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ABSTRACT. The purpose of this paper is to systematically study compactness
and essential norm properties of operators on a very general class of weighted
Fock spaces over Cn. In particular, we obtain rather strong necessary and
sufficient conditions for a wide class of operators (which includes operators
in the Toeplitz algebra generated by bounded symbols) to be compact and we
obtain related estimates on the essential norm of such operators. Finally, we
discuss interesting open problems related to our results.
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1. INTRODUCTION

For some α > 0, let Fp
α be the classical Fock space of entire functions on

Cn such that f (·)e− α
2 |·| ∈ Lp(Cn, dv) where dv is the ordinary Lebesgue volume

measure. Let K(z, w) = e
α
2 z·w be the reproducing kernel of F2

α and let kz(w) =

K(z, w)/
√

K(w, w) be the normalized reproducing kernel of F2
α . If A is a bounded

operator on Fp
α for 1 < p < ∞, then let B(A) be the bounded function on Cn

defined by

(B(A))(z) = 〈Akz, kz〉F2
α
.

It is well known (and very easy to prove, see [25]) that kz ⇀ 0 weakly in Fp
α as

|z| → ∞ if 1 < p < ∞. Thus, if A is compact on Fp
α and 1 < p < ∞, then an

easy application of Hölder’s inequality immediately tells us that B(A) vanishes
at infinity.

On the other hand, one can easily come up with examples of bounded oper-
ators on Fp

α (in fact even bounded Toeplitz operators on F2
α , see [4]) whose Berezin
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transform vanishes at infinity but that are nonetheless not compact. This imme-
diately raises the question of when the Berezin transform of a bounded operator
vanishing at infinity implies the compactness of this operator.

Define the Toeplitz operator Tf on Fp
α with f ∈ L∞(Cn) by the usual for-

mula Tf = PM f where P is the orthogonal projection from L2
α to F2

α and M f is
“multiplication by f " (and note that Tf is bounded on Fp

α when 1 < p < ∞ since
P is bounded on L2

α). Furthermore, given any class of measurable functions X
on Cn, let T p

α (X) be the Fp
α operator norm closure of the algebra generated by

{Tf : f ∈ X}. Then the following theorem was recently proved by W. Bauer and
J. Isralowitz (see [3]).

THEOREM 1.1. If 1 < p < ∞ and A ∈ T p
α (L∞(Cn)) then B(A) vanishing at

infinity implies that A is compact. Furthermore, any compact operator on Fp
α is in fact in

fact in T p
α (L∞(Cn)).

Before we continue let us mention some history leading up to this theorem.
First, note that the sufficiency part of Theorem 1.1 was first proved by S. Axler and
D. Zheng in the seminal paper [1] for the classical Bergman space L2

a(D, dA) set-
ting in the special case where A is in the algebra generated by {Tf : f ∈ L∞(D)}.
Furthermore, note that this result was extended to the F2

α setting by M. Englǐs in
[9]. On the other hand, Theorem 1.1 was later proved for Lp

a (Bn, dv) in its entirety
when 1 < p < ∞ by D. Suárez in [22] using vastly more technical and deeper
techniques than the ones in [1] (see also [15] where this result is extended to the
canonically weighted Bergman space Lp

a (Bn, dvγ)). Moreover, note that the proof
of Theorem 1.1 in [3] largely uses [22] as a blueprint, though (as usual) the details
involved in extending these arguments to the Fock space setting are often highly
nontrivial and thus require considerable work. Also, note that both [3] and [22]
contain (as largely byproducts of the techniques used to prove Theorem 1.1 and
its Bergman space analogue) interesting essential norm estimates for both general
operators and operators in T p

α (L∞(Cn)) and respectively T p(L∞(Bn)).
Interestingly, note that Theorem 1.1 (and remarkably its Bergman space ver-

sion in [22]) was given a vastly simplified proof by M. Mitkovski and B. Wick in
[16] using completely different methods than those of [3], [22]. On the other hand,
J. Xia and D. Zheng in the recent paper [24] introduced the class SL(α) of “suffi-
ciently localized” operators on F2

α consisting of those operators A on F2
α where

|〈Akz, kw〉F2
α
| . 1

(1 + |z− w|)2n+δ

for some δ = δ(A) > 0 independent of z, w ∈ Cn, which is a ∗-algebra of bounded
operators on F2

α that contains all Toeplitz operators with bounded symbols. Fur-
thermore, Theorem 1.1 was generalized in the F2

α setting in [24] as follows

THEOREM 1.2. If A is in the F2
α operator norm closure of SL(α) then A is compact

on F2
α if B(A) vanishing at infinity.
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Also, note that Theorem 1.2 was proved by frame theoretic ideas that are vastly
simpler than the ones in [3], [22].

The purpose of this paper is to try to extend Theorem 1.2 to a very wide class
of exponentially weighted Fock spaces, and more generally to study essential
norm properties of operators on these weighted Fock spaces. Let dc = (i/4)(∂−
∂) and let d be the usual exterior derivative. Let φ ∈ C2(Cn) be a real valued
function on Cn such that

(1.1) cω0 < ddcφ < Cω0

holds uniformly pointwise on Cn for some positive constants c and C (in the sense
of positive (1, 1) forms) where ω0 = ddc| · |2 is the standard Euclidean Kähler
form. For any 1 6 p 6 ∞ and any positive Borel measure ν on Cn, let Lp

φ(ν) be
the space defined by

Lp
φ(ν) := { f measurable on Cn such that f (·)e−φ(·) ∈ Lp(Cn, dν)}.

Furthermore, let Lp
φ be the space Lp

φ(dv) and let Fp
φ be the so called “generalized

Fock space" defined by

Fp
φ := { f entire on Cn such that f ∈ Lp

φ}.

Note that the spaces Fp
φ appear naturally in the study of the ∂ equation and sam-

pling/interpolation theory and have also been studied by numerous authors (see
[5], [7], [8], [13], [18], [19] for example, and in particular, see [19] for an excellent
overview of the basic linear space properties of Fp

φ ).
Fix some real valued φ satisfying (1.1) and let kz be the normalized repro-

ducing kernel of F2
φ . Furthermore, here and throughout the rest of the paper we

will let 〈·, ·〉 denote the canonical F2
φ inner product. For a bounded operator A on

Fp
φ with 1< p<∞, let B(A) again be the Berezin transform of A defined on Cn by

(B(A))(z) := 〈Akz, kz〉.

Note that Hölder’s inequality and Theorem 2.1 immediately implies that B(A) is
a bounded function on Cn and that B(A) vanishes at infinity when 1 < p < ∞
and A is compact on Fp

φ .
Now suppose that µ is a complex Borel measure on Cn in the sense that µ

can be written as µ = (µ1 − µ2) + i(µ3 − µ4) where µj, j = 1, . . . , 4 are positive
σ-finite Borel measures on Cn (for example when dµ = f dv for f ∈ L1

loc(C
n)).

Given such a complex Borel measure µ on Cn where |µ| is Fock–Carleson (see
Section 2 for precise definitions), we define the Toeplitz operator Tµ with symbol
µ by the equation

(Tµ f )(z) :=
∫
Cn

f (w)K(z, w)e−2φ(w) dµ(w)
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where K(z, w) is the reproducing kernel of F2
φ . Furthermore, if µ is given by µ =

f dv for a measurable function f on Cn, then we write Tf instead of Tµ. Also note
that if |µ| is Fock–Carleson, then an easy application of Fubini’s theorem gives us
that B(Tµ) = B(µ) where B(µ) is the Berezin transform of µ given by

(B(µ))(z) =
∫
Cn

|kz(w)|2 dµ(w).

Given any “nice" class X of complex Borel measures on Cn (in the previ-
ously mentioned sense), let T p

φ (X) be the Fp
φ operator norm closure of the algebra

generated by {Tµ : µ ∈ X}. Furthermore, let SL(φ) be the class of “sufficiently
localized” operators A where A is bounded on Fq

φ for some 2 6 q < ∞ and where

(1.2) |〈Akz, kw〉| .
1

(1 + |z− w|)2n+δ

for some δ = δ(A) > 0 independent of z, w. Note that SL(φ) includes finite
sums of finite products of Toeplitz operators with Fock–Carleson measures (see
Propositions 2.5 and 2.6). Furthermore, note that any A ∈ SL(φ) extends to a
bounded operator on Fp

φ for any 1 6 p 6 ∞ and that SL(φ) is also a ∗-algebra
(see Section 2).

The following two theorems can be considered the main results of this pa-
per.

THEOREM 1.3. Let 1 < p < ∞ and let A ∈ SL(φ). Then there exists R =
R(A) > 0 such that A is compact if

(1.3) lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz, kw〉| = 0.

Furthermore, if A is in the F2
φ operator norm closure of SL(φ) then A is compact on F2

φ

when (1.3) holds.

THEOREM 1.4. If 1 < p < ∞ then the space of compact operators on Fp
φ coincides

with T p
φ (C∞

c (Cn)). Furthermore, the space of compact operators on either of the spaces
F2

φ for general φ satisfying (1.1) or Fp
α (for 1 < p < ∞) coincides with the operator norm

closure of the set {Tf : f ∈ C∞
c (Cn)}.

Note that condition (1.3) is significantly weaker than the so-called “repro-
ducing kernel thesis condition” that often appears in the literature (see [16] for
example), which says that

lim
|z|→∞

‖Akz‖Fp
φ
= 0.
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In particular, if 1 < p < ∞, then (vi) and (vii) in Theorem 2.1 give us that for any
R > 0

lim
|z|→∞

sup
w∈B(z,R)

|〈Akz, kw〉| ≈ lim
|z|→∞

sup
w∈B(z,R)

|Akz(w)|e−φ(w)

6 lim sup
|z|→∞

‖Akz‖F∞
φ
. lim sup
|z|→∞

‖Akz‖Fp
φ

.

