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ABSTRACT. If µ is a finite measure on the unit disc and k > 0 is an integer,

we study a generalization derived from Engliš’s work, T(k)
µ , of the traditional

Toeplitz operators on the Bergman space A2, which are the case k = 0. Among
other things, we prove that when µ > 0, these operators are bounded if and
only if µ is a Carleson measure, they are compact if and only if µ is a vani-
shing Carleson measure, and we obtain some estimates for their norms. Also,
we use these operators to characterize the closure of the image of the Berezin
transform applied to the whole operator algebra.
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1. INTRODUCTION AND PRELIMINARIES

Let A2 be the Bergman space of holomorphic function on the disc D with
respect to the normalized area measure dA, and L(A2) be the Banach space of
bounded operators on A2. If for z ∈ D, ϕz ∈ Aut(D) denotes the involution that
interchanges 0 and z, the change of variables operator Uz f = ( f ◦ ϕz)ϕ′z is unitary
and self-adjoint. Here, ϕ′z = −Kz/‖Kz‖, where Kz is the reproducing kernel for
z, and ‖Kz‖ = (1− |z|2)−1.

For f , g, h ∈ A2, define the rank-one operator ( f ⊗ g)h := 〈h, g〉 f . In particu-
lar, if ek =

√
k + 1 wk (k > 0) is the standard basis of A2, the operator Ek := ek ⊗ ek

is the orthogonal projection onto the subspace generated by ek. Hence, for every
z ∈ D and f , g ∈ A2 we have

〈UzE0Uz f , g〉 = (1− |z|2)2 f (z)g(z).
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So, if dÃ(z) = (1− |z|2)−2 dA(z) denotes the invariant area measure on D
and a ∈ L∞, the traditional Toeplitz operator Ta can be written as

Ta =
∫
D

UzE0Uz a(z)dÃ(z),

where the integral converges in the weak operator topology. This led Engliš in [5]
to consider operators defined as above, where E0 is replaced by more general op-
erators R that are diagonal with respect to the standard basis (a radial operator).
Among other results, he proved that if R is a radial operator in the trace class and
a ∈ L∞, then

Ra :=
∫
D

UzRUz a(z)dÃ(z) ∈ L(A2) and ‖Ra‖ 6 ‖R‖tr ‖a‖∞.

Since such operator R is an `1-linear combination of the projections Ej, with the
trace norm of R given by the corresponding `1-norm of its eigenvalues, the above
result is equivalent to

T(j)
a :=

∫
D

UzEjUz a(z)dÃ(z) ∈ L(A2) and ‖T(j)
a ‖ 6 ‖a‖∞

for every integer j > 0. We study this type of operators and a generalization
T(j)

µ , where a dÃ is replaced by the expression (1− |z|2)−2 dµ(z), for µ a measure
whose variation |dµ| is a Carleson measure. As in the well known case j = 0,
these operators turned out to be bounded, and when µ is positive we find lower
and upper bounds for their norms. We also characterize compactness and show
that these operators are norm limits of traditional Toeplitz operators.

Useful tools for our study will be the n-Berezin transform and the invariant
Laplacian. If n > 0 is an integer, the n-Berezin transform of Q ∈ L(A2) is

(1.1) Bn(Q)(z) := (n + 1)
n

∑
j=0

(
n
j

)
(−1)j

(j + 1)
〈QUzej, Uzej〉.

In particular, if Q = Tµ, where µ is a finite measure on D, a straightforward
calculation shows that

(1.2) Bn(µ)(z) := Bn(Tµ)(z) =
∫
D

(n + 1)
(1− |ϕz(ζ)|2)n+2

(1− |ζ|2)2 dµ(ζ).

Observe that the last expression defines Bn(µ) for any measure µ of finite total
variation, even if Tµ is not bounded. In particular, if µ = a dA with a ∈ L1, we
write Bn(a) := Bn(a dA), which is also Bn(Ta) if Ta is bounded. It is clear from
the definition that ‖Bn(Q)‖∞ 6 (n + 1)2n‖Q‖. Also, it was shown in [10] that

(1.3) BnB0(Q) = B0Bn(Q) and Bn(UwQUw) = Bn(Q) ◦ ϕw

for every w ∈ D.
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The Berezin transform B0 of operators, which is given by (1.1) with n = 0,
was introduced by Berezin in [2] as a tool to study spectral theory and to construct
approximations of the exponential of an operator. It has being used extensively
to study properties such as boundedness and compactness of Toeplitz, Hankel
and other related operators.

The idea behind the transforms Bn of functions in L1 goes back to Berezin
(see [3]), and were explicitly used in [1] to prove a deep result about the eigen-
functions of B0 in the context of the ball in Cn. The extension of the definition
of Bn to operators is quite natural and appears in [10], where it is used to prove
approximation results in the same vein of Corollary 4.4 in the present paper.

