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ABSTRACT. We generalize the following fact to compact Kac algebras: Let G
be a compact abelian group, and let f be any trigonometric polynomial on G,
whose Fourier transform f̂ vanishes outside of a Sidon set E in the dual, dis-
crete abelian group Γ of G. Then we have ‖ f ‖2 6 KE‖ f ‖1, where KE is a con-
stant depending only on E. For this generalization, we introduce the notion
of Helgason–Sidon sets, which is based on S. Helgason’s work on lacunary
Fourier series on arbitrary compact groups. We establish the above inequality
for all finite linear combinations of characters defined by a Helgason–Sidon
set in the set of all minimal central projections.
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INTRODUCTION

An outstanding problem in the theory of Fourier series was to find estimates
for idempotents in L1(T), where T denotes the unit circle group. In this connec-
tion, we mention the so-called Littlewood conjecture, whose formulation appeared
in [4] the first time. It asserts that there are constants C1, C2 such that

C2
√

N >
1

2π

π∫
−π

∣∣∣ N

∑
k=1

einkt
∣∣∣dt > C1 log(N),

where nk ∈ Z for all k = 1, . . . , N and N ∈ N. Whereas the upper bound C2
√

N
is easy to show, the lower bound C1 log(N) had remained an open problem for a
long time. Eventually, it was solved independently by O.C. McGehee et al. [12]
and S.V. Konjagin [8] even for more general coefficients.

In fact, the upper bound C2
√

N is not improvable if nk, k = 1, . . . , N, are
elements of a so-called Sidon set in Z. In case of an arbitrary compact abelian
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group G, a Sidon set is a “thin” subset E of the dual, discrete abelian group Γ
such that every continuous, complex-valued function on E vanishing at infinity
is the restriction to E of a Fourier transform of a function in L1(G). For locally
compact abelian groups, Sidon sets are also known as Helson sets.

The inclusion L2(G) ⊆ L1(G) naturally yields ‖ f ‖2 > ‖ f ‖1. Now, taking
into account Theorem 5.7.7(3) of [13], there is a constant KE depending only on a
given Sidon set E such that we get the inverse inequality

(0.1) ‖ f ‖2 6 KE‖ f ‖1

for every E-polynomial f on G, i.e. for every finite, complex linear combination
of continuous characters in Γ such that its Fourier transform f̂ vanishes outside
of E. In particular, we obtain for sums of characters γk ∈ E ⊆ Γ, k = 1, . . . , N,∥∥∥ N

∑
k=1

γk

∥∥∥
2
=
√

N 6 KE

∥∥∥ N

∑
k=1

γk

∥∥∥
1
.

In fact, Sidon sets can also be introduced for arbitrary compact groups. According
to Theorem 37.7(iv) of [6], corresponding inequalities hold in this case, too.

In this paper, we prove that (0.1) is also valid in a much more general situa-
tion:

Let K = (M, ∆, κ, ϕ) be a compact Kac algebra with the dual, discrete Kac
algebra K̂ = (M̂, ∆̂, κ̂, ϕ̂) of K and {pi}i∈I the set of all minimal central projections
in M̂. First, using the notion of the (generalized) Fourier transform by B.-J. Kahng
in [7] for locally compact quantum groups, which were introduced by J. Kuster-
mans and S. Vaes in [9], [10], we regard the inverse Fourier transform of a projec-
tion pi as a character χi in M multiplied by the dimension di of pi by showing that
it is consistent with the corresponding definition of a character by S.L. Woronow-
icz in [17], [18] for his compact quantum groups. Next, we generalize the concept
of Sidon sets E in {pi}i∈I . Especially, we introduce the notion of Helgason–Sidon
sets by adding a “lacunarity” condition, which is due to S. Helgason in [5], to our
definition of a Sidon set. So, we get the following main result:

If f is a finite, complex linear combination of characters defined by a
Helgason–Sidon set E , then there is a constant KE depending only on E such
that

‖ f ‖2,ϕ 6 KE‖ f ‖1,ϕ.
In particular, if J is an arbitrary finite subset of I with cardinality |J| such that
{pj}j∈J ⊆ E , we obtain∥∥∥∑

j∈J
χj

∥∥∥
2,ϕ

=
√
|J| 6 KE

∥∥∥∑
j∈J

χj

∥∥∥
1,ϕ

.

As an outlook, it may be an interesting question, even for groups, if there are any
groups without infinite Sidon sets, but which fulfill an inequality similar to (0.1).
Probably, one can get some results for so-called Λp sets, p ∈ (1, ∞), see e.g. [6] for
further details.
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This paper arose from the first author’s thesis [1].

1. PRELIMINARIES

Mainly for technical reasons, we formulate all our results for compact Kac
algebras. In the following, we briefly summarize its theory. For a detailed ex-
position of the theory of Kac algebras, we refer to [3]. Furthermore, we give the
definition of the (generalized) Fourier transform and its main results from [7],
which we use throughout this paper.

Let M be a von Neumann algebra. A co-product on M is an injective, unital,
normal ∗-homomorphism ∆ : M → M⊗̄M, where M⊗̄M denotes the von Neu-
mann algebraic tensor product, which has the following co-associativity property

(∆⊗ ι) ◦∆ = (ι⊗∆) ◦∆,

where ι is the identity map of M. The pair (M, ∆) is called a Hopf–von Neumann
algebra. A co-involution κ on (M, ∆) is a normal ∗-anti-automorphism of M such
that

κ2 = ι and ζ ◦∆ ◦ κ = (κ ⊗ κ) ◦∆,

where ζ : M⊗̄M → M⊗̄M denotes the flip defined by ζ(x1 ⊗ x2) := x2 ⊗ x1 for
all x1, x2 ∈ M. Then (M, ∆, κ) is called a co-involutive Hopf–von Neumann algebra.

Let (M, ∆) be a Hopf–von Neumann algebra and M∗ the predual of M, i.e.
the Banach space of all σ-weakly continuous linear functionals on M. Then the
co-product ∆ induces a multiplication ∗ on M∗, which for all ω1, ω2 ∈ M∗ and
x ∈ M is defined by

(1.1) (x, ω1 ∗ω2) := (∆(x), ω1 ⊗ω2).

In analogy to the ordinary convolution in the predual L1(G) of L∞(G) with a
locally compact group G, it is called the convolution of ω1 and ω2.

Now, let (M, ∆, κ) be a co-involutive Hopf–von Neumann algebra. Then the
co-involution κ gives an involution ◦ on M∗, which for all ω ∈ M∗ and x ∈ M is
defined by

(x, ω◦) := (κ(x∗), ω).

Equipped with the above convolution ∗ and the involution ◦, the predual M∗
becomes a Banach ∗-algebra.

Let ϕ be a normal semi-finite faithful (n.s.f.) weight on M. Then one defines

Nϕ := {x ∈ M : ϕ(x∗x) < ∞}, Mϕ := N∗ϕNϕ and

M+
ϕ := {x ∈ M+ : ϕ(x) < ∞}.

An n.s.f. weight ϕ on M is called left invariant with respect to ∆ if

(ι⊗ ϕ)∆(x) = ϕ(x)1, x ∈ M+.
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A Kac algebra K is a quadruple (M, ∆, κ, ϕ) consisting of a co-involutive Hopf–von
Neumann algebra (M, ∆, κ) and a left invariant weight ϕ on (M, ∆) such that the
following two equations hold:

κ(ι⊗ ϕ)(∆(x∗1)(1⊗ x2)) = (ι⊗ ϕ)((1⊗ x∗1)∆(x2)) x1, x2 ∈ Nϕ,

κ ◦ σ
ϕ
t = σ

ϕ
−t ◦ κ t ∈ R,

where (σ
ϕ
t )t∈R denotes the modular automorphism group of ϕ. The weight ϕ is

also called the left Haar weight.
If M is commutative, K = (M, ∆, κ, ϕ) is called abelian. If ζ ◦ ∆ = ∆, K

is called symmetric. Abelian Kac algebras can be identified with locally compact
groups G so that we get M ∼= L∞(G); if they are additionally symmetric, they can
be identified with locally compact abelian groups.

Now, let Hϕ be the GNS-space induced by ϕ with the embedding Λϕ :
Nϕ → Hϕ and the scalar product

〈Λϕ(x1), Λϕ(x2)〉 := ϕ(x∗2 x1), x1, x2 ∈ Nϕ.

If B(Hϕ) denotes the set of all bounded linear operators on Hϕ, the so-called
fundamental operator W ∈ B(Hϕ ⊗ Hϕ) associated with K is defined by

W(Λϕ(x1)⊗Λϕ(x2)) := Λϕ⊗ϕ(∆(x2)(x1 ⊗ 1)), x1, x2 ∈ Nϕ.