However, if we assume the existence of a uniformly bounded family of op-
erators {Uz}z∈Cn on both Fp

φ and Fq
φ (with q being the conjugate exponent of p)

where

(1.4) (Uzkw)(u) = Θ(z, w)kz−w(u)

with |Θ(·, ·)| bounded above and below on Cn × Cn, then we will give a very
short and easy proof of the following result:

PROPOSITION 1.5. Assume that there exists a uniformly bounded family of oper-
ators {Uz}z∈Cn on both Fp

φ and Fq
φ satisfying (1.4). Then for any bounded A on Fp

φ , we
have that B(A) vanishes at infinity if and only if A satisfies (1.3) for any R > 0.

In the Fp
α setting, note that these operators are classical and in particular are

the “weighted translations” defined by

(Uzh)(w) = h(z− w)kz(w)

that satisfy U∗z = Uz = U−1
z . Furthermore, note that the existence of a uniformly

bounded family of operators {Uz}z∈Cn on both Fp
φ and Fq

φ satisfying (1.4) is often
taken as an assumption when proving results about Banach or Hilbert spaces of
analytic functions (see [16] for example). For this reason, it is rather remarkable
that one can prove Theorem 1.3 for p = 2 without assuming the existence of a
uniformly bounded family of operators {Uz}z∈Cn on F2

φ satisfying (1.4). Also note
that Theorem 1.4 was proved in the F2

α setting in [4]. Despite this, it is noteworthy
that both Theorems 1.3 and 1.4 are new even in the Fp

α setting when p 6= 2.
Now if f ∈ C∞

c (Cn) then it is easy to see that Tf is compact on Fp
φ (in fact,

Tf is trace class on F2
φ if f ∈ C∞

c (Cn), see the end of Section 4 for an easy proof).
Thus, in light of Theorem 1.4, Theorem 1.1 can be restated as an approximation
result that says that if A ∈ T p

α (L∞(Cn)) (which in fact as a set is equal to T p
α ({µ :

|µ| is Fock–Carleson}), see [3]) and B(A) vanishes at infinity, then A is in fact in
the norm closure of the set {Tf : f ∈ C∞

c (Cn)} when 1 < p < ∞.
In addition to proving Theorems 1.3 and 1.4, we will also prove some very

natural essential norm estimates for both operators in the Fp
φ operator norm clo-

sure of SL(φ) and for general bounded operators on Fp
φ . In particular, we will

prove the following two theorems, the first of which is a generalization of some
of the essential norm estimates in [3] and the second of which is a strong general-
ization of the essential norm estimates for Toeplitz operators on the unweighted
Bergman space from [14] (that were proved using vastly different techniques that
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the ones we use here). It is rather interesting to note that both of these theorems
are new in the Fp

α setting (and in some instances are even new for p = 2).

THEOREM 1.6. If 1 < p < ∞ and A bounded on Fp
φ then

(1.5) ‖A‖Q ≈ lim
r→∞
‖MχB(0,r)c A‖Fp

φ→Lp
φ
.

Moreover, if A is in the Fp
φ operator norm closure of SL(φ) then we also have

(1.6) ‖A‖Q ≈ sup
d>0

lim sup
|z|→∞

‖MχB(z,d) APMχB(z,2d)‖Fp
φ→Lp

φ
.

THEOREM 1.7. Let 0 < δ < 1 and let µ be a complex Borel measure where |µ| is
Fock–Carleson with ‖µ‖∗ 6 1. If 1 < p < ∞ then there exists C = Cδ independent of µ
such that

‖Tµ‖Q . Cδ

(
lim sup
|z|,|w|→∞

|〈Tµkz, kw〉|
)δ

.

Furthermore, we will extend the essential norm estimates in [16] to the p 6=
2 case Fp

φ setting, which in particular (in conjunction Proposition 1.5) provides us
with a very short proof of Theorem 1.1 for p 6= 2 when compared to the proof
of Theorem 1.1 from [3] (note that a similar simplification when p = 2 was also
provided in [16]).

We will now briefly outline the structure of this paper. The next section will
discuss some preliminary results that will be used throughout the rest of the pa-
per (including a brief discussion of Fock–Carleson measures and the short proof
of Proposition 1.5). In Section 3, we will prove Theorem 1.3 when p = 2. Al-
though the proof of this result uses the frame theoretic ideas from [24], the details
of the arguments in Section 4 are considerably simpler and more transparent than
the details in [24]. Section 4 will contain the proof of Theorem 1.4, and in Section 5
we will prove Theorem 1.3 when p 6= 2 and also prove Theorems 1.6 and 1.7 by
extending the ideas and essential norm estimates from [16] to the Fp

φ setting. Fi-
nally Section 6 will discuss interesting open questions related to the results of this
paper.

Note that we will write A . B for two quantities A and B if there exists
an unimportant constant C such that A 6 CB. Furthermore, B . A is defined
similarly and we will write A ≈ B if A . B and B . A.

Finally in this introduction we will briefly discuss a concrete and interesting
(from the point of view of holomorphic function spaces) example of a generalized
Fock space. In particular, we will now show that the Fock–Sobolev spaces intro-
duced recently in [6] are in fact generalized Fock spaces. Given any m ∈ N, let
Fp,m

α denote the Fock–Sobolev space of entire functions with the norm

‖ f ‖Fp,m
α

:= ∑
|β|6m

‖∂β f ‖Fp
α
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where the sum is over all multiindicies β with |β| 6 m. It was then proved in
[6] that f ∈ Fp,m

α if and only if z 7→ |z|m f (z) ∈ Lp
α where Lp

α := Lp
φ for φ(z) =

(α/2)|z|2, and furthermore the canonical norms induced by these two conditions
are equivalent (note that this was only proved for α = 1 but the extension to
general α > 0 is trivial).

By a standard closed graph theorem argument, we have that f ∈ Fp,m
α if and

only if z 7→ (A+ |z|2)m
2 f (z) is in Lp

α for any A > 0, and furthermore the canonical
norm induced by this condition (for fixed A > 0) is equivalent to the Fp,m

α norm.
Thus, if

φ(z) :=
α

2
|z|2 − m

2
ln(A + |z|2)

then we have Fp,m
α = Fp

φ and

ddcφ̃(z) =
n

∑
j,k=1

( δjk

4
−

m(A + |z|2)δkj − zjzk

4(A + |z|2)2

)
dzk ∧ dzj =

n

∑
j,k=1

Hjk dzk ∧ dzj,

which by an application of the Cauchy-Schwartz inequality gives us that(α

4
− m

4(A + |z|2)

)
ddc| · |2 6 ddcφ 6

(α

4
− mA

4(A + |z|2)2

)
ddc| · |2.

Thus, we have that φ satisfies condition (1.1) if A > 2m/α. Because of this, the
reader should keep in mind that all of the results proved in this paper also ap-
ply to Fock–Sobolev spaces (which by themselves for Fock–Sobolev spaces are
interesting in their own right).

REMARK 1.8. Well after this paper was written, the author in collaboration
with B. Wick and M. Mitkovski was able to prove that if 1 < p < ∞ and A is in
the Fp

φ operator norm closure of SL(φ), then there exists R = R(A) > 0 such that
A is compact if (1.3) is true. In fact, one can even replace the conditions defining
SL(φ) by similar but weaker integral conditions (see [12] for details).

2. PRELIMINARY RESULTS

In this section, we will state and prove some preliminary results that will be
used in the rest of the paper. First, we will mention some important properties
of Fp

φ from [19] that should be familiar to the reader who has experience with the

classical Fock spaces Fp
α .

THEOREM 2.1. The Fock spaces Fp
φ satisfy the following properties:

(i) There exists ε, C > 0 independent of z, w ∈ Cn such that

e−φ(z)|K(z, w)|e−φ(w) 6 Ce−ε|z−w|.

(ii) If 1 6 p 6 ∞ then kz → 0 weakly in Fp
φ as |z| → ∞.
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(iii) If 1 6 p < ∞ then (Fp
φ )
∗ = Fq

φ for 1/p + 1/q = 1 under the usual pairing

Ψg( f ) :=
∫
Cn

f (z)g(z)e−2φ(z) dv(z).

(iv) The orthogonal projection P : L2
φ → F2

φ extends to a bounded operator from Lp
φ to

Fp
φ when 1 6 p 6 ∞.

(v) P restricted to Fp
φ is the identity operator when 1 6 p 6 ∞.

(vi) eφ(z) ≈
√

K(z, z) for any z ∈ Cn.
(vii) If 0 < p < ∞ and r > 0 then there exists Cr > 0 where

(| f |pe−pφ)(z) . Cr

∫
B(z,r)

| f (w)|pe−pφ(w) dv(w) and

|∇(| f |pe−pφ)|(z) . Cr

∫
B(z,r)

| f (w)|pe−pφ(w) dv(w)

for any f ∈ Fp
φ and z ∈ Cn.

Note that property (i) immediately implies that {kz : z ∈ Cn} is bounded
in Fp

φ when 0 < p 6 ∞. Furthermore, note that property (i) for the classical Fock
space F2

α is in fact true for any ε > 0. In particular, since

Kα(z, w) = eα(z·w)

where Kα(z, w) is the reproducing kernel of F2
α , we have that

e−
α
2 |z|

2 |Kα(z, w)|e−
α
2 |w|

2
= e−

α
2 |z|

2 |eα(z·w)|e−
α
2 |w|

2
= e−

α
2 |z−w|2 .

