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ABSTRACT. We identify the set of extreme points and apply Choquet theory
to a normalized matrix-measure ball subject to finitely many linear side con-
straints. As an application we obtain integral representation formulas for the
Herglotz class of matrix-valued functions on a finitely-connected planar do-
main and associated continuous Agler decompositions for the matrix-valued
Schur class over the domain. The results give some additional insight into
the negative answer to the spectral set problem over such domains recently
obtained by Agler–Harland–Raphael and Dritschel–McCullough.
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INTRODUCTION

We define the classical Schur class (operator-valued version) S(U ,Y) to be
the class of holomorphic functions z 7→ S(z) from the unit disk D into contrac-
tion operators between two coefficient Hilbert spaces U , Y . This class has been
an object of much study and a source of much inspiration over the last several
decades due to its central role in a number of applications but also due to the
rich commingling of function theory, operator theory and engineering system
theory ideas in the description of its structure. Let us mention several equivalent
characterizations/points of view toward the Schur class: (1) the operator MS of
multiplication by S defines a contraction operator on the Hardy space over D, (2)
the de Branges–Rovnyak kernel

(0.1) KS(z, w) =
I − S(z)S(w)∗

1− zw



532 J.A. BALL AND M.D. GUERRA HUAMÁN

is a positive kernel over D, (3) S can be realized as the transfer function of a
conservative discrete-time input/state/output linear system:

(0.2) S(z) = D + zC(I − zA)−1B with U =

[
A B
C D

]
:
[
X
U

]
→
[
X
Y

]
unitary.

A major step forward in developing an analogous theory in several-variable set-
tings was made by Agler [3] where what we now call the Schur–Agler class over
the polydisk was introduced. This class is defined as the class of operator-valued
functions on the polydisk Dd = {z = (z1, . . . , zd) : |zk| < 1 for k = 1, . . . , d} such
that not only ‖S(z)‖ 6 1 for each z ∈ Dd but also ‖S(T)‖ 6 1 for all commutative
d-tuples T = (T1, . . . , Td) of operators on some Hilbert space K, where e.g. S(T)
can be defined as

S(T) = ∑
n∈Zd

+

Sn ⊗ Tn if S(z) = ∑
n∈Zd

+

Snzn.

A new feature for this class is the analogue of positivity of the kernel (0.1): rather
than a characterization in terms of the positivity of a single kernel, the character-
ization is in terms of being able to solve for d positive kernels K1, . . . , Kd on the
polydisk so that the so-called Agler decomposition holds:

(0.3) I − S(z)S(w)∗ =
d

∑
k=1

(1− zkwk)Kk(z, w).

Also the realization formula (0.2) for the multivariable Schur–Agler class takes
the form

(0.4) S(z)=D+C(I−Z(z)A)−1Z(z)B with U=

[
A B
C D

]
:
[
X
U

]
→
[
X
U

]
unitary

with Z(z) =
d
∑

k=1
zkPk where P1, . . . , Pd form a spectral family of projection opera-

tors (Pi = P∗i , PiPj = δi,j IX ,
d
∑

k=1
Pk = IX ) on the state space X .

One of our main motivations for the present paper was to further develop
the understanding of the Schur class S(R) over a bounded finitely-connected
planar domain R. Here S(R) denotes the class of holomorphic functions map-
ping the planar domain R into the unit disk. We shall use the notation SN(R)
for the class of holomorphic functions mapping R into contractive N × N matri-
ces. In the course of constructing a counterexample to the spectral set question
over R, Dritschel and McCullough [13] obtained a continuous analogue of the
Agler decomposition (0.3) for the scalar-valued Schur class S(R) overR. Specif-
ically, let ∂0, . . . , ∂m denote the m + 1 connected components of the boundary ∂R
of R (with ∂0 equal to the boundary of the unbounded component of the com-
plement of R in the complex plane) and let TR denote the Cartesian product
TR = ∂0 × · · · × ∂m. The coordinate functions z1, . . . , zd appearing in the Agler
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decomposition (0.3) must be replaced by a continuum {sx(z) : x ∈ TR} of single-
valued inner functions on R (i.e., holomorphic in R with modulus-1 values on
∂R), each with m zeros in R (the minimal number possible for a nonconstant
single-valued inner function), indexed by the so-called R-torus TR. Then the
result of Dritschel–McCullough can be formulated as follows:

THEOREM 0.1. Given any s ∈ S(R), then there is a family kx(z, w) of positive
kernels onR, indexed by TR and measurable on TR for each (z, w) ∈ R×R, so that

(0.5) 1− s(z)s(w) =
∫
TR

(1− sx(z)sx(w))kx(z, w)dν(x).

There is also obtained in [13] a more elaborate version of the realization
formula (0.2) or (0.4) for the Schur class S(R) which we do not go into here. We
also mention that these techniques actually lead to interpolation theorems for the
various Schur classes: if the function S is initially given only on some (possibly
finite) subset of its domain (D, Dd, orR), then a necessary and sufficient condition
for there to be an extension to the whole domain which is in the appropriate Schur
class is that the decomposition (0.1), (0.3), (0.5) hold for z, w in the subset. A
dual version of the interpolation result for the class S(R), whereby one tests the
positivity of each kernel from a collection of kernels {(1− s(z)s(w))k(α)(z, w)}
(where k(α)(z, w) is a collection of Szegő-type kernels indexed by α from the m-
torus Tm), was obtained earlier by Abrahamse [1].

While Dritschel–McCullough indicated some results for the matrix-valued
Schur class overR on their way to constructing a counterexample to the spectral
set question over R, the analogue of (0.5) for the matrix-valued case was left
rather mysterious. In general, extensions of scalar-valued results to the matrix-
valued case for the Schur class over a planar domain R have led to surprises: it
is known for example that the Abrahamse interpolation result does not extend to
the matrix-valued case without the addition of additional matrix-valued kernels
k(α) (see [7], [11], [25], [26]).

One of the main motivations of the present paper was to find an appropriate
analogue of the Dritschel–McCullough decomposition (0.5) for the matrix-valued
setting; such an analogue appears as Theorem 4.4 below. The basic idea in [13]
for getting the decomposition (0.5) is to apply a linear-fractional change of vari-
able on the range of the function to convert the problem to a problem concerning
the Herglotz class over R (holomorphic functions on R with positive real part).
When this class is normalized by the condition that all such functions f have
the value 1 at some fixed point t0 ∈ R, it becomes a compact convex set. Once
one identifies the extreme points for this class, Choquet theory (see e.g. [27] for a
thorough account) can be applied to obtain an integral representation for a given
Herglotz-class function f in terms of the extreme points fx. The Cayley trans-
forms of these extreme points for the Herglotz class turn out to be unimodular
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scalar multiples of the inner functions with exactly m zeros appearing in the de-
composition (0.5): sx(z) = fx(z)−1

fx(z)+1 . Explicit identification of the extreme points
fx involves some clever function theory (see [4], [13], [20], [29]). The starting
point is the Poisson-kernel representation for positive harmonic functions. This
leads to a one-to-one correspondence between normalized Herglotz functions on
R and probability measures on ∂R which satisfy m additional linear constraints
(m equal to the number of holes in R). In this way extremal normalized Her-
glotz functions correspond to probability measures which are extremal in this set
of linearly-constrained probability measures. The problem of characterizing the
extreme points of such a set of probability measures can be formulated in the set-
ting of an abstract Borel measure space X (in place of ∂R). We study this general
problem and give a geometric characterization of the extreme points in terms of
0 being in the interior of the convex hull of a given collection of vectors in Rm,
putting the results of Dritschel–Pickering in [15] into a broader context.

The extension of these ideas to the matrix-valued setting leads to new issues
to be understood. Each N×N-matrix valued Herglotz function normalized to be
the identity IN at the fixed point t0 ∈ R corresponds to a quantum probability
measure, i.e., a positive matrix-valued measure µ on ∂R with total mass µ(∂R)
equal to the identity matrix IN , subject to m linear side constraints (given by inte-
gration against m continuous real-valued functions on ∂R). This problem in turn
can be considered more generally, where ∂R is replaced by a general Borel space
X. The problem then is to characterize the set of extreme points of the compact
convex set of quantum probability measures subject to m linear side constraints. It
turns out that the special case of this problem where there are no side constraints
has been analyzed and solved by Arveson [5]: extremal measures µ are character-

ized by the condition that µ =
n
∑

k=1
Wkδxk (where δxk is the scalar unit point-mass

measure at the point xk and Wk > 0 is a matrix weight) where the family of sub-
spaces {Ran Wk : 1 6 k 6 n} should satisfy a condition called weak independence
which, as suggested by the terminology, is somewhat weaker than the standard
linear algebra notion of linear independence of subspaces (i.e., any collection of
nonzero vectors x1, . . . , xd with xk ∈ Wk should be a linear independent set of
vectors in the standard sense). We obtain an extension of Arveson’s result to the
constrained case which has a geometric interpretation analogous to that in [15]
for the scalar-case, namely: the 0 vector must be in the interior of the C∗-convex
hull of a given set of matrix-tuples (see Remark 2.11 below), thereby providing
links with the general area of noncommutative convexity as in [16], [17], [19]. Fi-
nally we apply this general result on extreme points to obtain a characterization
(although not quite as explicit as in the scalar-valued case) of the extreme points
of the normalized matrix-valued Herglotz class over a planar domainR.

We do not treat here the transfer-function realization and interpolation the-
ory for the matrix-valued Schur class SN(R). Such results can be obtained as
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part of a general theory of the matrix-valued Schur class associated with a collec-
tion of matrix-valued test functions. We address this topic beyond what already
appears in [21] in a separate report [8].

The paper is organized as follows. Following this Introduction, Section 1
sets notation and reviews results from convexity theory (in particular, the Cho-
quet–Bishop–de Leeuw theory on integral representations for points of a com-
pact, convex set) which will be needed in the sequel. Section 2 considers the
extreme-point problem for a linearly-constrained normalized set of positive ma-
trix measures in the general measure-theory framework. Section 3 introduces the
function-theory setting and applies the theory of Section 2 to obtain character-
izations of extreme points and integral representations for normalized matrix-
valued Herglotz-class functions over a finitely-connected planar domain R. Sec-
tion 4 applies the linear-fractional change of variable to convert the results con-
cerning Herglotz-class functions to results concerning Schur-class functions over
R. The final Section 5 presents connections with the spectral set question over a
region R: it turns out that the recent negative solution of the spectral set ques-
tion can be partially explained by the lack of a simple transition formula from
the extreme points for the scalar-valued normalized Herglotz class to the extreme
points for the matrix-valued normalized Herglotz class overR (see Corollary 5.1
below).

Preliminary versions of many of the results described appear already in the
Virginia Tech dissertation of the second author [21].

1. GENERAL CONVEXITY THEORY

A subset C of a real linear space C is said to be convex if, given any collection
of vectors u1, . . . , un in C and a collection of nonnegative real numbers λ1, . . . , λn

with λ1 + · · ·+ λn = 1, it happens that the convex linear combination
n
∑

i=1
λiui is

again in C. Given any subset S of the linear space E, there is always a smallest
subset of E containing S , denoted as convS (the convex hull of S).

A vector v in the convex set C is said to be an extreme point of C if, whenever
it is the case that v = λu1 + (1− λ)u2 for a real λ with 0 < λ < 1 and u1 and u2
in C, it follows that u1 = u2 = v. The following characterization of extreme point
is often easier to apply than the definition.

LEMMA 1.1. The point v ∈ C is an extreme point of the convex set C (v ∈ ∂eC) if
and only if the following condition holds: whenever u ∈ E is such that v± u ∈ C, then
u = 0.
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Proof. Suppose v is extreme and v ± u ∈ C for some u ∈ E. Since v is
extreme, from the identity

v =
1
2
(v + u) +

1
2
(v− u)

we see immediately that u = 0.
For the converse it suffices to show the contrapositive: v not extreme⇒ there

is a u 6= 0 in E with v± u ∈ C. If v is not extreme, then we can find v1, v2 in C
distinct from v so that v = λv1 + (1− λ)v2. We rearrange this as

λ(v− v1) = (1− λ)(v2 − v) =: u.

Then

v + u = v + (1− λ)(v2 − v) = λv + (1− λ)v2 ∈ C,

v− u = v− λ(v− v1) = (1− λ)v + λv1 ∈ C

from which we see that the vector u has the needed property.