Therefore, the Fourier representation λ of K is introduced by

λ : M∗ → B(Hϕ), M∗ 3 ω 7→ (ω⊗ ι)(W∗).

By means of λ, the von Neumann algebra M̂ is defined by the double commutant
of λ(M∗), i.e. M̂ := λ(M∗)

′′
, and the C∗-algebra associated with M̂ by M̂c :=

λ(M∗)
norm

. The dual Fourier representation λ̂ of K̂ is defined by

λ̂ : M̂∗ → B(Hϕ̂), M̂∗ 3 θ 7→ (ι⊗ θ)(W) ∈ M.

Overall, in Theorem 4.1.1 of [3], it is obtained a duality theorem, i.e. for every Kac
algebra K = (M, ∆, κ, ϕ), there is a dual Kac algebra K̂ = (M̂, ∆̂, κ̂, ϕ̂) such that the

bidual Kac algebra ̂̂K is isomorphic to K. This result generalizes the Pontryagin
duality theorem for locally compact abelian groups, see e.g. Theorem 1.7.2 of [13].

A Kac algebra (M, ∆, κ, ϕ) is called compact if ϕ is finite, and it is called dis-
crete if the predual M∗ of M is unital. By Theorem 6.2.2 (Theorem 6.3.2) of [3],
compact (discrete) Kac algebras generalize compact (discrete) groups. Moreover,
with regard to Theorem 6.3.3 of [3], K is compact if and only if K̂ is discrete.

In [17], [18], S.L. Woronowicz introduces the notion of compact quantum
groups, which are more general than compact Kac algebras. Nevertheless, the
definition of compact quantum groups is so simple that it guarantees the exis-
tence of the Haar state ϕ, whereas its existence has to be assumed in case of com-
pact Kac algebras. Furthermore, in case of compact quantum groups, the overall
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representation theory remains more or less the same, but the co-involution (an-
tipode map) κ can be unbounded, and we may have κ2 6= ι. This leads to techni-
cal difficulties so that we formulate our results within the framework of compact
Kac algebras. For further discussions on compact or discrete quantum groups,
respectively, we refer to [11], [15], [16].

For the following, let K = (M, ∆, κ, ϕ) be always a compact Kac algebra.
Then, by Theorem 6.2.1 and Corollary 6.3.4(i) of [3], K and its dual, discrete Kac
algebra K̂ = (M̂, ∆̂, κ̂, ϕ̂) are unimodular, i.e. ϕ is a κ-invariant trace as well as ϕ̂ is
a κ̂-invariant trace. Now, see [2], [14], one defines the Lp-spaces Lp(M, ϕ) for all
p ∈ [1, ∞) to be the completion of the set {x ∈ M : ‖x‖p,ϕ := ϕ(|x|p)1/p < ∞}
with respect to the Lp-norm ‖ · ‖p,ϕ.

Furthermore, according to Theorem 6.2.5(iii),(v) of [3], it is possible to de-
compose the Fourier representation λ in a direct sum of irreducible, finite-dimen-
sional ∗-representations (λi)i∈I of M∗ with λi(ω) := λ(ω)pi for all ω ∈ M∗ and
i ∈ I, where I denotes an index set and {pi}i∈I denotes the set of all minimal
central projections in M̂. Therefore, for every i ∈ I, there exists a Hilbert space Hi
with di := dim Hi < ∞ such that

(1.2) M̂ ∼=
⊕
i∈I

B(Hi) and ϕ̂ = ∑
i∈I

diTri,

where Tri denotes the canonical trace on B(Hi) for all i ∈ I. In fact, taking
into account Theorem 6.2.6(i),(ii) of [3], every non-degenerate ∗-representation
of M∗ is decomposable into a direct sum of irreducible, finite-dimensional ∗-
representations of M∗, where every irreducible ∗-representation of M∗ is auto-
matically finite-dimensional and equivalent to a component of the Fourier rep-
resentation λ of K. Consequently, λ is the sum of all equivalent classes of irre-
ducible ∗-representations of M∗.

In the situation of a compact Kac algebra K = (M, ∆, κ, ϕ), we have Mϕ =
Nϕ = M. For all x ∈ M, we define elements ωx ∈ M∗ by ωx := ϕ(· x). Therefore,
ωx is square-integrable, i.e. ωx ∈ I with

I := {ω ∈ M∗ : ∃ L > 0 such that |ω(x∗)| 6 L‖Λϕ(x)‖ ∀ x ∈ Nϕ},

where I = L1(G) ∩ L2(G) in case of the abelian Kac algebra Ka(G) with a locally
compact group G. Let K̂ = (M̂, ∆̂, κ̂, ϕ̂) be the dual, discrete Kac algebra of K.
Then one defines

Î := {θ ∈ M̂∗ : ∃ L > 0 such that |θ(y∗)| 6 L‖Λϕ̂(y)‖ ∀ y ∈ Nϕ̂}.

Now, we introduce the Fourier transform F (x) := λ(ωx) ∈ λ(I) ⊆ M̂ of x ∈ M
and the inverse Fourier transform F−1(y) := λ̂(θy) ∈ λ̂(Î) ⊆ M of y ∈ Mϕ̂ ⊆
M̂ with θy := ϕ̂(· y) ∈ Î ⊆ M̂∗, which are formally defined in [7] for all x ∈
λ̂(Î) ⊆ M and for all y ∈ λ(I) ⊆ M̂ in case of an arbitrary locally compact
quantum group in the von Neumann algebraic setting introduced in [10]. The
corresponding C∗-algebraic version of a locally compact quantum group is given
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in [9], where, in particular, a general duality theorem is shown. This category
includes both the Kac algebras in [3] and the compact quantum groups in [17],
[18]. But, in contrast to compact quantum groups, the existence of the left Haar
weight ϕ has to be assumed in the definition of locally compact quantum groups
in [9], [10].

Moreover, as in case of groups, we have the Fourier inversion theorem

(1.3) F−1(F (x)) = x and F (F−1(y)) = y

as well as the Plancherel formula

(1.4) ϕ̂(F (x1)
∗F (x2)) = ϕ(x∗1 x2) and ϕ(F−1(y1)

∗F−1(y2)) = ϕ̂(y∗1y2)

given in [7] when x = x1 = x2 ∈ λ̂(Î) ⊆ M and y = y1 = y2 ∈ λ(I) ⊆ M̂, which
can be easily generalized to the above formulas by the standard “polarization
identity” technique.

Since ϕ and ϕ̂ are faithful, we identify Nϕ and Nϕ̂ with Λϕ(Nϕ) ⊆ Hϕ and
Λϕ̂(Nϕ̂) ⊆ Hϕ̂, respectively. Let F and F−1 also denote the extensions of the
Fourier transform and the inverse Fourier transform on Hϕ and Hϕ̂, respectively.
Then, for all ξ, η ∈ Hϕ, we define a convolution ∗ on Hϕ by

(1.5) ξ ∗ η := F−1(F (ξ)F (η)),

which is based on the convolution ∗ on λ̂(Î) ⊆ M introduced in [7].
Now, for the rest of the paper, we make the following general assumption: We

assume that K = (M, ∆, κ, ϕ) is a compact Kac algebra such that ϕ(1) = 1. More-
over, λ will always denote the Fourier representation of K and K̂ = (M̂, ∆̂, κ̂, ϕ̂)

the dual, discrete Kac algebra of K with the dual Fourier representation λ̂ of K̂.
Furthermore, F and F−1 will always denote the Fourier transform and the in-
verse Fourier transform, respectively, as well as {pi}i∈I the set of all minimal
central projections in M̂ with dimensions di.

2. CHARACTERS IN COMPACT KAC ALGEBRAS

Since the pi, i ∈ I, are projections of the aforementioned type, we have pi ∈
Mϕ̂ ⊆ Nϕ̂ ⊆ M̂, and each pi is contained in the domain of F−1. Consequently,
the expression F−1(pi) makes sense and the following definition is valid.

DEFINITION 2.1. For all i ∈ I, we define

χi :=
F−1(pi)

di
,

and call χi ∈ λ̂(Î) ⊆ M the character of pi.

Since ϕ is a state and, taking into account Theorem 6.2.5(ii) of [3], λ(ϕ) is
a central projection p0 such that d0 = 1, which projects Hϕ onto CΛϕ(1) = C1,
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we have λ(ϕ) ∈ Mϕ̂ ⊆ Nϕ̂ ⊆ M̂. Hence, λ(ϕ) is contained in the domain of
F−1. Consequently, the expression F−1(λ(ϕ)) makes sense and the following
definition is valid, too.

DEFINITION 2.2. We define a character χ0 by

χ0 := F−1(λ(ϕ)),

and call χ0 ∈ λ̂(Î) ⊆ M the one-character of K.