The organization of the paper is as follows. In Section 2 we introduce the in-
variant Laplacian ∆̃ and prove some identities involving the interaction between
T(j)

a , Bn and ∆̃. This will establish the technical foundations for the remaining
sections. In Section 3 we decompose TBn(S) in terms of T(j)

B0(S)
, and use it to give a

characterization of the L∞ closure of B0(L(A2)), which turns out to be an algebra.
Section 4 contains the main results of the paper. We prove that if µ > 0 and k > 1,
the operator T(k)

µ is bounded (compact) if and only if µ is a Carleson measure (re-
spectively a vanishing Carleson measure), and estimate the norms. We also show
that if µ is a complex measure whose variation |µ| is Carleson, then T(k)

µ is the
limit of traditional Toeplitz operators. All these results generalize known facts
for k = 0. In the last section we construct an example to show that for any k > 1,

‖T(k)
a ‖ is not majorized by

k−1
∑

j=0
‖T(j)

a ‖ independently of a ∈ L∞. In particular, the

linear map Ta 7→ T(k)
a is not bounded. We will write indistinctly T(0)

a or Ta for the
traditional Toeplitz operator with symbol a ∈ L∞.

2. THE ROLE OF THE INVARIANT LAPLACIAN

If ∆ = ∂∂ denotes a quarter of the usual Laplacian, where ∂ and ∂ are the tra-
ditional Cauchy–Riemann operators, the invariant Laplacian is ∆̃ := (1− |z|2)2∆.
It is easy to check that (∆̃ f ) ◦ ψ = ∆̃( f ◦ ψ) for every f ∈ C2(D) and ψ ∈ Aut(D).
If a ∈ L∞ is such that ∆̃a ∈ L1, it is well known that ∆̃B0(a) = B0(∆̃a). When also
∆̃a ∈ L∞, this equality rewrites as ∆̃B0(Ta) = B0(T∆̃a). In accordance with this
formula we give the following

DEFINITION 2.1. Let

D = {S ∈ L(A2) : ∃ T ∈ L(A2) such that ∆̃B0(S) = B0(T)},

and define ∆̃ : D→L(A2) by ∆̃S = T.
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This definition says that ∆̃B0(S) = B0(∆̃S) for all S ∈ D. In [10] it is showed
that if S ∈ L(A2) and n > 1 then

(2.1) Bn(S) =
(

1− ∆̃

n(n + 1)

)
Bn−1(S).

Hence, a straightforward inductive argument shows that ∆̃Bn(S) = Bn(∆̃S) when
S ∈ D for n > 0. Also, the conformal invariance of ∆̃ and (1.3) immediately prove
that if S ∈ D, then UwSUw ∈ D and

(2.2) ∆̃(UwSUw) = Uw(∆̃S)Uw.

Observe also that (2.1) implies that ∆̃Bn(S) ∈ L∞ for every S ∈ L(A2).

LEMMA 2.2. Let f , g, h, k be analytic on D. Then
(i) ∆̃( f ⊗ g) = ( f ′ ⊗ g′) + (z2 f )′ ⊗ (z2g)′ − 2 (z f )′ ⊗ (zg)′.

(ii) 〈∆̃( f ⊗ g)h, k〉 = 〈∆̃(h⊗ k) f , g〉.
Proof. (i) We have:

∆̃B0( f ⊗ g) = ∆̃(1 + |z|4 − 2|z|2) f g

= (1− |z|2)2[ f ′g′ + (z2 f )′(z2g)′ − 2 (z f )′(zg)′]

= B0[( f ′ ⊗ g′) + (z2 f )′ ⊗ (z2g)′ − 2 (z f )′ ⊗ (zg)′].

(ii) By (i),

∆̃(zn ⊗ zm) = nm(zn−1 ⊗ zm−1) + (n + 2)(m + 2)(zn+1 ⊗ zm+1)(2.3)

− 2(n + 1)(m + 1)(zn ⊗ zm).

Since n‖zn−1‖2 = 1 when n > 0, for any j, k > 0 we have

〈∆̃(zn ⊗ zm)zj, zk〉 =


1 if (j, k) = (m− 1, n− 1),
−2 if (j, k) = (m, n),
1 if (j, k) = (m + 1, n + 1),
0 otherwise.

This clearly shows that 〈∆̃(zn ⊗ zm)zj, zk〉 = 〈∆̃(zj ⊗ zk)zn, zm〉. The lemma fol-
lows by sesqui-linearity and an approximation argument.

LEMMA 2.3. Let µ be a measure of finite variation such that T(k)
µ is bounded for

all k > 0. Then T(k)
µ ∈ D for all k > 0, and

(2.4)
∆̃T(k)

µ

(k + 1)
= k T(k−1)

µ + (k + 2) T(k+1)
µ − 2(k + 1) T(k)

µ ,

or equivalently, (k + 1)(k + 2) [T(k+1)
µ − T(k)

µ ] = ∆̃[T(k)
µ + T(k−1)

µ + · · ·+ T(0)
µ ]. For-

mally, we set T(−1)
µ = 0 in (2.4) when k = 0.
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Proof. By (2.3) with k = n = m,

(2.5)
∆̃Ek
k + 1

= kEk−1 + (k + 2)Ek+1 − 2(k + 1)Ek,

where E−1 := 0. Since by (2.2), ∆̃(UwEkUw) = Uw(∆̃Ek)Uw, conjugating both
members of the above equality with respect to Uw and integrating with respect
to (1− |w|2)−2 dµ(w), we obtain (2.4), which is our claim. The second formula
follows from (2.4) by induction on k. It is immediate for k = 0 and assuming that
it holds for an integer k− 1 > 0, we get

∆̃T(k)
µ + ∆̃[T(k−1)

µ + · · ·+ T(1)
µ + T(0)

µ ] = ∆̃T(k)
µ + k(k + 1)[T(k)

µ − T(k−1)
µ ]

= (k + 1)(k + 2)[T(k+1)
µ − T(k)

µ ].

