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ABSTRACT. For an operator T of class C0 with multiplicity two, we show that
the quasisimilarity class of an invariant subspace M is determined by the qua-
sisimilarity classes of the restriction T|M and of the compression TM⊥ . We also
provide a canonical form for the subspace M.
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1. INTRODUCTION

Let T : H → H and T : H′ → H′ be bounded linear operators on Hilbert
spaces. If M and M′ are invariant subspaces for T and T′ respectively (that is
M ⊂ H and M′ ⊂ H′ are closed subspaces such that TM ⊂ M and T′M′ ⊂ M′),
we say that M is a quasiaffine transform of M′ if there exists a bounded injective
operator with dense range X : H → H′ such that XT = T′X and XM = M′. We
write M ≺ M′ when M is a quasiaffine transform of M′. In that case, we also
say that M′ lies in the quasiaffine orbit of M. When M ≺ M′ and M′ ≺ M, we
say that M and M′ are quasisimilar and write M ∼ M′. Quasisimilarity is clearly
an equivalence relation on the class of pairs of the form (T, M), where M is an
invariant subspace for the bounded linear operator T. In [2], Bercovici raised the
basic problem underlying our present investigation: describe the quasisimilarity
class of a given invariant subspace for an operator of class C0 (see definition in
Section 2). Theorem 2.12 below (see Section 2) is classical and offers a complete
and very simple answer to the problem in the case where the operator has mul-
tiplicity one (that is the operator has a cyclic vector). Hence, we are interested in
operators of class C0 with multiplicity higher than one.

In their pioneering work (see [8]), Bercovici and Tannenbaum considered
the case where T is a so-called uniform Jordan operator (namely T = S(θ) ⊕
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S(θ) ⊕ · · · ) with finite multiplicity. In that case, they established that the qua-
sisimilarity class of M is determined by the quasisimilarity class of the restriction
T|M (see Section 2). Moreover, the authors observed that for T = S(z2)⊕ S(z),
this classification breaks down, so the corresponding result may fail if T is not
uniform. Later on, it was proved in [2] that this classification of invariant sub-
spaces of a uniform Jordan operator holds if and only if T|M has property (P). In
general, the quasisimilarity class of an invariant subspace for a uniform Jordan
operator is determined by the quasisimilarity classes of the restriction T|M and
of the compression TM⊥ (see [3]).

In the context of a non-uniform Jordan operator, much less is known. Re-
lated results for general operators of class C0 can be found in [2], where it is
proved that the quasisimilarity class of an invariant subspace is determined by
that of T|M if and only if T has property (Q). In case where T|M has multiplicity
one, then the weakly quasiaffine orbit of an invariant subspace M is determined
by the quasisimilarity classes of T|M and TM⊥ (see [4]).

More recently, nilpotent operators of finite multiplicity have been consid-
ered by Li and Müller in [10]. They proved that the quasisimilarity class of M is
determined by the quasisimilarity classes of T|M and TM⊥ when either of those
operators has multiplicity one. In addition, the authors considered a combina-
torial object (a sequence of partitions) known as a Littlewood–Richardson sequence
which encodes the relationships that must hold between the Jordan models of
T, T|M and TM⊥ (see also [9], [6] and [7]). Using these objects, they prove that
for multiplicity at least three, the quasisimilarity classes of T|M and TM⊥ are not
enough to determine the quasisimilarity class of M (so that our main theorem is
sharp as far as multiplicities are concerned). In fact, that information does not
even suffice to determine the larger equivalence class of invariant subspaces hav-
ing a fixed Littlewood–Richardson sequence. However, an easy argument shows
that in the case of multiplicity two, the knowledge of the quasisimilarity classes
of T, T|M and TM⊥ is enough to determine the Littlewood–Richardson sequence
corresponding to M: the so-called Littlewood–Richardson rule can be satisfied in
only one way. Hence, this case seems to involve some kind of uniqueness which
is not present for higher multiplicities. Our main result confirms and strenghtens
this observation, in fact we show that for arbitary operators of class C0 with mul-
tiplicity two, the quasisimilarity class of an invariant subspace M is determined
by that of T|M and TM⊥ . We also identify a specific invariant subspace which can
serve as a canonical space.

2. BACKGROUND AND PRELIMINARIES

We give here some background concerning operators of class C0. Let H∞

be the algebra of bounded holomorphic functions on the open unit disc D. Let
H be a Hilbert space and T a bounded linear operator on H, which we indicate
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by T ∈ B(H). The operator T is said to be of class C0 if there exists an algebra
homomorphism Φ : H∞ → B(H) with the following properties:

(i) ‖Φ(u)‖ 6 u for every u ∈ H∞;
(ii) Φ(p) = p(T) for every polynomial p;

(iii) Φ is continuous when H∞ and B(H) are given their respective weak*
topologies;

(iv) Φ has non-trivial kernel.

We use the notation Φ(u) = u(T), which is the Sz.-Nagy–Foias H∞ func-
tional calculus. It is known that ker Φ = mT H∞ for some inner function mT called
the minimal function of T. The minimal function is uniquely determined up to a
scalar factor of absolute value one. Given a vector x ∈ H, we define its minimal
function, which we denote by mx, to be the minimal function of the restriction of

the operator T to the invariant subspace
∞∨

n=0
Tnx. A vector x ∈ H is said to be

maximal for T if mx coincides with mT up to a scalar factor of absolute value one.

A set E ⊂ H is said to be cyclic for T ifH =
∞∨

n=0
TnE.