In order to show that our definition of a character is consistent with the
character in [17], [18] for compact quantum groups, we need the following

DEFINITION 2.3. For all i ∈ I, we define an irreducible, finite-dimensional
∗-representation λc

i of M∗ by

λc
i (ωx) := λi(ωκ(x∗)), x ∈ M,

and call λc
i the conjugate representation of λi.

REMARK 2.4. (i) According to Theorem 6.2.6(ii) of [3], every irreducible ∗-
representation of M∗ is equivalent to a component λi of λ. Hence, it suffices to
define the conjugate representation of λi for each i ∈ I. Since, by Lemma 6.1.1(i)
of [3], the set {ωx : x ∈ M} is dense in M∗, Definition 2.3 is valid.

(ii) Regarding λi as an element of B(Hi)⊗̄M, we get

λc
i = (∗⊗κ)(λi),

where ∗ here denotes the involution on B(Hi). Hence, Definition 2.3 is consistent
with the conjugate representation in formula (3.11) of [17] and [18] for compact
quantum groups generalizing the corresponding notion for compact groups.

LEMMA 2.5. For all i ∈ I, we have

χic = χ∗i ,

where χic denotes the character of the minimal central projection pic of the conjugate
representation λc

i of λi.

Proof. Let y ∈ Mϕ̂ such that θy := ϕ̂(· y) ∈ M̂∗. Since ϕ̂ is a κ̂-invariant
trace, we have θκ̂(y∗) = θ◦y by Lemma 6.1.1(ii) of [3]. Since pi ∈Mϕ̂ and since λ̂ is
a ∗-representation of M̂∗, we get, for all i ∈ I,

diχic = F−1(pic) = λ̂(θpic ) = λ̂(θκ̂(p∗i )
) = λ̂(θ◦pi

) = λ̂(θpi )
∗ = F−1(pi)

∗ = diχ
∗
i .

Thus we have χic = χ∗i for all i ∈ I.

LEMMA 2.6. For all i ∈ I, we have

χi = (Tri ⊗ ι)(λc
i ).
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Proof. According to [7], we have Λϕ(x) = Λϕ̂(F (x)) in Hϕ for all x ∈ M
and Λϕ(F−1(y)) = Λϕ̂(y) in Hϕ for all y ∈Mϕ̂. Hence, on the one hand, we get
by Lemma 2.5, for all x ∈ M and any fixed i ∈ I,

(diχi, ωx) = (F−1(pi), ωx) = ϕ(F−1(pi)x) = 〈Λϕ(x), Λϕ(F−1(pi)
∗)〉

= 〈Λϕ(x), Λϕ(F−1(pic))〉 = 〈Λϕ̂(F (x)), Λϕ̂(pic)〉
= ϕ̂(p∗icF (x)) = ϕ̂(picF (x)).

On the other hand, regarding λc
i as an element of B(Hi)⊗̄M and using the de-

composition of ϕ̂ into ∑
k∈I

dkTrk by (1.2), we obtain, for all x ∈ M and any fixed

i ∈ I,

(di(Tri ⊗ ι)(λc
i ), ωx) = diTri(λ

c
i (ωx)) = ϕ̂(λc

i (ωx)) = ϕ̂(pic λ(ωx)) = ϕ̂(picF (x)).

Since, by Lemma 6.1.1(i) of [3], the set {ωx := ϕ(· x) : x ∈ M} is dense in M∗, we
finally get, for all i ∈ I,

χi = (Tri ⊗ ι)(λc
i ).

In accordance with Lemma 2.6, our Definition 2.1 of a character is consistent
with the definition on p. 657 of [17] and [18] of a character of a finite-dimensional
representation of a compact quantum group generalizing the corresponding no-
tion in the situation of compact groups. Consequently, our characters possess all
the classical properties known in case of compact groups, see e.g. [6]. In particu-
lar, taking into account Theorem 6.2.6(i),(ii) of [3], for every i ∈ I, there are finite
subsets Ki and Li of I both containing the index 0 such that we have the following
decompositions

(2.1) χ∗i χi = ∑
k∈Ki

nkχk and χiχ
∗
i = ∑

l∈Li

mlχl ,

where nk and ml denote the multiplicities of χk and χl for all k ∈ Ki and l ∈ Li,
respectively.

PROPOSITION 2.7. For all i, j ∈ I, we have

χi ∗ χj =
1
di

δijχi,

where δij denotes the Kronecker symbol and the convolution ∗ is given by (1.5).

Proof. Applying the Fourier inversion theorem (1.3) and the orthogonality
of the set {pi}i∈I , we get, for all i, j ∈ I,

χi ∗ χj = F−1(F (χi)F (χj)) = F−1
(
F
(F−1(pi)

di

)
F
(F−1(pj)

dj

))
= F−1

( 1
di

pi
1
dj

pj

)
=

1
didj
F−1(pi pj) =

{
1
di

χi if i = j,

0 if i 6= j.
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PROPOSITION 2.8. For all i, j ∈ I, we have the orthogonality relations

ϕ(χ∗i χj) = δij and ϕ(χiχ
∗
j ) = δij.

Proof. Using the Plancherel formula (1.4), the orthogonality of the set {pi}i∈I
and the decomposition of ϕ̂ into ∑

k∈I
dkTrk by (1.2), we obtain, for all i, j ∈ I,

ϕ(χ∗i χj) = ϕ
((F−1(pi)

di

)∗F−1(pj)

dj

)
=

1
didj

ϕ(F−1(pi)
∗F−1(pj))=

1
didj

ϕ̂(p∗i pj)

=
1

didj
ϕ̂(piδij) =


1
d2

i
∑k∈I dkTrk(pi) =

1
d2

i
diTri(pi) =

1
d2

i
d2

i = 1 if i = j,

0 if i 6= j.

Since ϕ is a trace, we get ϕ(χiχ
∗
j ) = δij for all i, j ∈ I, too.

PROPOSITION 2.9. Let J be a finite subset of I, and let aj ∈ C for all j ∈ J. Then
we have, with f := ∑

j∈J
ajχj,

‖ f ‖2,ϕ=
√

∑
j∈J
|aj|2, in particular

∥∥∥∑
j∈J
F−1(pj)

∥∥∥
2,ϕ
=
√

∑
j∈J

d2
j and

∥∥∥∑
j∈J

χj

∥∥∥
2,ϕ
=
√
|J|.

Proof. Applying Proposition 2.8, we get

‖ f ‖2
2,ϕ = ϕ(| f |2) = ϕ

((
∑
j∈J

ajχj

)∗
∑
k∈J

akχk

)
= ∑

j∈J
∑
k∈J

ajak ϕ(χ∗j χk) = ∑
j∈J
|aj|2.

PROPOSITION 2.10. Let J be a finite subset of I, and let aj ∈ C for all j ∈ J. Then
we have, with f := ∑

j∈J
ajχj,

‖ f ‖1,ϕ6
√

∑
j∈J
|aj|2, in particular

∥∥∥∑
j∈J
F−1(pj)

∥∥∥
1,ϕ
6
√

∑
j∈J

d2
j and

∥∥∥∑
j∈J

χj

∥∥∥
1,ϕ
6
√
|J|.

Proof. Since ϕ is a state on M, it follows from the Cauchy–Schwarz inequal-
ity that, for all x ∈ M,

‖x‖2
1,ϕ = (ϕ(|x|))2 6 ϕ(1)ϕ(x∗x) = ϕ(|x|2) = ‖x‖2

2,ϕ.

Consequently, since f := ∑
j∈J

ajχj ∈ M, we get the assertion by Proposition 2.9.

LEMMA 2.11. For all i ∈ I, we have

‖χi‖3
2,ϕ

‖χi‖2
4,ϕ

6 ‖χi‖1,ϕ.

Proof. Since ϕ is a trace on M = Nϕ = Mϕ, it follows from Hölder’s in-
equality, see Théorème 3.6 of [2], with p = 3/2 and q = 3 that, for all i ∈ I,

ϕ(|χi|2) 6 (ϕ(|χi|))2/3(ϕ(|χi|4))1/3.



384 TOBIAS BLENDEK AND JOHANNES MICHALIČEK

Therefore, we get, for all i ∈ I,

‖χi‖3
2,ϕ = (ϕ(|χi|2))3/2 6 ϕ(|χi|)(ϕ(|χi|4))1/2 = ‖χi‖1,ϕ‖χi‖2

4,ϕ.

PROPOSITION 2.12. Let ai ∈ C for all i ∈ I. Then we have, for any fixed i ∈ I,

‖aiχi‖4,ϕ = |ai|
(

∑
k∈Ki

n2
k

)1/4
= |ai|

(
∑

l∈Li

m2
l

)1/4
, in particular

‖F−1(pi)‖4,ϕ = di

(
∑

k∈Ki

n2
k

)1/4
= di

(
∑

l∈Li

m2
l

)1/4
and

‖χi‖4,ϕ =
(

∑
k∈Ki

n2
k

)1/4
=
(

∑
l∈Li

m2
l

)1/4
.

