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ABSTRACT. We describe KMS-states on the C∗-algebras of etale groupoids in
terms of measurable fields of traces on the C∗-algebras of the isotropy groups.
We use this description to analyze tracial states on the transformation groupo-
id C∗-algebras and to give a short proof of recent results of Cuntz, Deninger
and Laca on the Toeplitz algebras of the ax + b semigroups of the rings of
integers in number fields.
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INTRODUCTION

The problem of classifying KMS-states for various C∗-dynamical systems
has been extensively studied since the 1970s. Although it can be approached from
different angles, one general result is particularly useful and can be applied to al-
most all known examples. It is the theorem proved by Renault [12] which states
that for the C∗-algebra of an etale principal groupoid G with the dynamics given
by an R-valued 1-cocycle c, there is a one-to-one correspondence between KMSβ-
states and quasi-invariant probability measures on G(0) with Radon–Nikodym
cocycle e−βc. Once a C∗-algebra is written as a groupoid C∗-algebra, this theo-
rem allows one, in many cases, to reduce the study of KMS-states to a measure-
theoretic problem, to which results and methods of the dynamical systems theory
can be applied; see e.g. [3].

Recently, however, several natural examples of C∗-algebras of non-principal
groupoids have emerged where the structure of KMS-states is relatively simple,
but it cannot be understood in terms of quasi-invariant measures only. One such
example is the Toeplitz algebra of the semigroup No N× studied by Laca and
Raeburn [8]. In this example one has, for every β > 2, a unique quasi-invariant
measure on G(0) with the required Radon–Nikodym cocycle, but the simplex of
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KMSβ-states is isomorphic to the simplex of probability measures on the unit
circle. The reason for this structure is that for non-principal groupoids possible
extensions of a state on C0(G(0)) to a KMS-state on C∗(G) are determined by
a choice of tracial states on the C∗-algebras of the isotropy groups. In the case
studied by Laca and Raeburn these isotropy groups turn out to be Z, and this
explains why measures on the circle appear naturally in the classification of KMS-
states. This idea was briefly outlined in the preliminary version [11] of this note
and in the introduction to [6]. In this extended version we formulate the result
more explicitly and in a more general setting than discussed in [11] and [6], and
consider more examples.

The proposed strategy for classifying KMS-states on the C∗-algebra C∗(G)
of an etale groupoid can therefore be described as follows, see Section 1 for precise
statements.

First we have to find all probability measures µ on G(0) with Radon–
Nikodym cocycle e−βc. If the µ-measure of the set of points with non-trivial
isotropy is zero, then the only way to extend µ∗ to a KMSβ-state is by compos-
ing µ∗ with the canonical conditional expectation C∗(G)→ C0(G(0)).

Otherwise all possible extensions of µ∗ are obtained by choosing tracial
states ϕx on the C∗-algebras C∗(Gx

x) of the isotropy groups. The additional re-
quirements on ϕx are that the field (ϕx)x is essentially G-invariant and µ-measu-
rable.

These requirements imply that it suffices to specify ϕx on a subset intersect-
ing almost every orbit of points with non-trivial isotropy. If the action of G on G(0)

has complicated dynamics and a lot of isotropy, this is hardly a simplification and
our description of possible extensions of µ∗ is probably not very useful. But in
many examples the measures µ are concentrated on a set with only countably
many points with non-trivial isotropy. In such cases this description allows us to
divide classification of KMS-states into two almost disjoint problems: classifica-
tion of quasi-invariant measures on G(0) with a given Radon–Nikodym cocycle
and classification of tracial states on C∗(Gx

x) for countably many points.
This note consists of three sections. Section 1 contains our main general

results.
In Section 2 we explain what they mean for transformation groupoids and

tracial states. In particular, we will show that classification of tracial states on
crossed products by abelian groups reduces completely to a measure-theoretic
problem.

In Section 3 we consider the Toeplitz algebras of the ax + b semigroups of
the rings of integers in number fields, recently studied by Cuntz, Deninger and
Laca [2], and recover the classification of KMS-states obtained in [2]. Our ap-
proach clarifies why some computations in [2] resemble those used in the study
of the Bost–Connes systems of number fields. It also explains why certain repre-
sentations play a prominent role in the construction of KMS-states in [2].
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1. KMS STATES ON GROUPOID C∗-ALGEBRAS

Let G be a locally compact second countable etale groupoid. We denote the
unit space of G by G(0), and the range and source maps G → G(0) by r and s, re-
spectively. Recall that being etale means that r and s are local homeomorphisms.
For x ∈ G(0) put

Gx = r−1(x), Gx = s−1(x) and Gx
x = Gx ∩ Gx.

The C∗-algebra C∗(G) of the groupoid G is the C∗-enveloping algebra of the ∗-
algebra Cc(G) with convolution product

( f1 ∗ f2)(g) = ∑
h∈Gr(g)

f1(h) f2(h−1g)

and involution f ∗(g) = f (g−1).
Let µ be a probability measure on G(0). Assume that for µ-a.e. x ∈ G(0) we

are given a state ϕx on C∗(Gx
x). Denote the generators of C∗(Gx

x) by ug, g ∈ Gx
x .

We say that the field of states {ϕx}x∈G(0) is µ-measurable if for every f ∈ Cc(G)
the function

G(0) 3 x 7→ ∑
g∈Gx

x

f (g)ϕx(ug)

is µ-measurable; note that this function is always bounded. We do not distinguish
between measurable fields which agree for µ-a.e. x.

Recall that the centralizer Aϕ of a state ϕ on a C∗-algebra A is the set of
elements a ∈ A such that ϕ(ab) = ϕ(ba) for all b ∈ A.

THEOREM 1.1. There is a one-to-one correspondence between states on C∗(G)

with the centralizer containing C0(G(0)) and pairs (µ, {ϕx}x) consisting of a probability
measure µ on G(0) and a µ-measurable field of states ϕx on C∗(Gx

x). Namely, the state
corresponding to (µ, {ϕx}x) is given by

ϕ( f ) =
∫

G(0)

∑
g∈Gx

x

f (g)ϕx(ug)dµ(x) for f ∈ Cc(G).