THEOREM 2.1 ([1], Theorem 2.3.6, Theorem 2.3.7). Let T ∈ B(H) be an opera-
tor of class C0. Then the set of maximal vectors for T is a dense Gδ inH. Moreover, given
any Banach space K and any bounded linear operator A : K → H with the property that
AK is a cyclic set for T, the set

{k ∈ K : Ak is maximal for T}

is a dense Gδ in K.

We denote by H2 the Hilbert space of functions

f (z) =
∞

∑
n=0

anzn

holomorphic on the open unit disc, equipped with the norm

‖ f ‖2 =
∞

∑
n=0
|an|2.

Our first lemma is well known.

LEMMA 2.2. Given f1, f2, . . . , fn ∈ H2, there exists an outer function v ∈ H∞

such that f1v, f2v, . . . , fnv all belong to H∞ as well.

Proof. It suffices to define the absolute value of v on the unit circle, which
we take to be

1
1 + | f1|+ · · ·+ | fn|

.

Recall that given functions u, v ∈ H∞, we say that u divides v and write
u|v if there exists a function w ∈ H∞ such that v = wu. We write u ∧ v for the
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greatest common inner divisor of u and v, and u ∨ v for their least common inner
multiple. Both of these quantities are determined up to a scalar factor of absolute
value one. If u and v are inner functions such that u|v and v|u (or, equivalently,
u and v only differ by a scalar factor of absolute value one), we write u ≡ v. An
inner function u ∈ H∞ is said to divide f ∈ H2 if f ∈ uH2. We naturally denote
by f ∧ u the greatest common inner divisor of f and u. A very useful consequence
of Theorem 2.1 is the following.

THEOREM 2.3 ([1], Theorem 3.1.14). Let { f j}∞
j=0 ⊂ H2 be a bounded sequence

of functions, and let θ ∈ H∞ be an inner function. Then the set of sequences {aj}∞
j=0 in

`1 satisfying the following, is a dense Gδ:( ∞

∑
j=0

aj f j

)
∧ θ ≡

∞∧
j=0

f j ∧ θ.

For any inner function θ ∈ H∞, the space H(θ) = H2 	 θH2 is closed and
invariant for S∗, the adjoint of the shift operator S on H2. The operator S(θ)
defined by S(θ)∗ = S∗|(H2 	 θH2) is called a Jordan block; it is of class C0 with
minimal function θ. We give some useful properties of these operators; they will
be used repeatedly throughout and often without explicit mention.

PROPOSITION 2.4 ([1], Proposition 3.1.10, Corollary 3.1.12). Let θ ∈ H∞ be
an inner function.

(i) The operator S(θ) has multiplicity one. In fact, h ∈ H(θ) is cyclic if and only if
h ∧ θ ≡ 1.

(ii) If φ ∈ H∞ is an inner divisor of θ, then φH2 	 θH2 is an invariant subspace for
S(θ). In fact,

φH2 	 θH2 = ran φ(S(θ)) = ker(θ/φ)(S(θ)).
Conversely, any invariant subspace for S(θ) is of this form.

(iii) Let u ∈ H∞ be any function and let X = u(S(θ)). Then ker X = ker X∗ = {0}
if and only if u ∧ θ ≡ 1.

The following result follows from the commutant lifting theorem (see [11]).

THEOREM 2.5 ([1], Theorem 3.1.16). Let θ0 and θ1 be two inner functions. As-
sume that X : H(θ0)→ H(θ1) satisfies XS(θ0) = S(θ1)X. Then there exists a function
u ∈ H∞ such that θ1|uθ0, ‖u‖ = ‖X‖ and

X = PH(θ1)
u(S)|H(θ0).

Conversely, given any function u ∈ H∞ satisfying θ1|uθ0, the operator

PH(θ1)
u(S)|H(θ0)

intertwines S(θ1) and S(θ0).

A more general family of operators consists of the so-called Jordan operators.
We will define them here in the case where the Hilbert space on which they act is
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separable. These operators are of the form
∞⊕

j=0
S(θj) where {θj}∞

j=0 is a sequence

of inner functions satisfying θj+1|θj for j > 0. The Jordan operators are of funda-
mental importance in the study of operators of class C0 as the following theorem
illustrates. Recall first that a bounded injective linear operator with dense range
is called a quasiaffinity. Two operators T ∈ B(H) and T′ ∈ B(H′) are said to be
quasisimilar if there exist quasiaffinities X : H → H′ and Y : H′ → H such that
XT = T′X and TY = YT′. We use the notation T ∼ T′ to indicate that T and
T′ are quasisimilar. Recall also that the multiplicity of an operator is the smallest
cardinality of a cyclic set.

THEOREM 2.6 ([1], Theorem 3.5.1, Corollary 3.5.25). For any operator T of
class C0 acting on a separable Hilbert space there exists a unique Jordan operator J =
∞⊕

j=0
S(θj) such that T and J are quasisimilar. Moreover, for each j > 0 we have

θj ≡
∧
{φ ∈ H∞ : T|ran φ(T) has multiplicity at most j}.

The operator J in the previous theorem is called the Jordan model of T.

COROLLARY 2.7 ([1], Theorem 3.4.12). Let T be an operator of class C0 with

Jordan model
∞⊕

j=0
S(θj). Then T has multiplicity at most n if and only if θn ≡ 1.

THEOREM 2.8 ([1], Corollary 3.1.7, Proposition 3.5.30). Let T be an operator of

class C0 with Jordan model
∞⊕

j=0
S(θj). Then T∗ is also of class C0 and its Jordan model is

∞⊕
j=0

S(θ∼j ), where for any function u ∈ H∞ we define u∼(z) = u(z) for z ∈ D.

The next result will be crucial for us; it is usually referred to as the splitting
principle.