Finally, if the last formula holds, substracting the equality for k − 1 from the
equality for k, we obtain (2.4).

LEMMA 2.4. If bn, b ∈ L∞ are such that ‖bn‖∞ 6 C, a constant independent of
n, and bn → b pointwise, then T(k)

bn
→ T(k)

b in the strong operator topology.

Proof. We can assume that b = 0. For f , g ∈ A2,

(2.6) |〈T(k)
bn

f , g〉| 6 〈T(k)
|bn | f , f 〉1/2 〈T(k)

|bn |g, g〉1/2 6 〈T(k)
|bn | f , f 〉1/2 C1/2‖g‖2,

where the first inequality follows from Cauchy–Schwarz’s inequality and the sec-
ond because ‖T(k)

|bn |‖ 6 ‖bn‖∞ 6 C. So, taking supremum in (2.6) over ‖g‖2 = 1

for any fixed value of n, we see that ‖T(k)
bn

f ‖2 6 C1/2 〈T(k)
|bn | f , f 〉1/2 → 0 as n→ ∞

by the dominated convergence theorem.

PROPOSITION 2.5. Let a ∈ L∞ ∩C2(D) such that ∆̃a ∈ L∞. Then ∆̃T(k)
a = T(k)

∆̃a
.

Proof. For 0 < r < 1 consider the functions ar(z) = a(rz). It follows from
the previous lemma that T(j)

ar → T(j)
a in the strong operator topology when r → 1

for all j > 0. Then (2.4) implies that ∆̃T(k)
ar

sot→ ∆̃T(k)
a . Since (∆̃ar)(z) = r2(∆̃a)(rz)

is bounded by ‖∆̃a‖∞, the previous lemma says that T(k)
∆̃ar

sot→ T(k)
∆̃a

. Therefore it is

enough to prove the lemma for ar, meaning that we can assume that a ∈ C2(D).
First observe that

∆̃zB0(UwEkUw)(z) = ∆̃B0(Ek)(ϕw(z)) = ∆̃B0(Ek)(ϕz(w)) = ∆̃wB0(UzEkUz)(w),

where the equality in the middle holds because ∆̃B0(Ek) is a radial function and
|ϕw(z)| = |ϕz(w)|. Therefore

B0(∆̃T(k)
a )(w)= ∆̃B0(T

(k)
a )(w) =

∫
∆̃wB0(UzEkUz)(w)a(z)dÃ(z)

=
∫

∆̃zB0(UwEkUw)(z)a(z)dÃ(z)=
∫

∆zB0(UwEkUw)(z)a(z)dA(z),
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and since B0(UzEkUz)(w) = B0(UwEkUw)(z) (because B0(Ek) is radial),

B0(T
(k)
∆̃a

)(w)=
∫

B0(UzEkUz)(w)(∆̃a)(z)dÃ(z)=
∫

B0(UwEkUw)(z)(∆a)(z)dA(z).

Since for every fixed w ∈ D, the function

(2.7) B0(UwEkUw)(z) = (1− |ϕw(z)|2)2(k + 1)(|ϕw(z)|2)k

is defined for z in some neighborhood of D, the previous equalities and Green’s
theorem give

B0(∆̃T(k)
a −T(k)

∆̃a
)(w)=

∫
D

[∆zB0(UwEkUw)(z)a(z)− B0(UwEkUw)(z)(∆a)(z)]dA(z)

=
∫

∂D

[
a(z)

∂

∂n
B0(UwEkUw)(z)−B0(UwEkUw)(z)

∂a
∂n

(z)
]dm(z)

π
,

where ∂/∂n is the derivative in the normal direction and dm(z) is the Lebesgue
measure on ∂D. A straightforward calculation from (2.7) shows that both

B0(UwEkUw)(z) and
∂

∂n
B0(UwEkUw)(z)

vanish when |z| = 1. The proposition follows because B0 is one-to-one.

COROLLARY 2.6. If a ∈ L∞ is harmonic, T(k)
a = Ta for every integer k > 0.

Proof. By Proposition 2.5, ∆̃T(k)
a = T(k)

∆̃a
= 0 for all k > 1. The corollary now

follows from the second formula of Lemma 2.3.

Taking a ≡ 1 in the Corollary, we see that T(k)
1 is the identity for all k > 0.

This also follows from the so called Schur orthogonality relations and it is the
main ingredient in Engliš’s proof of the result cited in the introduction. Indeed,
the first inequality in (2.6) implies that if a ∈ L∞, then ‖T(k)

a ‖ 6 ‖a‖∞ ‖T(k)
1 ‖ =

‖a‖∞.