Proof. Applying Proposition 2.8, we have, for all i ∈ I,

ϕ((χ∗i χi)
2) = ϕ(χ∗i χiχ

∗
i χi) = ϕ((χ∗i χi)

∗(χ∗i χi)) = ϕ
((

∑
k∈Ki

nkχk

)∗(
∑

l∈Ki

nlχl

))
= ∑

k∈Ki

∑
l∈Ki

nknl ϕ(χ
∗
k χl) = ∑

k∈Ki

n2
k .

In like manner, we get ϕ((χiχ
∗
i )

2) = ∑
l∈Li

m2
l for all i ∈ I. Since ϕ is a trace on

M = Nϕ = Mϕ and χi ∈ M for each i ∈ I, we obtain, by Lemma V.2.16 of [14],
for all i ∈ I,

ϕ((χ∗i χi)
2) = ϕ(χ∗i χiχ

∗
i χi) = ϕ(χiχ

∗
i χiχ

∗
i ) = ϕ((χiχ

∗
i )

2).

Hence, it follows that

‖aiχi‖4
4,ϕ = ϕ((|aiχi|)4) = |ai|4 ϕ((χ∗i χi)

2) = |ai|4 ∑
k∈Ki

n2
k = |ai|4 ∑

l∈Li

m2
l ,

and we get the assertion.

PROPOSITION 2.13. For any fixed i ∈ I and for all k ∈ Ki and l ∈ Li, we have

nk 6 dk and ml 6 dl .

In particular, if dk = 1, we have nk = 1. Similarly, if dl = 1, then ml = 1. Thus we get,
for all i ∈ I with K′i := Ki\{0} and L′i := Li\{0},

χ∗i χi = χ0 + ∑
k∈K′i

nkχk and χiχ
∗
i = χ0 + ∑

l∈L′i

mlχl .

Hence, the one-character χ0 of K occurs exactly once in the decompositions of χ∗i χi and
χiχ
∗
i for all i ∈ I, respectively.
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Proof. Using the Fourier inversion theorem (1.3) and the orthogonality of
the set {pi}i∈I , we get, for any fixed i ∈ I and for all k ∈ Ki,

F (χ∗i χi)pk = F
(

∑
j∈Ki

njχj

)
pk = pk ∑

j∈Ki

njF (χj) = pk ∑
j∈Ki

njF
(F−1(pj)

dj

)
= pk ∑

j∈Ki

nj

dj
pj =

nk
dk

pk.

Since pk is the identity operator in B(Hk) for all k ∈ Ki, we obtain

‖pk‖M̂ = ‖pk‖B(Hk)
= 1.

Regarding Proposition 2.4.6(i) of [3], we have ‖λ(ω)‖M̂ 6 ‖ω‖M∗ for all ω ∈ M∗.
Since ϕ is a trace on M, the Banach spaces M∗ and L1(M, ϕ) are isometrically
isomorphic by Theorem V.2.18 of [14]. Therefore, applying Proposition 2.8, we
get, for all k ∈ Ki,

nk
dk

=
nk
dk
‖pk‖M̂ =

∥∥∥nk
dk

pk

∥∥∥
M̂
=‖F (χ∗i χi)pk‖M̂6‖F (χ∗i χi)‖M̂‖pk‖M̂ =‖F (χ∗i χi)‖M̂

=‖λ(ωχ∗i χi )‖M̂ 6 ‖ωχ∗i χi‖M∗ = ‖χ∗i χi‖1,ϕ = ϕ(χ∗i χi) = 1.

Hence, we have shown nk 6 dk for all k ∈ Ki and any fixed i ∈ I. Similarly, for
any fixed i ∈ I and for all l ∈ Li, we get the second inequality ml 6 dl .

THEOREM 2.14. Let ai ∈ C for all i ∈ I. Then we have, for any fixed i ∈ I,

‖aiχi‖1,ϕ >
|ai|√

∑k∈Ki
n2

k

=
|ai|√

∑l∈Li
m2

l

, in particular

‖F−1(pi)‖1,ϕ >
di√

∑k∈Ki
n2

k

=
di√

∑l∈Li
m2

l

> 1 and

‖χi‖1,ϕ >
1√

∑k∈Ki
n2

k

=
1√

∑l∈Li
m2

l

.

Proof. For any fixed i ∈ I, it follows from Lemma 2.11 and Propositions 2.9
and 2.12 that

‖aiχi‖1,ϕ = |ai|‖χi‖1,ϕ > |ai|
‖χi‖3

2,ϕ

‖χi‖2
4,ϕ

=
|ai|√

∑k∈Ki
n2

k

=
|ai|√

∑l∈Li
m2

l

.

Since the dimension of χiχ
∗
i is equal to d2

i , we obtain, with regard to the decom-
position χiχ

∗
i = ∑

l∈Li

mlχl by (2.1), for all i ∈ I,

d2
i = ∑

l∈Li

mldl .
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According to Proposition 2.13, for any fixed i ∈ I and for all l ∈ Li, we have
ml 6 dl . Thus we finally get

di√
∑l∈Li

m2
l

=

√
∑l∈Li

mldl√
∑l∈Li

m2
l

>

√
∑l∈Li

m2
l√

∑l∈Li
m2

l

= 1.

3. CHARACTERS DEFINED BY A SIDON SET

Since best for our purposes, we use the characterization of a Sidon set by
Theorem 5.7.3(e) of [13] in case of compact abelian groups or Theorem 37.2(iii) of
[6] in case of arbitrary compact groups, respectively, for the following generaliza-
tion of the concept of a Sidon set to compact Kac algebras.

DEFINITION 3.1. Let E be a subset of I. We call E := {pi}i∈E a Sidon set if

for every ψ ∈
(

∑
i∈E

pi

)
M̂c :=

{(
∑

i∈E
pi

)
y : y ∈ M̂c

}
, there is an ω ∈ M∗ such

that, for all i ∈ E,
ψpi = λ(ω)pi.

We can choose ω in such a way that there is a constant BE depending only on E
such that

‖ω‖M∗ 6 BE‖ψ‖M̂c
.

REMARK 3.2. Since M̂c ∼= C0(Γ) for locally compact abelian groups with
dual group Γ and M̂c ∼= E0(Σ) for arbitrary compact groups with dual object Σ,
Definition 3.1 actually includes the above mentioned classical cases.

Now, we modify the Rademacher functions, see e.g. [19], which are used in
the proof of (0.1), see Theorem 5.7.7(3) of [13].

DEFINITION 3.3. Let n ∈ N. For j = 1, . . . , n, we call the complex-valued
functions rj(·) on [0, 1] defined for all t ∈ [(k− 1)/4j, k/4j] and k = 1, . . . , 4j by

rj(t) :=


1 if k ≡ 1 mod 4,
i if k ≡ 2 mod 4,
−1 if k ≡ 3 mod 4,
−i if k ≡ 0 mod 4,

where i denotes the imaginary unit, modified Rademacher functions.

LEMMA 3.4. Let n ∈ N. For all i, j, k, l ∈ {1, . . . , n}, we get

1∫
0

ri(t)rj(t)rk(t)rl(t)dt =


1 if i = j and k = l,
1 if i = l and j = k,
0 otherwise.
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Proof. The first two cases follow from rj(t)rj(t) = 1 for all j = 1, . . . , n and
t ∈ [0, 1]. In the third case, the intregrals cancel each other out.

DEFINITION 3.5. Let x : [0, 1]→ M. For all p ∈ [1, ∞), we define

‖x‖p,ϕ,[0,1] :=
( 1∫

0

‖x(t)‖p
p,ϕ dt

)1/p
=
( 1∫

0

ϕ(|x(t)|p)dt
)1/p

.

LEMMA 3.6. Let E = {pi}i∈E be a Sidon set with constant BE , and let J be a finite
subset of E enumerated by jm, m = 1, . . . , n := |J|. Let ajm ∈ C for all m = 1, . . . , n.

Let f :=
n
∑

m=1
ajm χjm , and let rjm(·) := rm(·), m = 1, . . . , n, be the modified Rademacher

functions on [0, 1] as well as g : [0, 1] → M such that g(t) :=
n
∑

m=1
rjm(t)ajm χjm for all

t ∈ [0, 1]. Then we get

‖g‖1,ϕ,[0,1] 6 BE‖ f ‖1,ϕ.

Proof. For the following, we write j instead of jm in order to simplify the
notations, i.e. f = ∑

j∈J
ajχj and g(t) = ∑

j∈J
rj(t)ajχj . For all t ∈ [0, 1], we set

ψ(t) := ∑
k∈J

rk(t)pk = ∑
i∈E

pi ∑
k∈J

rk(t)pk.