In general however, one can not expect to have such a fast off diagonal decay
when dealing with generalized Fock spaces (though fortunately, as was noticed
in [19], quadratic exponential off diagonal decay as above is usually not needed).

Now if ν is a nonnegative Borel measure on Cn, then we say ν is a Fock–
Carleson measure for Fp

φ if the embedding operator ι : Fp
φ → Lp

φ(ν) is bounded.
We will often use the following useful characterization of Fock–Carleson mea-
sures on Cn (see [19] for a proof).

THEOREM 2.2. If 1 6 p < ∞ and ν is a nonnegative Borel measure, then the
following are equivalent:

(i) ν is a Fock–Carleson measure for Fp
φ ,

(ii) sup
z∈Cn

ν(B(z, 1)) < ∞,

(iii) Tν is bounded on Fp
φ .

Furthermore, the canonical norms defined by any of these three conditions are equiv-
alent.
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Since ν being Fock–Carleson for Fp
φ is independent of p when 1 6 p < ∞, we will

say ν is a Fock–Carleson measure if ν satisfies any of the equivalent conditions in
Theorem 2.2. Furthermore, if µ is a complex Borel measure on Cn, then we will
denote by ‖µ‖∗ any of the canonical norms applied to the variation measure |µ|
defined by the conditions in Theorem 2.2 . We will also let ‖ f ‖∗ denote ‖| f |dv‖∗
when f is a measurable function on Cn.

We will now show that the spaces Fp
φ behave in the same way that the spaces

Fp
α do under complex interpolation (see [25]).

THEOREM 2.3. If 1 6 p0 6 p1 6 ∞ and 0 6 θ 6 1 where

1
p
=

1− θ

p0
+

θ

p1

then
[Fp0

φ , Fp1
φ ]

θ
= Fp

φ

with equivalent norms.

Proof. First note that the classical Stein–Weiss interpolation theorem gives
us that

(2.1) [Lp0
φ , Lp1

φ ]
θ
= Lp

φ

with equal norms. Now by the definition of [Lp0
φ , Lp1

φ ]
θ

and (2.1), we have that

[Fp0
φ , Fp1

φ ]
θ
⊆ Fp

φ .

On the other hand, if f ∈ Fp
φ ⊆ Lp

φ, then again by (2.1) there exists a positive
constant C and an analytic function w 7→ F(·, w) from {w ∈ C : 0 6 Re w 6 1} to
Lp0

φ + Lp1
φ where

(i) F(z, θ) = f (z) for all z ∈ Cn,
(ii) ‖F(·, w)‖L

p0
φ

6 C for all Re (w) = 0,

(iii) ‖F(·, w)‖L
p1
φ

6 C for all Re (w) = 1.

Now let G(z, w) = (P(F(·, w)))(z). Then by (i) and (iv) in Theorem 2.1 and Mor-
era’s theorem, we have that w 7→ G(·, w) is an analytic function from {w ∈ C :
0 6 Re w 6 1} to Fp0

φ + Fp1
φ and G satisfies

(i) G(z, θ) = (P f )(z) = f (z) for all z ∈ Cn,
(ii) ‖G(·, w)‖L

p0
φ

6 C′ for all Re (w) = 0,

(iii) ‖G(·, w)‖L
p1
φ

6 C′ for all Re (w) = 1.

for some positive constant C′, which implies that f∈[Fp0
φ , Fp1

φ ]
θ
, or [Fp0

φ , Fp1
φ ]

θ
=Fp

φ .

To show the equivalence of norms, let f ∈ Fp
φ . Then by definition (2.1) we

have that
‖ f ‖Fp

φ
= ‖ f ‖

[L
p0
φ ,L

p1
φ ]

θ

6 ‖ f ‖
[F

p0
φ ,F

p1
φ ]

θ

.

An application of the open mapping theorem immediately gives the proof.
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We next prove some simple results regarding SL(φ). Note that the proof of
the second one is similar to the proof of Proposition 3.2 in [24] though we include
the details for the sake of the reader.

PROPOSITION 2.4. Any operator A ∈ SL(φ) extends bounded on Fp
φ for any

1 6 p < ∞.

Proof. Assume that A is bounded on Fq
φ for some 2 6 q < ∞ and that A

satisfies (1.2). Let g ∈ F1
φ ⊆ Fq

φ and note that an application of (1.2) and (vi) in
Theorem 2.1 gives us that

|(Ag)(w)|e−φ(w) ≈ |〈g, A∗kw〉| 6
∫
Cn

|g(u)||(A∗kw)(u)|e−2φ(u) dv(u)

≈
∫
Cn

(|g(u)|e−φ(u))|〈Aku, kw〉|dv(u)

.
∫
Cn

(|g(u)|e−φ(u))
1

(1 + |u− w|)2n+δ
dv(u).

An easy application of Fubini’s theorem then gives us that A extends to a bounded
operator on F1

φ , and furthermore since 2 6 q < ∞, Theorem 2.3 gives us that A
extends to a bounded operator on Fp

φ for all 1 6 p 6 2.

Finally, this means that A∗ is bounded on Fp
φ for all 2 6 p < ∞. In particular,

we have that A∗ ∈ SL(φ) and so A∗ is bounded on Fp
φ for all 1 6 p 6 2, which

implies that A is bounded on Fp
φ for all 1 6 p < ∞.

PROPOSITION 2.5. SL(φ) is a ∗-algebra.

Proof. As was remarked in the proof of Proposition 2.4, A ∈ SL(φ) =⇒
A∗ ∈ SL(φ). Thus, we only need to show that SL(φ) is an algebra.

Let A1, A2 ∈ SL(φ) and pick δi > 0 where

|〈Aikz, kw〉| .
1

(1 + |z− w|)2n+δi

for i = 1, 2. Then by Theorem 2.1 we have

|〈A1 A2kz, kw〉| 6
∫
Cn

|(A2kz)(u)||(A∗1kw)(u)|e−2φ(u) du

.
∫
Cn

|〈A2kz, ku〉||〈A1ku, kw〉|du

.
∫
Cn

1
(1 + |z− u|)2n+δ2(1 + |u− w|)2n+δ1

du.

The proof now easily follows with δ(A1 A2) = min{δ1, δ2} (see p. 10 in [24] for
more details).
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PROPOSITION 2.6. If µ is a complex Borel measure on Cn such that |µ| is Fock–
Carleson then Tµ ∈ SL(φ) for any 1 < p < ∞.

Proof. First note that Theorem 2.2 gives us that Tµ is bounded on Fp
φ for all

1 6 p < ∞. Now note that Fubini’s theorem and Theorems 2.1 and 2.2 tell us that

〈Tµkz, kw〉 =
∫
Cn

kz(u)kw(u)e−2φ(u) dµ(u).

Furthermore, another easy application of Theorems 2.1 and 2.2 and the fact that
kz(·)kw(·) ∈ F1

2φ for each z, w ∈ Cn give us that

|〈Tµkz, kw〉|6
∫
Cn

|kz(u)||kw(u)|e−2φ(u) d|µ|(u).‖µ‖∗
∫
Cn

|kz(u)||kw(u)|e−2φ(u) |dv(u)

.‖µ‖∗
∫
Cn

e−ε(|z−u|+|u−w|) |dv(u) . ‖µ‖∗e−
ε
2 |z−w|.

Finally in this section we prove Proposition 1.5.

Proof of Proposition 1.5. If R > 0 then obviously we have

|(B(A))(z)| = |〈Akz, kz〉| 6 sup
w∈B(z,R)

|〈Akz, kw〉|

so that B(A) vanishes at infinity if (1.3) is true.
Now assume the existence of a uniformly bounded family of operators on

both Fp
φ and Fq

φ satisfying (1.4). Furthermore, assume that B(A) vanishes at infin-
ity but that

lim sup
|w|→∞

sup
w∈B(z,R)

|〈Akz, kw〉| 6= 0

for some fixed R > 0. Thus, there exist sequences {zm}, {wm} where

lim
m→∞

|zm| = +∞

and |wm| 6 R for any m ∈ N, and where

(2.2) lim sup
m→∞

|〈Akzm , kzm−wm〉| > ε

for some ε > 0. Furthermore, passing to a subsequence if necessary, we may
assume that lim

m→∞
wm = w. Note that an easy application of Theorem 2.1 and the

Lebesgue dominated convergence theorem give us that lim
m→∞

kwm = kw in where

the convergence is in the Fp
φ norm.

Let B(Fp
φ ) be the space of bounded operators on Fp

φ . Now since (Fp
φ )
∗ = Fq

φ,
an argument that is almost identical to the proof of the Banach–Alaoglu theorem
tells us that the unit ball of B(Fp

φ ) is WOT compact. Then passing to another
subsequence if necessary, we can assume

Â = WOT - lim
m→∞

U∗zm AUzm .
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Thus, we have that

lim sup
m→∞

|〈Akzm , kzm−wm〉| ≈ lim sup
m→∞

|〈U∗zm AUzm k0, kwm〉|

= lim sup
m→∞

|〈U∗zm AUzm k0, kw〉| = |〈Âk0, kw〉|.

However, for any z ∈ Cn

|〈Âkz, kz〉| = lim
m→∞

|〈U∗zm AUzm kz, kz〉| ≈ lim
m→∞

|〈Akzm−z, kzm−z〉| = 0

since by assumption B(A) vanishes at infinity. Thus, since the Berezin transform
is injective (see the end of Section 4), we get that Â = 0, which contradicts (2.2)
and completes the proof.