THEOREM 2.9 ([2], Proposition 1.17). Let T ∈ B(H) be an operator of class
C0 with Jordan model S(θ0) ⊕ S(θ1). Let K ⊂ H be an invariant subspace such that

T|K ∼ S(θ0). Let k ∈ K be a cyclic vector for (T|K)∗ and set K′ =
∞∨

n=0
(T)∗nk,

L = H	K′. ThenH = K ∨ L, K ∩ L = {0} and T|L ∼ S(θ1).

To an operator of class C0 with finite multiplicity we can associate an in-

ner function called its determinant: if
∞⊕

j=0
S(θj) is the Jordan model of the operator

T which has multiplicity n, then det T = θ0θ1 · · · θn−1. The following result is
helpful when calculating the functions appearing in the Jordan model of an op-
erator. Given an invariant subspace M for an operator T, we denote by TM⊥ the
compression PM⊥T|M⊥.
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THEOREM 2.10 ([1], Theorem 7.1.4). Let T be an operator of class C0 with fi-
nite multiplicity, and let M be an invariant subspace for T. Then det T = det(T|M)
det(TM⊥).

A consequence is the following.

THEOREM 2.11 ([1], Remark 7.1.15, Proposition 7.1.21). Let T ∈ B(H) and
T′ ∈ B(H′) be two operators of class C0 with finite multiplicities such that det T =
det T′. Let X : H → H′ be a bounded linear operator such that XT = T′X. Then X is
one-to-one if and only if it has dense range.

We now collect some facts about invariant subspaces for operators of
class C0.

THEOREM 2.12 ([1], Theorem 3.2.13). Let T be an operator of class C0 with mul-
tiplicity one. Then for every inner divisor θ of mT , there exists a unique invariant sub-
space M such that T|M ∼ S(θ), namely M = ker θ(T) = ran(mT/θ)(T).

Given an operator T ∈ B(H), we denote its commutant by {T}′ = {X ∈
B(H) : XT = TX}. Recall that a closed subspace M is said to be hyperinvariant
for T if it is invariant for every operator X ∈ {T}′.

THEOREM 2.13 ([1], Proposition 4.2.1). Let
∞⊕

j=0
S(θj) be a Jordan operator. Then

a subspace M is hyperinvariant if and only if it is of the form

K =
∞⊕

j=0

(ψj H2 	 θj H2)

where ψj|θj, ψj+1|ψj and (θj+1/ψj+1)|(θj/ψj) for every j > 0.

Let us mention elementary facts about matrices of operators. Here and
throughout, we identify a function u ∈ H∞ with the multiplication operator
f 7→ u f it defines on H2.

LEMMA 2.14. Let θ0, θ1 ∈ H∞ be two inner functions such that θ1|θ0. Let A ⊂
M2(H∞) be the subalgebra of matrices A = (aij)i,j=0,1 such that θ0/θ1 divides a01. Let
H = H(θ0)⊕ H(θ1) and T = S(θ0)⊕ S(θ1). Then the map

Ψ : A → {T}′

Ψ(A) = PHA| H

is a surjective algebra homomorphism, with

ker Ψ =
{( θ0b00 θ0b01

θ1b10 θ1b11

)
: bij ∈ H∞, i, j = 0, 1

}
.

For every A ∈ A, there exists A′ ∈ A such that the operator Ψ(A′) satisfies

Ψ(A)Ψ(A′) = Ψ(A′)Ψ(A) = u(T),
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where u=det A. When det A∧θ0≡ 1we have that Ψ(A) and Ψ(A′) are quasiaffinities.

Proof. Theorem 2.5 ensures that Ψ maps A onto {T}′. Moreover, it is clear
that Ψ is linear and that it has the announced kernel. It remains to show that it is
multiplicative. First note that if b ∈ H∞ is divisible by θ0/θ1, then

PH(θ0)
bPH(θ1)

a f = PH(θ0)
b(a f − Pθ1 H2 a f ) = PH(θ0)

ba f

for every a ∈ H∞, f ∈ H2. Moreover, since H(θ1) ⊂ H(θ0), we have

PH(θ1)
bPH(θ0)

a|H(θ0) = PH(θ1)
PH(θ0)

bPH(θ0)
a|H(θ0)

= PH(θ1)
PH(θ0)

ba|H(θ0) = PH(θ1)
ba|H(θ0)

for every b, a ∈ H∞. These considerations show that

PH(BA)| H = (PHB| H)(PHA| H)

for A ∈ M2(H∞) and B ∈ A, so that Ψ is an algebra homomorphism.
Given A ∈ A, let A′ be the (pointwise) algebraic adjoint of A, so that AA′ =

A′A = u IdC2 with u = det A. Note that a′01 = −a01 so that A′ ∈ A. Set X = Ψ(A)
and X′ = Ψ(A′). We have X′X = Ψ(A′A) = u(T) = Ψ(AA′) = XX′, that is

XX′ = XX′ =
(

u(S(θ0)) 0
0 u(S(θ1))

)
.

When u ∧ θ0 ≡ 1, the operator u(T) is a quasiaffinity by Proposition 2.4. In par-
ticular, this shows that X and X′ are quasiaffinities.

Let us recall a relation between operators which is weaker than that of qua-
sisimilarity. Given T ∈ B(H) and T′ ∈ B(H′), we say that T is a quasiaffine
transform of T′ and we write T ≺ T′, if there exists a quasiaffinity X : H → H′
such that XT = T′X.

THEOREM 2.15 ([1], Proposition 3.5.32). Let T and T′ be two operators of class
C0. Then T ≺ T′ is equivalent to T ∼ T′.

The next proposition can rephrased as saying that any multiplicity two op-
erator of class C0 has the so-called property (∗) (see [2]).