PROPOSITION 2.7. Let µ be a finite measure such that T(k)
µ is bounded for all

k > 0. Then T
Bn(T

(k)
µ )

= T(k)
Bn(µ)

.

Proof. First we prove that T
B0(T

(k)
µ )

= T(k)
B0(µ)

by induction on k. For k = 0

there is nothing to prove. Suppose that the equality holds for j = 0, . . . , k. By
Proposition 2.5, the commutativity of B0 and ∆̃, and (2.4),

∆̃T
B0(T

(k)
µ )

= T
∆̃B0(T

(k)
µ )

= T
B0(∆̃T(k)

µ )

= (k + 1)[k T
B0(T

(k−1)
µ )

+ (k + 2) T
B0(T

(k+1)
µ )

− 2(k + 1) T
B0(T

(k)
µ )

]
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and by (2.4),

∆̃T(k)
B0(µ)

= (k + 1)[k T(k−1)
B0(µ)

+ (k + 2) T(k+1)
B0(µ)

− 2(k + 1) T(k)
B0(µ)

].

By inductive hypothesis the left members of these formulas are equal, implying
that T

B0(T
(k+1)
µ )

= T(k+1)
B0(µ)

. Now suppose that k > 0 is fixed and we prove the

lemma by induction on n. So, suppose that the equality holds for n− 1 > 0. Then

n(n + 1)[T
Bn−1(T

(k)
µ )
− T

Bn(T
(k)
µ )

] = ∆̃T
Bn−1(T

(k)
µ )

= ∆̃T(k)
Bn−1(µ)

= n(n + 1)[T(k)
Bn−1(µ)

− T(k)
Bn(µ)

],

where the equality in middle holds by inductive hypothesis and the other two by
Proposition 2.5 and (2.1). This proves our claim.

3. TBn IN TERMS OF T(j)
B0

AND APPLICATIONS

It is clear that B0 : L(A2) → L∞ is not multiplicative but less clear that
its image is not a multiplicative set. We show this by constructing the following
example.

Let f , g ∈ A2 such that Tf Tg is bounded but g 6∈ H∞. To see that such
functions exist, take for instance f (z) = (1 − z)α and g(z) = (1 − z)−α, with
0 < α < 1/2. The elementary inequalities

|1− z|
(1− |w|

1 + |w|

)
6 |1− ϕz(w)| 6 |1− z|

(1 + |w|
1− |w|

)
yield

B0(| f |p)B0(|g|p)(z)=
∫
|1−ϕz|pαdA

∫ dA
|1−ϕz|pα 6

[ ∫ (1+|w|
1−|w|

)pα
dA(w)

]2
<∞

if 0 < p < α−1. Hence, there is some p > 2 such that B0(| f |p)B0(|g|p) is bounded,
which by Theorem 5.2 of [9] is a sufficient condition for the boundedness of Tf Tg.

Since g 6∈ H∞, there is h ∈ A2 such that gh 6∈ A2, implying that the operator
( f ⊗ gh) is not bounded. However, it is well defined on the reproducing kernels
Kz and satisfies ( f ⊗ gh)Kz = g(z)h(z) f ∈ A2 for all z ∈ D. This holds because
Kz also reproduces functions in the Bergman space A1. In particular, its Berezin
transform is defined, and

B0( f ⊗ gh)(z) = (1− |z|2)2h(z) f (z)g(z) = B0(1⊗ h)(z) B0(Tf Tg)(z).

So, if B0(L(A2)) is an algebra there must be Q ∈ L(A2) such that B0(Q) = B0( f ⊗
gh)(z). Consequently the function

F(z, w) := 〈QKz, Kw〉 − 〈( f ⊗ gh)Kz, Kw〉
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is analytic on the bidisc D2 and vanishes on the points (z, z), implying that F ≡
0. Since the span of the reproducing kernels is dense in A2, we conclude that
‖ f ⊗ gh‖ = ‖Q‖ < ∞, a contradiction.

Despite the fact that B0(L(A2)) is not an algebra, we will see that its closure
is a uniform algebra, in fact, the largest uniform algebra that previously known
results allow. The key ingredient in the proof is the following decomposition of
TBn(S), for S ∈ L(A2).

LEMMA 3.1. Let S ∈ L(A2) and n > 0 integer. Then

(3.1) TBn(S) = (n + 1)
n

∑
j=0

(
n
j

)
(−1)j

j + 1
T(j)

B0(S)
.

Proof.

B0

( n

∑
j=0

(
n
j

)
(−1)j

j+1
T(j)

B0(S)

)
(w)=

∫ n

∑
j=0

(
n
j

)
(−|ϕz(w)|2)j(1−|ϕz(w)|2)2B0(S)(z)dÃ(z)

=
∫

(1− |ϕz(w)|2)n+2

(1− |z|2)2 B0(S)(z)dA(z)

=
Bn(B0(S))(w)

(n + 1)
=

B0(TBn(S))(w)

(n + 1)
,

where the last equality holds because Bn and B0 commute. The lemma follows
because B0 is one-to-one.