Since pi ∈ B(Hi) = λi(M∗) for all i ∈ I, we have ψ(t) ∈
(

∑
i∈E

pi

)
M̂c for all t ∈

[0, 1]. Consequently, regarding Definition 3.1, for each such ψ(t) with t ∈ [0, 1],
there is an ω(t) ∈ M∗ such that, for all i ∈ E,

ψ(t)pi = λ(ω(t))pi and ‖ω(t)‖M∗ 6 BE‖ψ(t)‖M̂c
.

Therefore, we get, for all t ∈ [0, 1],

∑
j∈J

rj(t)aj
1
dj

pj = ∑
k∈J

rk(t)pk ∑
j∈J

aj
1
dj

pj = ψ(t)∑
j∈J

aj
1
dj

pj = ∑
j∈J

aj
1
dj

ψ(t)pj

= ∑
j∈J

aj
1
dj

λ(ω(t))pj = λ(ω(t))∑
j∈J

aj
1
dj

pj.

According to the Fourier inversion theorem (1.3) and the convolution ∗ in M∗ by
(1.1), we obtain, for all t ∈ [0, 1],

λ(ωg(t)) = F (g(t)) = F
(

∑
j∈J

rj(t)ajχj

)
= F

(
∑
j∈J

rj(t)aj
F−1(pj)

dj

)
= ∑

j∈J
rj(t)aj

1
dj

pj = λ(ω(t))∑
j∈J

aj
1
dj

pj = λ(ω(t))∑
j∈J

ajF
(F−1(pj)

dj

)
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= λ(ω(t))F
(

∑
j∈J

ajχj

)
= λ(ω(t))λ(ω∑j∈J ajχj) = λ(ω(t) ∗ω∑j∈J ajχj).

Hence, since λ is faithful, i.e. injective, with regard to Corollary 4.1.3(ii) of [3], we
have ωg(t) = ω(t) ∗ ω∑j∈J ajχj for all t ∈ [0, 1]. Consequently, since the Banach
spaces L1(M, ϕ) and M∗ are isometrically isomorphic by Theorem V.2.18 of [14]
and since ‖ψ(t)‖M̂c

= 1 for each t ∈ [0, 1], it follows that, for all t ∈ [0, 1],

‖g(t)‖1,ϕ = ‖ωg(t)‖M∗ = ‖ω(t) ∗ω∑j∈J ajχj‖M∗ 6 ‖ω(t)‖M∗‖ω∑j∈J ajχj‖M∗

= ‖ω(t)‖M∗

∥∥∥∑
j∈J

ajχj

∥∥∥
1,ϕ

6 BE‖ψ(t)‖M̂c
‖ f ‖1,ϕ = BE‖ f ‖1,ϕ.

Since the right side does not depend on t, we finally get

‖g‖1,ϕ,[0,1] =

1∫
0

‖g(t)‖1,ϕ dt 6
1∫

0

BE‖ f ‖1,ϕ dt = BE‖ f ‖1,ϕ.

REMARK 3.7. In fact, in the proof of Lemma 3.6, we even have ψ(t) ∈(
∑

i∈E
pi

)
Z(M̂c) for all t ∈ [0, 1], where Z(M̂c) denotes the center of M̂c.

For the following, we write j instead of jm as in the proof of Lemma 3.6 in
order to simplify the notations, i.e. f = ∑

j∈J
ajχj and g(t) = ∑

j∈J
rj(t)ajχj.

Similar to Lemma 2.11, we need the following

LEMMA 3.8. Let J be a finite subset of I. Then we have

‖g‖3
2,ϕ,[0,1]

‖g‖2
4,ϕ,[0,1]

6 ‖g‖1,ϕ,[0,1].

Proof. Since the Rademacher functions rj(·), j ∈ J, are constant on the inter-
vals [(k− 1)/4n, k/4n] ⊆ [0, 1] for all k = 1, . . . , 4n, respectively, the restriction to
the interval [(k− 1)/4n, k/4n] of g for all k = 1, . . . , 4n does not depend on t. Thus,
for each k = 1, . . . , 4n, we set gk := g(t) ∈ M for all t ∈ [(k− 1)/4n, k/4n]. Now,
for all k = 1, . . . , 4n, let Mk be the unital, commutative C∗-subalgebra of M gen-
erated by |gk| and the identity 1 ∈ M. With regard to Gelfand’s theory, Mk can
then be identified with the continuous, complex-valued functions C(spec(Mk))
on spec(Mk), where spec(Mk) denotes the compact Gelfand space of Mk, which
is homeomorphic to the spectrum spec(|gk|).

If we denote the restriction to Mk of ϕ by ϕ|Mk for all k = 1, . . . , 4n, we
may therefore identify ϕ|Mk with a continuous linear functional on C(spec(Mk)).
Hence, Riesz’ representation theorem guarantees the existence of a regular Borel
measure dµk on spec(Mk) such that, for all x ∈ Mk

∼= C(spec(Mk)) and for all
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k = 1, . . . , 4n,

ϕ|Mk (x) =
∫

spec(Mk)

x dµk.

Now, let dtk be the restriction to [(k− 1)/4n, k/4n] ⊆ [0, 1] of Lebesgue measure
dt for all k = 1, . . . , 4n. If we set Ak := spec(Mk) × [(k − 1)/4n, k/4n] for all

k = 1, . . . , 4n with the product measure dµk ⊗ dtk and A :=
4n⋃

k=1
Ak with the

product measure dµ⊗ dt, we have

1∫
0

ϕ(|g(t)|)dt=
4n

∑
k=1

k/4n∫
(k−1)/4n

∫
spec(Mk)

|gk|dµk dtk =
4n

∑
k=1

∫
Ak

|gk|dµk⊗dtk =
∫
A

|g(t)|dµ⊗dt.

Consequently, according to the modified Rademacher functions, we succeeded

in writing
1∫

0
ϕ(|g(t)|)dt as a measure integral. Thus we may apply Hölder’s

inequality, and we obtain, with p = 3/2 and q = 3,

1∫
0

ϕ(|g(t)|2)dt 6
( 1∫

0

ϕ(|g(t)|)dt
)2/3( 1∫

0

ϕ(|g(t)|4)dt
)1/3

.

Therefore, we get

‖g‖3
2,ϕ,[0,1] =

( 1∫
0

ϕ(|g(t)|2)dt
)3/2

6
( 1∫

0

ϕ(|g(t)|)dt
)( 1∫

0

ϕ(|g(t)|4)dt
)1/2

= ‖g‖1,ϕ,[0,1]‖g‖2
4,ϕ,[0,1].

LEMMA 3.9. Let J be a finite subset of I. Then we have

‖g‖2,ϕ,[0,1] =
√

∑
j∈J
|aj|2.

Proof. Regarding the Plancherel formula (1.4), the orthogonality of the set
{pi}i∈I as well as rj(t)rj(t) = 1 for all j ∈ J and t ∈ [0, 1], we get

‖g‖2
2,ϕ,[0,1] =

1∫
0

‖g(t)‖2
2,ϕ dt =

1∫
0

ϕ(|g(t)|2)dt =
1∫

0

ϕ(g(t)∗g(t))dt

=

1∫
0

ϕ
((

∑
j∈J

rj(t)ajχj

)∗
∑
k∈J

rk(t)akχk

)
dt

=

1∫
0

ϕ
((

∑
j∈J

rj(t)aj
F−1(pj)

dj

)∗
∑
k∈J

rk(t)ak
F−1(pk)

dk

)
dt
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=

1∫
0

ϕ
(
F−1

(
∑
j∈J

rj(t)aj
1
dj

pj

)∗
F−1

(
∑
k∈J

rk(t)ak
1
dk

pk

))
dt

=

1∫
0

ϕ̂
((

∑
j∈J

rj(t)aj
1
dj

pj

)∗
∑
k∈J

rk(t)ak
1
dk

pk

)
dt

=

1∫
0

ϕ̂
(

∑
j∈J

rj(t)aj
1
dj

pj ∑
k∈J

rk(t)ak
1
dk

pk

)
dt

=

1∫
0

ϕ̂
(

∑
j∈J

rj(t)rj(t)|aj|2
1
d2

j
pj

)
dt =

1∫
0

ϕ̂
(

∑
j∈J
|aj|2

1
d2

j
pj

)
dt.

