
2 S ∈ 〈S〉J , and if (S)RJ = (S)J , then iS ∈ (S)RJ ,

i =
√
−1. By Theorem 1.2, 1

2 S = nS + AS + SB + A′S′B′ for some n ∈ N in first
case and iS = rS + CS + SD + C′S′D′ for some r ∈ R in the second case. Since
1
2 6= n and i 6= r, one has S ∈ J(S). So for either set equality, (S) is J-soft which,
by Theorem 1.2, implies J(S) = (S) = 〈S〉J = (S)J = (S)RJ . For the last equality,
then (S)J is the B(H)-ideal (S) so Lemma 3.1 applies.
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Corollary 3.2 provides easy examples where the inclusions of the three types
of principal J-ideals are proper, that is all principal B(H)-ideals that are not J-soft
as in the following example.

EXAMPLE 3.3. For J = K(H) and S = diag〈 1
n 〉, (diag〈 1

n 〉) is not K(H)-
soft. If it were, then (diag〈 1

n 〉) = (diag〈 1
n 〉)K(H) which further implies 〈 1

n 〉 ∈
Σ((diag〈 1

n 〉)K(H)). By Remark 2.2(i), (iii) and Σ(K(H)) = c∗0 , one has 〈 1
n 〉 =

o(Dm〈 1
n 〉) for some m ∈ N, contradicting

(
〈1/n〉

Dm〈1/n〉

)
k
= 1/(mj+r)

1/(j+1) →
1
m as k → ∞

where k = mj + r. But since (diag〈 1
n 〉) is not K(H)-soft, by Theorem 1.2 and

Corollary 3.2, the three inclusions are strict.

Finishing the discussion on inclusions, J(S)J ⊆ JS + SJ + J(S)J can be
proper as given below in Example 3.4.

EXAMPLE 3.4. If S = diag〈 1
n 〉 and J = (S), then J(S)J ( J(S)J + JS + SJ

because diag〈 1
n2 〉 ∈ JS \ J(S)J. Assume otherwise that diag〈 1

n2 〉 ∈ J(S)J. It is ele-
mentary to show, via characteristic sets using Remark 2.2(iii), that (A)(B) = (AB)
when A and B are simultaneously diagonalizable with entries of the diagonalized
operators in non-increasing order. Therefore, J(S)J = (S)(S)(S) = (S3). Then
again by Remark 2.2(iii) one obtains 〈 1

n2 〉 = O(Dm〈 1
n3 〉) thereby contradicting(

〈1/n2〉
Dm〈1/n3〉

)
k
= 1/(mj+r)2

1/(j+1)3 → ∞ as k → ∞, where k = mj + r. So the inclusion is
strict.

EXAMPLE 3.5. [A concrete nonlinear principal ideal: 〈diag〈 1
n 〉〉K(H)] Exam-

ple 3.3 also provides us with a concrete principal nonlinear K(H)-ideal and leads
to a plethora of them. The principal K(H)-ideal, 〈diag〈 1

n 〉〉K(H) is not linear. If
it were linear, then i diag〈 1

n 〉 ∈ 〈diag〈 1
n 〉〉K(H). By Proposition 2.3(i), i diag〈 1

n 〉=

m diag〈 1
n 〉+A diag〈 1

n 〉+diag〈 1
n 〉B+

n
∑

i=1
Ai diag〈 1

n 〉Bi for some A, B, Ai, Bi∈K(H),

m ∈ N. So (i−m)diag〈 1
n 〉 ∈ (diag〈 1

n 〉)K(H) and since i 6= m, one has diag〈 1
n 〉 ∈

(diag〈 1
n 〉)K(H) hence (diag〈 1

n 〉) is K(H)-soft contradicting Example 3.3.

4. FINITELY GENERATED J-IDEALS

Theorems 1.1–1.2 and its preliminary Lemma 3.1 generalize to finitely gen-
erated J-ideals somewhat naturally in Lemma 4.3 and Theorems 4.5–4.6 below.