Given a collection of vectors {u1, . . . , uκ} in a linear space E and given an-
other vector v in E, we say that v is in the convex hull of the set of vectors S =
{v1, . . . , vκ}, written as

v ∈ convS ,

if v can be written as a convex linear combination v =
κ

∑
i=1

λiui of the uis (so

λi > 0 and
κ

∑
i=1

λi = 1). In case the linear space E carries a locally convex topology

and the convex subset C is compact in this topology, the well known theorem of
Kreı̆n–Milman (see e.g. page 75 of [31]) asserts that C is the closed convex hull
of the set of its extreme points ∂eC. There is a refinement of the Kreı̆n–Milman
theorem known generically as Choquet theory. In general let us say that a vector
v in the nonempty compact subset X of the linear topological vector space E is
represented by the probability Borel measure ν on X if it is the case that

`(v) =
∫
X

`(u)dν(u)

for all continuous linear functionals ` ∈ E∗. A consequence of the Hahn–Banach
theorem then is that ν uniquely determines the element v ∈ E. The following
theorem summarizes what we need from Choquet theory and is due mainly to
Choquet [10] and Bishop–de Leeuw [9].

THEOREM 1.2 (See [27] and Section IV.6 of [32]). Suppose that C is a compact
convex subset of the linear topological vector space E and v ∈ C. Then there is a prob-
ability measure ν supported on the closure of the set of extreme points (∂eC)− which
represents v. In case C is metrizable, then ∂eC is a Borel set and one can arrange that ν is
supported exactly on the set of extreme points ∂eC.
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We shall have need of a refinement of the notion of convex hull, namely inte-
rior convex hull defined as follows. Given a collection of vectors S = {u1, . . . , uκ}
in a linear space E and another vector v in E as above, we say that v is in the
interior of the convex hull of the set of vectors S = {u1, . . . , uκ}, written as

v ∈ conv0 S ,

if v can be written as a convex combination v =
κ

∑
i=1

λiui of the elements of S with

the coefficients λi satisfying the strict inequalities λi > 0 together with
κ

∑
i=1

λi = 1

uniquely determined. We will be particularly interested in the case when the
zero vector 0 in E is in the interior convex hull of S . In general there are several
equivalent formulations of the condition that 0 ∈ conv0 S .

PROPOSITION 1.3. Given a finite subset S = {u1, . . . , un} of a linear space E,
suppose that the zero vector 0 is a proper convex combination of u1, . . . , un in the linear
space E:

0 =
n

∑
i=1

λiui with λi > 0 for all i and
n

∑
i=1

λi = 1.

Then the following conditions are equivalent:
(i) 0 ∈ conv0 S , i.e., the real numbers λ1, . . . , λn are uniquely determined by the

conditions:

(1.1) λi > 0 for all i;
n

∑
i=1

λi = 1;
n

∑
i=1

λiui = 0.

(ii) The linear subspace of Rn consisting of vectors c = (c1, . . . , cn) such that c1u1 +
· · ·+ cnun = 0 ∈ E is one-dimensional (and hence is spanned by λ = (λ1, . . . , λn)).

(iii) The only solution c = (c1, . . . , cn) of the system of equations

(1.2)
n

∑
i=1

cn = 0,
n

∑
i=1

ciui = 0,

is c = (0, . . . , 0).

Proof. We show (not (i))⇒ (not (ii))⇒ (not (iii))⇒ (not (i)).
Step (not (i))⇒ (not (ii)). Suppose that λ=(λ1, . . . , λn) and λ′=(λ′1, . . . , λ′n)

are two distinct elements of Rn satisfying the conditions in (i). Set ci = λi−λ′i and
c = (c1, . . . , cn). Then c is a second nonzero solution of c1u1 + · · · + cnun = 0.

Since
n
∑

i=1
ci = ∑

i−1
(λi − λ′i) = 0 while λi > 0 for all i, we see that c is linearly

independent of λ. Hence the set of solutions c = (c1, . . . , cn) of
n
∑

i=1
ciui = 0 has

dimension at least 2, in contradiction to (ii).
Step (not (ii)) ⇒ (not (iii)). If the space of solutions c = (c1, . . . , cn) ∈ Rn

of the linear system c1u1 + · · ·+ cnun = 0 has dimension at least 2, then by the
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null-kernel theorem from linear algebra we can find a nonzero such vector which
satisfies the single additional linear constraint c1 + · · ·+ cn = 0, in contradiction
with (iii).

Step (not (iii)) ⇒ (not (i)). Assume that c = (c1, . . . , cn) ∈ Rn is a nonzero
solution of (1.2). Set λ′ = (λ1 + εc1, . . . , λn + εcn) for some ε > 0. Then as long
as ε is chosen sufficiently small, λ′ is a second solution of (1.1), in contradiction
with (i).

2. AN EXTREME-POINT PROBLEM FOR A CONSTRAINED NORMALIZED BALL
OF MATRIX MEASURES

In this section we consider the following general extreme-point problem
which is central for our analysis of the matrix-valued Herglotz and Schur classes
of holomorphic functions over a finitely connected planar domain discussed in
the next section. We suppose that we are given a compact Hausdorff space X.
We let M(X) denote the space of complex Borel measures on X and CR(X) de-
note the space of real-valued continuous functions on X. For N a positive in-
teger, M(X)N×N then denotes the space of complex N × N matrix-valued Borel
measures on X. We will also have occasion to use [M(X)N×N ]h to denote com-
plex Hermitian N × N matrix-valued measures and [M(X)N×N ]+ the subset of
[M(X)N×N ]h consisting of positive matrix measures. We suppose that we are also
given a collection φ = {φ1, . . . , φm} of m real-valued continuous functions on X
(i.e., φ1, . . . , φm ∈ CR(X)). We then let C(X, N, φ) be the subset of [M(X)N×N ]h
given by

C(X, N, φ) =
{

µ ∈ [M(X)N×N ]+ : µ(X) = I, and

µ(φr) :=
∫
X

φr(x)dµ(x) = 0 for r = 1, . . . , m
}

.(2.1)

Note that C(X, N, φ) is a convex subset of the real Banach space of complex
Hermitian matrices [M(X)N×N ]h which is compact in the weak∗ topology on
[M(X)N×N ]h induced by its duality with respect to the real Banach space of
complex-Hermitian matrix-valued continuous functions [C(X)N×N ]h. In view
of the Kreı̆n–Milman theorem and the results discussed in Section 1, it is then
natural to pose the problem:

PROBLEM 2.1. Given a data set (X, N, φ) as above, characterize the set of
extreme points of the associated compact, convex set C(X, N, φ) given by (2.1).

Simple examples show that it is possible that C(X, N, φ) is empty: for exam-
ple, take X equal to the unit interval [0, 1], N = 1, m = 1 with φ1(x) = 1. Then
the condition that 1 = µ(X) =

∫
X

dµ(x) and that 0 =
∫
X

φ1(x)dµ(x) =
∫
X

dµ(x)

are contradictory. In the discussion to follow we will implicitly assume that
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C(X, N, φ) 6= ∅; in all examples arising from some natural context, it is the case
that C(X, N, φ) 6= ∅.

The following result is a first step toward obtaining more definitive solu-
tions for various special cases of interest.

THEOREM 2.2. Suppose that µ ∈ [M(X)N×N ]+ is an extreme point of the set
C(X, N, φ) (2.1). Then there is a natural number n with 1 6 n 6 (m + 1)N2, n
distinct points x1, . . . , xn in X, and n positive semidefinite N × N matrices W1, . . . , Wn
subject to the system of linear equations

(2.2)
n

∑
r=1

Wi = I,
n

∑
r=1

φi(xr)Wr = 0 for i = 1, . . . , m

so that µ has the form

(2.3) µ =
n

∑
j=1

Wjδxj

where δxj is the scalar-valued measure equal to the unit point-mass at the point xj.

Proof. It suffices to show that any measure µ = [µij]i,j=1,...,N which is an
extreme point has the form (2.3); conditions (2.2) then follow just by the condition
that µ is an element of C(X, N, φ). By way of contradiction, suppose that µ ∈
[M(X)N×N ]+ is a positive matrix measure which is not of the form (2.3). We then
must show that µ is not extreme.

If µ is not of the form (2.3) with 1 6 n 6 (m + 1)N2, then there are κ (with
κ > (m + 1)N2) disjoint Borel sets ∆1, . . . , ∆κ with µ(∆ j) 6= 0. Define new mea-
sures µ1, . . . , µκ by

µj(∆) = µ(∆∩∆ j) for j = 1, . . . , κ.

Then the collection {µ1, . . . , µκ} is linearly independent in the real vector space
[M(X)N×N ]h of complex-Hermitian matrix-valued Borel measures on X. Now
define real linear functionals on [M(X)N×N ]h by

Li : µ 7→ µii(X), 1 6 i 6 N,

LRe,ij : µ 7→ Re µij(X), 1 6 i < j 6 N,

LIm,ij : µ 7→ Im µij(X), 1 6 i < j 6 N,

Li,r : µ 7→ µii(φr), 1 6 i 6 N, 1 6 r 6 m,

LRe,ij,r : µ 7→ Re µij(φr), 1 6 i < j 6 N, 1 6 r 6 m,

LIm,ij,r : µ 7→ Im µij(φr), 1 6 i < j 6 N, 1 6 r 6 m.

Note that in total there are at most (exactly in case the linear functionals on the
above list are all distinct)

N +
N(N − 1)

2
+

N(N − 1)
2

+ Nm +
N(N − 1)

2
m +

N(N − 1)
2

m = N2(m + 1)
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such real linear functionals. Note that for 1 6 i 6 j 6 N and 1 6 r 6 m we have

(2.4) µji(X) = µij(X)∗ and µji(φr) = µij(φr)
∗.

We now define a real linear map L from [M(X)N×N ]h to R(m+1)N2
by

L(µ) =



colj{Lj(µ) : 1 6 j 6 N}
coli,j{LRe,ij(µ) : 1 6 i < j 6 N}
coli,j{LIm,ij(µ) : 1 6 i < j 6 N}

coli,r{Li,r(µ) : 1 6 i 6 N, 1 6 r 6 m}
coli,j,r{LRe,ij,r(µ) : 1 6 i < j 6 N, 1 6 r 6 m}
coli,j,r{LIm,ij,r(µ) : 1 6 i < j 6 N, 1 6 r 6 m}


where we use the notation col{Xj : 1 6 j 6 N} to denote the column matrix

col{Xj : 1 6 j 6 N} =

 X1
...

XN

. Consider the restriction of L to the κ-dimensional

subspace M := span{µ1, . . . , µκ}. Since κ > (m + 1)N2, as a consequence of
the null-kernel theorem from linear algebra we see that there exists a nonzero

measure ν of the form ν =
κ

∑
`=1

c`µ` ∈ M with c` ∈ R for all ` so that L(ν) = 0.

Consequently the matrix measure ν = [νij]i,j=1,...,N satisfies νii(X) = 0 for all
i = 1, . . . , N and νij(X) = 0 for 1 6 i < j 6 N. From (2.4) we see that νij(X) = 0
for all 1 6 i 6 j 6 N as well and we conclude that

(2.5) ν(X) = 0.

In a similar way we see in addition that

(2.6) ν(φr) = 0 for r = 1, . . . , m.

We next choose ε > 0 so that ε < min{ 1
cj

: j with cj 6= 0}where c1, . . . , cκ are
the coefficients in the representation ν = c1µ1 + · · ·+ cκµκ for ν as an element of
the spaceM = span{µj : j = 1, . . . , κ}. Then by construction

1± εcj > 0 for j = 1, . . . , κ.

It follows that (µ± εν)(X) = I, (µ± εν)(∆) > 0 for all Borel ∆ and (µ± εν)(φr) =
µ(φr) = 0 for 1 6 r 6 m, i.e., µ± εν ∈ C(X, N, φ). Since it is also the case that εν

is not the zero element of [M(X)N×N ]h, it follows as a consequence of Lemma 1.1
that µ /∈ ∂eC(X, N, φ), as needed to be shown.

2.1. THE SCALAR-VALUED CASE: N = 1. We now analyze Problem 2.1 for the
scalar-valued case (N = 1). The following result gives a complete characteriza-
tion of ∂eC(X, N, φ) (C(X, N, φ) as in (2.1)) for the scalar case (N = 1).