3. PROOF OF THEOREM 1.3 for p = 2

In this section we will prove Theorem 1.3 when p = 2. Now if f ∈ F2
φ , then

note that Fubini’s theorem and Theorem 2.1 give us that

f (w) =
∫
Cn

f (z)K(w, z) e−2φ(z) dv(z) =
∫
Cn

f (z)〈K(·, z), K(·, w)〉 e−2φ(z) dv(z)

=
∫
Cn

((k̃z ⊗ k̃z) f )(w)dv(z)

where
k̃z = e−φ(z)K(·, z).

In other words, we have that

(3.1) IdF2
φ→F2

φ
=
∫
Cn

k̃z ⊗ k̃z dv(z)

where the integral is interpreted as a standard Bôchner integral, which roughly
states that we can treat {k̃z}z∈Cn as a sort of continuously indexed frame. Fur-
thermore, note that

∫
K

k̃z ⊗ k̃z dv(z) is compact (Hilbert–Schmidt in fact) on F2
φ for

any compact K ⊆ Cn.
We will now very briefly sketch the main idea of the proof of Theorem 1.3

when p = 2. First, with the help of some simple ideas from classical frame theory,
we will rewrite (3.1) in a kind of discretized way that is more convenient for
us. We will then combine this with the fact that operators in SL(φ) are “almost
diagonal” with respect to {k̃z}z∈Cn to prove that ‖A‖Q can be dominated by the
norm of a certain block diagonal matrix involving the family {Ak̃z}z∈Cn if A is
in the F2

φ operator norm closure of SL(φ). Finally, we will complete the proof of
Theorem 1.3 when p = 2 by showing that condition (1.3) easily implies that the
norm of these blocks approaches zero as one goes farther down the diagonal. As
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was mentioned in the introduction, this same idea was used to prove Theorem 1.3
in the F2

α setting. Despite this, it is again worth noting that the details of the
arguments in this section are considerably simpler and more transparent than
the details in [24].

Now treat Z2n as a lattice in Cn in the canonical way and let {eu}u∈Z2n be
any fixed orthonormal basis for F2

φ . Note that by (vi) in Lemma 2.1 we have that

|k̃z(w)| ≈ |kz(w)| for any z, w ∈ Cn.
The proof of Theorem 1.3 when p = 2 will require the following three lem-

mas, the first of which is well known (though we include the proof for the sake
of completion), and the third of which contains the essential ideas of the proof.
Note that in this section, all norms will either be the F2

φ norm, or the operator
norm on F2

φ .

LEMMA 3.1. If Fz := ∑
u∈Z2n

k̃u+z ⊗ eu is the translated “pre-frame operator” aso-

ciated to {k̃u+z}u∈Cn for z ∈ Cn, then sup
z∈Cn
‖Fz‖ < ∞.

Proof. An easy computation gives us that

FzF∗z = ∑
u∈Z2n

k̃u+z ⊗ k̃u+z.

Thus, (vi) and (vii) in Lemma 2.1 gives us that

〈FzF∗z f , f 〉 = ∑
u∈Z2n

|〈 f , k̃u+z〉|2 = ∑
u∈Z2n

| f (u + z)|2e−2φ(u+z)

. ∑
u∈Z2n

∫
B(u+z, 1

2 )

| f (w)|2e−2φ(w) dv(w) 6 ‖ f ‖2

if f ∈ F2
φ .

LEMMA 3.2. Suppose that B ∈ SL(φ) and let ε > 0. Then there exists R =
R(B, ε) where if Ω ⊂ Z2n × Z2n satisfies |u − v| > R for any (u, v) ∈ Ω and if
η, ξ ∈ S := [0, 1)2n ⊂ Cn, then∥∥∥ ∑

(u,v)∈Ω

〈Bk̃v+η , k̃u+ξ〉 eu ⊗ ev

∥∥∥ 6 ε.

Proof. Without loss of generality assume that R > 1 so that (u, v) ∈ Ω im-
plies that |u − v| > 1. Since |u − v| > R for any (u, v) ∈ Ω, we immediately
obtain that

|〈Bk̃v+η , k̃u+ξ〉| .
1

(1 + R
δ
2 )|u− v|2n+ δ

2

for any η, ξ ∈ S.
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Now let pi : Ω → Z2n for i = 1, 2 be the projection onto the ith factor.
Furthermore, for each u ∈ p1(Ω) and each integer ` > 0, let

Gu
` := {v : (u, v) ∈ Ω and 2` 6 |u− v| < 2`+1}.

By an elementary volume count, we have that

card Gu
` . 22n`.

Thus, for any u ∈ p1(Ω) we have

∑
v:(u,v)∈Ω

|〈Bk̃v+η , k̃u+ξ〉| .
1

(1 + R)
δ
2

∑
v:(u,v)∈Ω

1

(1 + |u− v|)2n+ δ
2

=
1

(1 + R)
δ
2

∞

∑
`=0

∑
v∈Gu

`

1

(1 + |u− v|)2n+ δ
2

.
1

(1 + R)
δ
2

∞

∑
`=0

22n`

2(2n+ δ
2 )`

.
1

(1 + R)
δ
2

.

Similarly, since B∗ ∈ SL(φ), we have for each v ∈ p2(Ω) that

∑
u:(u,v)∈Ω

|〈B∗ k̃v+η , k̃u+ξ〉| .
1

(1 + R)
δ
2

.

Therefore, an easy application of the Schur test now completes the proof.

For the next lemma, it will be convenient to use the standard “sup-norm”
| · |∞ on Cn defined for z = (z1, . . . , zn) by

|z|∞ := max{|z1|, . . . , |zn|}

and we will let B∞(z, R) denote the open ball in Cn with center z ∈ Cn and radius
R > 0 under this norm. Furthermore, for any R > 0 let

RZ2n := {Ru : u ∈ Z2n}

and let
Z2n

R := {u ∈ Z2n : |u|∞ < R}.
Also, for z ∈ Cn and R ∈ N let Fz;R denote the translated and truncated “pre-
frame operator” defined by

Fz;R := ∑
u∈Z2n

R

k̃u+z ⊗ eu.

Note that if A is bounded on F2
φ and a, b ∈ Cn, then by definition we have that

F∗a;R AFb;R = ∑
x,y∈Z2n

R

〈Ak̃y+b, k̃x+a〉ex ⊗ ey.
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LEMMA 3.3. For any A in the F2
φ operator norm closure of SL(φ), there exists

some R ∈ N depending on A where the following holds for any N ∈ N: there exists
a, b ∈ Cn with

|a|∞ > N − 1 and |b|∞ 6 2

such that
‖A‖Q . ‖F∗a;R AFa+b;R‖.

Proof. Obviously we may assume that ‖A‖Q > 0 for otherwise there is noth-
ing to prove. We will now in fact find a and b as above where

‖A‖Q 6
1

4n+3C2 ‖F
∗
a;R AFa+b;R‖

and where

(3.2) C := sup
z∈Cn
‖Fz‖

(which is finite by Lemma 3.1). To that end, pick B ∈ SL(φ) where

(3.3) ‖A− B‖ < 1
4n+3C4 ‖A‖Q.

Since B ∈ SL(φ), Lemma 3.2 tells us that there exists R > 0 where

(3.4)
∥∥∥ ∑
(u,v)∈Ω

〈Bk̃v+η , k̃u+ξ〉 eu ⊗ ev

∥∥∥ 6 1
16C2 ‖A‖Q

whenever η, ξ ∈ S and Ω ⊂ Z2n × Z2n satisfies |u− v|∞ > R for any (u, v) ∈ Ω.
We will in fact show that this R has the desired property.

Clearly without loss of generality we may assume that N > R. Now define
the compact operator K on F2

φ by

K := ∑
u∈Z2n

|u|∞<N+R

∫
S+u

k̃z ⊗ k̃z dv(z) =
∫
S

(
∑

u∈Z2n

|u|∞<N+R

k̃u+z ⊗ k̃u+z

)
dv(z)

where as before S = [0, 1)2n ⊂ Cn. Note that (3.1) then tells us that we can write
Id− K as

Id− K =
∫
S

(
∑

u∈Z2n

|u|∞>N+R

k̃u+z ⊗ k̃u+z

)
dv(z).

Thus, if we define

Gz := ∑
u∈Z2n

|u|∞>N+R

k̃u+z ⊗ eu

then
Id− K =

∫
S

GzG∗z dv(z).
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Since (3.1) again gives us that

Id =
∫
S

(
∑

u∈Z2n

k̃u+z ⊗ k̃u+z

)
dv(z) =

∫
S

FzF∗z dv(z),

we can rewrite (Id− K)A as

(3.5) (Id− K)A = (Id− K)AId =
∫
S

∫
S

GzG∗z AFwF∗w dv(z)dv(w).

Now since ‖A‖Q = ‖(Id−K)A‖Q, an elementary approximation argument
involving Bôchner integrability in conjunction with (3.5) gives us a pair z0, w0 ∈ S
where

‖Gz0 G∗z0
AFw0 F∗w0

‖Q >
1
2
‖A‖Q.

Furthermore, it is trivial that Gz0 G∗z0
6 Fz0 F∗z0

so by (3.3) we have

‖G∗z0
BFw0‖Q +

1
64C2 ‖A‖Q > ‖G∗z0

AFw0‖Q >
1

2C2 ‖A‖Q

(where C is from (3.2)) so that

‖G∗z0
BFw0‖Q >

1
4C2 ‖A‖Q.