Moreover, every finitely generated B(H)-ideal is always a principal B(H)-
ideal because, as is straightforward to see, the B(H)-ideal generated by S =
{S1, . . . , Sn} ⊆ B(H) is the principal ideal (S) = (|S1|+ · · ·+ |Sn|) (recall Defini-
tion 2.1 and that |S| := (S∗S)1/2). But finitely generated J-ideals (general, linear
or real linear) may not be principal as seen in the following example.
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EXAMPLE 4.1. [A nonprincipal doubly generated J-ideal of any of the three
types] For J = K(H), S1 = diag(1, 0, 1

2 , 0, 1
3 , . . .) and S2 = diag(0, 1, 0, 1

2 , 0, 1
3 , . . .),

(S1, S2)K(H) is not a principal linear K(H)-ideal, and likewise for the general and
real linear cases 〈S1, S2〉J and (S1, S2)

R
J .

We omit our proof of Example 4.1 because it led to a generalization provid-
ing, under certain assumptions, a necessary and sufficient condition for a J-ideal
generated by two operators to be a principal J-ideal (see Proposition 6.5).

To investigate finitely generated J-ideals we start with algebraic descrip-
tions of the three types of J-ideals with N generators analogous to Corollary 2.4.
Observing that ({S1, . . . , SN})J = (S1)J + · · ·+ (SN)J and similarly for the other
two types (this holds for ideals in general rings), and using the same arguments
used for the algebraic description of principal J-ideals in Proposition 2.3(i), it is
straightforward to see that denoting S := {S1, . . . , SN},

PROPOSITION 4.2. For S ⊆ J, J(S)J = J(|S1|+ · · ·+ |SN |)J and

(S)J = CS1 + · · ·+CSN + JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J,

〈S〉J = ZS1 + · · ·+ZSN + JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J,

(S)RJ = RS1 + · · ·+RSN + JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J.

As we first reduced condition (i) of Theorem 1.1 to the linear J-ideal case,
now we reduce condition (i) of the next Theorem 4.5 to the linear J-ideal case via
the following lemma.

LEMMA 4.3. For S := {S1, . . . , SN} ⊆ J, 〈S〉J or (S)RJ is a B(H)-ideal if and only
if (S)J is a B(H)-ideal. In this case, they are all the B(H)-ideal spanned by S, that is,

〈S〉J = (S)RJ = (S)J = (S) = (|S1|+ · · ·+ |SN |).
Proof. ⇒ For any unitary φ : H → H ⊕ · · · ⊕ H︸ ︷︷ ︸

N+1-times

, recall as mentioned earlier

that the map S → φSφ−1 preserves s-numbers and ideals (via Calkin’s repre-
sentation). That 〈S〉J is a B(H)-ideal implies that the N + 1 operators in B(H),
φ−1(S1 ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸

N-times

)φ, . . . , φ−1(0⊕ · · · ⊕ 0︸ ︷︷ ︸
N-times

⊕S1)φ ∈ 〈S1, . . . , SN〉J .

By Proposition 4.2 one obtains the set of N + 1 equations:

φ−1(S1 ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
N-times

)φ = n1,1S1 + · · ·+ n1,NSN + A1

· · ·

φ−1(0⊕ · · · ⊕ 0︸ ︷︷ ︸
N-times

⊕S1)φ = nN+1,1S1 + · · ·+ nN+1,NSN + AN+1

where Aj ∈ J(S) for 1 6 j 6 N + 1 and ni,j ∈ Z for 1 6 i 6 N + 1, 1 6 j 6 N. By
basic linear algebra, the N+1 vectors inCN : (n1,1, . . . , n1,N), . . . ,(nN+1,1, . . . , nN+1,N)
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are linearly dependent. That is, for some α1, . . . , αN+1 not all 0, say αk 6= 0, and
one has

α1〈n1,1, . . . , n1,N〉+ · · ·+ αN+1〈nN+1,1, . . . , nN+1,N〉 = 〈0, . . . , 0〉

and hence, α1φ−1(S1 ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
N-times

)φ + · · ·+ αN+1φ−1(0⊕ · · · ⊕ 0︸ ︷︷ ︸
N-times

⊕S1)φ = α1 A1

+ · · ·+ αN+1 AN+1 which is in J(S), that is,

φ−1(α1S1 ⊕ α2S1 ⊕ · · · ⊕ αN+1S1)φ ∈ J(S).