THEOREM 2.3. Suppose that we are given a compact Hausdorff space X along
with m real-valued continuous functions φ = {φ1, . . . , φm} and we let C(X, 1, φ) be the
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associated compact convex set of scalar measures given by (2.1) (with N = 1). Suppose
that the positive scalar measure µ has the form (2.3) (tailored to the scalar case):

(2.7) µ =
n

∑
j=1

wjδxj

where x1, . . . , xn are distinct points in X (1 6 n 6 m + 1) and wj ∈ R are subject to

(2.8) wj > 0 for 1 6 j 6 n;
n

∑
j=1

wj = 1;
n

∑
j=1

φi(xj)wj = 0 for i = 1, . . . , m.

Denote by φ(xj) the vector φ(xj) =

 φ1(xj)

...
φm(xj)

 in Rm for j = 1, . . . , n. Then µ ∈

∂eC(X, 1, φ) if and only if 0 =
n
∑

j=1
wjφ(xj) is an interior point of the convex hull of

{φ(x1), . . . , φ(xn)} in Rm.

Proof. By Theorem 2.2 tailored to the scalar-valued case, we know that any
µ ∈ ∂eC has the form (2.7) with base points x1, . . . , xn and weights w1, . . . , wn
subject to (2.8); the question is: which such µs are actually extreme points?

Note that conditions (2.8) can be interpreted as exhibiting 0 ∈ Rm as lying
in the convex hull of {φ(x1), . . . , φ(xn)}. It remains to show that the measure

µ =
n
∑

j=1
wjδxj is an extreme point of C(X, 1, φ) if and only if in fact 0 is in the

interior of the convex hull of {φ(x1), . . . , φ(xn)}.
Let us suppose the 0 =

n
∑

j=1
wjφ(xj) is not in the interior of the convex hull.

By statement (iii) in Proposition 1.3, this is the same as the existence of real num-
bers c1, . . . , cn not all zero with

n

∑
j=1

cj = 0,
n

∑
j=1

cjφ(xj) = 0.

Define a measure ν =
n
∑

j=1
cjδxj . Then ν 6= 0, ν(X) = 0 and ν(φj) =

∫
X

φjdν =

n
∑

j=1
cjφ(xj) = 0. If we choose ε > 0 sufficiently small, then µ± εν ∈ C(1, X, φ).

We conclude by Lemma 1.1 that µ is not extremal in C(X, 1, φ).

Suppose next that 0 =
n
∑

j=1
wjφ(xj) is an interior point of the convex hull

of {φ(x1), . . . , φ(xn)} in Rm. We wish to show that then µ ∈ ∂eC(X, 1, φ). We
therefore suppose that µ = t1µ1 + t2µ2 with µk ∈ C(X, 1, φ) and tk > 0 for each
k = 1, 2 and t1 + t2 = 1. Since µk is a positive measure for each k, we read off

from (2.7) that supp µk ⊂ {x1, . . . , xn}, so each µk has the form µk =
n
∑

j=1
w(k)

j δxj
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for some weights w(k)
j > 0 with

n
∑

j=1
w(k)

j = 1. From the fact that µk ∈ C(X, 1, φ)

we also have that µk(φi) =
n
∑

j=1
w(k)

j φi(xj) = 0 for each i = 1, . . . , m, or, in vectorial

form,
n
∑

j=1
w(k)

j φ(xj) = 0 ∈ Rm. By the assumption that 0 =
n
∑

j=1
wjφ(xj) is in

interior point for the convex hull of {φ(x1), . . . , φ(xn)} in Rm, statement (i) in
Proposition 1.3 gives us that w(k)

j = wj for j = 1, . . . , n for each k = 1, 2, i.e.,
µk = µ. We conclude that µ is indeed an extreme point of C(X, 1, φ) as wanted.

COROLLARY 2.4. Suppose that we are given a data set

X = a compact Hausdorff space, φ = {φ1, . . . , φm} ⊂ CR(X)

and we let C(X, 1, φ) be as in (2.1) (with N = 1). Then C(X, 1, φ) 6= ∅ if and only if,
for some natural number n with 1 6 n 6 m + 1, there exists a collection of n distinct

points x1, . . . , xn in X such that 0 =
n
∑

j=1
wjφ(xj) is an interior point of the convex hull

of the set {φ(x1), . . . , φ(xn)} in Rm, where φ(xj) =

 φ1(xj)

...
φm(xj)

.

Proof. By the Kreı̆n–Milman theorem, C(X, 1, φ) has extreme points if and
only if C(X, 1, φ) is not empty. The conclusion is now immediate from Theo-
rem 2.3.

REMARK 2.5. One can interpret Theorem 2.3 even for the case m = 0. In
this case 1 6 n 6 m + 1 = 1 forces n = 1. The constraints (2.8) force µ to have
the form µ = δx for some x ∈ X. As there are no φs, the condition that 0 be
an interior point of the convex hull of {φ(x1), . . . , φ(xn)} can be interpreted to
hold vacuously. This recovers the correct result that the set of extreme points of
the normalized ball {µ ∈ M(X)+ : µ(X) = 1} consists of the unit point masses
{δx : x ∈ X}.

REMARK 2.6. Another special case of Theorem 2.3 of interest is the case
where X = T is the unit circle in the complex plane, m = 2 with φ1(z) = Re z
and φ2(z) = Im z. In this case one can give an explicit geometric characteriza-
tion of ∂eC. Indeed, pairs of points with 0 ∈ R2 ∼= C correspond to antipodal
points on the unit circle, and triples of points x1, x2, x3 on the unit circle with
0 ∈ conv0{x1, x2, x3} amount to non-collinear points on the unit circle having
0 ∈ C in the interior of the simplex spanned by x1, x2, x3. This analysis has been
worked out by Dritschel and Pickering in [15]. Motivation for this example comes
from the search for a collection of test functions for the Schur class associated with
the constrained H∞ class H∞

1 = { f ∈ H∞ : f ′(0) = 0} (see [11] and Remark 4.7
below). In this context there is an additional equivalence relation imposed on



CONVEXITY ANALYSIS AND THE SCHUR CLASS 543

∂eC(T, 1, φ) and the set of equivalence classes of ∂eC(T, 1, φ) can be identified
topologically with the unit sphere.

A similar albeit less explicit analysis can be worked out for the more general
subalgebras H∞

B = C+ BH∞ (where B is an inner function) studied in [30], at
least for the case where B is a finite Blaschke product. For example, if B(z) =

κ

∏
i=1

( z−αi
1−αiz

)mi for distinct points α1, . . . , ακ ∈ D with
κ

∑
i=1

mi > 2, then the algebra

H∞
B has the explicit function-theoretic description involving

κ

∑
i=1

mi − 1 complex

linear constraints:

H∞
B = { f ∈ H∞ : f (αi) = f (α1) for 2 6 i 6 κ;

dk f
dzk (αi) = 0 for 2 6 k 6 mi, i = 1, . . . , κ}.

We let the collection φ consist of the 2
( κ

∑
i=1

mi − 1
)

real-valued continuous func-

tions

φi,1,Re(ζ) = Re
(αi + ζ

αi − ζ
− α1 + ζ

α1 − ζ

)
for 2 6 i 6 κ,

φi,1,Im(ζ) = Im
(αi + ζ

αi − ζ
− α1 + ζ

α1 − ζ

)
for 2 6 i 6 κ,

φi,k,Re(ζ) = Re
dk

dzk

( z + ζ

z− ζ

)∣∣∣
z=αi

for 2 6 k 6 mi, i = 1, . . . , κ,

φi,k,Im(ζ) = Im
dk

dzk

( z + ζ

z− ζ

)∣∣∣
z=αi

for 2 6 k 6 mi, i = 1, . . . , κ.

We may apply the result of Theorem 2.3 to obtain a reasonably explicit charac-
terization of the extreme points µ of the associated compact convex set of mea-
sures C(T, 1, φ). For µ such an extreme point, the associated Herglotz function
Fµ(z) =

∫
T

z+ζ
z−ζ dµ(ζ) is an extreme point of the normalized Herglotz class

HB = {F = (I − S)(I + S)−1 : S ∈ (H∞
B )N×N with ‖S‖ 6 1 and S(0) = 0}.

It then follows by the same argument as in [15] corresponding to the special case
B(z) = z2 that the functions

{Sµ = (Fµ + I)−1(Fµ − I) : µ extreme for C(T, 1, φ)}

form a collection of test functions for the algebra H∞
B . This complements the other

results obtained in [30] for the algebras H∞
B .

2.2. RETURN TO THE GENERAL MATRIX-VALUED CASE. We now indicate how
one can analyze the general case of Problem 2.1 by using the language of non-
commutative convexity (see [17], [19], [22], [23]).
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Rather than delve into the general setting of C∗-convex combinations of
elements of a C∗-algebra or of the generalized state space of a C∗-algebra and
associated C∗-convex subsets and C∗-extreme points, we discuss only the con-
crete special case which we need for our application (but see Remark 2.11 below).
We fix a positive integer N and consider a collection of n vectors in the space
X := ([CN×N)]h)

m×1, i.e., column vectors of length m, each entry of which is an
N×N complex Hermitian matrix. Given a collection of n elements Φ(1), . . . , Φ(n)

in X , we say that Φ ∈ X is a C∗-convex combination of Φ(1), . . . , Φ(n) if there are n

matrices A1, . . . , An of size N × N with
n
∑

j=1
A∗j Aj = I so that

(2.9) Φ =
n

∑
j=1

A∗j Φ(j)Aj

where we set

(2.10) A∗j Φ(j)Aj =


A∗j Φ

(j)
1 Aj
...

A∗j Φ
(j)
m Aj

 if Φ(j) =


Φ

(j)
1
...

Φ
(j)
m

 ∈ ([CN×N ]h)
m×1.

For our application, we only deal with the special case where Φ
(j)
i is a scalar

multiple of the identity: Φ
(j)
i = φ

(j)
i IN where φ

(j)
i is a real number; we denote the

subspace of all such elements of X by Xs. For Φ(1), . . . , Φ(n) ∈ Xs, the C∗-convex
combination (2.9) and (2.10) simplifies to

(2.11) Φ =
n

∑
j=1

WjΦ
(j)

where we set Wj = A∗j Aj, so {Wj : j = 1, . . . , n} is any collection of N × N
matrices satisfying

(2.12) Wj > 0 for j = 1, . . . , n,
n

∑
j=1

Wj = IN

and the meaning of the j-th term in (2.11) is

(2.13) WjΦ
(j) =


φ
(j)
1 Wj

...
φ
(j)
m Wj

 if Φ(j) =


φ
(j)
1 IN

...
φ
(j)
m IN

 .
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We shall furthermore only be interested in the case where the C∗-convex combi-
nation of such Φ(1), . . . , Φ(n) in Xs is the zero element 0 in X :

0 =

0
...
0

 ∈ ([CN×N ]h)
m×1.

In analogy with the notion of the interior point of the convex hull of a collec-
tion of vectors u1, . . . , un for the classical case presented in Section 1, we propose
the following definition of the notion that 0 is an interior point of the C∗-convex
hull of a collection of vectors in Xs. The statement of the result requires some
additional terminology, all of which we collect in the following definition.

DEFINITION 2.7. Given an operator T on a Hilbert space H (e.g., H = CN

and T presented as a matrix in CN×N) together with a closed subspaceM of H,
we say that T is supported onM if T = TPM = PMT (where PM is the orthogonal
projection fromH toM).

We say that a family of closed subspaces {M1, . . . ,Mn} is weakly indepen-
dent if, whenever T1, . . . , Tn are linear operators onH with

(2.14) Tj is supported onMj for each j and
n

∑
j=1

Tj = 0,

it follows that Tj = 0 for each j = 1, . . . , n.
Suppose that in addition we are given a collection φ = {φ(1), . . . , φ(n)} of

n vectors in Rm (so φ(j) =

 φ
(j)
1
...

φ
(j)
m

 with φ
(j)
1 , . . . , φ

(j)
m ∈ R). Then we say that the

family of closed subspaces {M1, . . . ,Mn} is φ-constrained weakly independent if,
whenever T1, . . . , Tn are linear operators onH satisfying the conditions

(i) Tj is supported onMj for each j,

(ii)
n

∑
j=1

Tj = 0,(2.15)

(iii)
n

∑
j=1

φ
(j)
i Tj = 0 for each i = 1, . . . , m,

it follows that Tj = 0 for each j = 1, . . . , n.
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Finally, suppose that we are given n-vectors φ =


 φ

(j)
1
...