PROPOSITION 2.16 ([1], Lemma 4.1.11, Proposition 4.1.13). Let T be an oper-
ator of class C0 with multiplicity two. Let X ∈ {T}′ be a quasiaffinity. Then there exists
another quasiaffinity Y ∈ {T}′ and a function u ∈ H∞ such that XY = YX = u(T).

We obtain a useful consequence.

LEMMA 2.17. Let T be an operator of class C0 with multiplicity two. Let M, M′

be invariant subspaces for T. Assume that there exist quasiaffinities X, X′ ∈ {T}′ such
that XM = X′M′. Then M ∼ M′.



502 RAPHAËL CLOUÂTRE

Proof. By Proposition 2.16, there exist quasiaffinities Y, Y′ ∈ {T}′ and func-
tions u, u′ ∈ H∞ such that XY = YX = u(T) and X′Y′ = Y′X′ = u′(T). Hence,

YX′M′ = YXM = u(T)M ⊂ M and Y′XM = Y′X′M′ = u′(T)M′ ⊂ M′.

On the other hand, by Theorem 2.15 we have that

T|M′∼T|X′M′=T|XM∼T|Y′XM and T|M∼T|XM=T|X′M′∼T|YX′M′

so that Theorem 2.11 implies that YX′M′ = M and Y′XM = M′, and we are
done.

Let us close this section by proving an elementary fact which motivates our
main result.

PROPOSITION 2.18. Let T ∈ B(H) and T′ ∈ B(H′) be operators of class C0 with
finite multiplicities. Assume that X : H → H′ is a quasiaffinity such that XT = T′X.
Let M ∈ H be an invariant subspace for T. Then T′|XM ∼ T|M and T′

(XM)⊥
∼ TM⊥ .

Proof. We clearly have T ≺ T′, so by Theorem 2.15 we find T ∼ T′. Hence
det T = det T′. If we let E = XM, it follows from Theorem 2.15 again that T′|E ∼
T|M, and in particular det(T|M) = det(T′|E). Using Theorem 2.10, we find

det(TM⊥) =
det T

det(T|M)
=

det T′

det(T′|E) = det(T′E⊥).

Moreover, we have X∗E⊥ ⊂ M⊥ and X∗T′∗ = T∗X∗. Since X∗ is injective, we
may apply Theorem 2.11 to find X∗E⊥ = M⊥. This establishes T′∗|E⊥ ≺ T∗|M⊥.
By Theorem 2.15, we have T′∗|E⊥ ∼ T∗|M⊥ and T′E⊥ ∼ TM⊥ .

Proposition 2.18 shows in particular that if T is an operator of class C0 with
multiplicity two and M, M′ are invariant subspaces for T, then M ∼ M′ implies
T|M ∼ T|M′ and TM⊥ ∼ TM′⊥ . Our main theorem says that the converse holds.

3. JORDAN MODEL AND HYPERINVARIANCE

Let us first make a convention. Let θ0, θ1 ∈ H∞ be inner functions such that
θ1 divides θ0. In the space H(θ0)⊕ H(θ1), we identify the subspace H(θ0)⊕ {0}
with H(θ0) and the subspace {0}⊕H(θ1) with H(θ1). Given M ⊂ H(θ0)⊕H(θ1)
an invariant subspace for the Jordan operator S(θ0) ⊕ S(θ1), it is easy to verify
that PH(θj)

M is invariant for S(θj) for each j = 0, 1, so by Proposition 2.4 we can

find φj ∈ H∞ an inner divisor of θj such that PH(θj)
M = φj H2	 θj H2. We will use

this observation implicitly throughout the remainder of the paper. The following
result allows us to focus on a very special kind of subspace M; it is a spiritual
cousin of Theorem 3.2 in [4].
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THEOREM 3.1. Let T = S(θ0)⊕ S(θ1) be a Jordan operator and M be an invari-
ant subspace for T. Then there exists a quasiaffinity X ∈ {T}′ such that

PH(θ0)
XM⊕ PH(θ1)

XM

is a hyperinvariant subspace for T.

Proof. Let ξ ∈ M be a maximal vector for T|M and write ξ = ξ0 ⊕ ξ1 ∈
H(θ0)⊕ H(θ1). By Theorem 2.3, we can find non-zero a0, a1 ∈ C such that(

a0ξ0 + a1
θ0

θ1
ξ1

)
∧ θ0 ≡ ξ0 ∧

θ0

θ1
ξ1 ∧ θ0

along with non-zero b0, b1 ∈ C such that

(b0ξ0 + b1ξ1) ∧ θ1 ≡ ξ0 ∧ ξ1 ∧ θ1 and(
a0b1 − b0a1

θ0

θ1

)
∧ θ0 ≡ a0 ∧ a1

θ0

θ1
∧ θ0 ≡ 1∧ θ0

θ1
∧ θ0 ≡ 1.

Set

A =

(
a0 a1θ0/θ1
b0 b1

)
and X = PH(θ0)⊕H(θ1)

A|(H(θ0)⊕ H(θ1)).

Now, det A = a0b1 − b0a1θ0/θ1, so that X is a quasiaffinity commuting with T by
Lemma 2.14. Notice that

mT|M ≡ mξ ≡
θ0

ξ0 ∧ θ0
∨ θ1

ξ1 ∧ θ1
≡ θ0

ξ0 ∧ (θ0/θ1)ξ1 ∧ θ0
.