Multiplying α1S1 ⊕ α2S1 + · · · + αN+1S1 by a suitable diagonal projection one
obtains

φ−1(0⊕ 0 · · · αkS1 ⊕ · · · ⊕ 0)φ ∈ J(S)

and because s(φ−1(0⊕ 0 · · · αkS1 ⊕ · · · ⊕ 0)φ) = |αk|s(S1), one obtains S1 ∈ J(S).
Likewise all Sj ∈ J(S) (1 6 j 6 N) and hence (S) ⊆ J(S).

The reverse inclusion is automatic so (S) is J-soft, that is, (S) = J(S). But
then (S) = J(S) = (S)J = J(S)J ⊆ (S)J , and since by minimality (S)J ⊆ (S), one
obtains (S)J = (S) hence it is a B(H)-ideal.

If instead of assuming 〈S〉J is a B(H)-ideal, one assumes that (S)RJ is a B(H)-
ideal, then the proof is essentially the same except for the system of equations
where instead of choosing integer scalars nij ∈ Z one chooses real scalars rij ∈ R.

That all three are equal is proved next by the reverse implication.
⇐ If (S)J is a B(H)-ideal, then (S) = J(S)J (see proof below for Theorem 4.5

(i) ⇒ (ii)). Then from Proposition 4.2, (S)J ⊇ (S) hence (S)J = (S) (as again
by minimality the reverse inclusion is automatic), and likewise 〈S〉J = (S) and
(S)RJ = (S). And since (S) = (|S1|+ · · ·+ |SN |), all three are equal to the princi-
pal B(H)-ideal (|S1|+ · · ·+ |SN |).

REMARK 4.4. Lemma 4.3 implies that if any of the three types of finitely
generated J-ideals is a B(H)-ideal then all three are equal to the principal B(H)-
ideal generated by the generators.

The next theorem is the finitely generated analog of Theorem 1.1.

THEOREM 4.5. For S := {S1, . . . , SN} ⊆ J, the following are equivalent:
(i) Any of the 3 types of J-ideals generated by S: (S)J , 〈S〉J or (S)RJ , is a B(H)-ideal.

(ii) The B(H)-ideal (S) is J-soft, i.e., (S) = J(S) (equivalently, (S) = (S)J).
(iii) For all 1 6 j 6 N,

Sj =

nj

∑
i=1

Ai1S1Bi1 + · · ·+
kj

∑
i=1

A
′
iNSN B

′
iN for some Aij, Bij, A

′
ij, B

′
ij ∈ J, nj, k j ∈ N.

(iv) For all 1 6 j 6 N,

s(Sj) = O(Dm(s(|S1|+ · · ·+ |SN |))s(T)) for some T ∈ J and m ∈ N.
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Proof. In view of Lemma 4.3, to prove Theorem 4.5 one can replace condi-
tion (i) with its equivalent: (S)J is a B(H)-ideal.

The proof follows the order:

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (ii)⇒ (i).

(i) ⇒ (ii) As just stated, it suffices to assume that the linear J-ideal (S)J is
a B(H)-ideal, and for this it suffices to prove (S)J = (S) and as before, merely
to show that S1, . . . , SN ∈ (S)J. Use the proof of Lemma 4.3 ((i) ⇒ (ii)) except
where the scalars nij ∈ Z appear in the system of equations, use instead complex
coefficients cij ∈ C.

(ii) ⇒ (iii) If (S) = J(S), since B(H)-ideals commute (Remark 2.2(i)), then
S1, . . . , SN ∈ J(S)J which by Remark 2.2(ii) further gives

Sj = A
( nj

∑
i=1

Ci,jS1Di,j + · · ·+
kj

∑
i=1

C
′
i,jSN D

′
i,j

)
B =

nj

∑
i=1

Ai,jS1Bi,j + · · ·+
kj

∑
i=1

A
′
i,jSN B

′
i,j

for some A, B, Ai,j, Bi,j, A
′
i,j, B

′
i,j ∈ J, nj, k j ∈ N for all 1 6 j 6 N.