φ
(j)
m

 : j = 1, . . . , n


in Rm with associated set of n vectors Φ =


 φ

(j)
1 IN

...
φ
(j)
m IN

 : j = 1, . . . , n

 in Xs, and

suppose that 0 is in the C∗-convex hull of Φ: there are matrices W1, . . . , Wn satis-
fying conditions (2.12) so that

0 =
n

∑
j=1

WjΦ
(j)

with WjΦ
(j) defined as in (2.13). Then we say that 0 is an interior point of the C∗-

convex hull of {Φ(j) : j = 1, . . . , n} if the family of subspaces {Ran W1, . . . , Ran Wn}
is φ-constrained weakly independent.

An easy observation is that for the case N = 1, the notion of 0 being an
interior point of the C∗-convex hull of Φ = {φ(1), . . . , φ(n)} ⊂ Rm coincides with
0 being an interior point of the convex hull of {φ(1), . . . , φ(n)} as characterized

in Proposition 1.3. Indeed, supposes that 0 =
n
∑

k=1
wkφ(k) for positive numbers

w1, . . . , wn summing to 1, and t1, . . . , tn is a collection of real numbers with

n

∑
k=1

tk = 0,
n

∑
k=1

tkφ(k) = 0 ∈ Rm.

Since Ran wk is the whole space C (when wk is considered as an operator on C),
it is automatically the case that tk is supported on Ran wk. Thus the condition
for 0 being an interior point of the C∗-convex hull of {φ(1), . . . , φ(n)} reduces to
condition (iii) in Proposition 1.3 (with φ(j) in place of uj), i.e., to 0 being an interior
point of the classical convex hull of {φ(1), . . . , φ(n)}.

We are now ready to state the following general result concerning Prob-
lem 2.1.

THEOREM 2.8. Let the convex set of measures C = C(X, N, φ} be given as in
(2.1). Then a measure µ in C is extremal (µ ∈ ∂eC) if and only if there is a natural
number n with 1 6 n 6 (m + 1)N2 and n distinct points x = (x1, . . . , xn) in X
together with N × N matrix weights W1, . . . , Wn satisfying the conditions (2.2) so that
µ has a representation as in Theorem 2.2 (see (2.3))

(2.16) µ =
n

∑
j=1

Wjδxj
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where, in addition, the family of subspaces {Ran W1, . . . , Ran Wn} is φ(x)-constrained
weakly independent, where we set

φ(x) = {φ(x1), . . . , φ(xn)}.
Proof. Suppose first that µ has the form (2.16) with {Ran W1, . . . , Ran Wn} a

φ-constrained weakly independent family of subspaces, and also suppose that ν
is a complex Hermitian N × N-matrix measure on X such that

(2.17) ν(X) = 0; ν(φi) =
∫
X

φidν = 0 for i = 1, . . . , m; µ± ν > 0.

From the last of conditions (2.17) we see that supp ν ⊂ {x1, . . . , xm} and hence
there are complex Hermitian matrices T1, . . . , Tn so that

ν =
n

∑
j=1

Tjδxj .

By evaluating µ± ν on the singleton Borel set {xj}, we see that Wj ± Tj > 0. This
enables us to conclude that Tj is supported on Ran Wj for each j. From the first
two conditions in (2.17) we deduce that

n

∑
j=1

Tj = 0;
n

∑
j=1

φi(xj)Tj = 0 for i = 1, . . . , m.

From the hypothesis that {Ran Wj : j = 1, . . . , n} is φ(x)-constrained weakly
independent, we conclude that Tj = 0 for each j, and hence ν = 0. From the
criterion in Lemma 1.1, we now conclude that µ is extremal as wanted.

Conversely, suppose that µ ∈ ∂eC and suppose that {T1, . . . , Tn} is a col-
lection of operators satisfying the conditions (2.15) (with Ran Wj in place ofMj).
Note that {Re T1, . . . , Re Tn} and {Im T1, . . . , Im Tn} satisfy the same hypothe-
ses and, in order to show that Tj = 0, it suffices to show that Re Tj = 0 and
Im Tj = 0. Thus without loss of generality we may assume that Tj is complex

Hermitian. Define a measure ν by ν = ε
n
∑

j=1
Tjδxj where ε > 0. One can check

that then ν meets all the conditions (2.17) as long as ε > 0 is chosen sufficiently
small. If µ is extremal, then Lemma 1.1 forces ν = 0. As we were careful to ar-
range that ε 6= 0, it follows that Tj = 0 for each j = 1, . . . , n. It now follows that
indeed {Ran Wj : j = 1, . . . , n} is φ(x)-constrained weakly independent as was
to be shown.

It is of interest to specialize Theorem 2.8 to the case m = 0; in this way we
recover a result of Arveson (see Theorem 1.4.10 of [5]).

COROLLARY 2.9. Let C(X, N, ∅) be the compact convex set of positive N × N-
matrix measures µ on a compact Hausdorff space X normalized to have µ(X) = IN . Then
µ is extremal in C(X, N, ∅) if and only if, for some natural number n with 1 6 n 6 N2,
there are n distinct points x1, . . . , xn and N × N matrix weights W1, . . . , Wn satisfying:
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(i) Wj > 0 for each j = 1, . . . , n and
n
∑

j=1
Wj = IN , and

(ii) the family of subspaces {Ran W1, . . . , Ran Wn} is weakly independent
so that µ is given by

(2.18) µ =
n

∑
k=1

Wkδxk .

Proof. Simply observe that this is just the m = 0 case of Theorem 2.8. We
note that our proof (i.e., the proof of Theorem 2.8 specialized to the m = 0 case)
is elementary and direct while the proof in [5] has a more sophisticated flavor
bringing in ideas from C∗-representation and dilation theory.

REMARK 2.10. In the paper of Arveson [5], it is not noted explicitly that
the number of terms n in the decomposition (2.18) for an extremal measure of
C(X, N, ∅) can be at most N2 for the finite-dimensional case (H = CN). However
it is observed there (see page 165 of [5]) that, in the finite-dimensional case, weak
independence of a family of subspaces {M1, . . . ,Mn} ⊂ CN is equivalent to
classical linear independence for the family of subspaces {N1, . . . ,Nn} ⊂ CN ⊗
CN , where we have set Nj = span{ξ ⊗ η : ξ, η ∈ Mj}. Since dim(CN ⊗CN) is
N2, we have the bound N2 on the number of subspaces in a weakly independent
family of subspaces {M1, . . . ,Mn} contained in CN .

There is also an example given in [5] of a weakly independent family of
subspaces which is not linearly independent in the classical sense, e.g., M1 =
span{ξ}, M2 = span{η}, M3,= span{ξ + η} where ξ and η are linearly in-
dependent vectors. This example can be enhanced as follows (see pages 32–
35 of [21]). One can choose three vectors ξ1, ξ2, ξ3 in C2 so that the family of
subspaces Mj = span{ξ j} (j = 1, 2, 3) is weakly independent and in addition
the associated matrix weights Wj = ξ jξ

∗
j (j = 1, 2, 3) satisfy the normalization

W1 + W2 + W3 = I2. We conclude that the measure µ = W1δx1 + W2δx2 + W3δx3

(where x1, x2, x3 are any three distinct points in X) is extremal in C(X, 2, ∅) while
not being a spectral measure, i.e., µ is not of the form µ = P1δx1 + P2δx2 with
P1, P2 orthogonal projections with pairwise orthogonal ranges in C2 (compare
with Theorem 2.14 below).

REMARK 2.11. The notion of C∗-convex combination and associated notions
of C∗-convex set and C∗-extremal point are defined more broadly in the literature
than what we have indicated so far here. The setting of [17], [19] is the general-
ized state space SH(A) of unit-preserving completely positive maps from the C∗-
algebra A into the C∗-algebra L(H) of bounded linear operators on the Hilbert
spaceH. A C∗-convex combination of n such maps φ1, . . . , φn is defined to be a φ
given by

φ(a) =
n

∑
j=1

t∗j φj(a)tj
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where tj ∈ L(H) satisfy
n
∑

j=1
t∗j tj = IH. The main interest in [17], [19] (as well as

in other papers) is the structure of C∗-extreme points of SH(A). More broadly,
one could consider real maps φ : A → L(H), i.e., maps which preserve self-
adjoint elements, and in particular, examine when the zero map 0 is a C∗-convex
combination of n given such maps φ1, . . . , φn. This becomes exactly the setting in-
troduced in Section 2.2 if we take A to be the C∗-algebra of continuous functions
on the finite-point set {1, . . . , m}, i.e., A = C({1, . . . , m}) ∼= Cm (so selfadjoint
elements are identified with Rm),H = CN , and identify X = ([CN×N ]h)

m×1 with
maps from C({1, . . . , m}) into L(CN) ∼= CN×N :

Φ =

Φ1
...

Φm

 ∈ X 7→ φΦ : f ∈ C({1, . . . , m}) 7→ f (1)Φ1 + · · ·+ f (m)Φm.

We have not seen the notion of interior point of the C∗-convex hull elsewhere in the
literature. Note that we define this notion here only for the special case where
Φ1, . . . , Φn are in Xs; we do not hazard a guess here as to what the appropriate
notion should be for the more noncommutative situation where Φ1, . . . , Φn ∈
X , or for the still more general situation where Φ1, . . . , Φn are real elements of
L(A,L(H)).

As observed in [19], given a compact Hausdorff space X, the generalized
state space SH(C(X)) of the commutative C∗-algebra C(X) can be identified with
positive L(H)-valued measures µ on X having total mass µ(X) equal to IH. Thus,
when H = CN , SCN (C(X)) is exactly the convex set C(X, N, ∅) whose classical
extreme points are described in Corollary 2.9. One of the central goals in [17], [19]
is to describe the C∗-extreme points of SH(C(X)). It is interesting that the prob-
lem of describing the classical extreme points of the linearly-constrained general-
ized state space C(X, N, φ), a problem formulated completely in the confines of
classical convexity theory, has a solution (see Theorem 2.8) which draws on ideas
from noncommutative convexity theory.

We note that other papers (e.g. [16], [22], [23]) study C∗-convex sets (and
associated extremal-point theory) in L(H) or, more generally, in a general C∗-
algebra A. From our point of view this amounts to the special case m = 1.

It can be argued that the characterization of ∂eC(N, X, φ) in Theorem 2.8
is not particularly explicit and is a little difficult to work with. To address this
issue, we give a couple of illustrative examples where more detailed information
is possible.

THEOREM 2.12. Suppose that C(X, N, φ) is as in (2.1). Suppose that the measure
µ ∈ [M(X)N×N ]h has the form

(2.19) µ =
n

∑
k=1

µkLk



550 J.A. BALL AND M.D. GUERRA HUAMÁN

where:
(i) each µk is a scalar positive measure which is an extreme point for the associated

convex compact subset C(X, 1, φ) of positive scalar measures where in addition the sup-
port sets Sk := {supp µk : k = 1, . . . , n} are disjoint (Sk ∩ Sk′ = ∅ for k 6= k′);

(ii) the matrix weights Lk satisfy the conditions

Lk > 0 for each k;
n

∑
k=1

Lk = IN ;

(iii) the family of subspaces {Ran Lk : k = 1, . . . , n} is weakly independent (as defined
in Definition 2.7).
Then µ ∈ ∂eC(X, N, φ).

Proof. We argue that if µ is as in the statement of the theorem, then it meets
the conditions of Theorem 2.8 and therefore is extremal in C(X, N, φ). Toward
this end, we let {xk,1, . . . , xk,nk

} be the support of the measure µk. By hypothesis,
these points are all distinct. We then write µk as

µk =
nk

∑
j=1

w(k)
j δxk,j

for scalar weights w(k)
j > 0 and then rewrite µ as

(2.20) µ =
n

∑
k=1

nk

∑
j=1

w(k)
j Lkδxk,j = ∑

k,j:16k6n;16j6nk

Wk,jδxk,j

where we have set Wk,j = w(k)
j Lk. Then (2.20) represents µ in the form (2.16), but

with index set {(i, j) : 1 6 i 6 n, 1 6 j 6 nk} rather than {j : 1 6 j 6 n}. It
remains only to show that the collection of subspaces {Ran Wk,j : 1 6 k 6 n, 1 6
j 6 nk} is φ-constrained weakly independent.

We therefore suppose that we are given a collections of operators Tk,j on CN

satisfying:

Tk,j is supported on Ran Wk,j = Ran Lk for each (k, j);

∑
k,j:16k6n;16j6nk

Tk,j = 0;

∑
k,j:16k6n;16j6nk

φi(xk,j)Tk,j = 0 for i = 1, . . . , m;

with the goal to show that each Tk,j = 0. From the hypothesis that {Ran Lk : k =

1, . . . , n} is weakly independent and the observation that both
nk
∑

j=1
Tk,j and
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nk
∑

j=1
φi(xk,j)Tk,j are supported on Ran Lk, it follows that

(2.21)
nk

∑
j=1

Tk,j = 0 and
nk

∑
j=1

φi(xk,j)Tk,j = 0 for each i and k.