Therefore, if we let Xξ = y0 ⊕ y1 ∈ H(θ0)⊕ H(θ1) we find

y0 ∧ θ0 ≡
(

a0ξ0 + a1
θ0

θ1
ξ1

)
∧ θ0 ≡ ξ0 ∧

θ0

θ1
ξ1 ∧ θ0 ≡

θ0

mT|M
and

y1 ∧ θ1 ≡ (b0ξ0 + b1ξ1) ∧ θ1 ≡ ξ0 ∧ ξ1 ∧ θ1

so that y1 ∧ θ1 divides θ0/mT|M.
Consider now the hyperinvariant subspace generated by M,

E =
∨
{YM : Y ∈ {T}′}.

By Theorem 2.13, E can be written as

E = (ψ0H2 	 θ0H2)⊕ (ψ1H2 	 θ1H2)

for some inner functions ψ0, ψ1∈H∞ with the property that ψ1|ψ0, (θ1/ψ1)|(θ0/ψ0)
and ψj|θj for j=0, 1. Note that for Y∈{T}′, u∈H∞ and h∈H(θ0)⊕H(θ1), we have

u(T)Yh = Yu(T)h

which shows that mT|M(T)Yh = 0 for every h ∈ M and Y ∈ {T}′, whence the
minimal functions of T|E and T|M coincide, and

θ0

ψ0
≡ mT|E ≡ mT|M.
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For each j = 0, 1, write
PH(θj)

XM = φj H2 	 θj H2

where φj is an inner divisor of θj. Since XM ⊂ E, we have

φj H2 	 θjH2 = PH(θj)
XM ⊂ PH(θj)

E = ψj H2 	 θj H2

and thus ψj divides φj for j = 0, 1. Notice that y0 ∈ PH(θ0)
XM, so φ0 divides

y0 ∧ θ0. But we established above that y0 ∧ θ0 ≡ θ0/mT|M ≡ ψ0, so we find
φ0 ≡ ψ0. In addition, y1 ∈ PH(θ1)

XM implies that φ1 divides y1 ∧ θ1, which in
turn divides θ0/mT|M as was shown above. Since θ0/mT|M ≡ ψ0 ≡ φ0, we have
that φ1 divides φ0. Finally, using the fact that ψ1 divides φ1, we find that θ1/φ1
divides θ1/ψ1, which in turn divides θ0/ψ0 ≡ θ0/φ0. Theorem 2.13 completes the
proof.

The following is based on Theorem 3.4 of [4]. Properties (iii) and (iv) below
are part of the so-called Weyl identities (see [5]).

PROPOSITION 3.2. Let T = S(θ0) ⊕ S(θ1) be a Jordan operator. Let M be an
invariant subspace for T. For each j = 0, 1, write

PH(θj)
M = φjH2 	 θj H2

where φj is an inner divisor of θj. Assume that φ1|φ0 and (θ1/φ1)|(θ0/φ0). Let S(α0)⊕
S(α1) be the Jordan model of T|M and S(β0)⊕ S(β1) be the Jordan model of TM⊥ . Then:

(i) θ0θ1 = α0α1β0β1;
(ii) φ0 ≡ θ0/α0 and φ1 ≡ β1;

(iii) (θ1/β1)|α0;
(iv) β1|(θ0/α0) and β1|(θ1/α1).

Proof. Using the decompositionH = M⊕M⊥ to compute the determinant,
we find by Theorem 2.10 that

θ0θ1 = det T = det(T|M)det(TM⊥) = α0α1β0β1

which is (i). Assume for the moment that (ii) holds. Then, (iii) is equivalent
to our assumption (θ1/φ1)|(θ0/φ0). Moreover, φ1|φ0 is equivalent to the first
part of (iv). Note now that if h = h0 ⊕ h1 ∈ M, then by choice of φ1 we have
(θ1/φ1)(T)h ∈ H(θ0)⊕ {0}, so in fact the operator

(T|M)|ran(θ1/φ1)(T|M)

has multiplicity at most 1. By Theorem 2.6, we conclude that α1|(θ1/φ1) so the
second half of (iv) also follows from (ii). Hence, it only remains to identify φ0 and
φ1, that is to show (ii).

Since T|M has multiplicity two, we can find vectors ξ = ξ0 ⊕ ξ1 ∈ M and
η = η0 ⊕ η1 ∈ M with ξ j, ηj ∈ H(θj) for j = 0, 1, such that

M =
∞∨

n=0
{Tnξ, Tnη}.



QUASISIMILARITY OF INVARIANT SUBSPACES FOR C0 OPERATORS WITH MULTIPLICITY TWO 505

It is easy to see that φj ≡ ξ j ∧ ηj ∧ θj and

PH(θj)
M =

∞∨
n=0
{S(θj)

nξ j, S(θj)
nηj}

for j = 0, 1. Now, we have

S(θj)|PH(θj)
M ∼ S(θj/φj)

so that θj/φj is the minimal function of S(θj)|PH(θj)
M. Since for every u ∈ H∞ we

have
u(T) = u(S(θ0))⊕ u(S(θ1)),

it is clear that the minimal function of T|M, namely α0, is equal to the least com-
mon inner multiple of the minimal functions of S(θj)|PH(θj)

M for j = 0, 1, which
is θ0/φ0. Hence, α0 ≡ θ0/φ0.

Consider the operators Y = PH(θ0)
|M and Z = PH(θ1)

|M. It is straightfor-
ward to verify that

YTM	ker Y = (S(θ0)|YM)(Y|(M	 ker Y)) and

ZTM	ker Z = (S(θ1)|ZM)(Z|(M	 ker Z)).

Thus, by virtue of Theorem 2.15, we get

TM	ker Y ∼ S(θ0)|PH(θ0)
M ∼ S(θ0/φ0) and

TM	ker Z ∼ S(θ1)|PH(θ1)
M ∼ S(θ1/φ1).