Now since

G∗z0
BFw0 = ∑

η∈Z2n

|η|∞>N+R

∑
u∈Z2n

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu,

we can write G∗z0
BFw0 = D + E where the “diagonal" part D is given by

∑
η∈Z2n

|η|∞>N+R

(
∑

u∈Z2n

|u−η|∞<R

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu

)

and the “off-diagonal” part E is given by

∑
η∈Z2n

|η|∞>N+R

(
∑

u∈Z2n

|u−η|∞>R

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu

)
.

Note that (3.4) gives us that

‖E‖ 6 1
8C2 ‖A‖Q

so that

‖D‖Q >
1

8C2 ‖A‖Q.

Now by elementary arguments, we have that

{(η, u) ∈ Z2n ×Z2n : |η|∞ > N + R and |η − u|∞ < R} = A1\A2
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where

A1 :={(x+u′, y+u′)∈Z2n×Z2n : u′∈RZ2n with |u′|∞>N and (x, y)∈Z2n
R ×Z2n

R }

and

A2 := {(x + u′,y + u′) ∈ Z2n ×Z2n

with (x, y) ∈ Z2n
R ×Z2n

R and |x + u′|∞ < N + R or |x− y|∞ > R}.

Thus, we can write D := D1 − D2 where

D1= ∑
(η,u)∈A1

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu and D2= ∑
(η,u)∈A1∩A2

〈Bk̃u+w0 , k̃η+z0〉eη ⊗ eu.

Moreover, another application of (3.4) gives us that

‖D2‖Q 6
1

16C2 ‖A‖Q

so that

‖D1‖ >
1

16C2 ‖A‖Q.

If

Eu,z := ∑
x∈Z2n

R

k̃x+u+z ⊗ ex+u

for some given u ∈ Z2n and z ∈ Cn then note that we can write

D1 = ∑
u∈RZ2n

|u|∞>N

E∗u,z0
BEu,w0 .

Now let Z1 and Z2 denote the odd and even integers, respectively, and for
` ∈ {1, 2}2n let Z2n

` := Z`1 × · · · ×Z`2n so that obviously

RZ2n =
⋃

`∈{1,2}2n

RZ2n
` .

Furthermore, if ` ∈ {1, 2}2n is fixed and u, u′ ∈ RZ2n
` with u 6= u′ then ey+u′ is

orthogonal to ex+u for any x, y ∈ Z2n
R . Thus, it is easy to see that

‖D1‖ 6 4n sup
u∈RZ2n

|u|∞>N

‖E∗u,z0
BEu,w0‖

which means that there exists some u0 ∈ RZ2n such that |u0|∞ > N and

‖E∗u0,z0
BEu0,w0‖ >

1

4
5
2+nC2

‖A‖Q.
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Now note that

‖E∗u0,z0
BEu0,w0‖ =

∥∥∥ ∑
x,y∈Z2n

R

〈Bk̃y+u0+w0 , k̃x+u0+z0〉eu0+x ⊗ eu0+y

∥∥∥
=
∥∥∥ ∑

x,y∈Z2n
R

〈Bk̃y+u0+w0 , k̃x+u0+z0〉ex ⊗ ey

∥∥∥ = ‖F∗u0+w0;RBFu0+z0;R‖.

Finally, set a = u0 + w0 and b = z0 − w0 so that |a|∞ > N − 1 and |b|∞ 6 2. Then
according to (3.3), we have that

‖F∗a;R(A− B)Fa+b;R‖ 6
1

4n+3C2 ‖A‖Q

so that

‖F∗a;R AFa+b;R‖ >
1

4n+3C2 ‖A‖Q

which completes the proof.

We can now prove Theorem 1.3 when p = 2.

Proof of Theorem 1.3 when p = 2. By Lemma 3.3 there exists some R ∈ N de-
pending on A and sequences {aj}, {bj} ⊂ Cn with

lim
j→∞
|aj| = ∞ and sup

j>1
|bj| . 2

where

‖A‖Q . ‖F∗aj ;R AFaj+bj ;R‖.

However, if R is large enough, then

lim sup
j→∞

‖F∗aj ;R AFaj+bj ;R‖ =
∥∥∥ ∑

x,y∈Z2n
R

〈Ak̃x+aj+bj
, k̃y+aj〉ey ⊗ ex

∥∥∥
. R4n lim sup

|z|→∞
sup

w∈B(z,3R)
|〈Akz, kw〉|

which proves Theorem 1.3 when p = 2.

4. PROOF OF THEOREM 1.4

In this short section we will prove Theorem 1.4. First we will need the fol-
lowing simple result.

LEMMA 4.1. If 1 6 p < ∞ and S ⊆ Cn is a Borel set with nonzero Lebesgue
volume measure, then span{K(·, w) : w ∈ S} is dense in Fp

φ .
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Proof. Let q be the conjugate of exponent of p. If g ∈ Fq
φ = (Fp

φ )
∗ (see (iii) in

Theorem 2.1) annihilates span{K(·, w) : w ∈ S}, then (v) in Theorem 2.1 implies
that

g(w) =
∫
Cn

g(u)K(u, w)e−2φ(u) dv(u) = 0

for any w ∈ S, which implies that g ≡ 0 since S has nonzero Lebesgue volume
measure. The proof then immediately follows by the Hahn–Banach theorem.

LEMMA 4.2. Finite rank operators on Fp
φ are in the norm closure of the algebra

generated by Toeplitz operators with point mass measure symbols when 1 6 p < ∞.

Proof. Since

0 < K(w, w) =
∫
Cn

|K(w, z)|2e−2φ(z) dv(z)

the set

Zw := {z ∈ Cn : K(w, z) 6= 0}
trivially has nonzero Lebesgue volume measure for each w∈Cn. Thus, Lemma 4.1
tells us that span{K(·, z) : z ∈ Zw} is dense in Fp

φ for each w ∈ Cn, which in turn
implies that span{K(·, z) ⊗ K(·, w) : w ∈ Cn, z ∈ Zw} is dense (with respect to
the Fp

φ operator norm) in the space of finite rank operators.
The proof is then completed by observing that

K(·, z)⊗ K(·, w) =
e2φ(z)+2φ(w)

K(w, z)
Tδz Tδw

where δz and δw are the point mass measures at z, w ∈ Cn with z ∈ Zw.

LEMMA 4.3. Given w ∈ Cn, let

Fε
w(z) :=

cn

ε2n χB(w,ε)(z)

where cn is the volume of the unit ball in Cn. Then we have

lim
ε→0+

‖TFε
w − Tδw‖Fp

φ→Fp
φ
= 0

for each 1 < p < ∞.

Proof. By an easy application of Theorem 2.1 we have that K(z, ·) ∈ F1
φ for

each z ∈ Cn. Thus, by Theorems 2.1 and 2.2, we have that

‖Tµ‖F∞
φ →F∞

φ
. ‖µ‖∗.

Therefore, by complex interpolation and duality, it is enough to prove the lemma
for p = 2. To that end, note that TFε

w − Tδw is obviously bounded and self adjoint
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on F2
φ , which means that

‖TFε
w − Tδw‖F2

φ→F2
φ
= sup
‖h‖F2

φ
=1
|〈(TFε

w − Tδw)h, h〉|.

However,

|〈(TFε
w − Tδw)h, h〉| =

∣∣∣ ∫
Cn

|h(z)|2Fε
w(z)e

−2φ(z) dv(z)−
∫
Cn

|h(z)|2e−2φ(z) dδw(z)
∣∣∣

=
∣∣∣ cn

ε2n

∫
B(w,ε)

|h(z)|2e−2φ(z)dv(z)− |h(w)|2e−2φ(w)
∣∣∣

6
cn

ε2n

∫
B(w,ε)

||h(z)|2e−2φ(z) − |h(w)|2e−2φ(w)|dv(z)

where cn is the volume of the unit ball in Cn. Moreover, if ‖h‖F2
φ
= 1, then (vii)

in Theorem 2.1 tells us that |h|2e−2φ is Lipschitz with Lipschitz constant indepen-
dent of h, which completes the proof.

Note that by an easy application of Theorem 2 in [19] we have that Tf is
compact on Fp

φ for 1 6 p < ∞ if f ∈ C∞
c (Cn). Combining this fact with Lem-

mas 4.2 and 4.3 gives us the following.

THEOREM 4.4. Finite rank operators are in T p
φ (C∞

c (Cn)) when 1 < p < ∞. In
particular, since all Lp spaces have the bounded approximation property (see [23]), the
space of compact operators on Fp

φ coincides with T p
φ (C∞

c (Cn)).

The proof that {Tf : f ∈ C∞
c (Cn)} is Fp

α operator norm dense in the space of
compact operators will use Theorem 4.4 in conjunction with the ideas in p. 3136
of [2] which we now elaborate.

Note that the proof of Theorem 4.4 actually shows that span{Tf Tg : f , g ∈
C∞

c (Cn)} is Fp
α operator norm dense in the space of compact operators when 1 <

p < ∞. Thus, to show that {Tf : f ∈ C∞
c (Cn)} is Fp

α operator norm dense in the
space of compact operators on Fp

α , it is enough to show that {Tf : f ∈ C∞
c (Cn)} is

Fp
α operator norm dense in span{Tf Tg : f , g ∈ C∞

c (Cn)}.
To that end, let F be the usual L2-Fourier transform on Cn where we iden-

tify Cn with R2n in the canonical way. Now if f1, f2 ∈ C∞
c (Cn), then it is ele-

mentary that there exists sequences { f j,`}∞
`=1 ⊂ F (C

∞
c (Cn)) for j = 1, 2 such that

lim
`→∞

f j,` = f j uniformly on Cn, where F (C∞
c (Cn)) is the image of C∞

c (Cn) under

F . Furthermore, by Theorem 24 in [2], we have that

(4.1) Tf Tg = Tf ]αg
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where the “product” ]α is given by

(4.2) f ]αg = ∑
γ∈Nn

0

1
(−α)|γ|γ!