Proof. Assume ϕ is a state on C∗(G) with the centralizer containing the al-
gebra C0(G(0)). Let (H, π, ξ) be the corresponding GNS-triple. By Renault’s dis-
integration theorem [12], [13], the representation π is the integrated form of a
representation of G on a measurable, with respect to a measure class [ν] on G(0),
field of Hilbert spaces Hx, x ∈ G(0). Identifying H with

∫
G(0)

⊕Hx dν(x), consider

the vector field (ξx)x that defines ξ. Let µ be the measure on G(0) such that
dµ(x) = ‖ξx‖2dν(x). In other words, µ is the measure defined by the restric-
tion of ϕ to C0(G(0)). The action of G on (Hx)x defines, for every x, a represen-
tation ρx : C∗(Gx

x) → B(Hx). For every x with ξx 6= 0 denote by ϕx the state
‖ξx‖−2(ρx(·)ξx, ξx) on C∗(Gx

x).
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For every f ∈ Cc(G) we have

ϕ( f ) = (π( f )ξ, ξ) =
∫
X

∑
g∈Gx

f (g)(gξs(g), ξx)dν(x).

Therefore to prove the identity in the formulation of the theorem we have to show
that for ν-a.e. x and every g ∈ Gx \ Gx

x we have (gξs(g), ξx) = 0. Choose an
open subset U ⊂ G \ G′, where G′ =

⋃
x

Gx
x is the isotropy bundle, such that

r(U) ∩ s(U) = ∅. Let f ∈ Cc(U). For any function h ∈ Cc(r(U)) we have
f ∗ h = 0. Since h is in the centralizer of ϕ, we therefore get

0 = ϕ(h ∗ f ) =
∫

r(U)

h(x) ∑
g∈Gx

f (g)(gξs(g), ξx)dν(x).

Hence ∑
g∈Gx

f (g)(gξs(g), ξx) = 0 for ν-a.e. x ∈ r(U). It follows that (gξs(g), ξx) = 0

for ν-a.e. x ∈ r(U) and all g ∈ Gx ∩U. Since G \ G′ can be covered by countably
many such sets U, we conclude that (gξs(g), ξx) = 0 for ν-a.e. x ∈ G(0) and all
g ∈ Gx \ Gx

x .
Conversely, assume we are given a probability measure µ on G(0) and a µ-

measurable field of states ϕx on C∗(Gx
x). For every x define a state ψx on C∗(G) by

ψx( f ) = ∑
g∈Gx

x

f (g)ϕx(ug) for f ∈ Cc(G).

In order to show that ψx is indeed a well-defined state, consider the GNS-triple
(Kx, πx, ξx) defined by ϕx. Induce πx to a representation of G and denote by ϑx its
integrated form. Explicitly, ϑx is the representation on the space Lx of functions
ξ : Gx → Kx such that

ξ(gh) = πx(u∗h)ξ(g) for g ∈ Gx and h ∈ Gx
x , and ∑

g∈Gx/Gx
x

‖ξ(g)‖2 < ∞,

given by

(ϑx( f )ξ)(g) = ∑
h∈Gr(g)

f (h)ξ(h−1g) for f ∈ Cc(G).

Let ζx ∈ Lx be the vector defined by ζx(g) = πx(u∗g)ξx if g ∈ Gx
x and ζx(g) = 0 if

ζ ∈ Gx \ Gx
x . Then ψx = (ϑx(·)ζx, ζx).

Clearly, C0(X) is contained in the centralizer of ψx; in fact, for any f ∈ C0(X)
and a ∈ C∗(G) we have ψx( f a) = ψx(a f ) = f (x)ψx(a). By assumption, the map
x 7→ ψx(a) is µ-measurable for every a ∈ Cc(G), hence for every a ∈ C∗(G).
Therefore we can define ϕ(a) =

∫
X

ψx(a)dµ(x).

Finally, it is easy to see that if (µ, {ϕx}x) and (µ̃, {ϕ̃x}x) define the same
state then µ = µ̃ and ϕx = ϕ̃x for µ-a.e. x.
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Let E : C∗(G)→ C0(G(0)) be the canonical conditional expectation. Given a
probability measure µ on G(0), consider the µ-measurable field of states consist-
ing of canonical traces on C∗(Gx

x). The corresponding state on C∗(G) is µ∗ ◦ E.

COROLLARY 1.2. Let µ be a probability measure on G(0). Assume that the points
of G(0) with non-trivial isotropy form a set of µ-measure zero. Then ϕ = µ∗ ◦ E
is the unique state on C∗(G) such that the centralizer of ϕ contains C0(G(0)) and
ϕ|C0(G(0)) = µ∗.

A short proof of this corollary, not relying on the disintegration theorem,
can be obtained along the same lines as the proof of Proposition 1.1 in [4].

Let c be a continuous R-valued 1-cocycle on G, that is, a continuous ho-
momorphism c : G → R. It defines a one-parameter group of automorphisms
of C∗(G) by σc

t ( f )(g) = eitc(g) f (g).
Recall that a measure µ on G(0) is called quasi-invariant with Radon–Niko-

dym cocycle ec if dµr/dµs = ec, where the measures µr and µs on G are defined by∫
G

f dµr =
∫

G(0)

∑
g∈Gx

f (g)dµ(x),
∫
G

f dµs =
∫

G(0)

∑
g∈Gx

f (g)dµ(x) for f ∈ Cc(G).

Equivalently, for every open set U ⊂ G such that r and s are injective on U we
have

d T∗µ
dµ

(x) = ec(gx) for x ∈ s(U),

where gx ∈ U is the unique element such that s(gx) = x and where T : r(U) →
s(U) is the homeomorphism defined by T(r(gx)) = x.