Notice now that

ker Y = M ∩ (0⊕ H(θ1)) = 0⊕ (ρH2 	 θ1H2) and

ker Z = M ∩ (H(θ0)⊕ 0) = (σH2 	 θ0H2)⊕ 0

for some inner functions ρ, σ ∈ H∞ such that ρ divides θ1 and σ divides θ0.
We now calculate the determinant using the decomposition M = ker Y ⊕ (M 	
ker Y), namely

α0α1 = det(T|M) = det(T| ker Y)det(TM	ker Y) =
θ0θ1

φ0ρ
.

Using the fact that α0 ≡ θ0/φ0, we find α1 ≡ θ1/ρ. On the other hand, writing
M = ker Z⊕ (M	 ker Z) and computing determinants, we find

α0α1 = det(T|M) = det(T| ker Z)det(TM	ker Z) =
θ0θ1

σφ1
.

whence

σ =
θ0θ1

α0α1φ1
.

Using once again that α0 ≡ θ0/φ0, we get

σ ≡ ρ
φ0

φ1
.
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Note that by assumption φ1 divides φ0, so that ρ divides σ. Now, β0 is the minimal
function of TM⊥ , and thus is the greatest common inner divisor of the functions
u ∈ H∞ such that u(T)(H(θ0)⊕ H(θ1)) ⊂ M. Given such a function u, we have

u(T)(PH(θ0)
1⊕ 0) = PH(θ0)

u⊕ 0 ∈ M ∩ (H(θ0)⊕ 0) = ker Z

and thus σ divides u. Conversely, using that ρ divides σ, we have

σ(T)(H(θ0)⊕ H(θ1))= ran σ(S(θ0))⊕ran σ(S(θ1))⊂ ran σ(S(θ0))⊕ran ρ(S(θ1))

=(σH2 	 θ0H2)⊕ (ρH2 	 θ1H2)=ker Z ∨ ker Y ⊂ M.

Hence, β0 ≡ σ. Finally, using the decomposition H = M⊕M⊥ to compute the
determinant, we find

θ0θ1 = det T = det(T|M)det(TM⊥) = α0α1β0β1

and thus

β1 ≡
θ0θ1

α0α1β0
≡ φ0ρ

σ
≡ φ1.

We close this section by providing a type of converse to Proposition 3.2. Let
us first establish an elementary lemma.

LEMMA 3.3. Let T = S(θ0)⊕ S(θ1) be a Jordan operator. Assume that φ0, φ1 ∈
H∞ are inner divisors of θ0 and θ1 respectively, with the additional property that either
(θ1/φ1)|(θ0/φ0) or (θ0/φ0)|(θ1/φ1). Set

ξ = (PH(θ0)
φ0)⊕ (PH(θ1)

φ1) ∈ H(θ0)⊕ H(θ1).

Then
∞∨

n=0
Tnξ ⊂ {(PH(θ0)

φ0g)⊕ (PH(θ1)
φ1g) : g ∈ H2}.

Proof. Let y = y0 ⊕ y1 ∈
∞∨

n=0
Tnξ. We can find a sequence of polynomials

{rn}n with the property that for each j = 0, 1, we have

yj = lim
n→∞

rn(S(θj))(PH(θj)
φj).

Notice now that for each n > 0, we have

rn(S(θj))(PH(θj)
φj) = PH(θj)

rnφj = φjPH(θj/φj)
rn

= φj(S(θj))(PH(θj)
rn) ∈ ran φj(S(θj)).

Proposition 2.4 implies that the range of φj(S(θj)) is closed, so there exist gj ∈
H(θj) with the property that yj=φj(S(θj))gj=φjPH(θj/φj)

gj. We have for j=0, 1 that

φjPH(θj/φj)
gj = lim

n→∞
φjPH(θj/φj)

rn

and since 1/φj = φj we find that

(3.1) PH(θj/φj)
gj = lim

n→∞
PH(θj/φj)

rn.
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If (θ1/φ1)|(θ0/φ0), we have H(θ1/φ1) ⊂ H(θ0/φ0) and (3.1) implies that

PH(θ1/φ1)
g0 = PH(θ1/φ1)

g1.

Hence
y1 = φ1PH(θ1/φ1)

g1 = φ1PH(θ1/φ1)
g0 = PH(θ1)

φ1g0

so that
y0 ⊕ y1 ∈ {(PH(θ0)

φ0g)⊕ (PH(θ1)
φ1g) : g ∈ H2}.

If, on the other hand, (θ0/φ0)|(θ1/φ1), we have H(θ0/φ0) ⊂ H(θ1/φ1) and (3.1)
implies that PH(θ0/φ0)

g1 = PH(θ0/φ0)
g0. Hence

y0 = φ0PH(θ0/φ0)
g0 = φ0PH(θ0/φ0)

g1 = PH(θ0)
φ0g1

so that
y0 ⊕ y1 ∈ {(PH(θ0)

φ0g)⊕ (PH(θ1)
φ1g) : g ∈ H2}.

PROPOSITION 3.4. Let θj, αj, β j ∈ H∞ be inner functions such that αj|θj and
β j|θj for j = 0, 1. Assume that:

(i) θ1|θ0, β1|β0 and α1|α0;
(ii) (θ1/β1)|α0;

(iii) β1|((θ0/α0) ∧ (θ1/α1));
(iv) θ0θ1 = α0α1β0β1.