Since ϕ̂
(

∑
j∈J
|aj|2(1/d2

j )pj

)
does not depend on t, it follows from the decomposi-

tion of ϕ̂ into ∑
i∈I

diTri by (1.2) that

1∫
0

ϕ̂
(

∑
j∈J
|aj|2

1
d2

j
pj

)
dt= ϕ̂

(
∑
j∈J
|aj|2

1
d2

j
pj

)
=∑

j∈J
|aj|2

1
d2

j
ϕ̂(pj)=∑

j∈J
|aj|2

1
d2

j
∑
i∈I

diTri(pj)

=∑
j∈J
|aj|2

1
d2

j
djTrj(pj) = ∑

j∈J
|aj|2

d2
j

d2
j
= ∑

j∈J
|aj|2.

Altogether, we have shown the assertion.

LEMMA 3.10. Let J be a finite subset of I. Then we have

‖g‖4
4,ϕ,[0,1] 6 ϕ

((
∑
j∈J
|aj|2χ∗j χj

)2)
+ ϕ

((
∑
j∈J
|aj|2χjχ

∗
j

)2)
.

Proof. Since K=(M, ∆, κ, ϕ) is compact, we have ϕ∈M∗. Consequently, the

integral
1∫

0
dt and ϕ can be exchanged. Since ϕ is a trace on M =Nϕ =Mϕ, we

therefore infer from Lemma V.2.16 of [14], Lemma 3.4 and Proposition 2.12 that

‖g‖4
4,ϕ,[0,1]

=

1∫
0

‖g(t)‖4
4 dt =

1∫
0

ϕ(|g(t)|4)dt =
1∫

0

ϕ((g(t)∗g(t))2)dt

=

1∫
0

ϕ
((

∑
i∈J

ri(t)aiχi

)∗
∑
j∈J

rj(t)ajχj

(
∑
k∈J

rk(t)akχk

)∗
∑
l∈J

rl(t)alχl

)
dt
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= ϕ
(

∑
i∈J

aiχ
∗
i ∑

j∈J
ajχj ∑

k∈J
akχ∗k ∑

l∈J
alχl

1∫
0

ri(t)rj(t)rk(t)rl(t)dt
)

= ϕ
(

∑
j∈J
|aj|2χ∗j χj ∑

k∈J
|ak|2χ∗k χk

)
+ ϕ

(
∑
i∈J

aiχ
∗
i

(
∑
j∈J
|aj|2χjχ

∗
j

)
aiχi

)
− ϕ

(
∑
i∈J
|ai|4χ∗i χiχ

∗
i χi

)
= ϕ

(
∑
j∈J
|aj|2χ∗j χj ∑

k∈J
|ak|2χ∗k χk

)
+ ϕ

(
∑
i∈J

aiχ
∗
i

(
∑
j∈J
|aj|2χjχ

∗
j

)
aiχi

)
−∑

i∈J
‖aiχi‖4

4,ϕ

= ϕ
(

∑
j∈J
|aj|2χ∗j χj ∑

k∈J
|ak|2χ∗k χk

)
+ϕ
(

∑
i∈J

aiχ
∗
i

(
∑
j∈J
|aj|2χjχ

∗
j

)
aiχi

)
−∑

i∈J
|ai|4 ∑

k∈Ki

n2
k .

6 ϕ
(

∑
j∈J
|aj|2χ∗j χj ∑

k∈J
|ak|2χ∗k χk

)
+ ϕ

(
∑
i∈J

aiχ
∗
i

(
∑
j∈J
|aj|2χjχ

∗
j

)
aiχi

)
= ϕ

((
∑
j∈J
|aj|2χ∗j χj

)2)
+ ∑

i∈J
|ai|2 ∑

j∈J
|aj|2 ϕ(χ∗i χjχ

∗
j χi)

= ϕ
((

∑
j∈J
|aj|2χ∗j χj

)2)
+ ∑

i∈J
|ai|2 ∑

j∈J
|aj|2 ϕ(χjχ

∗
j χiχ

∗
i )

= ϕ
((

∑
j∈J
|aj|2χ∗j χj

)2)
+ ϕ

((
∑
j∈J
|aj|2χjχ

∗
j

)2)
.

PROPOSITION 3.11. Let J be a finite subset of I. Then we get

ϕ
((

∑
j∈J
|aj|2χ∗j χj

)2)
= ∑

i∈I

(
∑
j∈J
|aj|2nij

)2
,

where nij denotes the multiplicity of χi in the decomposition of χ∗j χj for all j ∈ J. Simi-
larly, we get

ϕ
((

∑
j∈J
|aj|2χjχ

∗
j

)2)
= ∑

i∈I

(
∑
j∈J
|aj|2mij

)2
,

where mij denotes the multiplicity of χi in the decomposition of χjχ
∗
j for all j ∈ J.

Proof. Using the Plancherel formula (1.4) and the Fourier inversion theorem
(1.3), we get

ϕ
((

∑
j∈J
|aj|2χ∗j χj

)2)
= ϕ

((
∑
j∈J
|aj|2χ∗j χj

)∗(
∑
j∈J
|aj|2χ∗j χj

))
= ϕ̂

(
F
(

∑
j∈J
|aj|2χ∗j χj

)∗
F
(

∑
j∈J
|aj|2χ∗j χj

))
= ϕ̂

(
F
(

∑
j∈J
|aj|2 ∑

k∈Kj

nkχk

)∗
F
(

∑
j∈J
|aj|2 ∑

k∈Kj

nkχk

))
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= ϕ̂
(
F
(

∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

dkχk

)∗
F
(

∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

dkχk

))
= ϕ̂

((
∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk
F (F−1(pk))

∗
)(

∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk
F (F−1(pk))

))
= ϕ̂

((
∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

p∗k
)(

∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

pk

))
= ϕ̂

((
∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

pk

)2)
.

Arranging the characters according to their occurrence in the decompositions of
the products χ∗j χj for all j ∈ J by (2.1), it therefore follows from the orthogonality
of the set {pi}i∈I and the decomposition of ϕ̂ into ∑

l∈I
dlTrl by (1.2) that

ϕ̂
((

∑
j∈J
|aj|2 ∑

k∈Kj

nk
dk

pk

)2)
= ϕ̂

(
∑
i∈I

1
d2

i
pi

(
∑
j∈J
|aj|2nij

)2)
= ∑

l∈I
dlTrl

(
∑
i∈I

1
d2

i
pi

(
∑
j∈J
|aj|2nij

)2)
= ∑

i∈I
di

1
d2

i

(
∑
j∈J
|aj|2nij

)2
Tri(pi) = ∑

i∈I

d2
i

d2
i

(
∑
j∈J
|aj|2nij

)2
= ∑

i∈I

(
∑
j∈J
|aj|2nij

)2
.

Altogether, we have shown the first assertion. Similarly, we get the second one.

THEOREM 3.12. Let E = {pi}i∈E be a Sidon set with constant BE , and let J be a
finite subset of E. Let aj ∈ C for all j ∈ J, and let f := ∑

j∈J
ajχj.

(i) If, for all j ∈ J,
χ∗j χj = χ0 and χjχ

∗
j = χ0,

where χ0 denotes the one-character of K, we get

‖ f ‖2,ϕ =
√

∑
j∈J
|aj|2 6

√
2BE‖ f ‖1,ϕ, in particular

∥∥∥∑
j∈J
F−1(pj)

∥∥∥
2,ϕ

=
√

∑
j∈J

d2
j 6
√

2BE
∥∥∥∑

j∈J
F−1(pj)

∥∥∥
1,ϕ

and

∥∥∥∑
j∈J

χj

∥∥∥
2,ϕ

=
√
|J| 6

√
2BE

∥∥∥∑
j∈J

χj

∥∥∥
1,ϕ

.

(ii) If, for all j ∈ J,

χ∗j χj = χ0 + χ
(1)
j and χjχ

∗
j = χ0 + χ

(2)
j ,

where χ0 denotes the one-character of K as well as χ
(1)
j and χ

(2)
j are characters such that,

for all j, j′ ∈ J with j 6= j′,

χ
(1)
j 6= χ

(1)
j′ and χ

(2)
j 6= χ

(2)
j′ ,
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we get √√√√√√
(

∑j∈J |aj|2
)3

(
∑j∈J |aj|2

)2
+ ∑j∈J |aj|4

6
√

2BE‖ f ‖1,ϕ, in particular

√√√√√√
(

∑j∈J d2
j

)3

(
∑j∈J d2

j

)2
+ ∑j∈J d4

j

6
√

2BE
∥∥∥∑

j∈J
F−1(pj)

∥∥∥
1,ϕ

and

√
|J|2
|J|+ 1

6
√

2BE
∥∥∥∑

j∈J
χj

∥∥∥
1,ϕ

.