Now recall that if σ is a strongly continuous one-parameter group of au-
tomorphisms of a C∗-algebra A and β ∈ R, then a state ϕ on A is called a σ-
KMSβ-state if ϕ is σ-invariant and ϕ(ab) = ϕ(bσiβ(a)) for a dense set of σ-analytic
elements a, b ∈ A.

THEOREM 1.3. Let c be a continuous R-valued 1-cocycle on G, σc the dynam-
ics on C∗(G) defined by c, and β ∈ R. Then there exists a one-to-one correspondence
between σc-KMSβ-states on C∗(G) and pairs (µ, {ϕx}x) consisting of a probability mea-
sure µ on G(0) and a µ-measurable field of states ϕx on C∗(Gx

x) such that:
(i) µ is quasi-invariant with Radon–Nikodym cocycle e−βc;

(ii) ϕx(ug) = ϕr(h)(uhgh−1) for µ-a.e. x and all g ∈ Gx
x and h ∈ Gx; in particular,

ϕx is tracial for µ-a.e. x;
(iii) ϕx(ug) = 0 for µ-a.e. x and all g ∈ Gx

x \ c−1(0).

Note that if β 6= 0 and µ is a quasi-invariant measure with Radon–Nikodym
cocycle e−βc then Gx

x ⊂ c−1(0) for µ-a.e. x. Therefore condition (iii) is redundant
in this case, but it is still useful to keep it in mind. On the level of KMS-states this
corresponds to the following fact: if ϕ is a state such that ϕ(ab) = ϕ(bσiβ(a)) for
β 6= 0, then ϕ is automatically σ-invariant.
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Proof of Theorem 1.3. Since the centralizer of any σc-KMS-state ϕ contains the
algebra C0(G(0)), by Theorem 1.1 any such state is defined by a pair (µ, {ϕx}x)

consisting of a probability measure µ on G(0) and a µ-measurable field of states ϕx
on C∗(Gx

x). Therefore we just have to check that given such a pair (µ, {ϕx}x) the
corresponding state is a KMSβ-state if and only if conditions (i)–(iii) are satisfied.

It is easy to see that condition (iii) is equivalent to σc-invariance. We will
show that (i) and (ii) together are equivalent to ϕ( f1 ∗ f2) = ϕ( f2 ∗ σc

iβ( f1)) for all
f1, f2 ∈ Cc(G).

Assume the equality ϕ( f1 ∗ f2) = ϕ( f2 ∗ σc
iβ( f1)) holds for all f1, f2 ∈ Cc(G).

Fix an open set U ⊂ G such that r and s are injective on U. Let x 7→ hx be the
inverse of r : U → r(U), and x 7→ hx the inverse of s : U → s(U). Denote by
T : r(U) → s(U) the homeomorphism defined by Tx = s(hx), so that hTx = hx.
For f1 ∈ Cc(U) and f2 ∈ Cc(G) we have

( f1 ∗ f2)(g) =

{
f1(hx) f2((hx)−1g) if x = r(g) ∈ r(U),
0 if r(g) /∈ r(U),

( f2 ∗ σc
iβ( f1))(g) =

{
e−βc(hx) f1(hx) f2(gh−1

x ) if x = s(g) ∈ s(U),
0 if s(g) /∈ s(U).

Therefore the equality ϕ( f1 ∗ f2) = ϕ( f2 ∗ σc
iβ( f1)) reads as

(1.1)
∫

r(U)

f1(hx) ∑
g∈Gx

x

f2((hx)−1g)ϕx(ug)dµ(x)

=
∫

s(U)

e−βc(hx) f1(hx) ∑
g∈Gx

x

f2(gh−1
x )ϕx(ug)dµ(x).

Let f ∈ Cc(s(U)). Apply the above identity to the functions f1 and f2 defined by
f1(hx) = f (x) for x ∈ s(U) and f2 = f ∗1 . Since f1(hx) = f1(hTx) = f (Tx) for
x ∈ r(U), we get ∫

r(U)

| f (Tx)|2dµ(x) =
∫

s(U)

e−βc(hx)| f (x)|2dµ(x).

Since this is true for all U on which r and s are injective and all f ∈ Cc(s(U)), we
see that µ is quasi-invariant with Radon–Nikodym cocycle e−βc, so condition (i)
is satisfied. But then (1.1), for arbitrary f1 ∈ Cc(U) and f2 ∈ Cc(G), can be
written as∫

r(U)

f1(hx) ∑
g∈Gx

x

f2((hx)−1g)ϕx(ug)dµ(x)

=
∫

r(U)

f1(hTx) ∑
g∈GTx

Tx

f2(gh−1
Tx )ϕTx(ug)dµ(x).
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Using that hTx = hx and Gx
x hx = hxGTx

Tx , this, in turn, can be written as∫
r(U)

f1(hx) ∑
g∈Gx

x

f2((hx)−1g)ϕx(ug)dµ(x)

=
∫

r(U)

f1(hx) ∑
g∈Gx

x

f2((hx)−1g)ϕTx(u(hx)−1ghx )dµ(x).

Since this equality holds for all f1 ∈ Cc(U) and f2 ∈ Cc(G), we conclude that for
µ-a.e. x ∈ r(U) we have ϕx(ug) = ϕTx(u(hx)−1ghx ) for all g ∈ Gx

x . As G can be
covered by countably many open sets U such that r and s are injective on U, it
follows that ϕx(ug) = ϕr(h)(uhgh−1) for µ-a.e. x and all g ∈ Gx

x and h ∈ Gx, so
condition (ii) is also satisfied.

Conversely, if conditions (i) and (ii) are satisfied, then we see from the above
computations that ϕ( f1 ∗ f2) = ϕ( f2 ∗ σc

iβ( f1)) for all f1 ∈ Cc(U) and f2 ∈ Cc(G),
where U ⊂ G is any open set such that r and s are injective on U. Hence

ϕ( f1 ∗ f2) = ϕ( f2 ∗ σc
iβ( f1))

for all f1, f2 ∈ Cc(G).