Let T = S(θ0)⊕ S(θ1). If we set

ξ = (PH(θ0)
(θ0/α0))⊕ (PH(θ1)

β1) and η = 0⊕ (PH(θ1)
(θ1/α1)),

then

N =
∞∨

n=0
{Tnξ, Tnη}

is an invariant subspace for T with the property that

PH(θ0)
N=(θ0/α0)H2	θ0H2, PH(θ1)

N=β1H2	θ1H2, T|N∼S(α0)⊕S(α1)

and TN⊥ ∼ S(β0)⊕ S(β1).

Proof. Let φ0 = θ0/α0, φ1 = β1, ψ0 = θ0 and ψ1 = θ1/α1. We have η =
(PH(θ0)

ψ0)⊕(PH(θ1)
ψ1)=0⊕(PH(θ1)

ψ1) and ξ=(PH(θ0)
φ0)⊕(PH(θ1)

φ1). It is mani-
fest in view of (ii) that (θ1/φ1)|(θ0/φ0) and we have trivially that (θ0/ψ0)|(θ1/ψ1).
By Lemma 3.3, we have that

∞∨
n=0

Tnξ ⊂ {(PH(θ0)
φ0g)⊕ (PH(θ1)

φ1g) : g ∈ H2} and

∞∨
n=0

Tnη ⊂ {(PH(θ0)
ψ0g)⊕ (PH(θ1)

ψ1g) : g ∈ H2} = {0⊕ (PH(θ1)
ψ1g) : g ∈ H2}.

We want to show that the sets appearing on the right-hand sides intersect trivially.
Suppose then that PH(θ0)

φ0g = 0 and PH(θ1)
φ1g = PH(θ1)

ψ1h for some g, h ∈ H2.
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The first relation implies that g ∈ (θ0/φ0)H2. Since (θ1/φ1)|(θ0/φ0), we have
that θ1|(φ1θ0/φ0) and thus

PH(θ1)
ψ1h = PH(θ1)

φ1g = 0.

We have therefore established that

{(PH(θ0)
φ0g)⊕(PH(θ1)

φ1g) : g∈H2}∩{(PH(θ0)
ψ0g)⊕(PH(θ1)

ψ1g) : g∈H2}={0}

whence Kξ ∩ Kη = {0}, where Kξ =
∞∨

n=0
Tnξ and Kη =

∞∨
n=0

Tnη.

It is straightforward to verify that the minimal function of ξ is α0 (by (ii)),
and that the minimal function of η is α1. Define N = Kξ ∨ Kη . Using the fact that
Kξ ∩ Kη = {0}, it is easy to see that

T|N ∼ T|Kξ ⊕ T|Kη ∼ S(α0)⊕ S(α1).

It follows from (iii) that φ0|ψ0 and φ1|ψ1, thus PH(θj)
N = φj H2	θjH2 for j = 0, 1.

Finally, suppose the Jordan model of TN⊥ is equal to S(γ0)⊕S(γ1). By Theo-
rem 3.2 (along with (ii) and (iii)), we find that γ1 = φ1 = β1. By Theorem 2.10 we
have

θ0θ1 = det T = det(T|N)det(TN⊥) = α0α1γ0β1

so that property (iv) implies γ0 = β0. This completes the proof.

4. CLASSIFICATION THEOREM

We take the final step towards our classification result.

PROPOSITION 4.1. Let T = S(θ0)⊕ S(θ1) be a Jordan operator. Let M and M′ be
invariant subspaces for T such that T|M ∼ T|M′ and TM⊥ ∼ TM′⊥ . Let S(α0)⊕ S(α1)
be the Jordan model of T|M and T|M′, and S(β0)⊕ S(β1) be the Jordan model of TM⊥
and TM′⊥ . For j = 0, 1, let

PH(θj)
M = φjH2 	 θj H2 and PH(θj)

M′ = φ′j H
2 	 θj H2,

where φj and φ′j are inner divisors of θj. Assume that φ1|φ0 and (θ1/φ1)|(θ0/φ0), along
with φ′1|φ′0 and (θ1/φ′1)|(θ0/φ′0). Then there exists a quasiaffinity X ∈ {T}′ such that
M = XM′.

Proof. By Proposition 3.2, we have that φ0 ≡ θ0/α0 ≡ φ′0 and φ1 ≡ β1 ≡ φ′1,
so that

PH(θj)
M = PH(θj)

M′

for j = 0, 1. Define

E = PH(θ0)
M⊕ PH(θ1)

M = PH(θ0)
M′ ⊕ PH(θ1)

M′,
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which is hyperinvariant for T by Theorem 2.13. Hence, E contains M and M′

along with any image of those subspaces under an operator lying in the commu-
tant of T.

By Theorem 2.1, we may choose ξ = ξ0 ⊕ ξ1 ∈ M a maximal vector for T|M
with the additional property that ξ j is maximal for S(θj)|PH(θj)

M for each j = 0, 1.
Similarly, we may choose ξ ′ = ξ ′0 ⊕ ξ ′1 ∈ M′ a maximal vector for T|M′ with the
additional property that ξ ′j is maximal for S(θj)|PH(θj)

M′ for each j = 0, 1. By
Lemma 2.2, there exists an outer function v ∈ H∞ such that vξ0, vξ1, vξ ′0 and
vξ ′1 all belong to H∞. Since v is outer and θ0 is inner, we have v ∧ θ0 ≡ 1, so
that v(S(θ0)), v(S(θ1)) and v(T) are quasiaffinities by Proposition 2.4, and thus
v(T)ξ and v(T)ξ ′ have the same maximality properties as ξ and ξ ′ respectively.
Consequently, upon replacing ξ ∈ M and ξ ′ ∈ M′ by v(T)ξ ∈ M and v(T)ξ ′ ∈ M′

respectively, we may further assume that

ξ = (PH(θ0)
φ0 f0)⊕ (PH(θ1)

φ1 f1) and ξ ′ = (PH(θ0)
φ0 f ′0)⊕ (PH(θ1)

φ1 f ′1)

where f0, f1, f ′0, f ′1 ∈ H∞ satisfy f j ∧ θ0 ≡ f ′j ∧ θ0 ≡ 1 for j = 0, 1. Define

Y =

(
f0(S(θ0)) 0

0 f1(S(θ1))

)
, Y′ =

(
f ′0(S(θ0)) 0

0 f ′1(S(θ1))

)
.