∂|γ| f
∂zγ

· ∂|γ|g
∂zγ

whenever f , g ∈ F (C∞
c (Cn)).

By uniform convergence and (4.1), we have that

Tf1 Tf2 = lim
`→∞

Tf1,`
Tf2,`

= lim
`→∞

Tf1,`]α f2,`

where the limit is in the Fp
φ operator norm. Finally, since each f j,` is in the Schwartz

space of Cn, it is clear that each f1,`]α f2,` is smooth and vanishes at infinity.
Thus, each f1,`]α f2,` can itself be uniformly approximated on Cn by functions
in C∞

c (Cn), which completes the proof that {Tf : f ∈ C∞
c (Cn)} is dense in the

space of compact operators on Fp
α .

Finally, we will complete the proof of Theorem 1.4 when p = 2. As was
stated in the introduction, the proof is very similar to the proof of Theorem 9
in [4] and so we will only outline the proof. To that end, given any bounded
operator X on F2

φ , let KX(w, z) be the function defined by

KX(w, z) := (X∗K(·, z))(w)

so that KX(w, z) is analytic in w and conjugate analytic in z.
Note that (i) in Theorem 2.1 immediately tells us that PMS : L2

φ → L2
φ is

Hilbert–Schmidt if S ⊆ Cn is compact, which easily implies that Tf is trace class
on F2

φ when f ∈ C∞
c (Cn). Thus, if f ∈ C∞

c (Cn) and X is any bounded operator
on F2

φ , then Tf X is trace class on F2
φ and repeating word for word the proof of

Theorem 8 in [4] gives us that

(4.3) tr(TgX) =
∫
Cn

g(w)KX(w, w)e−2φ(w) dv(w).

Now suppose that {Tf : f ∈ C∞
c (Cn)} is not dense in the space of compact

operators on F2
φ . Then by the Hahn–Banach theorem and duality, there exists a

non-zero trace class operator X on F2
φ where tr(TgX) = 0 for any g ∈ C∞

c (Cn).
However, this implies that

0 =
∫
Cn

g(w)KX(w, w)e−2φ(w) dv(w)

for any g ∈ C∞
c (Cn), which by elementary arguments implies that KX(w, w) ≡ 0.

The proof will be completed if we can show that

KX(w, w) ≡ 0 =⇒ X = 0.

To that end, since KX(w, z) is analytic in w and conjugate analytic in z and

KX(w, w) ≡ 0,
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a standard result in several complex variables implies that KX(w, z) ≡ 0. How-
ever, since span{K(·, z) : z ∈ Cn} is dense in F2

φ , the condition KX(w, z) ≡ 0
implies that X = 0. (It should be noted that the argument in this paragraph is by
now standard and that the exact same argument tells us that the Berezin trans-
form is injective on Fp

φ when 1 < p < ∞).
It should be remarked that a very similar argument also shows that the

space {Tf : f ∈ C∞
c (Cn)} is trace norm dense in the trace class of F2

φ (which
was proved in [4] for the classical Fock space F2

α ).

5. ESSENTIAL NORM ESTIMATES

In this section we prove Theorems 1.6 and 1.7. First however we will need
the following two Lemmas, the second of which is similar to Proposition 4.4
in [16].

LEMMA 5.1. If K is compact on Fp
φ and 1 < p < ∞, then

lim sup
R→∞

‖MχB(0,R)c K‖Fp
φ→Lp

φ
= 0.

Proof. By Theorem 1.4 and an easy approximation argument, it is enough to
prove the result for K = Tf where f ∈ C∞

c (Cn).
For that matter, let S f = supp f and let M = sup{|w| : w ∈ S f }. Further-

more, assume without loss of generality that R > M. If g ∈ Fp
φ with ‖g‖Fp

φ
= 1

and q is the conjugate exponent of p, then we have

|e−φ(z)χB(0,R)c(z)Tf g(z)|6χB(0,R)c(z)
∫
S f

| f (w)||g(w)||K(z, w)|e−φ(z)e−2φ(w) dv(w)

6 ‖ f ‖L∞ χB(0,R)c(z)
( ∫

S f

(eφ(z)|K(z, w)|eφ(w))q dv(w)
) 1

q

. ‖ f ‖L∞ χB(0,R)c(z)
( ∫

S f

e−qε|z−w| dv(w)
) 1

q

. ‖ f ‖L∞ e−
ε(R−M)

2 e−
ε(|z|−M)

2

which immediately implies that

‖MχB(0,R)c Tf g‖Fp
φ→Lp

φ
. ‖ f ‖L∞ e−

ε(R−M)
2

where ε is from Theorem 2.1. Letting R→ ∞ now completes the proof.

Before we prove the next lemma, we will need to use the simple covering
of Cn from [3]. In particular, fix d > 0 and enumerate the disjoint family of
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sets {[−d, d)2n + σ}σ∈2dZ2n as {Fj}∞
j=1 and for this fixed d let Gj = {z ∈ Cn :

dist∞(z, Fj) 6 d} where dist∞(z, Fj) is the distance between z and Fj in the | · |∞
norm. The following properties now hold trivially from the definitions above:

(i) Fj ∩ Fk = ∅ if j 6= k,
(ii) every z ∈ Cn belongs to at most 22n of the sets Gj,

(iii) diam(Gj) 6 4d
√

2n where diam(Gj) is the Euclidean diameter of Gj.

LEMMA 5.2. If ε > 0 and A ∈ SL(φ), then there exists d = d(A) > 0 such that∥∥∥AP−∑
j

MχFj
APMχGj

∥∥∥
Fp

φ→Lp
φ

< ε

where the sets Fj and Gj are defined above.

Proof. We first prove the lemma for p = 2. To that end, note that

(AP f )(w)−∑
j

χFj(w)(APMχGj
f )(w) = ∑

j
χFj(w)(APMχGc

j
f )(w)

=
∫
Cn

Φ(w, u) f (u)e−2φ(u) dv(u)

where
Φ(w, u) := ∑

j
χFj(w)χGc

j
(u)〈AK(·, u), K(·, w)〉.

We then estimate that∫
Cn

|Φ(w, u)|(eφ(u))e−2φ(u) dv(u) ≈ eφ(w) ∑
j

∫
Gc

j

χFj(w)|〈Aku, kw〉|dv(u)

. eφ(w) ∑
j

∫
Gc

j

χFj(w)

(1 + |u− w|)2n+δ
dv(u) . d−

δ
2 eφ(w)

since |u− w| & d if u ∈ Fj and w ∈ Gc
j . Similarly we can easily get that∫

Cn

|Φ(w, u)|(eφ(w))e−2φ(w) dv(w) . d−
δ
2 eφ(u)

which by the Schur test proves the lemma if p = 2.
Now assume that 1 < p < 2. Since A is bounded on F1

φ we easily get that∥∥∥∑
j

MχFj
APMχGj

∥∥∥
F1

φ→L1
φ

< ∞

which by complex interpolation proves the theorem when 1 < p < 2.
Finally when 2 < p < ∞, one can similarly get a trivial L1

φ → F1
φ operator

norm bound on (
∑

j
MχFj

APMχGj

)∗
= ∑

j
PMχGj

A∗PMχFj
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since A∗ is bounded on F1
φ . Duality and complex interpolation now prove the

lemma when 2 < p < ∞.

We will now prove Theorem 1.6.

Proof of Theorem 1.6. We first prove (1.5). Let A be bounded on Fp
φ . Then

since PMχB(0,R) A is compact on Fp
φ for any R > 0 and since the orthogonal pro-

jection P : Lp
φ → Fp

φ is bounded and coincides with the identity on Fp
φ , we have

that

‖A‖Q 6 lim sup
R→∞

‖PA− PMχB(0,R) A‖Fp
φ→Fp

φ
. lim sup

R→∞
‖MχB(0,R)c A‖Fp

φ→Lp
φ
.

On the other hand, if K : Fp
φ → Fp

φ is compact then Lemma 5.1 gives us that

lim sup
R→∞

‖MχB(0,R)c A‖Fp
φ→Lp

φ
= lim sup

R→∞
‖MχB(0,R)c (A− K)‖Fp

φ→Lp
φ
6 ‖A− K‖Fp

φ→Fp
φ

which completes the proof of (1.5).
Now we will prove (1.6). By completely elementary arguments we have

that

sup
d>0

lim sup
|z|→∞

‖MχB(z,d) APMχB(z,2d)‖Fp
φ→Lp

φ
6 lim sup

R→∞
‖MχB(0,R)c A‖Fp

φ→Lp
φ

for any bounded A on Fp
φ . Finally, since

‖A‖Q ≈ lim sup
R→∞

‖MχB(0,R)c A‖Fp
φ→Lp

φ
,

we will complete the proof by showing that

‖A‖Q . sup
d>0

lim sup
|z|→∞

‖MχB(z,d) APMχB(z,2d)‖Fp
φ→Lp

φ

for any A ∈ SL(φ). An easy approximation argument will then complete the
proof.

To that end, let ε > 0. Fix some d > 0 large enough where Lemma 5.2 is true
and let {Fj} be the corresponding cover of Cn (with associated sets {Gj}). Then
we have that

‖A‖Q 6 ε + lim sup
m→∞

∥∥∥ ∑
j>m

MχFj
APMχGj

∥∥∥
Fp

φ→Lp
φ

.