(iii) ⇒ (iv) Condition (iii) implies S1, . . . , SN ∈ J(S). Since (S) = (|S1| +
· · ·+ |SN |) and using Remark 2.2(iii), one gets directly for all 1 6 j 6 N: s(Sj) =
O(Dmj(s(|S1| + · · · + |SN |))s(Tj)) for some Tj ∈ J and mj ∈ N. Choosing m =

max{mj} and T = |T1|+ · · ·+ |TN | suffices to obtain (iv).
(iv) ⇒ (ii) It follows directly from the definition of the characteristic set

Σ(J(S)) that, for all 1 6 j 6 N,

Sj =

nj

∑
i=1

Ai,jS1 + · · ·+
kj

∑
i=1

A
′
i,jSN ∈ J(S), for some Ai,j, A

′
i,j,∈ J, nj, k j ∈ N,

that is, Sj ∈ (S)J, so again from which (ii) follows.
(ii)⇒ (i) (S) = (S)J implies (S) = J(S)J. Therefore, for all 1 6 j 6 N,

(4.1) Sj =

nj

∑
i=1

Ai,jS1Bi,j+ · · ·+
kj

∑
i=1

A
′
i,jSN B

′
i,j for some Ai,j, Bi,j, A

′
i,j, B

′
i,j∈ J, nj, k j∈N.

Then (S)J is a B(H)-ideal because substituting all Sj by (4.1) on the right side of
the equality in

(S)J = CS1 + · · ·+CSN + JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J,

one obtains (S)J ⊆ J(S)J with (S)J ⊇ J(S)J automatic (Proposition 4.2).

Theorem 4.5 combined with Proposition 4.2, Lemma 4.3 and Remark 4.4
provide naturally a finitely generated partial analog for Theorem 1.2.

THEOREM 4.6. In addition to the forms of the three types of finitely generated J-
ideals generated by S given by Proposition 4.2 and to the equivalences given by Lemma 4.3
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on when any of them is a B(H)-ideal, one has

J(S)J ⊆ JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J ⊆ 〈S〉J ⊆ (S)RJ ⊆ (S)J ⊆ (S)

which first two, J(S)J and JS1 + · · ·+ JSN + S1 J + · · ·+ SN J + J(S)J respectively, are
a B(H)-ideal and a J-ideal. Consequently, each of these three kinds of finitely generated
J-ideals have the common B(H)-ideal “nucleus” J(S)J, with the common J-ideal JS1 +
· · ·+ JSN + S1 J + · · ·+ SN J + J(S)J containing it.

All these finitely generated J-ideals, 〈S〉J ⊆ (S)RJ ⊆ (S)J , collapse to merely

J(S)J = (S) = 〈S〉J = (S)J = (S)RJ

if the finitely generated B(H)-ideal (S) is J-soft, that is, (S) = J(S), or if any, and hence
all of them, is a B(H)-ideal. Moreover, if 〈S〉J = (S)RJ or 〈S〉J = (S)J , then (S) is J-soft.

Proof. In view of Theorem 4.5 combined with Proposition 4.2, Lemma 4.3
and Remark 4.4, the only thing left to prove is: if 〈S〉J = (S)RJ or 〈S〉J = (S)J

(which itself implies 〈S〉J = (S)RJ ), then (S) is J-soft. Suppose then that without
loss of generality 〈S〉J = (S)RJ . Denote (S)0

J := JS1 + · · · + JSN + S1 J + · · · +
SN J + J(S)J. Then by Proposition 4.2 one obtains the following set of N-linear
equations:

1
2

S1 = n1,1S1 + n1,2S2 + · · ·+ n1,NSN + X1,

· · ·
1
2

SN = nN,1S1 + · · ·+nN,N−1SN−1 + nN,NSN + XN ,

where X1, . . . , XN ∈ (S)0
J , or equivalently,

(1−2n1,1)S1− · · · −2n1,NSN =2X1, · · · −2nN,1S1− · · ·+(1−2nN,N)SN=2XN .

In the quotient space (S)RJ /(S)0
J , these equations become a set of N-linear equa-

tions given by

(1− 2n1,1)S1 − · · · − 2n1,NSN = 0, · · · − 2nN,1S1 − · · ·+(1− 2nN,N)SN = 0,

where S1, . . . , SN are now considered as cosets in (S)RJ /(S)0
J . So one obtains a set

of N-linear equations in N-variables namely S1, . . . , SN where the integer coeffi-
cient matrix is given by

1− 2n1,1 −2n1,2 . . . −2n1,N
−2n2,1 1− 2n2,2 . . . −2n2,N

...
...

. . .
...