For z, w ∈ D, the expressions

ρ(z, w) = |ϕz(w)| and β(z, w) = log
1 + ρ(z, w)

1− ρ(z, w)

define the pseudo-hyperbolic and the hyperbolic metric, respectively. Consider
the uniform algebra A ⊂ L∞(D) of functions that are uniformly continuous
from the metric space (D, β) into the complex plane with the euclidean metric
(C, | · |). In [4] Coburn proved that B0(S) is a Lipschitz function between these
metric spaces for every S ∈ L(A2). In particular, B0(L(A2)) ⊂ A, a fact used in
[10] to study some subalgebras of L(A2) in terms of their Berezin transforms. We
see next that the inclusion is dense.

THEOREM 3.2. The L∞-closure of B0(L(A2)) is A.

Proof. Let a ∈ A. Replacing B0(S) by a in the chain of equalities of the
previous proof (except for the last one), gives

B0

(
(n + 1)

n

∑
j=0

(
n
j

)
(−1)j

j + 1
T(j)

a

)
= Bn(a).

Taking dµ = adA in (1.2), a change of variables shows that
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Bn(a)(z) =
∫
D

a(ϕz(ζ))(n + 1)(1− |ζ|2)n dA(ζ)→ a(ϕz(0)) = a(z)

uniformly on z when n → ∞, because since a ∈ A, the functions a ◦ ϕz are
equicontinuous at 0, and the probability measures (n + 1)(1− | · |2)ndA tend to
accumulate all the mass at 0 when n→ ∞. Thus, A ⊂ B0(L(A2)).

COROLLARY 3.3. The set {TB0(S) : S ∈ L(A2)} is norm dense in {Ta : a ∈ L∞}.

Proof. The last theorem implies that {TB0(S) : S ∈ L(A2)} is norm dense in
{Ta : a ∈ A}, which by Theorem 5.7 of [10] is norm dense in {Ta : a ∈ L∞}.

The next result is an easy consequence of the identities in the previous sec-
tion and Lemma 3.1. We need some notation first. Let m > 0 be an integer and
x = {xn}n>0 be a sequence of complex numbers. The m-difference of x, denoted
∆mx, is the sequence whose n-th term is

∆m
n x := (−1)m

m

∑
j=0

(
m
j

)
(−1)j xn+j, for n > 0.

That is, ∆m is the m-iteration of the difference operator ∆{xn}n>0 := {xn+1 −
xn}n>0.

PROPOSITION 3.4. Let f , g, h, k ∈ A2 and integers n, j > 0. Then

〈TBn( f⊗g)h, k〉 = 〈TBn(h⊗k) f , g〉 and∫
〈Uwej, h〉〈Uwej, k〉 f (w)g(w)dA(w) =

∫
〈Uwej, f 〉〈Uwej, g〉 h(w)k(w)dA(w).

In particular,

(3.2)
∫
|〈Uwej, h〉|2 | f (w)|2 dA(w) =

∫
|〈Uwej, f 〉|2 |h(w)|2 dA(w).

Proof. Since ‖TBn( f⊗g)‖ 6 Cn‖ f ‖2 ‖g‖2, it is enough to assume that all the
functions are polynomials. Since B0( f ⊗ g) = (1− |z|2)2 f g, the first assertion is
clear for n = 0. So, assuming that the result holds up to n, by (2.1) we need to
prove the equality for ∆̃Bn instead of Bn.

〈∆̃TBn( f⊗g)h, k〉=〈Bn( f⊗g)h, k〉+〈Bn((z2 f )′⊗(z2g)′)h, k〉−2〈Bn((z f )′⊗(zg)′)h, k〉

=〈Bn(h⊗k) f , g〉+〈Bn(h⊗k)(z2 f )′, (z2g)′〉−2〈Bn(h⊗k)(z f )′, (zg)′〉

=〈Bn(h⊗ k), ∆(1− |z|2)2 f g〉= 〈∆̃Bn(h⊗ k), f g〉= 〈∆̃TBn(h⊗k) f , g〉,

where the first equality follows from Proposition 2.5, the commutativity of Bn

and ∆̃, and Lemma 2.2, the second equality holds by inductive hypothesis, the
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fourth one by Green’s theorem, and the last one by Proposition 2.5 again. Writing
σj(z) = zj, (3.1) says that

TBn( f⊗g)

n + 1
=

n

∑
j=0

(
n
j

)
(−1)j

j + 1
T(j)

B0( f⊗g)=(−1)n
∫

∆n
0(Uwσj ⊗Uwσj) f (w)g(w)dA(w).

Therefore the equality 〈TBn( f⊗g)h, k〉 = 〈TBn(h⊗k) f , g〉 rewrites as

∆n
0

∫
〈Uwσj, h〉〈Uwσj, k〉 f (w)g(w)dA(w)=∆n

0

∫
〈Uwσj, f 〉〈Uwσj, g〉h(w)k(w)dA(w),

and the second claim follows by induction on n.