Given a probability measure µ on G(0) with Radon–Nikodym cocycle e−βc,
the simplest way to extend the state µ∗ to a σc-KMSβ-state on C∗(G) is by com-
posing µ∗ with the conditional expectation E : C∗(G)→ C0(G(0)). As we already
noted, this corresponds to taking the canonical traces on C∗(Gx

x) for ϕx. If the
points with non-trivial isotropy have measure zero, then µ∗ ◦ E is the unique σc-
KMSβ-state extending µ∗. In general, to extend µ∗ we have to find measurable
fields of tracial states satisfying properties (ii) and (iii) above. If there are many
points with non-trivial isotropy, this is a difficult problem and it is not clear how
useful the description in terms of fields of traces is. A simple example of such
a rich isotropy bundle structure is the transformation groupoid of the action of
the infinite symmetric group S∞ on {0, 1}∞. In many cases, however, the mea-
sure µ is concentrated on a set with only countably many points with non-trivial
isotropy, and then the above result gives a complete description of possible ex-
tensions of µ∗.

COROLLARY 1.4. Suppose µ is a quasi-invariant probability measure on G(0)

with Radon–Nikodym cocycle e−βc. Assume there exists a sequence {On}N
n=1, N ∈

N∪ {+∞}, of different orbits of the action of G on G(0) such that µ(On) > 0 for every n,
and almost all points in G(0) \ ⋃

n
On have trivial isotropy. Choose a point xn ∈ On for

every n. Then there is a one-to-one correspondence between σc-KMSβ-states on C∗(G)

extending the state µ∗ on C0(G(0)) and sequences of tracial states τn on C∗(Gxn
xn ) such

that τn(ug) = 0 for every g ∈ Gxn
xn \ c−1(0).
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Proof. Every orbit On is a countable set, so the measurability assumption is
satisfied for any choice of states ϕx on C∗(Gx

x) for x ∈ On. Since the action of G
on On is transitive, the map {ϕx}x∈On 7→ ϕxn is a bijection between sequences
of states such that ϕx(ug) = ϕr(h)(uhgh−1) for every x ∈ On and all g ∈ Gx

x and
h ∈ Gx and the set of tracial states on C∗(Gxn

xn ).

2. TRACES ON CROSSED PRODUCTS

Let X be a locally compact second countable space. Assume a countable
group Γ acts on X by homeomorphisms. Then C0(X)o Γ is the C∗-algebra of the
transformation groupoid X× Γ. We will apply the results of the previous section
to describe tracial states on C0(X)o Γ.

For x ∈ X, denote by Γx the stabilizer of x in Γ. Let µ be a probability
measure on X. According to our definition, a field of states ϕx on C∗(Γx) is µ-
measurable if, for every g ∈ Γ, the function x 7→ ϕx(ug) is µ-measurable on the
closed set of points fixed by g. This can also be formulated as follows.

Every state ϕx extends to a state ψx on C∗(Γ) such that ψx(ug) = 0 for
every g /∈ Γx. This can be proved using induction, exactly as in the proof of
Theorem 1.1, so we will write IndΓ

Γx ϕx for ψx. Then {ϕx}x is µ-measurable if and
only if the map x 7→ IndΓ

Γx ϕx from X into the state space S(C∗(Γ)) of C∗(Γ) is
µ-measurable, where S(C∗(Γ)) is considered with the Borel structure defined by
the weak∗ topology.

Applying Theorem 1.3 to the transformation groupoid X × Γ and the zero
cocycle, we get the following result.

THEOREM 2.1. There is a one-to-one correspondence between tracial states on
C0(X)o Γ and pairs (µ, {ϕx}x) consisting of a probability measure µ on X and a µ-
measurable field of states ϕx on C∗(Γx) such that:

(i) µ is Γ-invariant;
(ii) ϕx(ug) = ϕhx(uhgh−1) for µ-a.e. x and all g ∈ Γx and h ∈ Γ.

Equivalently, we can say that to define a tracial state we need a Γ-invariant
probability measure µ on X and a field of tracial states ϕx on C∗(Γx) such that the
map x 7→ IndΓ

Γx ϕx ∈ S(C∗(Γ)) is µ-measurable and Γ-equivariant, where g ∈ Γ

acts on S(C∗(Γ)) by mapping a state ψ into ψ ◦ (Ad ug)−1.
The above result was obtained using Renault’s disintegration theorem. In

the case of transformation groupoids this theorem is a simple consequence of
standard results on disintegration of representations of C∗-algebras, see for ex-
ample Chapter IV in [14]. But, in fact, in this case the groupoid picture can be
bypassed altogether. In order to show this we will need the following observa-
tion, which in a way goes back to Appendix in [9].
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LEMMA 2.2. For any state ϕ on a unital C∗-algebra A, there exists a unique
state Φ on Aop

ϕ ⊗max A such that Φ(a⊗ b) = ϕ(ab) for all a ∈ Aϕ and b ∈ A.

Proof. We may assume that A ⊂ B(H) and ϕ is defined by a cyclic vector
ξ ∈ H. Assume first that ξ is separating for A′′. Let J be the corresponding
modular conjugation. Define a representation π of Aop

ϕ ⊗max A on H by

π(a⊗ b) = Ja∗ Jb = bJa∗ J.

If a ∈ Aϕ, then a commutes with the modular operator, hence Jaξ = a∗ξ. There-
fore π(a⊗ b)ξ = baξ, so that Φ := (π(·), ξ, ξ) is the required state.

In the general case we will show that a representation π of Aop
ϕ ⊗max A such

that π(a⊗ b)ξ = baξ always exists. For a ∈ Aϕ and b, c ∈ A we have

(baξ, cξ) = (bξ, ca∗ξ).

It follows that for every a ∈ Aϕ there exists a well-defined operator ρ(a) on Aξ

such that ρ(a)bξ = baξ, and then ρ is a representation of Aop
ϕ on Aξ. Since ρ(u) is

unitary for unitary u, this is a representation by bounded operators, so it extends
to a representation of Aop

ϕ on H. Its image commutes with A, so we can define
a representation π of Aop

ϕ ⊗max A on H by π(a⊗ b) = ρ(a)b. Then π(a⊗ b)ξ =
baξ.