−2nN,1 −2nN,2 . . . 1− 2nN,N

 .

The determinant of this matrix is odd, hence nonzero, because it is the sum of
even numbers and one odd number (the product of the diagonal odd entries).
Therefore the matrix is invertible implying that this system of N-linear equations
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has only the trivial solution, i.e., the cosets Sj = 0 for all 1 6 j 6 N. Hence the
operators Sj ∈ (S)0

J ⊆ J(S) for all 1 6 j 6 N and therefore (S) = J(S).

Whether or not (S)RJ = (S)J implies (S) is J-soft remains an open question
(Section 7, Question 7).

5. COMPARISON OF SUBIDEALS WITH B(H)-IDEALS : ADJOINTS AND ABSOLUTE VALUES

For T ∈ B(H), (T) = (|T|), but this need not be true for principal linear
K(H)-ideals (Example 5.1). Moreover, all B(H)-ideals are selfadjoint, but not nec-
essarily for principal linear K(H)-ideals (Example 5.2).

EXAMPLE 5.1. If J = K(H) and operator T = diag〈 (i)
n

n 〉 so |T| = diag〈 1
n 〉,

then (T)K(H) 6= (|T|)K(H). In fact, neither (|T|)K(H) ( (T)K(H) nor (T)K(H) (
(|T|)K(H). Indeed, suppose T ∈ (|T|)K(H) = (diag〈 1

n 〉)K(H). By Proposition 2.3,

T = α diag〈 1
n 〉+ A diag〈 1

n 〉+ diag〈 1
n 〉B +

n

∑
i=1

Ai diag〈 1
n 〉Bi

for some A, B, Ai, Bi ∈ K(H), n ∈ N. Therefore, diag〈 (i)
n−α
n 〉 ∈ (diag〈 1

n 〉)K(H)

implying diag〈 |(i)
n−α|
n 〉 ∈ (diag〈 1

n 〉)K(H). Hence, diag〈 1
2n−1 〉 ∈ (diag〈 1

n 〉)K(H)

implying diag〈 1
n 〉 ∈ (diag〈 1

n 〉)K(H), contradicting Example 3.3. So (T)K(H) (
(|T|)K(H). To see that |T| /∈ (T)K(H), assume otherwise. Again by Proposition 2.3,

|T| = βT + AT + TB +
m

∑
i=1

AiTBi where A, B, Ai, Bi ∈ K(H)

and so |T| − βT ∈ (T)K(H) = (|T|)K(H), i.e., diag〈 |1−(i)
n β|

n 〉 ∈ (|T|)K(H) and

hence diag〈 |β|2n−1 〉 ∈ (|T|)K(H), once again leads to a natural contradiction as in
Example 3.3.

Unlike B(H)-ideals, principal K(H)-ideals are not necessarily closed under
the adjoint operation.

EXAMPLE 5.2. T∗ /∈ (T)K(H) where T = diag〈 (i)
n

n 〉 and T∗ = diag〈 (−i)n

n 〉.
Indeed, if T∗∈ (T)K(H), then diag〈 (−i)n−α(i)n

n 〉∈ (T)K(H) implying diag〈 |(−1)n−α|
n 〉

∈ (diag〈 1
n 〉)K(H), in particular, diag〈 1

2n 〉 ∈ (diag〈 1
n 〉)K(H). That is, diag〈 1

n 〉 ∈
(diag〈 1

n 〉)K(H), contradicting Example 3.3.

6. LATTICE STRUCTURE OF SUBIDEALS

Basic knowledge of the B(H)-ideal lattice contributes important perspective
to operator theory. In the spirit of recent work on this lattice by the second author
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joint with V. Kaftal [10], this section introduces the study of subideal lattices, that
is, J-ideal lattices.

The explicit descriptions of the three types of principal J-ideals generated
by S given in Corollary 2.4 implies that every principal J-ideal contains J(S)J. It
is well-known that every proper B(H)-ideal contains F(H), the B(H)-ideal of all
finite rank operators ([5], Chapter III, Section 1, Theorem 1.1). So, every nonzero
principal J-ideal contains F(H) and hence also every nonzero J-ideal.

As for the smallest proper J-ideal, principal or otherwise, we have F(H) and
it is principal.