We next use that µk =
nk
∑

j=1
w(k)

j δxk,j is a scalar extreme point: it follows from The-

orem 2.3 that 0 =
nk
∑

j=1
w(k)

j φ(xk,j) is an interior point of the convex hull of the

vectors φ(xk,1), . . . , φ(xk,nk
) in Rm. By criterion (iii) in Proposition 1.3, the condi-

tions (2.21) applied entrywise now force that Tk,j = 0 for each j = 1, . . . , nk. As k
is arbitrary, we have shown that Tk,j = 0 as required.

The next result gives a partial converse to Theorem 2.12.

THEOREM 2.13. Suppose that µ ∈ C(X, N, φ) has the form (2.19) such that:
(i) each µk is a scalar positive measure which is an extreme point for C(X, 1, φ) (with

supports not necessarily disjoint),
(ii) each Wk is positive semidefinite, and

(iii) the family of subspaces {Ran Wk : k = 1, . . . , n} is not weakly independent.
Then µ is not an extreme point of C.

Proof. The assumption that {Ran Wk : k = 1, . . . , n} is not weakly indepen-
dent means that we can find a family of operators {Tk : k = 1, . . . , n} on CN such

that Tk 6= 0 for some k,
N
∑

k=1
Tk = 0 and Tk is supported on Ran Wk for each k.

By considering either {Re Tk : k = 1, . . . , N} or {Im Tk : k = 1, . . . , N}, we may
suppose without loss of generality that each Tk is complex Hermitian. By choos-
ing ε > 0 but sufficiently small, we can then arrange that Wk ± εTk > 0 for each
k = 1, . . . , n. We then define a measure ν by

ν =
n

∑
k=1

εTkµk.

Then it is easily checked that ν 6= 0, ν(φi) = 0 for each i = 1, . . . , m, ν(X) = 0,
and µ± ν > 0. As a consequence of Lemma 1.1 it follows that µ is not an extreme
point of C(X, N, φ).

We now present another concrete class of extreme points for a general con-
vex compact set of the form C(N, X, φ) as in (2.1).

THEOREM 2.14. Suppose that µ ∈ [M(X)N×N ]+ has the form

(2.22) µ =
N

∑
k−1

µkPk
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where {P1, . . . , PN} is a pairwise-orthogonal family of rank-1 orthogonal projections
summing to the identity operator I on CN and where µ1, . . . , µN are scalar measures
(not necessarily having disjoint supports and perhaps not even distinct) which are ex-
tremal for the compact convex set of scalar measures C(X, 1, φ). Then µ is extremal in
the compact convex set of matrix measures C(X, N, φ).

Proof. Let µ be as in the statement of the theorem and suppose that ν is a
complex Hermitian N × N matrix measure with

(2.23) ν(X) = 0; ν(φi) = 0 for i = 1, . . . , m; µ± ν > 0.

Factor the rank-1 orthogonal projection Pk as Pk = eke∗k for a unit column vector
ek ∈ CN×N . Then we have

0 6 Pk(µ± ν)Pk = (µk ± ν
(1)
kk )Pk

where ν
(1)
kk is the scalar measure given by ν

(1)
kk = e∗k νek. The conditions (2.23)

satisfied by ν imply that each ν
(1)
kk satisfies the conditions

ν
(1)
kk (X) = 0; ν

(1)
kk (φi) = 0 for i = 1, . . . , m; µk ± ν

(1)
kk > 0.

Since µk is extremal for C(X, 1, φ), a consequence of Lemma 1.1 is that ν
(1)
kk = 0

for each k = 1, . . . , n. It remains to show that the off-diagonal components of ν

with respect to the orthonormal basis {e1, . . . , eN} are also all zero, i.e., ν
(1)
kk′ = 0

for 1 6 k < k′ 6 N, where ν
(1)
kk′ = e∗i νek′ .

Toward this goal, we consider the 2× 2 matrix measure
[ e∗k

e∗k′

]
(µ± ν) [ ek ek′ ]

which we can identify with the 2× 2 matrix measure[
µk ±ν

(1)
kk′

±ν
(1)
kk′ µk′

]
.

From the fact that µ± ν > 0, we see that this 2× 2 matrix measure is positive for
both choices of signs±. It follows that necessarily supp ν

(1)
kk′ ⊂ supp µk ∩ supp µk′ .

If {xk,1, . . . , xk,nk
} is the support of µk, then necessarily νkk′ has the form

ν
(1)
kk′ =

nk

∑
j=1

vkk′
j δxk,j

for some weights vkk′
j (where vkk′

j = 0 whenever xk,j ∈ supp µk is not in supp µk′ ).
A consequence of the conditions (2.23) is the set of conditions on the weights
{vkk′

j : j = 1, . . . , nk}:

(2.24)
nk

∑
j=1

vkk′
j = 0;

nk

∑
j−1

φi(xk,j)vkk′
j = 0 for i = 1, . . . , m.
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Since µk =
nk
∑

j=1
w(k)

j δxk,j is extremal for C(X, 1, φ), we know that

0 =
nk

∑
j=1

w(k)
j φ(xk,j)

is an interior point of the convex hull of {φ(xk,1), . . . , φ(xk,nk
}. By criterion (iii)

in Proposition 1.3, conditions (2.24) then lead to the conclusion that vkk′
j = 0 for

j = 1, . . . , nk. We conclude that ν
(1)
kk′ is the zero measure. Since the pair of indices

(k, k′) is arbitrary, we now have that ν = 0. An application of Lemma 1.1 then
tells us that µ is extremal for C(X, N, φ) as wanted.

REMARK 2.15. By combining Theorems 2.14 and 2.8, we see that any mea-
sure of the form (2.22) must satisfy the conditions of Theorem 2.8 when expressed
in the form (2.16). There does not appear to be any obvious direct proof of this
implication.

REMARK 2.16. It is easily seen that the family of subspaces {Ran Pk : 1 6
k 6 N} is weakly independent whenever {P1, . . . , PN} is a pairwise-orthogonal
family of orthogonal projections on CN . Let us say that a µ ∈ C(X, N, φ) (as in
(2.1)) is special if µ has a presentation of the form

(2.25) µ =
n

∑
k=1

µkWk

where each µk is a scalar positive measure extremal in the compact convex set
of scalar measures C(X, 1, φ) and where the family of subspaces {Ran Wk : k =
1, . . . , n} is weakly independent. Thus the extremal measures identified in The-
orem 2.12 and those identified in Theorem 2.14 are all special, but the class of
special measures is more general than either of these particular cases. For the
special cases N = 1 or m = 0, we see that the set of extreme points ∂eC consists
exactly of the special measures. More generally, in the examples which we have
computed, it turns out that special measures are extremal, but we do not know
if this always holds. On the other hand there are examples of extremal measures
which are not necessarily special (see Corollary 5.1 below).

3. THE HERGLOTZ CLASS OVER A FINITELY CONNECTED PLANAR DOMAIN

In this section we let R denote a bounded domain (connected, open set) in
the complex plane whose boundary consists of m + 1 smooth Jordan curves; we
refer to [18], [20] as general references for the function theory on such domains.
We let ∂0, ∂1, . . . , ∂m denote the m + 1 boundary components with ∂0 denoting
the boundary of the unbounded component of the complement C \ R of R in
the complex plane. For a fixed natural number N, we let HN(R) denote the set
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of (single-valued) holomorphic N × N matrix-valued functions F(z) on R with
positive real part: Re F(z) > 0 for z ∈ R. We often fix a point t0 ∈ R and consider
HN(R) subject to the normalization F(t0) = IN ; denote this normalized Herglotz
class byHN(R)I . In case N = 1 we write simplyH(R)1.

A standard normal families argument combined with the classical Harnack
inequality shows that HN(R)I is a compact convex subset of the locally con-
vex topological space Hol(R) consisting of all holomorphic N×N matrix-valued
functions onR with the topology of uniform pointwise convergence on compact
subsets of R. Our goal in this section is to apply the results of Section 2 to char-
acterize the extreme points ofHN(R)I .

3.1. THE SCALAR-VALUED HERGLOTZ CLASS OVERR. For the scalar-valued case
N = 1, characterization of the extreme points of H(R)1 is worked out in various
places (see [4], [13], [29]). The first step is to transform the problem to one of
the form in Section 2.1 as follows. One can solve the Dirichlet problem on such
domains: thus for given u ∈ CR(∂R), there is a unique function u∧ ∈ CR(R−)
(whereR− denotes the closure ofR) so that u∧|R is harmonic onR and

(3.1) u∧|∂R = u.

By the Riesz representation theorem, there is a Borel measure ωt0 on ∂R (the
harmonic measure for the fixed point t0) so that

u∧(t0) =
∫

∂R

u(ζ)dωt0(ζ).

It is known that the harmonic measure dωz for any other point z ∈ R is mu-
tually boundedly absolutely continuous with respect to dωt0 ; hence there is a
function Pz(·) on ∂R (the Poisson kernel for the region R with the normalization
that Pt0(ζ) ≡ 1 on ∂R) so that (3.1) becomes

(3.2) u∧(z) =
∫

∂R

u(ζ)Pz(ζ)dωt0(ζ)

This formula can be extended to measures in a natural way: given a Borel mea-
sure µ on ∂R, define a function µ∧ onR by

(3.3) µ∧(z) =
∫

∂R

Pz(ζ)dµ(ζ).

Note that if a continuous function u on ∂R is identified with the measure dµu(ζ)
= u(ζ)dωt0(ζ), then formula (3.3) agrees with (3.2). Moreover, there is a converse
for the case of positive harmonic functions: any positive harmonic function onR
is of the form u∧ as in (3.3) for a uniquely determined positive Borel measure µ
onR.

One of the difficulties with function theory on multiply-connected domains
(in contrast with function theory on the unit disk) is that harmonic functions need
not have single-valued harmonic conjugates; consequently, a given harmonic
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function u∧ on R can fail to be the real part of any (single-valued) holomorphic
function on R. A natural task then is: given a harmonic function h on R having the
form u∧ as in (3.2) or more generally µ∧ as in (3.3), describe in terms of the function
u ∈ CR(∂R) (or in terms of the measure µ on ∂R) when it is the case that h has a
single-valued harmonic conjugate. Note that the second case covers the first case by
putting dµ = u dωt0 so it suffices to solely consider the second case. The solution
is quite elegant (see [4], [13], [29]) and can be described as follows. One can show
that there exists a set φ = {φ1, . . . , φm} of m continuous real-valued functions on
∂R such that

φ = real basis for L2(ωt0)	 [H2(ωt0) + H2(ωt0)], or equivalently

{φ1dωt0 , . . . , φmdωt0} = real basis for (A(R) + A(R))⊥.(3.4)

Here H2(ωt0) is the Hardy space of analytic functions over R based on the mea-
sure ωt0 on ∂R (see e.g. [18]), the overline denotes complex conjugation, A(R)
is the algebra of continuous functions on R− which are holomorphic on R, and
the notation ⊥ denotes the annihilator computed in the space of Borel measures
M(∂R) on ∂R dual to the Banach space C(∂R) of continuous functions on ∂R.
Then the result is: µ∧ given by (3.3) has a single-valued harmonic conjugate µ̃∧ if and
only if the orthogonality conditions

(3.5)
∫

∂R

φi(ζ)dµ(ζ) = 0 for i = 1, . . . , m

are satisfied. Moreover, the condition that u∧(t0) = 1 corresponds to the condition
that µ(∂R) = 1 (so µ is a probability measure on ∂R). Throughout this section, the
notation φ = {φ1, . . . , φm} refers to a fixed r-tuple of real-valued continuous functions
on ∂R constructed as in (3.4).

All these observations lead to a parametrization of scalar-valued normal-
ized Herglotz class H(R)1 as follows. Given a measure µ ∈ C(∂R, 1, φ), de-
fine a positive harmonic function µ∧ on ∂R by (3.3). Since µ ∈ C(∂R, 1, φ), µ
satisfies the orthogonality conditions (3.5) and hence any harmonic conjugate of
µ∧ is single-valued. Then there is a unique such harmonic conjugate µ̃∧ so that
µ̃∧(t0) = 0. If we set fµ(z) = µ∧(z) + iµ̃∧(z), then fµ ∈ H(R)1. Furthermore,
any f ∈ H(R)1 has the form fµ for a uniquely determined µ ∈ C(∂R, 1, φ). Thus
there is a one-to-one correspondence between the normalized Herglotz class H(∂R)1
and the compact convex set of probability measures C(∂R, 1, φ). As the correspon-
dence is affine, we can also say: the function f is extremal for the compact convex set
H1(R) if and only if f = fµ where µ is an extremal measure for the compact convex set
C(∂R, 1, φ).