Assume now that ϕ is a state on A = C0(X)o Γ with the centralizer con-
taining C0(X). Using the above lemma define a state Φ on C0(X) ⊗ A. Denote
by j the canonical homomorphism C∗(Γ)→ M(A). Extending Φ to the multiplier
algebra and composing this extension with

id⊗j : C0(X)⊗ C∗(Γ)→ C0(X)⊗M(A),

we get a state Ψ on C0(X)⊗ C∗(Γ) such that

Ψ( f ⊗ a) = ϕ( f j(a)) for f ∈ C0(X) and a ∈ C∗(Γ).

Disintegrating Ψ with respect to C0(X) we get a probability measure µ on X and
states ψx on C∗(Γ) such that Ψ =

∫
X

⊕
ψx dµ(x), that is,

Ψ( f ⊗ ug) =
∫
X

f (x)ψx(ug)dν(x) for f ∈ C0(X) and g ∈ Γ.

Therefore ϕx = ψx|C∗(Γx) are exactly the states given by Theorem 1.1.
The above argument suggests yet another way of looking at pairs (µ, {ϕx}x)

consisting of a probability measure µ and a µ-measurable field of states on C∗(Γx):
any such pair defines a state Ψ =

∫
X

⊕ IndΓ
Γx ϕx dµ(x) on C0(X)⊗ C∗(Γ), and this

way we get all states Ψ =
∫
X

⊕
ψx dµ(x) such that ψx(ug) = 0 for µ-a.e. x ∈ X and

all g /∈ Γx.
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For abelian groups this point of view combined with Theorem 2.1 allow
us to completely reduce the classification of tracial states to a measure-theoretic
problem.

COROLLARY 2.3. If Γ is abelian, there is a bijection between tracial states τ on
C0(X)o Γ and probability measures ν =

∫
X

⊕
νx dµ(x) on X× Γ̂ such that

(i) ν is invariant with respect to the action of Γ on the first factor of X × Γ̂; equiva-
lently, µ is Γ-invariant and νx = νgx for µ-a.e. x ∈ X and every g ∈ Γ;

(ii) νx is Γ⊥x -invariant for µ-a.e. x ∈ X.
Namely, the trace τ corresponding to such a measure ν is given by

τ( f ug) =
∫

X×Γ̂

f (x)χ(g)dν(x, χ) for f ∈ C0(X) and g ∈ Γ.

Proof. We only need to note that if ϕx is the state on C∗(Γ) = C(Γ̂) defined
by νx then ϕx(ug) = 0 for all g /∈ Γx if and only if νx is Γ⊥x -invariant.

Note that in this case it is particularly easy to check that the state τ corre-
sponding to ν exists. Indeed, define a representation ρ of C0(X)o Γ on the space
L2(X× Γ̂, dν) by

(ρ( f )ζ)(x, χ) = f (x)ζ(x, χ), (ρ(ug)ζ)(x, χ) = χ(g)ζ(g−1x, χ)

and consider the function ξ ≡ 1 in L2(X× Ĝ, dν). Then τ = (ρ(·)ξ, ξ).

COROLLARY 2.4. If Γ is abelian, there exists a one-to-one correspondence between
extremal tracial states on C0(X)o Γ and triples (H, χ, µ), where H is a subgroup of Γ,
χ is a character of H and µ is an ergodic Γ-invariant probability measure µ on X such
that Γx = H for µ-a.e. x ∈ X. Namely, the trace corresponding to (H, χ, µ) is given by

τ( f ug) =

χ(g)
∫
X

f (x)dµ(x) if g ∈ H,

0 otherwise.

Proof. Extremal tracial states correspond to extremal probability measures ν

on X× Γ̂ with properties (i) and (ii) in Corollary 2.3. If ν is extremal, then its pro-
jection µ onto X is an extremal Γ-invariant measure, that is, µ is ergodic. But
then ν must be of the form µ× λ for a probability measure λ on Γ̂. Furthermore,
for every g ∈ Γ the set Xg = {x : gx = x} is Γ-invariant, so either Xg or its
complement has measure zero. In other words, on a subset of full measure we
have Γx = H for a subgroup H ⊂ Γ. Hence λ is H⊥-invariant, so it can be consid-
ered as a measure on Γ̂/H⊥ = Ĥ. As ν is extremal, λ is an extremal probability
measure on Ĥ, that is, λ = δχ for some χ ∈ Ĥ.

Conversely, any measure ν of the form µ× δχ, where µ is ergodic and χ ∈ Ĥ,
where H is the common stabilizer of the points in a subset of X of full measure,
is an extremal measure with properties (i) and (ii).
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REMARK 2.5. If τ is an extremal tracial state and (H, χ, µ) is the correspond-
ing triple, then there is a non-canonical isomorphism

πτ(C0(X)o Γ)′′ ∼= L∞(X, µ)o Γ/H.

Namely, extend χ to a character χ̃ of Γ. Then the required isomorphism ρ is given
by ρ( f ) = f ∈ L∞(X, µ), ρ(ug) = χ̃(g)ug, where g is the image of g in Γ/H.
Note that since L∞(X, µ) o Γ/H is a factor, this provides a direct proof of the
extremality of τ.

Finally, consider the case Γ = Z explicitly used in [6]. Denote by T : X → X
the homeomorphism corresponding to 1 ∈ Z. For n > 0 denote by Xn ⊂ X
the subset of points of period n (so X0 is the set of aperiodic points). Then any
measure ν on X × T with properties (i) and (ii) from Corollary 2.3 decomposes
into a sum of measures satisfying the same properties and concentrated on Xn×T
for some n.

If ν is concentrated on X0 then ν = µ × λ, where λ is the Lebesgue mea-
sure, and the corresponding trace is µ∗ ◦ E, where E : C0(X)oZ → C0(X) is the
canonical conditional expectation.