(iii) If, for all j ∈ J,

χ∗j χj = χ0 + ∑
k∈K′j

χk and χjχ
∗
j = χ0 + ∑

l∈L′j

χl ,

where χ0 denotes the one-character of K, such that, for any fixed j, j′ ∈ J with j 6= j′ as
well as for all k ∈ K′j, k′ ∈ K′j′ and for all l ∈ L′j, l′ ∈ L′j′ ,

χk 6= χk′ and χl 6= χl′ ,

we get √√√√√√
(

∑j∈J |aj|2
)3

(
∑j∈J |aj|2

)2
+ ∑j∈J(d2

j − 1)|aj|4
6
√

2BE‖ f ‖1,ϕ, in particular

√√√√√√
(

∑j∈J d2
j

)3

(
∑j∈J d2

j

)2
+ ∑j∈J(d2

j − 1)d4
j

6
√

2BE
∥∥∥∑

j∈J
F−1(pj)

∥∥∥
1,ϕ

and

√
|J|3

|J|2 + ∑j∈J(d2
j − 1)

6
√

2BE
∥∥∥∑

j∈J
χj

∥∥∥
1,ϕ

.

Proof. (i) Since χ∗j χj = χ0 and χjχ
∗
j = χ0 for all j ∈ J, we have n0j = m0j = 1

for all j ∈ J, while nij = mij = 0 for all i 6= 0 and j ∈ J. Hence, regarding
Lemma 3.10 and Proposition 3.11, we get

‖g‖4
4,ϕ,[0,1] 6 ϕ

((
∑
j∈J
|aj|2χ∗j χj

)2)
+ ϕ

((
∑
j∈J
|aj|2χjχ

∗
j

)2)
= ∑

i∈I

(
∑
j∈J
|aj|2nij

)2
+ ∑

i∈I

(
∑
j∈J
|aj|2mij

)2
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=
(

∑
j∈J
|aj|2

)2
+
(

∑
j∈J
|aj|2

)2
= 2

(
∑
j∈J
|aj|2

)2
.

Together with Lemmas 3.9, 3.8 and 3.6, it follows that(
∑j∈J |aj|2

)3/2

(
2
(

∑j∈J |aj|2
)2)1/2 6

‖g‖3
2,ϕ,[0,1]

‖g‖2
4,ϕ,[0,1]

6 ‖g‖1,ϕ,[0,1] 6 BE‖ f ‖1,ϕ.

Consequently, by Proposition 2.9, we have shown the assertion.
(ii) By Proposition 2.13, χ0 occurs exactly once in each decomposition of χ∗j χj

and χjχ
∗
j for all j ∈ J. Thus, as in (i), we have n0j = m0j = 1 for all j ∈ J . Hence,

χ
(1)
j 6= χ0 and χ

(2)
j 6= χ0 for all j ∈ J such that n(1)

j = m(2)
j = 1 for all j ∈ J, while

all other multiplicities are zero. Since χ
(1)
j 6= χ

(1)
j′ and χ

(2)
j 6= χ

(2)
j′ for all j, j′ ∈ J

such that j 6= j′, we infer from Lemma 3.10 and Proposition 3.11 that

‖g‖4
4,ϕ,[0,1]

6ϕ
((

∑
j∈J
|aj|2χ∗j χj

)2)
+ϕ
((

∑
j∈J
|aj|2χjχ

∗
j

)2)
=∑

i∈I

(
∑
j∈J
|aj|2nij

)2
+∑

i∈I

(
∑
j∈J
|aj|2mij

)2

=
(

∑
j∈J
|aj|2

)2
+∑

j∈J
(|aj|2)2+

(
∑
j∈J
|aj|2

)2
+∑

j∈J
(|aj|2)2=2

((
∑
j∈J
|aj|2

)2
+∑

j∈J
|aj|4

)
.

Together with Lemmas 3.9, 3.8 and 3.6, it follows that(
∑j∈J |aj|2

)3/2

(
2
((

∑j∈J |aj|2
)2

+ ∑j∈J |aj|4
))1/2 6

‖g‖3
2,ϕ,[0,1]

‖g‖2
4,ϕ,[0,1]

6 ‖g‖1,ϕ,[0,1] 6 BE‖ f ‖1,ϕ.

(iii) Similar to (ii), we infer from Lemma 3.10 and Proposition 3.11 that

‖g‖4
4,ϕ,[0,1] 6 ϕ

((
∑
j∈J
|aj|2χ∗j χj

)2)
+ ϕ

((
∑
j∈J
|aj|2χjχ

∗
j

)2)
= ∑

i∈I

(
∑
j∈J
|aj|2nij

)2
+ ∑

i∈I

(
∑
j∈J
|aj|2mij

)2

=
(

∑
j∈J
|aj|2

)2
+ ∑

j∈J
∑

k∈K′j

(|aj|2)2 +
(

∑
j∈J
|aj|2

)2
+ ∑

j∈J
∑

l∈L′j

(|aj|2)2

=
(

∑
j∈J
|aj|2

)2
+ ∑

j∈J
|K′j||aj|4 +

(
∑
j∈J
|aj|2

)2
+ ∑

j∈J
|L′j||aj|4.

Since the dimension of χ∗j χj and χjχ
∗
j is equal to d2

j , respectively, the index sets
K′j and L′j are greatest if χk and χl are characters of one-dimensional projections
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for all k ∈ K′j and l ∈ L′j. Therefore, for all j ∈ J, we can estimate the cardinalities
|K′j| and |L′j| from above by

|K′j| 6 d2
j − 1 and |L′j| 6 d2

j − 1.

Thus we have

‖g‖4
4,ϕ,[0,1] 6 2

((
∑
j∈J
|aj|2

)2
+ ∑

j∈J
(d2

j − 1)|aj|4
)

.

Together with Lemmas 3.9, 3.8 and 3.6, it follows that(
∑j∈J |aj|2

)3/2

(
2
((

∑j∈J |aj|2
)2
+∑j∈J(d2

j−1)|aj|4
))1/2 6

‖g‖3
2,ϕ,[0,1]

‖g‖2
4,ϕ,[0,1]

6‖g‖1,ϕ,[0,1]6BE‖ f ‖1,ϕ.

REMARK 3.13. Let G be a compact group with the dual object Σ of G. For
each σ ∈ Σ, let U(σ) ∈ σ be a continuous, irreducible, unitary representation of
G with the representation space Hσ. According to Definition 4.1 of [5], a subset
E ⊆ Σ is called lacunary if the two following conditions are satisfied:

(i) Whenever (α, β) and (γ, δ) are different pairs from E, i.e. the corresponding
characters χα⊕β and χγ⊕δ are different from each other, then the representations
U(α) ⊗U(β) and U(γ) ⊗U(δ) are disjoint, i.e. no irreducible component of U(α) ⊗
U(β) is equivalent to an irreducible component of U(γ) ⊗U(δ).

(ii) There is a constant K such that, for all α, β ∈ E,

nα,β < K,

where nα,β denotes the number of all irreducible components in U(α) ⊗ U(β)

counted with multiplicity.
In general, regarding p. 447 and Theorem 37.10 of [6], a lacunary subset of

Σ is not a Sidon set.
Now, for all j ∈ J, the special decompositions of the products χ∗j χj and χjχ

∗
j

in Theorem 3.12 are motivated by the above property (i) of a lacunary subset.

REMARK 3.14. (i) Let G be a compact abelian group with the dual group Γ
of G. Then we have, for all γ ∈ Γ,

γγ = γγ = |γ|2 = 1G,

where 1G denotes the one-character of G. Consequently, all continuous characters
γ ∈ Γ fulfill the special decompositions in Theorem 3.12(i).

(ii) Let I be a non-empty index set. For each ι ∈ I, let Hι be a finite-dimensional
Hilbert space, and let U(Hι) denote the unitary group consisting of all unitary
operators on Hι. Then G := ∏

ι∈I
U(Hι) is a compact group under the product

topology. For each ι ∈ I, the projection πι of G onto U(Hι) is a continuous, irre-
ducible, unitary representation of G. By Remark 37.5 of [6], the set {πι : ι ∈ I} is
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a Sidon set in the dual object ΣG of G. For each ι ∈ I, let πι denote the conjugate
representation of πι. Then, by 29.46(b) of [6], we have, for all ι ∈ I,

πι ⊗ πι = πG ⊕ π
(1)
ι

with the trivial representation πG of G and a continuous, irreducible, (d2
ι − 1)-

dimensional, unitary representation π
(1)
ι of G. Consequently, it follows for the

corresponding character χι of πι that, for all ι ∈ I,

χιχι = 1G + χ
(1)
ι ,

where 1G denotes the one-character of G. If ι, ι′ ∈ I such that ι 6= ι′, we have
χι 6= χι′ , in particular χ

(1)
ι 6= χ

(1)
ι′ . Thus, the characters χι, ι ∈ I, fulfill the

special decompositions in Theorem 3.12(ii). In fact, by p. 788 of [5], the Sidon set
{πι : ι ∈ J} is also lacunary.