Thus to describe the set of extreme points for H(R)1, it suffices to describe
the extreme points of C(∂R, 1, φ), exactly a problem analyzed in Theorem 2.3
above. However, for this function-theory context, much more definitive detailed
information is available.
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THEOREM 3.1 (See Theorem 1.3.17 of [4], Lemma 2.10 of [13], Lemma 3.7 of
[29] ). For any m + 1-tuple x = (x0, . . . , xm) of points on ∂R such that xj ∈ ∂j for each
j = 0, 1, . . . , m, there is a unique set of positive weights wx

0, . . . , wx
m summing up to 1

such that the measure µ given by

(3.6) µ = wx
0δx0 + · · ·+ wx

mδxm

is extremal for C(∂R, 1, φ), and, conversely, any extremal measure µ for C(∂R, 1, φ)
arises in this way.

From the point of view of Theorem 2.3, the added content of Theorem 3.1 is
as follows. For the case where X = ∂R and φ = {φ1, . . . , φm} is constructed as in
(3.4), then the n-tuple of points x1, . . . , xn in ∂R is such that the zero vector 0 ∈ Rm is
an interior point of the convex hull of the set of vectors

φ1(x1)
...

φm(x1)

 , . . . ,

φ1(xn)
...

φm(xn)


 ⊂ Rm

if and only if n = m + 1 and the m + 1-tuple now indexed as x0, x1, . . . , xm consists of
exactly one point from each boundary component ∂j ⊂ ∂R ofR.

Following [4], let us introduce the notation

(3.7) TR = ∂0 × · · · × ∂m

for the Cartesian product of the boundary components of R; we think of this as
the “R-torus” since it plays the same role in integral representation formulas for
Herglotz functions overR as does the usual torus T = ∂D for integral representa-
tion formulas for Herglotz functions over the unit disk D. Theorem 3.1 provides
a TR-parametrization of the extreme points of H(R)1 as follows. For a given
x = (x0, x1, . . . , xm) ∈ TR, we let µx be the extremal measure of C(∂R, 1, φ) given
by (3.6). Given any x ∈ TR, we let fx be the unique holomorphic function on R
determined by

(3.8) Re fx(z) =
∫

∂R

Pz(ζ)dµx(ζ), Im fx(t0) = 0.

Then the extreme points of normalized Herglotz functions H(R)1 consist exactly of the
functions fx with x ∈ TR.

We next observe that the convex set C(∂R, 1, φ) is compact and convex in
the space of real Borel measures M(∂R) over R where the latter space carries
the weak∗ topology. As M(∂R) is the dual of CR(∂R) which is a separable Ba-
nach space, it follows that the unit ball in M(∂R) is metrizable. Hence the second
statement in Theorem 1.2 applies. Furthermore, when we use the correspondence
between ∂eC(∂R, 1, φ) and TR to transport the weak∗ topology on ∂eC(∂R, 1, φ)
to a topology on TR, one can check that the topology so obtained is just the Eu-
clidean topology on TR inherited as a subset of Cm+1. Thus, by Theorem 1.2
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above, any measure µ ∈ C(∂R, 1, φ) has an integral representation

µ =
∫
TR

µxdν(x)

where the integral is defined in the weak sense:

(3.9)
∫

∂R

φ(ζ)dµ(ζ) =
∫
TR

[ ∫
∂R

φ(ζ)dµx(ζ)
]
dν(x) for each φ ∈ CR(∂R).

This leads to the following integral representation formula for functions f in the
normalized Herglotz classH1

1(R).

THEOREM 3.2 (See Theorem 1.3.26 of [4]). Given f ∈ H(R)1, there is a proba-
bility measure ν on TR so that

(3.10) f (z) =
∫
TR

fx(z)dν(x).

Proof. We have already seen that any f ∈ H(R)1 is associated with a u-
niquely determined measure µ ∈ C(∂R, 1, φ) so that Re f = µ∧ as in (3.3). Plug-
ging this µ into (3.9) (and setting f (z) = Pz(ζ)) tells us that there is a probability
measure ν on TR so that

Re f (z) =
∫

∂R

Pz(ζ)dµ(ζ) =
∫
TR

[ ∫
∂R

Pz(ζ)dµx(ζ)
]

dν(x) =
∫
TR

Re fx(z)dν(x).

By the uniqueness of the harmonic conjugate normalized to have value 0 at t0,
the formula (3.10) now follows.

3.2. THE MATRIX-VALUED HERGLOTZ CLASS OF R. We now wish to obtain re-
sults parallel to Theorem 3.1 and Theorem 3.2 for the normalized matrix-valued
Herglotz class HN(R)I . For the matrix-valued case the function theory is not as
highly developed. The implication is that the results which we do obtain are not
as explicit as for the scalar-valued case.

By applying Theorem 2.8 to the convex set C(∂R, N, φ) (where the collec-
tion φ as usual is equal to {φ1, . . . , φm} as in (3.4)), we get most of the following
somewhat less explicit analogue of Theorem 3.1.

THEOREM 3.3. The N × N matrix-valued Borel measure µ on ∂R is extremal for
the compact convex set C(∂R, N, φ) (with φ as in (3.4)) if and only if µ has a represen-
tation of the form

(3.11) µ =
n

∑
j=1

Wjδxj ,

where:
(i) n is a natural number such that 1 6 n 6 (m + 1)N2;

(ii) x1, . . . , xn are n distinct points in ∂R;
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(iii) W1, . . . , Wn are n N× N matrices such that Wj > 0 for each j,
n
∑

j=1
Wj = IN , and

{Ran Wj : j = 1, . . . , n} is φ(x)-constrained weakly independent (see Definition 2.7),
where here we set

φ(x) =


φ1(x1)

...
φm(x1)

 , . . . ,

φ1(xn)
...

φm(xn)


 ⊂ Rm.

Furthermore, if µ of the form (3.11) is extremal for C(∂R, N, φ), then the addi-
tional property

(iv) ∑
j:xj∈∂r

Wj is invertible for each r = 0, 1, . . . , m

holds; consequently the number of points n in the support supp µ of µ in fact satisfies
m + 1 6 n with at least one point xj from the support of µ in each connected component
∂r of ∂R.

Proof. What is added here going beyond the structure given by Theorem 2.8
for the general (non function-theoretic) case is the additional property satisfied by
any extremal measure given by condition (iv). To see this, we note that for any
unit vector u ∈ CN , the scalar-valued measure µu(∆) := u∗µ(∆)u is in the convex
set of scalar measures C(∂R, 1, φ). We now quote the result of Lemma 1.3.1 in [4]:
if µ(1) is a nonzero scalar positive measure on ∂R such that

∫
∂R

φidµ(1) = 0 for i =

1, . . . , m (so µ(1)∧ has a single-valued harmonic conjugate), then µ(1)(∂r) > 0 for
each r = 0, 1, . . . , m. Consequently, if ∑

j:xj∈∂r

Wj = µ(∂r) is singular for some r, then

there is a unit vector u so that µu(∂r) = u∗µ(∂r)u = 0. From Lemma 1.3.1 of [4]
we conclude that u∗µu is the zero measure, in contradiction with µ(∂R) = IN .

REMARK 3.4. When Theorem 3.3 is specialized to the scalar case (N = 1),
the bounds m + 1 6 n 6 (m + 1)N2 = m + 1 uniquely determine the value of
n as n = m + 1 for the total number of points of supp µ for µ ∈ ∂eC(∂R, 1, φ);
as each boundary component must contain at least one point of support of µ, we
recover the result in Theorem 3.1 that any such µ contains exactly one point of
support from each boundary component ∂r (r = 0, 1, . . . , m). For the case N > 1,
Theorem 3.3 (as compared to Theorem 3.1) lacks an explicit characterization as
to which natural numbers n between m + 1 and (m + 1)N2 and which associated
n-tuples of points x = (x1, . . . , xn) actually arise in a representation (3.11) for
an extreme point of C(∂R, N, φ), beyond the information that x must include
at least one point from each boundary component ∂1, . . . , ∂m. In particular, the
only apparent upper bound on the number of points of supp µ for an extremal
µ ∈ C(∂R, N, φ) in a particular boundary component ∂r is the crude bound (m +
1)N2−m. Also it is not clear to what extent the n-tuple of points x determines the
associated n-tuple of matrix weights W1, . . . , Wn; note that the classes of examples
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from Theorems 2.12 and 2.14 show that it is certainly not the case that the support
x = {x1, . . . , xn} uniquely determines the associated set of matrix weights w =
{W1, . . . , Wn}. However some additional detail is available for the case of an
annulus (m = 1); see Remark 5.3 below.

Despite the lack of explicitness in the characterization of the extreme points
of C(∂R, N, φ) as explained in Remark 3.4, we can still pursue the matrix ana-
logue of much of the analysis done for the scalar-valued normalized Herglotz
class as follows.

It is straightforward to see that positive N × N matrix-valued harmonic
functions H are given via a Poisson representation

H(z) = µ∧(z) :=
∫

∂R

Pz(ζ)dµ(ζ)

where now µ is a complex Hermitian positive N × N matrix-valued measure on
∂R. Moreover, the harmonic matrix-valued function µ∧(z) has a single-valued
matrix-valued harmonic conjugate if and only if the matrix measure µ satisfies
the orthogonality conditions (3.5) (with respect to the scalar-valued functions φ :=
{φ1, . . . , φm}), and the normalization condition that µ∧(t0) = IN translates to the
condition on µ that µ(X) = IN . By continuing an analysis parallel to what was
done above for the scalar-valued case, we arrive at the following: Given µ ∈
C(∂R, N, φ), there is a unique Fµ ∈ HN(R)I so that

(3.12) Re Fµ(z) =
∫

∂R

Pz(ζ)dµ(ζ).

Conversely, any F ∈ HN(R)I arises in this way from a µ ∈ C(∂R, N, φ). Moreover,
the function Fµ is extremal inHN(R)I if and only if µ is extremal in C(∂R, N, φ).

The set of complex Hermitian N× N matrix-valued measures [M(X)N×N ]h
is the dual space of the separable real Banach space [C(∂R)N×N ]h of complex
Hermitian N× N matrix-valued continuous functions on ∂R, and hence the unit
ball is metrizable and the second statement in Theorem 1.2 applies. The set of
extreme points ∂eC(∂R, N, φ) is a Borel subset of [M(X)N×N ]h and we have a
(admittedly somewhat implicit) parametrization from Theorem 3.3. In detail, let
us denote by TN

R (the matrixR-torus) the set

TN
R = {(x, w) : x = (x1, . . . , xn) ⊂ ∂R and w = (W1, . . . , Wn) ⊂ [CN×N ]+

are as in Theorem 3.3}.

Given (x, w) ∈ TN
R, there is an associated extremal measure µx,w ∈ ∂eC(∂R, N, φ)

given by (3.11) in Theorem 3.3, and all extremal measures µ ∈ ∂eC(∂R, N, φ) are
of the form µx,w for some (x, w) ∈ TN

R. We topologize TN
R by transporting the

weak∗ topology on the the associated set of measures µx,w for (x, w) ∈ TN
R. Then

by Theorem 1.2, given any µ ∈ C(∂R, N, φ), there is a Borel probability measure
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ν on TN
R so that

µ =
∫
TN
R

µx,w dν(x, w)

with the integral interpreted in the weak sense:

(3.13) tr
( ∫

∂R

Φ(ζ)dµ(ζ)
)
=
∫
TN
R

tr
( ∫

∂R

Φ(ζ)dµx,w(ζ)
)

dν(x, w)

for any Φ ∈ [C(∂R)N×N ]h.
Since extreme points of the setHN(R)I correspond to extreme points of the

set C(∂R, N, φ) in accordance with the formula (3.12), we see that the extreme
points of the normalized Herglotz class HN(R)I are exactly the functions Fx,w
determined by

(3.14) Re Fx,w(z) =
∫

∂R

Pz(ζ)dµx,w(ζ), Im Fx,w(t0) = 0.

We are now led to the matrix-valued analogue of Theorem 3.2.