However, if f ∈ Fp
φ with norm one, then

lim sup
m→∞

∥∥∥ ∑
j>m

MχFj
APMχGj

f
∥∥∥p

Lp
φ

= lim sup
m→∞

∑
j>m
‖MχFj

APMχGj
f ‖p

Lp
φ

6 22n lim sup
m→∞

‖MχFm
APMχGm

‖p
Fp

φ→Lp
φ

6 22n sup
d>0

lim sup
|z|→∞

‖MχB(z,d) APMχB(z,2d)‖
p
Fp

φ→Lp
φ

.
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Letting ε→ 0+ now completes the proof.

We will now prove an extremely useful technical lemma whose proof is
similar to the proof of Lemma 1.6 and part (a) of Theorem 4.3 in [16]. For the sake
of notational ease, all norms in the rest of this section will either denote the Fp

φ

norm, the Fp
φ operator norm, or the Fp

φ → Lp
φ norm.

LEMMA 5.3. Suppose that 1 < p < ∞ and let ε > 0. Pick d > 0 corresponding
to ε in Lemma 5.2. Then there exists a sequence {zj} with lim

j→∞
|zj| = ∞ such that

‖A‖Q 6 ε + lim sup
j→∞

‖MχB(zj ,d
√

2n)
Agj‖

where

gj :=
∫

B(0,2d
√

2n)

aj(u)k̃zj−u dv(u)

and where aj satisfies ∫
B(0,2d

√
2n)

|aj(u)|p dv(u) = 1.

Proof. As in the proof of Theorem 1.6, fix d > 0 such that

‖A‖Q 6
ε

2
+ lim sup

m→∞

∥∥∥ ∑
j>m

MχFj
APMχGj

∥∥∥.

However, if ‖ f ‖ 6 1, then∥∥∥ ∑
j>m

MχFj
APMχGj

f
∥∥∥p

= ∑
j>m
‖MχFj

APMχGj
f ‖p

= ∑
j>m

‖MχFj
APMχGj

f ‖p

‖MχGj
f ‖p ‖MχGj

f ‖p 6 22n sup
j>m
‖MχFj

Alj‖p

where

lj :=
PMχGj

f

‖MχGj
f ‖ .

If wj is the center of the cubes Fj then Fj ⊂ B(wj, d
√

2n) so that Gj ⊂ B(wj, 2d
√

2n).
Now if

Tm := ∑
j>m

MχFj
APMχGj
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then we have that

‖Tm‖ . sup
j>m

sup
‖ f ‖61

{
‖MχFj

Alj‖ : lj =
PMχGj

f

‖MχGj
f ‖

}
. sup
|z|>|wm |

sup
‖ f ‖61

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,2d
√

2n) f

‖MB(z,2d
√

2n) f ‖

}
and so

lim sup
m→∞

‖Tm‖ . lim sup
|z|→∞

sup
‖ f ‖61

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,2d
√

2n) f

‖MB(z,2d
√

2n) f ‖

}
.

Pick a sequence {zj} ⊂ Cn and a corresponding sequence { f j} ⊂ Fp
φ with

‖ f j‖ 6 1 such that

lim sup
|z|→∞

sup
‖ f ‖61

{
‖MB(z,d

√
2n)Ag‖ : g =

PMB(z,d
√

2n) f

‖MB(z,d
√

2n) f ‖

}
− 1

2
ε

6 lim sup
j→∞

‖MB(zj ,d
√

2n)Agj‖

where

gj :=
PMB(zj ,2d

√
2n) f j

‖MB(zj ,2d
√

2n) f j‖
=

∫
B(zj ,2d

√
2n)〈 f j, k̃u〉k̃u dv(u)( ∫

B(zj ,2d
√

2n) |〈 f j, k̃w〉|p dv(w)
) 1

p

=

∫
B(0,2d

√
2n)〈 f j, k̃zj−u〉k̃zj−u dv(u)( ∫

B(0,2d
√

2n) |〈 f j, k̃zj−w〉|p dv(w)
) 1

p

(where the second to last equality follows from the definition of P, the definition
of k̃w, and the reproducing property).

Finally, setting

aj(u) :=
〈 f j, k̃zj−u〉( ∫

B(0,2d
√

2n) |〈 f j, k̃zj−w〉|p dv(w)
) 1

p

completes the proof.

We will now prove three very interesting corollaries to Lemma 5.3, the first
of which is a proof of Theorem 1.3 when p 6= 2.

Proof of Theorem 1.3 when p 6= 2. Let A ∈ SL(φ). We in fact prove that there
exists R > 0 such that

‖A‖Q . R2n lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz, kw〉|.
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Obviously there is nothing to prove if ‖A‖Q = 0 so assume ‖A‖Q > 0. Then
by Lemma 5.3 with ε = (1/2)‖A‖Q we have a sequence {zj} with lim

j→∞
|zj| = ∞

where
‖A‖Q 6 2 lim sup

j→∞
‖MB(zj ,R/2)Agj‖

with
gj :=

∫
B(0,R)

aj(u)k̃zj−u dv(u)

where aj satisfies ∫
B(0,R)

|aj(u)|p dv(u) = 1

and where R := 2d
√

2n with d coming from Lemma 5.3. However, the reproduc-
ing property gives us that

|Agj(z)|e−φ(z) 6
∫

B(0,R)

|aj(u)||〈Ak̃zj−u, k̃z〉|dv(u)

so that by Hölder’s inequality we have

‖A‖p
Q 6 2p lim sup

j→∞

∫
B(zj ,R)

( ∫
B(0,R)

|aj(u)||〈Ak̃zj−u, k̃z〉|dv(u)
)p

dv(z)

. R2np lim sup
|z|→∞

sup
w∈B(z,2R)

|〈Akz, kw〉|p

which completes the proof.

We will now prove Theorem 1.7 with the help of Lemma 5.3.

Proof of Theorem 1.7. First note that ‖Tµ‖ . 1 if ‖µ‖∗ 6 1 so without loss of
generality we can assume that 0 < ‖Tµ‖Q < 1 since otherwise there is nothing to
prove. By Lemma 5.3 there exists a sequence lim

j→∞
|zj| = ∞ where

‖A‖Q 6 2 lim sup
j→∞

‖Agj‖

where
gj :=

∫
B(0,2d

√
n)

aj(u)k̃zj−u dv(u)

and where ∫
B(0,2d

√
n)

|aj(u)|p dv(u) = 1.

However, by the proofs of Proposition 2.6 and Lemma 5.2, we can pick d > 0
where e−

εd
2 . ‖Tµ‖Q (where here ε corresponds to Proposition 2.1) so without

loss of generality we may assume that d = − ln(‖Tµ‖Q).
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Furthermore, combining this with the proof of Theorem 1.3 when p 6= 2, we
have that

‖Tµ‖Q . (ln(‖Tµ‖Q))
2n lim sup
|z|→∞

sup
w∈B(z,R)

|〈Akz, kw〉|

6 (ln(‖Tµ‖Q))
2n lim sup
|z|,|w|→∞

|〈Akz, kw〉|

(where as before R := 2d
√

2n).
Finally, it is elementary that u/(ln u)2n > Cδu

1
δ for u ∈ (0, 1) which means

that

(‖Tµ‖Q)
1
δ 6 Cδ lim sup

|z|,|w|→∞
|〈Tµkz, kw〉|

for all 0 < δ < 1.

We will end this section by extending the main essential norm estimate in
[16] to the Fp

φ setting in the situation where we are assuming the existence of a

uniformly bounded family of operators {Uz}z∈Cn on Fp
φ such that (1.4) is true and

where ‖Uzh‖Fp
φ
& ‖h‖Fp

φ
for all z ∈ Cn and h ∈ Fp

φ . In particular, we will prove

the following result whose proof is similar to the proof of part (a) of Theorem 4.3
in [16] . It should be remarked that this provides a vastly simplified proof of the
main results in [3] when p 6= 2. Also note that this theorem should be interpreted
as another way of quantifying the statement that ‖A‖Q is equivalent to the “norm
of A translated out to infinity.”

THEOREM 5.4. Assuming the existence of a uniformly bounded family {Uz}z∈Cn

of operators on Fp
φ satisfying (1.4) and where ‖Uzh‖Fp

φ
& ‖h‖Fp

φ
for all z ∈ Cn and

h ∈ Fp
φ , we have that

‖A‖Q ≈ sup
‖ f ‖

Fp
φ
61

lim sup
|z|→∞

‖AUz f ‖Fp
φ

holds for any A in the Fp
φ operator norm closure of SL(φ) when 1 < p < ∞.

Proof. Let w ∈ Cn and notice that

lim sup
|z|→∞

‖KUzkw‖Fp
φ
. lim sup
|z|→∞

‖Kkz−w‖Fp
φ
= 0

if K is compact on Fp
φ . Thus, by an easy density argument, we have that

sup
‖ f ‖

Fp
φ
61

lim sup
|z|→∞

‖KUz f ‖Fp
φ
= 0
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if K is compact on Fp
φ . In particular, if K is compact on Fp

φ then

sup
‖ f ‖

Fp
φ
61

lim sup
|z|→∞

‖AUz f ‖Fp
φ
= sup
‖ f ‖

Fp
φ
61

lim sup
|z|→∞

‖(A− K)Uz f ‖Fp
φ
. ‖A− K‖Fp

φ→Fp
φ

so that

sup
‖ f ‖

Fp
φ
61

lim sup
|z|→∞

‖AUz f ‖Fp
φ
. ‖A‖Q.