REMARK 6.1. (S)J = F(H) if and only if S ∈ F(H). Indeed, by Corollary 2.4,
(S)J = CS + SJ + JS + J(S)J. So if S ∈ F(H), then (S)J ⊆ F(H), and since every
nonzero J-ideal contains F(H), hence (S)J = F(H). Conversely, if S ∈ F(H), then
(S)J = CS + SJ + JS + J(S)J ⊆ F(H), hence (S)J = F(H).

For maximal proper J-ideals inside principal J-ideals we have:

PROPOSITION 6.2. Every nonzero principal J-ideal (all three types) generated by
an operator S of infinite rank contains a maximal J-ideal. (See Section 7, Question 3).

Proof. We prove this only for principal linear J-ideal (S)J because the same
argument holds for principal real linear J-ideal (S)RJ and principal J-ideal 〈S〉J .
Consider A := {J-ideals I : I ( (S)J}. By Corollary 2.4, principal linear J-ideal
(S)J contains the B(H)-ideal J(S)J which further contains F(H). Since S is of
infinite rank, F(H) ( (S)J , and as every B(H)-ideal is a J-ideal, F(H) ∈ A and so
A 6= ∅. Taking the inclusion partial order on A and any chain C in A, it is easy to
show that

⋃
I∈C
I is a J-ideal contained in (S)J . It is a J-ideal properly contained in

(S)J because it does not contain S. Indeed if it did contain S, then there is some
S ∈ Io ∈ C implying (S)J ⊆ Io, contradicting the criterion for Io ∈ A. Therefore,
every chain has an upper bound in A and so by Zorn’s lemma, A has a maximal
element, i.e., (S)J has a maximal J-ideal.

REMARK 6.3. The J-ideal JS + SJ + J(S)J is always maximal in the princi-
pal linear J-ideal (S)J and the principal real linear J-ideal (S)RJ , but is never a
maximal J-ideal in the principal J-ideal 〈S〉J .

Indeed, the quotient rings (S)J
JS+SJ+J(S)J and

(S)RJ
JS+SJ+J(S)J have no proper

ideals because of the following reason: Every nonzero element is a coset of the

form [αS] ∈ (S)J
JS+SJ+J(S)J and [rS] ∈ (S)RJ

JS+SJ+J(S)J for α ∈ C, r ∈ R. Therefore, the
linear J-ideal generated by any single element [αS] (α 6= 0) in the quotient ring is

the entire quotient ring (S)J
JS+SJ+J(S)J and likewise the real linear J-ideal generated

by any [rS] is the entire quotient ring
(S)RJ

JS+SJ+J(S)J , that is, these quotient rings have
no proper ideals.
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From general ring theory recall that, for a fixed ideal I in a ring R, the map
J → [J] := {[A] : A ∈ J} is a ring inclusion preserving isomorphism (so a one-
to-one correspondence) between the ideals J containing I and the ideals of the
quotient ring R/I. So because there are no proper linear J-ideals in the quotient

ring (S)J
JS+SJ+J(S)J and real linear J-ideals in

(S)RJ
JS+SJ+J(S)J , there are no proper J-ideals

(neither linear inside (S)J nor real linear inside (S)RJ ) containing JS + SJ + J(S)J.
That is, JS + SJ + J(S)J is always a maximal linear J-ideal in (S)J and a maximal
real linear J-ideal in (S)RJ .

But in the quotient ring 〈S〉J
JS+SJ+J(S)J every non-zero element is of the form

[nS] for n ∈ Z \ {0}, and when n ∈ Z \ {0,±1} the ideal J generated by [nS]
in the quotient ring is proper because the class of integer multiples of [nS] never
contains [S]. Therefore the inverse image of J under the natural projection map

π : 〈S〉J →
〈S〉J

JS+SJ+J(S)J is a proper ideal in 〈S〉J containing JS+ SJ + J(S)J. There-
fore, JS + SJ + J(S)J is never a maximal J-ideal in 〈S〉J .

Considering Remark 6.1 and Remark 6.3, we wonder if S being finite rank
is necessary for JS + SJ + J(S)J to be principal? (See Section 7, Question 5.)

REMARK 6.4. For idempotent B(H)-ideals J (J2 = J), since SJ, JS ⊆ J(S),
one has J(S)J = SJ + JS + J(S)J. We wonder if being idempotent is necessary for
this equality? (See Section 7, Question 6.)