THEOREM 3.5. Given F ∈ HN(R)I , there is a quantum probability measure ν on
TN
R so that

(3.15) F(z) =
∫
TN
R

Fx,w(z)dν(x, w).

Proof. We have noted that any F ∈ HN(R)I is associated with a measure
µ ∈ C(∂R, N, φ) as in (3.12). For X an arbitrary complex Hermitian N×N matrix,
we use the representation (3.13) with Φ(ζ) = XPz(ζ) to get

tr(XRe F(z)) = tr
( ∫

∂R

XPz(ζ)dµ(ζ)
)
=
∫
TN
R

tr
( ∫

∂R

XPz(ζ)dµx,w(ζ)
)

dν(x, w)

=
∫
TN
R

tr(XRe Fx,w(z))dν(x, w) = tr
(

X
∫
TN
R

Re Fx,w(z)dν(x, w)
)

.

Since X ∈ [CN×N ]h is arbitrary, we conclude that

Re F(z) =
∫
TN
R

Re Fx,w(z)dν(x, w).

By uniqueness of harmonic conjugate with value 0 at t0, the representation (3.15)
now follows.
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4. THE SCHUR CLASS OVER A FINITELY CONNECTED PLANAR DOMAIN

We define the (strict) N × N-matrix Schur class over R, denoted by SN(R),
to be the class of all holomorphic functions onRwith values equal to N× N ma-
trices such that ‖S(z)‖ < 1 for z ∈ R. The normalized strict Schur class SN(R)0
consists of such functions S such that in addition S(t0) = 0. A consequence of
the Schwarz lemma is that a holomorphic function S with (not necessarily strict)
contraction values and with S(t0) = 0 necessarily has strictly contractive values
on all ofR.

The classes HN(R)I and SN(R)0 correspond via a linear-fractional change
of variable, as summarized in the following proposition. We include the elemen-
tary proof since we shall make use of the formulas in subsequent proofs.

PROPOSITION 4.1. The normalized Schur class SN(R)0 and the normalized Her-
glotz class HN(R)I are related according to the following linear-fractional change-of-
variable formulas:

S ∈ SN(R)0 ⇔ F := (I − S)−1(I + S) ∈ HN(R)I ,(4.1)

F ∈ HN(R)I ⇔ S := (F + I)−1(F− I) ∈ SN(R)0.(4.2)

Moreover, the transformations in (4.1) and (4.2) are inverse to each other.

Proof. If S ∈ SN(R)0 and F is defined as in (4.1), then clearly F(t0) = IN
and

F(z)+F(w)∗=(I − S(z))−1(I + S(z)) + (I + S(w)∗)(I − S(w)∗)−1

=(I−S(z))−1[(I+S(z))(I−S(w)∗)+(I−S(z))(I+S(w)∗)](I−S(w))−1

=2(I − S(z))−1(I − S(z)S(w)∗)(I − S(w)∗)−1(4.3)

from which we see that Re F(z) is positive for z ∈ R so F ∈ HN(R)I .
Similarly, if F ∈ HN(R)I and S is defined as in (4.2), then clearly S(t0) =

0 and

I − S(z)S(w)∗

= I − (F(z) + I)−1(F(z)− I)(F(w)∗ − I)(F(w)∗ + I)−1

= (F(z) + I)−1[(F(z) + I)(F(w)∗ + I)− (F(z)− I)(F(w)∗ − I)](F(w)∗ + I)−1.

We conclude that

(4.4) I − S(z)S(w)∗ = 2(F(z) + I)−1[F(z) + F(w)∗](F(w)∗ + I)−1

from which we see that S(z) is contractive for z ∈ R and hence S ∈ SN(R)0.
Another formula which will prove useful later is

(4.5) (F(z) + I)−1 =
1
2
(I − S(z))

whenever F and S are related as in (4.1).
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We leave to the reader the verification of the fact that the formulas (4.1) and
(4.2) are inverse to each other.

More generally, if S is not in the normalized Schur class but is in the strict
(unnormalized) Schur class, we can apply a matrix linear-fractional map map-
ping the unit ball of N × N matrices to itself to obtain a new S̃ which is in the
normalized Schur class. Indeed, given any strictly contractive N × N matrix W,
the matrix linear fractional map given by

(4.6) LW : Z 7→ [AZ + B][CZ + D]−1.

Here

(4.7)
[

A B
C D

]
=

[
(DW∗)

−1 −(DW∗)
−1W

−W∗(DW∗)
−1 (DW)−1

]
where DW = (I −W∗W)1/2 and DW∗ = (I −WW∗)1/2 denote the invertible
defect operators of W and W∗, maps the open unit ball BCN×N = {Z ∈ CN×N :
‖Z‖ < 1} biholomorphically to itself and maps the given strict contraction matrix
W to 0 (these constructions go back at least to the paper of Phillips [28]):

LW [W] = 0.

One can check that the linear-fractional map (LW)−1 mapping 0 back to W is
given by

(LW)−1 : Z′ 7→ (A− Z′C)−1(B− Z′D)

with A, B, C, D as in (4.7), or explicitly

L−1
W : Z′ 7→ ((DW∗)

−1 + Z′W∗(DW∗)
−1)−1(Z′(DW)−1 + (DW∗)

−1W)

= DW∗(I + Z′W∗)−1(Z′ + W)(DW)−1(4.8)

(where we made use of the intertwining relation (DW∗)
−1W = W(DW)−1). This

formula will prove useful below. Notice that in the scalar case with w a point
in the unit disk, the matrix linear-fractional map LW simplifies to the familiar
Möbius transformation

Lw : z 7→ (z− w)(1− zw)−1

mapping the unit disk onto itself with the point w ∈ D mapping to 0. With these
observations in hand, the following is immediate.

PROPOSITION 4.2. If the matrix function S is in the strict Schur class SN(R),
then S̃ given by

(4.9) S̃(z) = LS(0)[S(z)] with LS(0) given as in (4.6) and (4.7)

is in the normalized Schur class SN(R)0.

The following formula for the defect of S in terms of the defect of S̃ will also
be useful below.
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PROPOSITION 4.3. Suppose S ∈ SN(R) and S̃ ∈ SN(R)0 are related as in
Proposition 4.2. Then we have

I − S(z)S(w)∗

= DS(0)∗(I + S̃(z)S(0)∗)−1(I − S̃(z)S̃(w)∗)(I + S(0)S̃(w)∗)−1DS(0)∗ .(4.10)

Proof. From the representation (4.9) for S̃ in terms of S, we solve for S to get

S(z) = (LS(0))
−1[S̃(z)].

We now use the explicit formula for (LS(0))
−1 determined from equation (4.8)

to get
S(z) = DS(0)∗(I + S̃(z)S(0)∗)−1(S̃(z) + S(0))(DS(0))

−1.

Hence we get

I − S(z)S(w)∗ = I − (LS(0)∗)
−1[S̃(z)]((LS(0))

−1[S̃(w)])∗

= I − DS(0)∗(I + S̃(z)S(0)∗)−1(S̃(z) + S(0))(DS(0))
−1

· (DS(0))
−1(S̃(w)∗ + S(0)∗)(I + S(0)S̃(w)∗)−1DS(0)∗

= DS(0)∗(I + S̃(z)S(0)∗)−1X(I + S(0)S̃(w)∗)−1DS(0)∗(4.11)

where we set

X =[I + S̃(z)S(0)∗](DS(0)∗)
−2[I + S(0)S̃(w)∗]

− [S̃(z) + S(0)](DS(0))
−2[S̃(w)∗ + S(0)∗].(4.12)

In the computation to follow we use the intertwining relations

(4.13) S(0)∗(DS(0)∗)
−2 = (DS(0))

−2S(0)∗, (DS(0)∗)
−2S(0) = S(0)(DS(0))

−2.

We now pick up the computation of X in (4.12):

X = (DS(0)∗)
−2 + S̃(z)S(0)∗(DS(0)∗)

−2

+ (DS(0)∗)
−2S(0)S̃(w)∗ + S̃(z)S(0)∗(DS(0)∗)

−2S(0)S̃(w)∗

− S̃(z)(DS(0))
−2S̃(w)∗ − S(0)(DS(0))

−2S̃(w)∗

− S̃(z)(DS(0))
−2S(0)∗ − S(0)(DS(0))

−2S(0)∗

= [(DS(0)∗)
−2 + S̃(z)S(0)∗(DS(0)∗)

−2] · [I + S(0)S̃(w)∗]

− [S(0)(DS(0))
−2 + S̃(z)(DS(0))

−2] · [S(0)∗ + S̃(w)∗]

= (DS(0)∗)
−2 − S(0)(DS(0))

−2S(0)∗

+ S̃(z)S(0)∗(DS(0)∗)
−2S(0)S̃(w)∗ − S̃(z)(DS(0))

−2S̃(w)∗ + [ cross terms ]

where we make use of (4.13) to see that the cross terms vanish. Continuation of
the computation of X and again making use of (4.13) then gives:

X=(DS(0)∗)
−2[I−S(0)S(0)∗]+S̃(z)[S(0)∗S(0)− I](DS(0))

−2S̃(w)∗=I−S̃(z)S̃(w)∗.
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Plugging X back into (4.11) gives us (4.10) as wanted.

With these preliminaries out of the way, we may use the integral representa-
tion formula (3.15) for a normalized Herglotz function to arrive at the following
representation for the defect kernel I − S(z)S(w)∗ for a normalized Schur-class
function S. To this end, we associate with any point (x, w) ∈ TN

R the normalized
Schur-class function

(4.14) Sx,w(z) = (Fx,w(z) + I)−1(Fx,w(z)− I)

where Fx,w ∈ HN(R)I is given by (3.14).

THEOREM 4.4. Given S in the strict Schur class SN(R), there is a CN×N-valued
function ((x, w), z) 7→ Hx,w(z) on TN

R ×R, with values bounded and measurable in
(x, w) for each fixed z and holomorphic in z for each fixed (x, w), along with a probability
measure ν on TN

R so that

(4.15) I − S(z)S(w)∗ =
∫
TN
R

Hx,w(z)(I − Sx,w(z)Sx,w(w)∗)Hx,w(w)∗ dν(x, w).

Proof. We first consider the case where S is in the normalized Schur class
SN(R)0. Then F := (I− S)−1(I + S) is in the normalized Herglotz classHN(R)I
as explained in Proposition 4.1. By Theorem 3.5 there is a probability measure ν

on TN
R so that

F(z) =
∫
TN
R

Fx,w(z)dν(x, w).

If Sx,w(z) is given by (4.14), then we know from Proposition 4.1 that we recover
Sx,w from Fx,w according to

Sx,w(z) = (Fx,w(z) + I)−1(Fx,w(z)− I).

Then we compute

I − S(z)S(w)∗

= 2(F(z) + I)−1(F(z) + F(w)∗)(F(w)∗ + I)−1 ( by (4.4))

=
1
2
(I − S(z))

∫
TN
R

2(I − Sx,w(z))−1(I − Sx,w(z)Sx,w(w)∗)(I − Sx,wSx,w(w)∗)

dν(x, w)(I − S(w)∗) (where we make use of (4.5) and (4.3))

=
∫
TN
R

Hx,w(z)(I − Sx,w(z)Sx,w(w)∗)Hx,w(w)∗ dν(x, w)

where we have set

Hx,w(z) = (I − S(z))(I − Sx,w(z))−1.
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To handle the case where S ∈ SN(R) is not necessarily normalized, we
proceed as follows. Write S(z) = (LS(0))

−1[S̃(z)] where S̃ is in the normalized
Schur class SN(R)0. Then, by the special case of Theorem 4.4 already proved, we
know that there is a probability measure ν and a function H̃ so that

I − S̃(z)S̃(w)∗ =
∫
TN
R

H̃x,w(z)(I − Sx,w(z)Sx,w(w)∗)H̃x,w(w)∗ dν(x, w).

If we now use relation (4.10), we see that (4.15) holds for S with

Hx,w(z) = DS(0)∗(I + S̃(z)S(0)∗)−1H̃x,w(z)

as needed.

Specializing this result to the scalar-valued case (N = 1) recovers the follow-
ing result of Dritschel–McCullough. To state the result we introduce the scalar
counterpart of the functions Sx,w given by (4.14): for each point x in the R-torus
(3.7) let sx be the scalar Schur-class function given by

(4.16) sx(z) =
fx(z) + 1
fx(z)− 1

where fx ∈ H(R)1 is given by (3.8).