4. CARLESON MEASURES AS SYMBOLS

A positive measure µ on D is called a Carleson measure if A2 ⊂ L2(dµ).
If in addition the inclusion is compact, µ is called a vanishing Carleson measure.
Among the many known characterizations of Carleson measures (see p. 123 of
[13] for comments and references), a positive measure µ is Carleson if and only if
‖B0(µ)‖∞ < ∞, a quantity that is equivalent to the operator norm of the inclusion
of A2 in L2(µ). Another characterization comes from replacing the kernel of the
Berezin integral by a box kernel. Indeed, if 0 < r < 1 and v ∈ D, consider the
pseudo-hyperbolic disk

D(v, r) := {z ∈ D : |ϕv(z)| 6 r} and its area |D(v, r)| :=
∫

D(v,r)

dA.

If µ is a positive measure on D and 0 < r < 1, there is a constant C(r) > 0
depending only on r such that

(4.1)
1

C(r)
sup
v∈D

µ(D(v, r))
|D(v, r)| 6 ‖B0(µ)‖∞ 6 C(r) sup

v∈D

µ(D(v, r))
|D(v, r)| .

Clearly, if the above supremum is finite for some r then it is finite for all 0 < r < 1.
Finally, a positive measure µ is Carleson if and only if Tµ is bounded (see pp. 111–

112 of [13]). We shall see that the same holds for T(k)
µ when k > 1. For a positive

measure µ write dµ̃ := (1− |z|2)−2 dµ.

LEMMA 4.1. Let µ be a positive finite measure on D. Then

µ(D(v, r))
|D(v, r)|

[ r(1− r2)

4

]2
6 µ̃(D(v, r)) 6

µ(D(v, r))
|D(v, r)|

[ 4r
(1− r2)2

]2

for every v ∈ D and 0 < r < 1.
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Proof. Since by p. 60 of [13], |D(v, r)| = [(r(1− |v|2))/(1− |v|2r2)]2,

µ̃(D(v, r)) =
∫

D(v,r)

dµ(ξ)

(1− |ξ|2)2 =
1

|D(v, r)|

∫
D(v,r)

[ r(1− |v|2)
(1− |ξ|2)(1− |v|2r2)

]2
dµ(ξ).

The lemma follows immediately from the easy inequalities, valid for ξ ∈ D(v, r):

(1− r2)

4
6

(1− |v|2)
(1− |ξ|2) 6

4
(1− r2)

.

THEOREM 4.2. Let µ be a positive finite measure on D. Then T(k)
µ is bounded if

and only if µ is a Carleson measure, in which case,

(4.2)
C

(k + 2)
‖B0(µ)‖∞ 6 ‖T(k)

µ ‖ 6 4(k + 2)‖B0(µ)‖∞,

where C > 0 is an absolute constant.

Proof. First let us assume that T(k)
µ is a bounded operator. For k > 1 consider

the function f (x) = (k + 1)xk(1− x)2 defined in [0, 1]. This function reaches its
maximum at x = k/(k + 2). If (k− 1/2)/(k + 2) 6 x 6 (k + 1)/(k + 2) (that is,
x = (k + y)/(k + 2) with −1/2 6 y 6 1), then

f (x) = f
( k + y

k + 2

)
= (k + 1)

[ k + y
k + 2

]k[2− y
k + 2

]2
>

(k + 1)
(k + 2)2

[
1− 5/2

k + 2

]k
>

c1

(k + 2)
,

where c1 > 0 is a constant independent of k. This means that there is an absolute
constant c1 > 0 such that for all k > 1,

(4.3) (k + 1)|z|2k(1− |z|2)2 >
c1

(k + 2)
if

k− 1/2
k + 2

6 |z|2 6
k + 1
k + 2

.

Now, let 0 < r 6 zk :=
√

k/(k + 2). By the geometric arguments in p. 3 of [6],
D(zk, r) is contained in the annulus

zk − r
1− rzk

6 |w| 6 zk + r
1 + rzk

.

Thus, if we choose r 6
√

k/(k + 2) small enough so that

(4.4)

√
k−1/2
k + 2

6

√
k/(k + 2)− r

1− r
√

k/(k+2)
and

√
k/(k + 2) + r

1+r
√

k/(k+2)
6

√
k+1
k+2

for all k > 1, then D(zk, r) is contained in the annulus (k− 1/2)/(k + 2) 6 |z|2 6
(k + 1)/(k + 2), implying that the inequalities in (4.3) hold for z ∈ D(zk, r). We
see next that 0 < r 6 1/10 does the trick. Clearing r from (4.4) we get the equiva-
lent inequalities

r6
√

k/(k+2)−
√
(k−1/2)/(k+2)

[1−
√

k/(k+2)
√
(k−1/2)/(k+2)]

and r6
√
(k+1)/(k+2)−

√
k/(k+2)

[1−
√

k/(k+2)
√
(k+1)/(k+2)]

,
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meaning that r must be bounded by

min
{ √

k + 2

[
√

k +
√

k− 1/2]

1/2
[k + 2−

√
k2 − k/2]

,
√

k + 2

[
√

k +
√

k + 1]

1

[k + 2−
√

k2 + k]

}
.

The claim follows because this minimum is bounded below by
√

k + 2

[
√

k +
√

k + 1]

1/2
[k + 2−

√
k2 − k/2]

>
1/4

[k + 2−
√

k2 − k/2]

=
k + 2 +

√
k2 − k/2

[18k + 16]
>

2k + 3/2
[18k + 16]

>
1

10
.