As mentioned earlier, finitely generated B(H)-ideals are principal, but this
is not generally the case as seen in the next proposition. This justifies Example 4.1
and its preceding comment.

PROPOSITION 6.5. If S, T are simultaneously diagonalizable operators with dis-
joint supports and s(S) ∼= s(T) (as(S) 6 s(T) 6 bs(S) for some a, b > 0), then the
linear J-ideal ({S, T})J is a principal linear J-ideal if and only if ({S, T}) is J-soft.

Proof. ⇒ If ({S, T})J = (A)J for some A ∈ J, then S, T ∈ (A)J so, by Corol-
lary 2.4 it is immediate that S = αA + X and T = βA + Y for some X, Y ∈
J(A), α, β ∈ C. And since A ∈ ({S, T})J , by Proposition 4.2, one has A =
c1S + c2T + R for some R ∈ J({S, T}), c1, c2 ∈ C. If α = β = 0, then S, T ∈
J(A) = J(c1S + c2T + R) ⊆ J({S, T}) implying ({S, T}) ⊆ J({S, T}), and since
the reverse inclusion is automatic, one obtains J-softness of ({S, T}). Otherwise,
−βS + αT = −βX + αY ∈ J({S, T}). Since S and T are simultaneously diago-
nalizable with diagonals of disjoint support, there is a unitary operator U such
that U∗SU = D1 and U∗TU = D2 where D1 and D2 have disjoint supports.
Since J({S, T}) is a B(H)-ideal, U∗(−βS + αT)U = −βD1 + αD2 ∈ J({S, T}). If
α = β = 0, then S = X, T = Y ∈ J(A) ⊆ J({S, T}), i.e., ({S, T}) ⊆ J({S, T})
so ({S, T}) is J-soft. If α = 0, β 6= 0, then S = X ∈ J(A) ⊆ J({S, T}) and
−βD1 ∈ J({S, T}) and hence S ∈ J({S, T}). Since s(T) 6 bs(S), the hereditary
property of Σ(J({S, T})) implies diag s(T) ∈ J({S, T}) and hence T ∈ J({S, T})
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so ({S, T}) is J-soft. Similarly if β = 0, α 6= 0. Finally if both α, β 6= 0, then
as D1, D2 have disjoint supports, |βs(D1)|, |αs(D2)| 6 s(−βD1 + αD2) implying
D1, D2 ∈ J({S, T}) and then S, T ∈ J({S, T}), hence ({S, T}) = J({S, T}).

⇐ By Theorem 4.5, J-softness of ({S, T}) implies ({S, T})J is a B(H)-ideal
and Lemma 4.3 implies ({S, T})J = (|S|+ |T|) which is a principal B(H)-ideal.
But because ({S, T})J = (|S|+ |T|), the principal B(H)-ideal (|S|+ |T|) is J-soft.
Hence ({S, T})J = (|S|+ |T|)J since (|S|+ |T|)J = (|S|+ |T|) by Theorem 1.2.

7. QUESTIONS

Natural questions arise from this work.

1. Is it true that if S is countable, then (S)J is a B(H)-ideal if and only if (S)
is J-soft, i.e., (S) = J(S)? (See Sections 3–4.)

2. Find necessary and sufficient conditions for when a finitely generated
J-ideal is a principal J-ideal.

Proposition 6.5 indicates that J-softness is a necessary and sufficient con-
dition for the particular class: S, T are mutually diagonalizable operators with
disjoint supports and equivalent s-number sequences.

3. Are maximal ideals inside principal J-ideals (in particular, those guaran-
teed by Proposition 6.2) always principal or always non-principal?

4. Find necessary and sufficient conditions for two principal J-ideals to be
equal. (Examples 5.1–5.2 help motivate this natural but deceptively simple ques-
tion.)

5. Can JS + SJ + J(S)J be a principal J-ideal besides the case S ∈ F(H)?
(See Remarks 6.1 and 6.3.)

6. Find a necessary and sufficient condition(s) to make J(S)J = JS + SJ +
J(S)J. (Recall Remark 6.4.)

7. Does (S)RJ = (S)J imply (S) is J-soft? (See comment succeeding Theo-
rem 4.6).
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