THEOREM 4.5 (See Proposition 2.14 of [13]). Given a function s on R in the
scalar-valued Schur class S(R), there are complex-valued functions (x, z) 7→ hx(z) on
TR ×R, bounded and measurable in x for each fixed z and holomorphic in z for each
fixed x, and a positive probability measure on TR, such that

(4.17) 1− s(z)s(w) =
∫
TR

hx(z)(1− sx(z)sx(w))hx(w)dν(x)

REMARK 4.6. We note that it is not possible to use a smaller closed subset
of TN

R in the integral representation (3.15) and still have the representation hold
for all F ∈ HN(R)I , almost by the definition of extreme point. However some
reductions are always possible in the decomposition (4.15). Note that we have
already imposed the normalization that Sx,w(t0) = 0 for all (x, w). In addition we
note that the expression I − Sx,w(z)Sx,w(w)∗ is unchanged if we replace Sx,w(z)
by Sx,w(z)U with U a unitary N × N matrix. This means that we may restrict the
integral in (4.15) to points (x, w) such that Sx,w(ζ0) = IN for some point ζ0 in
∂R (e.g., ζ0 ∈ ∂0) and consider the integral over this smaller set T̃N

R. In special
situations for the N = 1 case (see [14] and [15]), there are results proven that,

after these reductions, there is no proper closed subset ˜̃TR of T̃R for which a

representation of the form (4.17) can hold with TR replaced by ˜̃TR. For the case
N > 1, our description of the set TN

R (or of T̃R) is not as explicit as in the N = 1
case, so as of this writing it is not at all clear how to arrive at such minimality
results for the matrix-valued case.
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REMARK 4.7. In [13] the authors go on to use the general theory of the gen-
eralized Schur class associated with a collection Ψ of test functions (see [12],
[14]) to identify the Schur class S(R) over R with the Schur class SΨ associ-
ated with the collection of test functions Ψ = {sx : x ∈ TR} and thereby also
to obtain transfer-function realizations for the class S(R). These results com-
bined with Theorem 4.4 suggest that the matrix-valued Schur class SN(R) is
connected in a similar way with the collection of matrix-valued test functions
Ψ = {Sx,w : (x, w) ∈ TN

R}. This is indeed the case (see [8], [21]). Similar results
can be worked out for the matrix-valued Schur class associated with the algebra
H∞

B studied by Raghupathi [30] (see Remark 2.6 above).

5. THE SPECTRAL SET PROBLEM

Let R denote a domain in the complex plane C with boundary ∂R with
closureR−. An operator T on a complex Hilbert spaceH is said to haveR− as a
spectral set if the spectrum σ(T) of T is contained inR− and

‖ f (T)‖ 6 ‖ f ‖R = sup{| f (z)| : z ∈ R}

for every rational function f with poles off of R−, where f (T) can be defined by
the Riesz functional calculus or simply as f (T) = p(T)q(T)−1 when f is written
as the ratio of polynomials f (z) = p(z)

q(z) . The operator T is said to have a ∂R-
normal dilation if there exists a Hilbert spaceK containingH as a subspace so that

f (T) = PH f (N)|H
for every rational function f with poles off of R− (where PH is the orthogonal
projection of K onto H). It is easily seen that if T has a ∂R-normal dilation, then
R− is a spectral set for T. The converse question can be formulated as:

Given thatR− is a spectral set for T, does it follow that T has a ∂R-normal dilation?

This has become known as the spectral set question forR (see [6]).
For the case of the unit diskR = D, the von Neumann inequality combined

with the Sz.-Nagy dilation theorem implies a positive answer to the spectral set
question. For the case where R = A is an annulus, it is a result of Agler [2]
(see also [24]) that the spectral set question again has a positive answer. How-
ever, for the case of a multiply-connected domain with at least two holes, more
recent work of Agler–Harland–Raphael [4] and Dritschel–McCullough [13] give
two complementary approaches to showing that the spectral set question has a
negative solution. In this section we discuss briefly how the ideas of this paper
relate to the spectral set question.

In [6] Arveson obtained a reformulation of the spectral set question which
had profound influence on subsequent work. For our purposes it is convenient
to assume that σ(T) is contained in the open domain R rather than in R−; in
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this case we can use the standard Riesz holomorphic functional calculus to de-
fine s(T) ∈ L(H) for any holomorphic function on R, in particular, for s in the
Schur class S(R). Then the condition that T hasR− as a spectral set can be refor-
mulated as: for any s ∈ S(R), ‖s(T)‖ 6 1. By the Arveson–Stinespring dilation
theory (see [5]), the condition that T have a ∂R-normal dilation can be reformu-
lated as: for any S ∈ SN(R) (N = 1, 2, . . . ), ‖S(T)‖ 6 1. Here, for S = [sij]

N
i,j=1 in

the matrix-valued Schur class SN(R), we define S(T) by

S(T) = [sij(T)] ∈ L(HN).

Then the Arveson reformulation of the spectral set question forR becomes:
Given T ∈ L(H) such that ‖s(T)‖ 6 1 for all s ∈ S(R), does it follow that ‖S(T)‖ 6
1 for all S ∈ SN(R)?

From the result (4.10) of Proposition 4.3, we see that in fact one may restrict
to the normalized Schur classes S(R)0 and SN(R)0 in the above condition. We
may then use relations (4.3) and (4.4) to get the following reformulation:
Given T ∈ L(H) such that Re f (T) > 0 for all f ∈ H(R)1, does it follow that
Re F(T) > 0 for all F ∈ HN(R)I for any N = 1, 2, . . . ?
By plugging T into the decomposition (4.17) with the Riesz holomorphic func-
tional calculus, we see that to check whether R− is a spectral set for T, it suffices
to check the condition ‖s(T)‖ 6 1 only for s = sx for each x ∈ TR. By using the
relations (4.3) and (4.4), an equivalent condition forR− to be a spectral set for T is
that Re fx(T) > 0 for each x ∈ TR (see Theorem 1.6.16 of [4]). Similarly, to check
that T has a ∂R-normal dilation, it suffices to check the condition ‖S(T)‖ 6 1 only
for S ∈ SN(R)0 of the form S = Sx,w for (x, w) ∈ TN

R. By using the relations (4.3)
and (4.10), it is equivalent to check that Re Fx,w(T) > 0 for each (x, w) ∈ TN

R. We
thus come to the following equivalent reformulations of the spectral set question:
Given T ∈ L(H) for which ‖sx(T)‖ 6 1 (respectively, Re fx(T) > 0) for all x ∈ TR,
does it follow that ‖Sx,w(T)‖ 6 1 (respectively, Re Fx,w(T) > 0) for all (x, w) ∈ TN

R?
Let us suppose that all extremal measures µ for the set C(∂R, N, φ) are special

(see Remark 2.16). Thus any µx,w ∈ ∂eC(R, N, φ) has the form µx,w =
n
∑

k=1
µxk Wk

for some points xk ∈ TR and for matrix weights Wk such that {Ran Wk : 1 6 k 6
n} is a weakly independent family of subspaces. We then see that

Fx,w(z)+Fx,w(w)∗=
n

∑
k=1

( fxk (z)+ fxk (w))Wk =
n

∑
k=1

W1/2
k [( fxk (z)+ fxk (w))IN ]W1/2

k .

The assumption that Re fx(T) > 0 for each x ∈ TR then leads to the conclusion
that Re Fx,w(T) > 0 for each (x, w) ∈ TN

R, and hence that the spectral set question
has an affirmative answer for R, in contradiction with the results of [4], [13].
These observations lead to the following corollary concerning the structure of the
set of extreme points for a compact convex set of the form C(∂R, N, φ) with φ as
in (3.4).
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COROLLARY 5.1. There are multiply-connected domains R (with at least two
holes) such that not all extremal measures µ for C(R, N, φ) are special (as defined in
Remark 2.16).

REMARK 5.2. We note that for the case where R is the unit disk D, it is
the case that all extremal measures are special; hence the argument leading to
Corollary 5.1 yields yet another proof that the spectral set question forR = D has
an affirmative answer. Alternatively, one could simply use the Herglotz integral
representation formula for the matrix-valued Herglotz class HN(D)I and work
with quantum probability measures, i.e., positive operator measures on T with
ν(T) = IN , rather than probability measures:

(5.1) F(z) =
∫
T

ζ + z
ζ − z

dν(ζ).

The representation (3.10) for the scalar-valued Herglotz class over R sug-
gests a representation for F ∈ HN(R)I analogous to (5.1) for the disk caseR = D:

(5.2) F(z) =
∫
TR

fx(z)dν(x)

with ν a quantum probability measure. However an argument similar to that
leading to Corollary 5.1 shows that such a representation cannot possibly be true
in general when R has at least two holes. Indeed, if F has a representation as in
(5.2), it is convenient first to rewrite it in the form

(5.3)
∫
TR

G(x)( fx(z)IN)G(x)∗ dµ(x)

where we have set µ equal to the scalar measure µ(E) = trace(ν(E)) and where
we then use a matrix-valued Radon–Nikodym theorem to represent ν as dν(x) =
G(x)G(x)∗dµ(x). If we then let S be the matrix Schur-class function S = (F +
IN)
−1(F − IN), we obtain a so-called Agler decomposition for S as in (4.15), but

using only the scalar functions sx (4.16) rather than the full complement of ex-
tremal Schur-class functions as described in (4.14):

(5.4) I − S(z)S(w)∗ =
∫
TR

H(z, x)((1− sx(z)sx(w))IN)H(w, x)∗ dµ(x)

where, explicitly for the record,

H(z, x) =
√

2(F(z) + IN)
−1G(x)

1
1− sx(z)

.

From the representation (5.4) we see that ‖S(T)‖ 6 1 whenever ‖sx(T)‖ 6 1 for
each x ∈ TR and we conclude that every F ∈ HN(R)I having a representation
as in (5.2) leads to a positive solution of the spectral set question in contradiction
with the results of [2], [13]. One would also arrive at a representation of the form
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(5.4) if one assumed that the associated Herglotz function F had an integral rep-
resentation (3.15) with the measure ν supported only on points of TN

R associated
with special measures.

The particular type of Agler decomposition appearing in (5.4) comes up
in the work of Dritschel–McCullough [13] and is associated with matrix inner
functions S on R which are diagonalizable (i.e., S(z) = U∗D(z)V with U and V
constant unitary matrices and D(z) pointwise diagonal). It is exactly the existence
of matrix inner functions on R which are not diagonalizable which leads to a
counterexample for the spectral set question onR in [13].

REMARK 5.3. We have not determined if all extremal measures are special
for the case of an annulus R = A. However there is a somewhat different way
to reduce the matrix-valued Herglotz (or Schur) class to the scalar Herglotz class
for the caseR = A due to McCullough [24] which we now describe.

For A equal to the annulus Aq = {z ∈ C : q < |z| < 1} (where 0 < q < 1),
it is shown in [24] that there is a curve {ϕζ : ζ ∈ T} of inner functions over Aq
(constructed from the Ahlfors function ϕ based at the point

√
q ∈ Aq) with the

following special property. First as a matter of notation, for t = (t1, . . . , tN) ∈ TN ,
let us let Φt(z) be the diagonal matrix inner function over Aq given by

(5.5) Φt(z) =

ϕt1(z)
. . .

ϕtN (z)

 if t = (t1, . . . , tN),

and, for U a unitary N × N matrix and t ∈ TN , let us set

RU,t(z) = (IN + UΦt(z))(I −UΦt(z))−1.

Then one of the main results from [24] is: given a point (x, w) ∈ TN
Aq

with associated

extremal Herglotz function Fx,w, there is a t ∈ TN , an N × N unitary matrix U, and an
invertible N × N matrix X so that

(5.6) Re Fx,w(z) = X(Re RU,t(z))X∗

for all z ∈ Aq. Note that an easy computation gives

RU,t(z) + RU,t(w)∗ = 2(I −UΦt(z))−1U[I −Φt(z)Φt(w)∗]U∗(I −Φt(w)∗U∗)−1.

Now suppose that T ∈ L(K) with σ(T) ⊂ Aq has Aq as a spectral set, so
‖s(T)‖ 6 1 for all s in the scalar Schur class S(Aq). Then an immediate conse-
quence of the formula (5.6) combined with the diagonal form (5.5) of Φt is that
it then follows that Re Fx,w(T) > 0 as well, and thus the spectral set question
has an affirmative answer for the annulus Aq. This line of reasoning arguably
provides some simplifications to the solutions of the spectral set question for the
annulus given in [2], [24]. We were informed by the referee that Jim Agler has un-
published work which works out an alternative simplification of the McCullough
argument.
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