(iii) For any fixed i ∈ {0, 1/2, 1, 3/2, . . .}, let χi denote the character corre-
sponding to the representation T(i) of SU(2) in accordance with 29.13 of [6]. Then
it follows from Theorem 29.26 of [6] that

χ∗i χi = χiχi =
2i

∑
k=0

χk = χ0 +
2i

∑
k=1

χk,

where χ0 is the one-character of SU(2). Hence, for all k = 1, . . . , 2i, the char-
acters χk from the decompositions of χ∗i χi and χ∗j χj, such that i < j, are equal.
Consequently, the character χi does not fulfill the special decomposition of The-
orem 3.12(iii). In fact, by p. 789 of [5], the dual object ΣSU(2) of SU(2) has no
infinite lacunary subset.

Furthermore, for the compact groups SO(3), U(2) and O(3), we get similar
results such that the special decompositions in Theorem 3.12(iii) are not valid,
respectively.

Combining a special case of property (ii) of a lacunary subset in the dual
object of a compact group in Remark 3.13 with Definition 3.1 of a Sidon set, we
make the following

DEFINITION 3.15. Let E = {pi}i∈E be a Sidon set. We call E a Helgason–
Sidon set if there is a constant C > 1 such that, for all i ∈ E,

(3.1) ∑
k∈Ki

nk 6 C.

REMARK 3.16. Obviously, the characters from Remark 3.14(i) and (ii) fulfill
inequality (3.1), whereas in Remark 3.14(iii) we get a constant Ci depending on
the character χi.

PROPOSITION 3.17. Let E = {pi}i∈E be a Sidon set. Then the following asser-
tions are equivalent:

(i) E is a Helgason–Sidon set.
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(ii) There is a constant C > 1 such that, for all i ∈ E,

∑
l∈Li

ml 6 C.

(iii) There is a constant C > 1 such that, for all i ∈ E,

‖χi‖4
4,ϕ = ∑

k∈Ki

n2
k = ∑

l∈Li

m2
l 6 C.

Proof. (i)⇒ (iii) There is a constant C > 1 such that, for all i ∈ E,

∑
k∈Ki

n2
k 6

(
∑

k∈Ki

nk

)2
6 C2.

The rest of assertion (iii) follows from Proposition 2.12.
(iii)⇒ (i) There is a constant C > 1 such that, for all i ∈ E,

∑
k∈Ki

nk 6 ∑
k∈Ki

n2
k 6 C.

(ii)⇔ (iii) In like manner, we obtain this equivalence.

DEFINITION 3.18. Let E = {pi}i∈E be a Sidon set. We call E a strong Sidon
set if there is a constant C > 1 such that, for all i ∈ E,

di 6 C.

PROPOSITION 3.19. A strong Sidon set is also a Helgason–Sidon set.

Proof. Let E = {pi}i∈E be a strong Sidon set. Then there is a constant C > 1
such that di 6 C for all i ∈ E. Using the fact that the dimension of χ∗i χi is equal
to d2

i and regarding the decomposition χ∗i χi = ∑
k∈Ki

nkχk by (2.1), we get, for all

i ∈ E,

∑
k∈Ki

nk 6 ∑
k∈Ki

nkdk = d2
i 6 C2.

THEOREM 3.20. Let E = {pi}i∈E be a Helgason–Sidon set (strong Sidon set)
with constant BE , and let J be a finite subset of E. Let aj ∈ C for all j ∈ J, and let
f := ∑

j∈J
ajχj. Then there is a constant C > 1 such that

‖ f ‖2,ϕ =
√

∑
j∈J
|aj|2 6

√
2CBE‖ f ‖1,ϕ, in particular

∥∥∥∑
j∈J
F−1(pj)

∥∥∥
2,ϕ

=
√

∑
j∈J

d2
j 6
√

2CBE
∥∥∥∑

j∈J
F−1(pj)

∥∥∥
1,ϕ

and

∥∥∥∑
j∈J

χj

∥∥∥
2,ϕ

=
√
|J| 6

√
2CBE

∥∥∥∑
j∈J

χj

∥∥∥
1,ϕ

.
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Proof. By Proposition 3.19, we need only to consider the case that E =
{pi}i∈E is a Helgason–Sidon set. Then, according to Proposition 3.17, there are
constants C1, C2 > 1 such that, for all j ∈ J ⊆ E,

∑
k∈Kj

nk 6 C1 and ∑
l∈Lj

ml 6 C2.

Let C := max(C1, C2). By rearranging the occurring sums, we thus infer from
Lemma 3.10 and Proposition 3.11 that

‖g‖4
4,ϕ,[0,1] 6 ϕ

((
∑
j∈J
|aj|2χ∗j χj

)2)
+ ϕ

((
∑
j∈J
|aj|2χjχ

∗
j

)2)
= ∑

i∈I

(
∑
j∈J
|aj|2nij

)2
+ ∑

i∈I

(
∑
j∈J
|aj|2mij

)2

6
(

∑
i∈I

∑
j∈J
|aj|2nij

)2
+
(

∑
i∈I

∑
j∈J
|aj|2mij

)2

=
(

∑
j∈J
|aj|2 ∑

k∈Kj

nk

)2
+
(

∑
j∈J
|aj|2 ∑

l∈Lj

ml

)2
6 2C2

(
∑
j∈J
|aj|2

)2
.

Together with Lemmas 3.9, 3.8 and 3.6, it follows that(
∑j∈J |aj|2

)3/2

√
2C ∑j∈J |aj|2

6
‖g‖3

2,ϕ,[0,1]

‖g‖2
4,ϕ,[0,1]

6 ‖g‖1,ϕ,[0,1] 6 BE‖ f ‖1,ϕ.

Consequently, by Proposition 2.9, we have shown the assertion.

REFERENCES

[1] T. BLENDEK, Normen von Projektionen im Dual einer kompakten Kac-Algebra, Ph.D. Dis-
sertation, University of Hamburg, Hamburg 2010.

[2] J. DIXMIER, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France
81(1953), 9–39.

[3] M. ENOCK, J.-M. SCHWARTZ, Kac Algebras and Duality of Locally Compact Groups,
Springer-Verlag, Berlin-Heidelberg-New York 1992.

[4] G.H. HARDY, J.E. LITTLEWOOD, A new proof of a theorem on rearrangements, J.
London Math. Soc. 23(1948), 163–168.

[5] S. HELGASON, Lacunary Fourier series on noncommutative groups, Proc. Amer. Math.
Soc. 9(1958), 782–790.

[6] E. HEWITT, K.A. ROSS, Abstract Harmonic Analysis. II, Springer-Verlag, Berlin-
Heidelberg-New York 1970.

[7] B.-J. KAHNG, Fourier transform on locally compact quantum groups, J. Operator The-
ory 64(2010), 69–87.



L1-NORM ESTIMATES OF CHARACTER SUMS 399

[8] S.V. KONJAGIN, On the Littlewood problem [Russian], Izv. Akad. Nauk. U.S.S.R. Ser.
Mat. 45(1981), 243–265.

[9] J. KUSTERMANS, S. VAES, Locally compact quantum groups, Ann. Sci. École Norm.
Sup. (4) 33(2000), 837–934.

[10] J. KUSTERMANS, S. VAES, Locally compact quantum groups in the von Neumann
algebraic setting, Math. Scand. 92(2003), 68–92.

[11] A. MAES, A. VAN DAELE, Notes on compact quantum groups, Nieuw Arch. Wisk. (4)
16(1998), 73–112.

[12] O.C. MCGEHEE, L. PIGNO, B. SMITH, Hardy’s inequality and the L1 norm of expo-
nential sums, Ann. of Math. 113(1981), 613–618.

[13] W. RUDIN, Fourier Analysis on Groups, Interscience Publ., a division of John Wiley and
Sons, New York-London 1962.

[14] M. TAKESAKI, Theory of Operator Algebras. I, Springer-Verlag, Berlin-Heidelberg-New
York 2003.

[15] A. VAN DAELE, The Haar measure on a compact quantum group, Proc. Amer. Math.
Soc. 123(1995), 3125–3128.

[16] A. VAN DAELE, Discrete quantum groups, J. Algebra 180(1996), 431–444.

[17] S.L. WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys. 111(1987),
613–665.

[18] S.L. WORONOWICZ, Compact quantum groups, in Symétries quantiques (Les Houches,
1995), North-Holland, Amsterdam 1998, pp. 845–884.

[19] A. ZYGMUND, Trigonometric Series. I, Cambridge Univ. Press, Cambridge 1959.

TOBIAS BLENDEK, DEPARTMENT OF MATHEMATICS AND STATISTICS, HELMUT

SCHMIDT UNIVERSITY HAMBURG, HOLSTENHOFWEG 85, 22043 HAMBURG, GERMANY

E-mail address: tobias.blendek@gmx.de
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