If µ is concentrated on Xn, n > 1, then ν is a Z/nZ× Z/nZ-invariant mea-
sure on Xn × T, where the second factor Z/nZ acts on T by rotations. Consider
the simplest case where µ is concentrated on the orbit of a point x of period n.

Then µ = n−1
n−1
∑

k=0
δTkx and ν = µ× λ, where λ is a measure that is invariant un-

der the rotation by 2π/n degrees (we will say that λ is n-rotation invariant). The
corresponding trace can be written as follows.

The ∗-homomorphism ρ : C0(X)→ C(Z/nZ), ρ( f )(k) = f (Tkx), extends to
a ∗-homomorphism

ρ : C0(X)oZ→ C(Z/nZ)oZ.

Passing to the dual groups we can identify C(Z/nZ)oZ with C(T)oZ/nZ. By
composing the canonical conditional expectation C(T)oZ/nZ→ C(T) = C∗(Z)
with ρ we then get a completely positive map

Ex : C0(X)oZ→ C∗(Z), Ex( f um) =
1
n

( n−1

∑
k=0

f (Tkx)
)

um,

where u = u1 ∈ M(C0(X) o Z) is the canonical unitary implementing T, so
u f u∗ = f (T−1·). The measure λ defines a state λ∗ on C∗(Z) by λ∗(um) =∫
T

zmdλ(z). Then λ∗ ◦ Ex is the required tracial state on C0(X)oZ.

It follows that in the case when there are only countably many periodic
orbits Corollary 2.3 for Γ = Z can be formulated as follows.

COROLLARY 2.6. Assume a homeomorphism T of X has at most countably many
periodic orbits On. For every n choose xn ∈ On. Then any tracial state τ on C0(X)oZ
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has a unique decomposition

τ = µ∗ ◦ E + ∑
n

λn∗ ◦ Exn ,

where µ is a T-invariant measure on X such that µ(On) = 0 for every n, λn is an
|On|-rotation invariant measure on T, and µ(X) + ∑

n
λn(T) = 1. Conversely, any such

collection of measures µ, λn defines a tracial state.

3. KMS STATES ON THE TOEPLITZ ALGEBRAS OF ax + b SEMIGROUPS

In a recent paper Cuntz, Deninger and Laca [2] have studied the Toeplitz
algebra of the ax + b semigroup of the ring of integers in a number field. In this
section we will show how to recover their classification of KMS-states using our
general framework. In addition to illustrating the general theory, our goal is to
clarify a connection between the rather involved analysis in [2] and that of the
Bost–Connes systems of number fields.

We will follow the notation in [7] rather than the one in [2]. Let K be a
number field with the ring of integers O. Denote by VK the set of places of K,
and by VK, f ⊂ VK the subset of finite places. For every place v denote by Kv
the completion of K at v. For v ∈ VK, f , let Ov be the closure of O in Kv. We
write v|∞ when v is infinite and denote by K∞ = ∏

v|∞
Kv the completion of K at

all infinite places. The adele ring AK is the restricted product, as v ranges over all
places, of the rings Kv, with respect to Ov ⊂ Kv for v ∈ VK, f . When the product is
taken only over finite places v, we get the ring AK, f of finite adeles; we then have
AK = K∞ ×AK, f . The ring of integral adeles is Ô = ∏

v∈VK, f

Ov ⊂ AK, f . Denote by

NK : A∗K, f → (0,+∞) the absolute norm.
Let T[O] be the Toeplitz algebra of the semigroup OoO× [2], where O× is

the semigroup of nonzero elements in O. Although T[O] can be defined in terms
of generators and relations, we will use a presentation of T[O] as a groupoid C∗-
algebra. For this consider the space ΩK defined as the quotient of AK, f ×AK, f /Ô∗
by the equivalence relation

(r, a) ∼ (s, b) ⇔ a = b and r− s ∈ aÔ.

In other words, ΩK consists of pairs (r, a) with a ∈ AK, f /Ô∗ and r ∈ AK, f /aÔ. It
is a locally compact space with the quotient topology. Denote by ΩO the compact
open subset of ΩK consisting of pairs (r, a) with a ∈ Ô/Ô∗ and r ∈ Ô/aÔ. The
group K oK∗ acts on AK, f ×AK, f by (n, k)(r, a) = (n+ kr, ka). This action defines
an action of K o K∗ on ΩK. By Propositions 5.1 and 5.2 in [2] there is a canonical
isomorphism

T[O] ∼= 1ΩO (C0(ΩK)o K o K∗)1ΩO .
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Therefore T[O] is the C∗-algebra of the reduction of the transformation groupoid
ΩK × (K o K∗) by ΩO . The homomorphism K o K∗ → R, (n, k) 7→ − log NK(k),
defines a 1-cocycle on the groupoid, which in turn defines a dynamics σ on T[O].

According to our general scheme, in order to classify σ-KMSβ-states on T[O]
we first have to find probability measures µ on ΩO with Radon–Nikodym cocy-
cle Nβ

K. In other words, we are looking for measures µ such that

µ((n, k)Y) = NK(k)βµ(Y)

for Borel Y ⊂ ΩO and (n, k) ∈ K o K∗ such that (n, k)Y ⊂ ΩO . Since any transla-
tionally O-invariant measure on Ô is a Haar measure, it is not difficult to show,
see the proof of Proposition 2.1 in [6], that any measure µ as above must be the
image under the projection Ô × Ô/Ô∗ → ΩO of a measure m × ν, where m is
the normalized Haar measure on Ô and ν is a probability measure on Ô/Ô∗.
Furthermore, as m(k ·) = NK(k)m, the above condition on µ is satisfied if and
only if

(3.1) ν(kY) = NK(k)β−1ν(Y)

for Borel Y ⊂ Ô/Ô∗ and k ∈ K∗ such that kY ⊂ Ô/Ô∗. Clearly, there are no such
measures for β < 1, so there are no σ-KMSβ-states on T[O] for β < 1. The case
β = 1 is also easy: the only such measure ν is concentrated at 0. We will denote
this measure by ν1. Assume now that β > 1. A more general problem is studied
in [7]. Namely, we have the following equivalent form of Theorem 2.5 in [7].