Therefore, if r 6 1/10,

B0(T
(k)
µ )(w)=

∫
(k + 1)|ϕw(z)|2k(1− |ϕw(z)|2)2 dµ(z)

(1− |z|2)2

>
∫

D(ϕw(zk),r)

(k + 1)|ϕw(z)|2k(1− |ϕw(z)|2)2 dµ(z)
(1− |z|2)2

by (4.3)
>

c1

(k + 2)

∫
D(ϕw(zk),r)

dµ(z)
(1− |z|2)2

=
c1

(k + 2)
µ̃(D(ϕw(zk), r)).(4.5)

Taking the supremum for w ∈ D and using that {ϕw(zk) : w ∈ D} = D for any
fixed zk ∈ D, we get

(4.6) ‖T(k)
µ ‖ > ‖B0(T

(k)
µ )‖∞ >

c1

(k + 2)
sup

v
µ̃(D(v, r))

for any r 6 1/10. By (4.1), Lemma 4.1 and (4.6), there are absolute constants
C0, C1 and C2, such that

‖B0(µ)‖∞ 6 C0 sup
v

µ(D(v, 1
10 ))

|D(v, 1
10 )|

6 C1 sup
v

µ̃(D(v, 1
10 )) 6 C2(k + 2)‖T(k)

µ ‖.

This proves the first inequality in (4.2).
Now suppose that µ is a Carleson measure and let F(z) = ∑ ajej(z) ∈ A2.

For 0 6 t < 2π and 0 6 r < 1 we have

|〈F(eitz), (Urek)(z)〉|2 = ∑
j,l

ajal 〈ej(eitz), (Urek)(z)〉 〈el(eitz), (Urek)(z)〉

= ∑
j,l

ajal ei(j−l)t 〈ej, Urek〉 〈el , Urek〉,
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and since |〈F, Ureit ek〉| = |〈F(z), (Urek)(e−itz)〉| = |〈F(eitz), (Urek)(z)〉|, then

2π∫
0

|〈F, Ureit ek〉|2
dt
2π

= ∑
j
|aj|2|〈ej, Urek〉|2 > |ak|2|〈ek, Urek〉|2

= |〈F, ek〉|2|〈ek, Urek〉|2 = |〈F, ek〉|2
2π∫
0

|〈ek, Ureit ek〉|2
dt
2π

.

Multiplying by 2r dr and integrating yields∫
|〈F, Uzek〉|2 dA(z) > |〈F, ek〉|2

∫
|〈ek, Uzek〉|2 dA(z).

So, taking F = Uw f we get∫
|〈Uw f , Uzek〉|2 dA(z) > |〈Uw f , ek〉|2

∫
|〈ek, Uzek〉|2 dA(z).

Writing λ = (zw− 1)/(1− wz), we have UwUz = Uϕw(z)Vλ, where (Vλh)(ω) =

λh(λω) for h ∈ A2. Consequently,

|〈Uw f , Uzek〉| = |〈 f , UwUzek〉| = |〈 f , Uϕw(z)ek〉|,

and the change of variables v = ϕw(z) in the first integral above yields∫
|〈 f , Uvek〉|2 |ϕ′w(v)|2 dA(v) > |〈Uw f , ek〉|2

∫
|〈ek, Uzek〉|2 dA(z).

Integrating with respect to dµ̃(w),

(4.7)
∫
D

[ ∫ (1− |v|2)2

|1− wv|4 dµ(w)
]
|〈 f , Uvek〉|2 dÃ(v) > ck

∫
D

|〈Uw f , ek〉|2 dµ̃(w),

where

ck =
∫
|〈ek, Uzek〉|2 dA(z)

by (3.2)
=

∫
|〈Uzek, 1〉|2 |ek(z)|2 dA(z)

=
∫
(1− |z|2)2 |ek(z)|4 dA(z) = (k + 1)2

1∫
0

(1− x)2 x2k dx >
1

4(k + 2)
.

Thus, going back to (4.7),

‖B0(µ)‖∞ ‖ f ‖2 > 〈T(k)
B0(µ)

f , f 〉 > ck〈T
(k)
µ f , f 〉 > 1

4(k + 2)
〈T(k)

µ f , f 〉.

This proves the second inequality in (4.2).

It would be interesting to know how sharp are the bounds in (4.2) except for
absolute multiplicative constants when k tends to infinity, especially the upper
bound.
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REMARK 4.3. Observe that by (4.6) and the subsequent inequality, we also
showed that

C
(k + 2)

‖B0(µ)‖∞ 6 ‖B0(T
(k)
µ )‖∞ 6 ‖T(k)

µ ‖,

and that the last formula of the proof says that 4(k + 2)T(k)
B0(µ)

> T(k)
µ as positive

operators.