Now for the other half of Theorem 5.4, let ε > 0 and pick a sequence {zj}
with lim

j→∞
|zj| = ∞ where

‖A‖Q 6 ε + lim sup
j→∞

‖Agj‖Fp
φ

and where
gj :=

∫
B(0,2d

√
n)

aj(u)k̃zj−u dv(u).

Now let ρ := 2d
√

2n. Note that we can write k̃zj−u = Θ(u, zj)Uzj k̃u where
|Θ(·, ·)| is bounded above and below on Cn ×Cn. Thus, it is not difficult to see
that we can write gj as gj = Uzj hj where

hj =
∫

B(0,ρ)

aj(u)k̃u dv(u)

and where

aj(u) :=
Θ(u, zj)〈 f j, k̃zj−u〉( ∫

B(0,ρ) |〈 f j, k̃zj−u〉|p dv(u)
) 1

p
.

Since {aj} is a bounded sequence in Lp(B(0, ρ), dv), (passing to a subse-
quence if necessary) we can assume that aj converges in the weak∗ topology of
Lq(B(0, ρ)) to a function a on B(0, ρ) (where q is the conjugate exponent of p),
which in particular means that we may also assume aj → a pointwise on B(0, ρ).
Now if

h =
∫

B(0,ρ)

a(u)k̃u dv(u)

then an easy application of the Lebesgue dominated convergence theorem (in
conjunction with Theorem 2.1) gives us that hj → h in Fp

φ . Moreover, we have
that

1 & ‖gj‖Fp
φ
= ‖Uzj hj‖Fp

φ
≈ ‖hj‖Fp

φ

so that ‖h‖ . 1, and finally this gives us that

‖A‖Q . ε + lim sup
j→∞

‖Agj‖ = ε + lim sup
j→∞

‖AUzj hj‖ . ε + lim sup
j→∞

‖AUzj h‖
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and hence
‖A‖Q . sup

‖ f ‖61
lim sup
|z|→∞

‖AUzj f ‖.

6. OPEN PROBLEMS

In this last section we will discuss some interesting open problems related
to the results of this paper. The first obvious question is whether Theorem 1.3
holds where we replace (1.3) with the condition that

(6.1) lim
|z|→∞

(B(A))(z) = 0

when we do not necessarily assume the existence of a uniformly bounded family
of operators {Uz}z∈Cn that satisfies (1.4). Furthermore, it would be fascinating to
know whether there is any kind of converse to Proposition 1.5 in the following
sense: suppose that F2

φ (or more generally Fp
φ ) satisfies the condition that (6.1) =⇒

(1.3) for all R > 0 and all bounded operators A on F2
φ (respectively, Fp

φ ). Then does
this necessarily imply the existence of a uniformly bounded family of operators
{Uz}z∈Cn satisfying (1.4)?

Now assume that reproducing kernels of F2
φ satisfy

(6.2) |〈kz, kw〉| ≈
1

‖K(·, z− w)‖F2
φ

(which in fact is assumed in [16] and is true for the classical Fock space and in
an appropriately modified form is true for the classical Bergman spaces over
bounded symmetric domains). Then a simple computation tells us that

U∗z f (w) := f (z− w)kz(w)

defines a uniformly bounded family of operators on Fp
φ such that (1.4) holds.

Moreover, if (6.2) is true, then it is very easy to show that any bounded
operator Uz on Fp

φ satisfying (1.4) must be defined by

(6.3) U∗z f (w) := C(z) f (z− w)kz(w)

for some function C on Cn that is bounded above and below. In particular, an
easy computation tells us that we must have

U∗z ku(w) =
Θ(z, w)ku(z− w)kz(w)

〈kz, kw〉‖K(·, z− w)‖F2
φ

in order for (1.4) to be true. Thus, by Liouville’s theorem, we have that

Θ(z, w) = C(z)〈kz, kw〉‖K(·, z− w)‖F2
φ

for C(·) bounded above and below on Cn (since (6.2) implies that kz(w) 6= 0 for
all z, w ∈ Cn). The density of the reproducing kernels on Fp

φ easily completes the
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proof. It is therefore reasonable to ask when in general (6.3) defines a bounded
(or even a well defined) operator on Fp

φ and if so whether any uniformly bounded
family of operators {Uz}z∈Cn satisfying (1.4) must in fact be of the form (6.3).

Now let Ã denote the Berezin transform of a bounded operator A on the
unweighted Bergman space A2(D). Note that it was shown in [10] that there is
no C > 0 independent of f satisfying ‖ f ‖L∞(D) 6 1 where

‖Tf ‖Q 6 C lim sup
|z|→1−

|T̃f (z)|.

While it is most likely also the case that the previous statement holds true in
the Fock space setting F2

α (though no immediate examples come to mind), and
while it is very likely that one can prove an appropriate version of Theorem 1.7
in the A2(D) setting, it would be interesting to know if one can set δ = 0 in
Theorem 1.7. Furthermore, it would be very interesting to know if there exists
C > 0 independent of µ with ‖µ‖∗ 6 1 where

‖Tµ‖Q 6 C lim sup
|z|→∞

‖Tµkz‖Fp
φ

or even if the above estimate holds true in the F2
α setting for all bounded f on Cn

with ‖ f ‖L∞(Cn) 6 1. It would also be interesting to know whether an appropri-
ately modified estimate in the A2(D) setting holds.

Now if f ∈ Lq(Cn, dv) for 1 6 q < ∞, then Hölder’s inequality immediately
implies that

‖ f ‖∗ 6 ‖ f ‖Lq(Cn ,dv)

which means that Tf can be approximated in the Fp
φ operator norm for 1 6 p < ∞

by a Toeplitz operator with C∞
c (Cn) symbol. Obviously this result is not true for

f ∈ L∞(Cn) since otherwise if f ≡ 1 then Tf = IdFp
φ→Fp

φ
would be compact on

Fp
φ . However, one can ask if Tf for f ∈ L∞(Cn) can be approximated in the Fp

φ

norm by Toeplitz operators with smooth, bounded symbols whose derivatives of
arbitrary order are also bounded.

Note that this is in fact true for the classical Fock space Fp
α . In particular, if µ

is a complex Borel measure on Cn where |µ| is Fock–Carleson, then it was proved
in [3] that for 1 < p < ∞,

lim
t→0+

‖Tµ̃(t) − Tµ‖Fp
α
= 0(6.4)

where µ̃(t) is the heat transform of µ given by

µ̃(t)(z) :=
1

(4πt)n

∫
Cn

e−
|z−w|2

4t dµ(w).

Unfortunately the arguments used in [3] (which are similar to some of the argu-
ments in [17]) are not available in the generalized Fock space setting, and there-
fore it would be interesting to know if the above mentioned result is true for
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Fp
φ (even for function symbols f ∈ L∞(Cn)). Note that this, if proved, would

obviously imply that the Toeplitz algebra generated by Toeplitz operators with
Fock–Carleson measure symbols would coincide with the Toeplitz algebra gen-
erated by Toeplitz operators with smooth, bounded (function) symbols whose
derivatives of all orders is bounded, which as was stated in Theorem 1.1 is true
for Fp

α .
A related question is whether the Fp

φ operator norm closure of SL(φ) coin-

cides with T p
φ (X) for some class of Borel measures X on Cn (like say, bounded

functions on Cn). Even in the classical Fock space setting F2
α it would be interest-

ing to know if the F2
α operator norm closure of SL(φ) with φ = α |·|

2

2 coincides
with the Toeplitz algebra T 2

α (L∞(Cn)). One rather interesting approach to this
question would be to construct a “k-Berezin transform” for F2

α that is analogous
to the k-Berezin transform introduced by D. Suárez in [20] and further studied in
[17], [21].

It would also be interesting to know if {Tf : f ∈ C∞
c (Cn)} is dense in

the space of compact operators on Fp
φ for 1 < p < ∞ (and p 6= 2). As was

already remarked, the arguments in Section 4 actually show that span{Tf Tg :
f , g ∈ C∞

c (Cn)} is dense in Fp
φ when 1 < p < ∞, which is “not too far” from

{Tf : f ∈ C∞
c (Cn)}. Furthermore, note that the formulas (4.1) and (4.2) hold for

symbols other than those in the spaceF (C∞
c (Cn)) (see [2] for more details). How-

ever, (4.1) and (4.2) are most emphatically exclusive to the classical Fock space
setting. In particular, since Toeplitz operators with “nice” function symbols on
F2

α are unitarily equivalent to certain Weyl ΨDOs on L2(Rn) under the Bargmann
isometry B : F2

α → L2(Rn), one can informally use the well known asymptop-
tic composition formula for the product of ΨDOs and pull back to F2

α to guess
(4.1) and (4.2) (see [11] or [25] for a much more detailed description of the above
ideas). Because of this, it will most likely require new techniques to prove that
{Tf : f ∈ C∞

c (Cn)} is dense in the space of compact operators on Fp
φ for general

1 < p < ∞.
Finally, we end this paper with a simple but nonetheless interesting fact.

First, note that the argument used to prove Theorem 1’ in [9] extends to the gen-
eralized Fock space setting and shows that {Tf : f ∈ C∞

c (Cn)} is SOT dense in
the space of bounded operators on F2

φ . In particular, suppose that f1, . . . , fk and
g1, . . . , gm for k, m ∈ N are two sequences of linearly independent functions in F2

φ .
If we now define R : C∞

c (Cn)→ Ck×m by

(Rφ)ij :=
∫
Cn

φ(z) fi(z)gj(z) e−2φ(z) dv(z)

then it is not difficult to show that R is surjective, which by elementary Hilbert
space arguments proves the claim.
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