THEOREM 3.1. Let K∗+ ⊂ K∗ be the subgroup of totally positive elements. Con-
sider probability measures ν on Ô such that

(3.2) ν(kY) = NK(k)β−1ν(Y) for Borel Y ⊂ Ô and k ∈ K∗+ such that kY ⊂ Ô.

Then
(i) for every 1 < β 6 2 there exists a unique probability measure on Ô satisfy-

ing (3.2);
(ii) for every β > 2 and a ∈ A∗K, f there exists a unique probability measure on Ô

satisfying (3.2) that is concentrated on K∗+a∩ Ô; this way we get, for every β > 2, a one-
to-one correspondence between extremal probability measures satisfying (3.2) and points
of the compact group A∗K, f /K∗+; in particular, the simplex of measures satisfying (3.2) is

canonically isomorphic to the simplex of probability measures on A∗K, f /K∗+, and any such

measure is concentrated on A∗K, f ∩ Ô.

Here K∗+ denotes the closure of K∗+ in A∗K, f .
We now apply this theorem to classify measures satisfying (3.1). Clearly,

there is a one-to-one correspondence between such measures and Ô∗-invariant
measures satisfying (3.2).
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Let us first consider the case β > 2. We will need only one conclusion from
Theorem 3.1(ii): any measure ν satisfying (3.1) is concentrated on (A∗K, f ∩ Ô)/Ô

∗.

Recall that A∗K, f /Ô∗ can be identified with the group JK of fractional ideals, while
K∗/O∗ is the group of principal fractional ideals. Therefore if hK is the class
number of K, then the action of K∗ by multiplication on A∗K, f /Ô∗ has exactly hK

orbits. If a ∈ A∗K, f /Ô∗ = JK, then obviously there exists at most one probability

measure satisfying (3.1) that is concentrated on K∗a ∩ Ô/Ô∗. Such a measure
indeed exists:

νa,β =
1

ζ(β− 1, [a]) ∑
b∈J+K ∩[a]

NK(b)
−(β−1)δb,

where [a] is the class of a in the ideal class group Cl(K), J+K ⊂ JK is the sub-
semigroup of integral ideals, and ζ(·, [a]) is the partial ζ-function defined by
ζ(s, [a]) = ∑

b∈J+K ∩[a]
NK(b)

−s for s > 1. Since any measure satisfying (3.1) is con-

centrated on J+K = (A∗K, f ∩ Ô)/Ô
∗, we conclude that if a1, . . . , ahK are represen-

tatives of different ideal classes, then any probability measure satisfying (3.1) is a
unique convex combination of the measures νan ,β, 1 6 n 6 hK.

Let a ∈ J+K be a nonzero ideal in O. Denote by µa,β the image of the mea-
sure m× νa,β under the projection Ô × Ô/Ô∗ → ΩO . By construction the mea-
sure µa,β is concentrated on the set

{(r, b) : b ∈ J+K ∩ [a], r ∈ Ô/bÔ = O/b} ⊂ ΩO .

The partially defined action of K o K∗ on ΩO is transitive on this set. Therefore
by Corollary 1.4, in order to extend (µa,β)∗ to a KMSβ-state we have to choose a
tracial state on the C∗-algebra of the stabilizer of one point in this set. We take
(0, a) as such a point. Its stabilizer in K o K∗ is aoO∗. For a tracial state τ on
C∗(aoO∗) denote by ϕa,τ,β the corresponding σ-KMSβ-state on T[O].

Now pick representatives a1, . . . , ahK of different ideal classes. Any mea-

sure µ on ΩO with Radon–Nikodym cocycle Nβ
K is a convex combination of the

measures µan ,β. It is concentrated on the set {(r, a) : a ∈ J+K , r ∈ O/a} ⊂
ΩO . The partially defined action of K o K∗ has hK orbits on this set, and we
can take the points (0, an) as representatives of these orbits. To extend µ∗ we
need to choose a tracial state on the C∗-algebra of the stabilizer of every point
(0, an) that carries a positive measure. In other words, any σ-KMSβ-state on

T[O] is a convex combination
hK
∑

n=1
λn ϕan ,τn ,β, where τn is a tracial state on the

C∗-algebra C∗(an oO∗). The weights λn and the tracial states τn define a tracial
state

⊕
n

λnτn on
⊕
n

C∗(an oO∗). We therefore get the following result.
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THEOREM 3.2 ([2], Theorem 7.3). Choose representatives a1, . . . , ahK ∈ J+K of
different ideal classes. Then, for every β > 2, there is an affine isomorphism between the
simplex of σ-KMSβ-states on T[O] and the simplex of tracial states on the C∗-algebra
hK⊕

n=1
C∗(an oO∗).

Note that the extremal KMSβ-states are states of the form ϕa,τ,β, where τ is
an extremal tracial state on C∗(aoO∗). Such a state has type I∞ or II∞ depending
on whether τ is of type I or II1.

Let us now turn to the more complicated case 1 6 β 6 2. Recall that the
unique measure ν1 satisfying (3.1) for β = 1 is the delta-measure at 0 ∈ Ô/Ô∗.
Assume 1 < β 6 2. Again it is easy to construct a probability measure satisfy-
ing (3.1): take νβ = ∏

v∈VK, f

νβ,v, where the measure νβ,v on Ov/O∗v is defined by

νβ,v = (1− NK(pv)
−(β−1))

∞

∑
n=0

NK(pv)
−(β−1)nδpn

v ,

where pv is the prime ideal in O corresponding to the place v and where we
identified O×v /O∗v with the sequence {pn

v}n. (The measure νβ is of course well-

defined for all β > 1. For β > 2 we have νβ =
hK
∑

n=1

ζ(β−1,[an ])
ζK(β−1) νan ,β, where ζK is the

Dedekind ζ-function.) By Theorem 3.1(i) this is the unique probability measure
satisfying (3.1). Note that the νβ-measure of the set (A∗K, f ∩ Ô)/Ô

∗ is zero, which

follows from the divergence to zero of the product ∏
v
(1 − NK(pv)−(β−1)). It is

also clear that the νβ-measure of the set of points a ∈ Ô/Ô∗ with at least one zero
coordinate is zero.