It is clear Y′ξ = Yξ ′. Lemma 2.14 implies that Y, Y′ ∈ {T}′ are quasiaffinities
and that there exist quasiaffinities Z, Z′ ∈ {T}′ such that ZY = YZ = ( f0 f1)(T)

and Z′Y′ = Y′Z′ = ( f ′0 f ′1)(T). If we set K =
∞∨

n=0
Tnξ ⊂ M and K′ =

∞∨
n=0

Tnξ ′ ⊂

M′, then Z′Yξ ′ = Z′Y′ξ = ( f ′0 f ′1)(T)ξ ∈ K, so that Z′YK′ ⊂ K. By virtue of
Theorem 2.15, we see that T|Z′YK′ ∼ T|K′ ∼ S(α0), so Theorem 2.12 implies that
Z′YK′ = K. In particular, K ⊂ Z′YM′. In addition, we have Z′YM′ ⊂ E because
of the hyperinvariance of E .

Choose now a cylic vector k ∈ K for (T|K)∗; the fact that (T|K)∗ has multi-
plicity one follows from Theorem 2.8. Define the following subspaces:

KM =
∞∨

n=0
(T|M)∗nk, KM′ =

∞∨
n=0

(T|Z′YM′)∗nk, KE =
∞∨

n=0
(T|E)∗nk,

along with LM = M	 KM, LM′ = Z′YM′ 	 KM′ and F = E	 KE. We claim now
that LM ⊂ F and LM′ ⊂ F. Indeed, let h ∈ LM ⊂ M ⊂ E. Then, for any n > 0, we
have

〈h, (T|E)∗nk〉 = 〈h, PET∗nk〉 = 〈h, PMT∗nk〉 = 〈h, (T|M)∗nk〉 = 0

since LM ⊥ KM. A similar computation shows that LM′ ⊂ F.
Note that the Jordan model of T|E is easy to identify given the form of E

and the fact that θ1/φ1 divides θ0/φ0:

T|E ∼ S(θ0/φ0)⊕ S(θ1/φ1) = S(α0)⊕ S(θ1/β1).
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Also, by Theorem 2.15 we have T|Z′YM′ ∼ T|M′ ∼ S(α0)⊕S(α1). We now apply
Theorem 2.9 to T|M, T|Z′YM′ and T|E for the subspace K ⊂ M ∩ Z′YM′ ∩ E. We
have that

LM ∩ K = LM′ ∩ K = F ∩ K = {0},
M = K ∨ LM, Z′YM′ = K ∨ LM′ , E = K ∨ F and

T|LM ∼ T|LM′ ∼ S(α1), T|F ∼ S(θ1/β1).

Since LM, LM′ ⊂ F and T|F has multiplicity one, Theorem 2.12 implies that LM =

LM′ , whence M = K ∨ LM = K ∨ LM′ = Z′YM′. Setting X = Z′Y completes the
proof.

We can now establish the existence of a canonical space.

THEOREM 4.2. Let T ∈ B(H) be an operator of class C0 with Jordan model
S(θ0) ⊕ S(θ1). Let M ⊂ H be an invariant subspace for T such that S(α0) ⊕ S(α1)
is the Jordan model of T|M and S(β0)⊕ S(β1) is the Jordan model of TM⊥ . Let N ⊂
H(θ0)⊕ H(θ1) be the smallest invariant subspace for S(θ0)⊕ S(θ1) containing

ξ = (PH(θ0)
(θ0/α0))⊕ (PH(θ1)

β1) and η = 0⊕ (PH(θ1)
(θ1/α1)).

Then M is quasisimilar to N.

Proof. Let J = S(θ0)⊕ S(θ1). By Theorem 2.6, we can find quasiaffinities A :
H → H(θ0)⊕ H(θ1) and B : H(θ0)⊕ H(θ1) → H such that AT = JA, BJ = TB.
Applying Theorem 3.1, we obtain a quasiaffinity X ∈ {J}′ such that

PH(θ0)
XAM⊕ PH(θ1)

XAM

is a hyperinvariant subspace for J. By virtue of Proposition 2.18, we have J|XAM
∼ T|M and J(XAM)⊥ ∼ TM⊥ . By Theorem 2.13, Proposition 3.2, Proposition 3.4
and Proposition 4.1, we can find a quasiaffinity Y ∈ {J}′ such that YXAM = N,
and thus M ≺ N. Now, it is obvious that N ≺ BN, whence M ≺ BN. But then
Lemma 2.17 implies that BN ∼ M, and thus N ≺ M. This completes the proof.

The main result of the paper is now easily proved.

THEOREM 4.3. Let T be an operator of class C0 with multiplicity two. Let M, M′

be two invariant subspaces for T. Then M ∼ M′ if and only if T|M ∼ T|M′ and
TM⊥ ∼ TM′⊥ .

Proof. One direction follows from Proposition 2.18 and the sentence imme-
diately following its proof. Assume now that T|M ∼ T|M′ and TM⊥ ∼ TM′⊥ .
Then Theorem 4.2 implies the existence of an invariant subspace N for the Jordan
model of T such that M ∼ N and M′ ∼ N, so we are done.
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