For every 1 6 β 6 2, let µβ be the image of the measure m× νβ under the
map Ô × Ô/Ô∗ → ΩO .

LEMMA 3.3. For 1 6 β 6 2 the set of points in ΩO with non-trivial stabilizers in
K o K∗ has µβ-measure zero.

Proof. For β = 1 the measure space (ΩO , ν1) can be identified with (Ô, m),
with the partially defined action of K o K∗ given by (n, k)r = n + kr. Clearly,
every element g 6= e in K o K∗ has at most one fixed point in Ô, and the measure
of every such point is zero.

Assume now that 1 < β 6 2. We have to show that for every element
g = (n, k) ∈ KoK∗, g 6= e, the set of points (r, a) ∈ ΩO fixed by g has µβ-measure
zero. In other words, for νβ-a.e. a ∈ Ô/Ô∗ the set Ag,a of points r ∈ Ô/aÔ
such that g(r, a) = (r, a) has ma-measure zero, where ma is the normalized Haar
measure on Ô/aÔ. We will show that ma(Ag,a) = 0 for every a = (av)v such that
a /∈ A∗K, f /Ô∗ and av 6= 0 for all v. Since the νβ-measure of the complement of the
set of such points a is zero, this will prove the lemma.
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The set Ag,a can be nonempty only when ka = a, whence k ∈ O∗ as av 6= 0
for all v by assumption. Then g acts on AK, f /aÔ, and the set Ag,a consists of
points r ∈ Ô/aÔ such that (k − 1)r = −n. If k = 1, this means that Ag,a is
nonempty only when n ∈ aÔ. But then g = (0, 1), since K ∩ aÔ = {0} by our
assumption that a /∈ A∗K, f . Since we assumed that g 6= e, we conclude that Ag,a

can be nonempty only when k 6= 1. In this case k − 1 is invertible in Ov for v
outside a finite set F ⊂ VK, f . Hence, if r = (rv)v ∈ Ag,a, then rv ∈ Ov/avOv is
uniquely determined for v /∈ F. It follows that

ma(Ag,a) 6 ∏
v∈VK, f \F

|Ov/avOv|−1.

The latter product diverges to zero, since by assumption there are infinitely many
places v such that av 6= O∗v .

By Theorem 1.3 and Corollary 1.2 the only way to extend the state µβ∗
on C(ΩO) to a KMSβ-state on T[O] is by composing it with the canonical con-
ditional expectation E : T[O] → C(ΩO). Thus we have proved the following
result.

THEOREM 3.4 ([2], Theorem 6.7). For every 1 6 β 6 2 there exists a unique
σ-KMSβ-state on T[O].

Note that using Corollary 3.2 in [10] and the same arguments as in the proof
of Theorem 3.2 in [6], it is easy to show that these KMS-states have type III1.

We would like to finish by making a few remarks about the uniqueness
of measures satisfying (3.1) for 1 < β 6 2, which is the most non-trivial part
in the above analysis. When the field K has class number one, this uniqueness
is quite simple and a proof can be obtained using the same arguments as for
K = Q. This goes back to [1] and is equivalent to the uniqueness of KMSβ−1-states
on the symmetric part of the Bost–Connes system for Q. The situation changes
drastically when hK > 1. In this case, as we saw, the uniqueness can be deduced
from Theorem 3.1(i). Although an equivalent form of this theorem is explicitly
stated in [7], it is based on a result on the Bost–Connes systems established in [4].
Let us briefly describe the arguments in [7] applied to the classification problem
of measures satisfying (3.1).

The action of K∗ on AK, f /Ô∗ defines an action of the group of principal
ideals. Induce this action to an action of the whole group JK of fractional ideals.
By a general result on Morita equivalent systems, see Theorem 3.2 in [5], the set
of KMS-weights remains the same under induction. In the present case, when
everything is formulated in terms of measures, this is quite obvious: a Radon
measure with a given Radon–Nikodym cocycle with respect to a group action is
completely determined by its restriction to any compact open subset intersecting
every orbit. From this it can be deduced that classification of measures satisfy-
ing (3.1) is equivalent to classifying probability measures ν on Cl(K) × Ô/Ô∗
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such that

(3.3) ν(aY) = NK(a)
−(β−1)ν(Y) for Borel Y ⊂ Cl(K)× Ô/Ô∗ and a ∈ JK.

Here the action of JK = A∗K, f /Ô∗ on Cl(K)×AK, f /Ô∗ is diagonal, so for every v
the element pv ∈ JK changes only two coordinates, one corresponds to Cl(K), the
other to the place v.

The Bost–Connes system for K, in turn, is defined using the partially defined
diagonal action of JK on the space

YK = Gal(Kab/K)×Ô∗ Ô.

Here Ô∗ acts on Gal(Kab/K) via the Artin map rK : A∗K → Gal(Kab/K). We have

Gal(Kab/K)/rK(K∗∞Ô∗) = Gal(H(K)/K) ∼= Cl(K),

where H(K) is the Hilbert class field of K. Thus

Cl(K)× Ô/Ô∗ = YK/rK(K∗∞Ô∗).

Therefore the uniqueness of measures satisfying (3.3), or (3.1), is equivalent to the
uniqueness of rK(K∗∞Ô∗)-invariant measures on YK satisfying the same scaling
property. In other words, Theorem 3.4 is essentially equivalent to the uniqueness
of rK(K∗∞Ô∗)-invariant KMSβ−1-states on the Bost–Connes system for K for 1 <
β 6 2. That a KMSβ−1-state for the Bost–Connes system is unique for every
inverse temperature in this region is proved in Theorem 2.1 in [4].
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