Suppose that µ is a complex measure on D such that its variation |µ| is Car-
leson. By (2.6) with measures instead of functions, we see that ‖T(k)

µ ‖ 6 ‖T(k)
|µ| ‖

for all k > 0, so T(k)
µ ∈ L(A2). It is worth noticing that the converse does not hold,

since there are finite measures µ such that Tµ is bounded but |µ| is not Carleson.
The next result was proved in Corollary 2.5 of [11] for k = 0. In particular, it
shows that when a ∈ L∞, T(k)

a is a limit of classical Toeplitz operators.

COROLLARY 4.4. Let µ be a finite measure on D such that |µ| is a Carleson mea-
sure and k > 0 be an integer. Then

T
Bn(T

(k)
µ )
→T(k)

µ when n→∞.

Proof. Decomposing µ = µ1 + iµ2, where each µj is a real measure, and
using Jordan decomposition with both µ1 and µ2, we can assume without loss of
generality that µ > 0. By Lemma 4.1 of [12], if Q ∈ L(A2) satisfies ‖T∆̃Bn(Q)‖ 6 C,
where C is independent of n, then TBn(Q)→Q. So, we need to prove the above

inequality for Q = T(k)
µ . By Propositions 2.5 and 2.7, and (2.4),

T
∆̃Bn(T

(k)
µ )

= ∆̃T
Bn(T

(k)
µ )

= ∆̃T(k)
Bn(µ)

=(k+1)[kT(k−1)
Bn(µ)

+(k + 2)T(k+1)
Bn(µ)

−2(k+1)T(k)
Bn(µ)

].

Since Bn(µ)dA is a Carleson measure satisfying

‖B0Bn(µ)‖∞ = ‖BnB0(µ)‖∞ 6 ‖B0(µ)‖∞,

using (4.2) in the above equality gives ‖T
∆̃Bn(T

(k)
µ )
‖ 6 42(k + 3)3‖B0(µ)‖∞, which

does not depend on n.

It is well known that for a positive measure µ on D, the condition of being
a vanishing Carleson measure is equivalent to B0(µ)(z) → 0 when |z| → 1, and
also to the compactness of Tµ (see pp. 112–115 of [13], also Proposition 3 of [7]).

We aim to prove the same result for T(k)
µ when k is any nonnegative integer.

LEMMA 4.5. If fn ∈ A2 is a sequence that tends weakly to 0 then 〈 fn, Uwek〉→0
uniformly for w in compact sets of D.

Proof. By the Banach–Steinhaus theorem (see p. 44 of [8]) the norms ‖ fn‖
are uniformly bounded and by Lemma 4.3 of [10] the function w 7→ Uwek is uni-
formly continuous on compact sets. Thus, the Cauchy–Schwarz inequality shows
that the scalar functions Fn(w) = 〈 fn, Uwek〉 are equicontinuous on compact sets.
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Since by hypothesis Fn→0 pointwise, Ascoli’s theorem (see p. 394 of [8]) implies
that Fn→0 uniformly on compact sets.

LEMMA 4.6. If a ∈ L∞ has compact support then T(k)
a is compact.

Proof. Let fn, gn ∈ A2 be sequences such that fn tends weakly to 0 and
‖gn‖ 6 1. Then

|〈T(k)
a fn, gn〉| 6 ‖a‖∞ Ã(supp a) sup

w∈ supp a
|〈 fn, Uwek〉〈Uwek, gn〉|,

where the last factor tends to 0 by the previous lemma, since |〈Uwek, gn〉| 6 1.

THEOREM 4.7. Let µ be a positive finite measure on D. Then T(k)
µ is compact if

and only if µ is a vanishing Carleson measure.

Proof. Suppose that µ is a vanishing Carleson measure and let 0 < r < 1.
By Remark 4.3,

0 6 T(k)
µ 6 4(k + 2)T(k)

B0(µ)
= 4(k + 2)[T(k)

χrD B0(µ)
+ T(k)

χD\rD B0(µ)
].

By Lemma 4.6 the first operator in the sum is compact, and by Engliš’s result ([5],
Theorem 1),

‖T(k)
χD\rD B0(µ)

‖ 6 ‖χD\rDB0(µ)‖∞→0 when r→1.

Thus, T(k)
µ is compact. Conversely, suppose now that T(k)

µ is compact. Then

B0(T
(k)
µ )(w)→0 when |w|→1, which together with (4.5) says that there are zk ∈ D

and 0 < r < 1 such that

µ̃(D(ϕw(zk), r))→1 when |w|→1.

If V ⊂ D is such that D \V is compact, the same holds for the set {ϕw(zk) : w ∈
V}, for any fixed zk ∈ D. Therefore µ̃(D(v, r))→1 when |v|→1, which together
with Lemma 4.1 gives

µ(D(v, r))
|D(v, r)| → 0 as |v| → 1.

Then µ is a vanishing Carleson measure by pp. 111–114 of [13] .

5. EXAMPLE OF BAD BEHAVIOUR

As far as I know there is no accurate estimate for ‖Ta‖ when a ∈ L∞ is
arbitrary, which obviously remains true for ‖T(k)

a ‖ when k > 1. It would be
interesting to know if at least ‖T(k)

a ‖ is majorized by ‖Ta‖, or more generally, if
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for some given k > 1, there exists a positive constant Ck depending only on k such
that

(5.1) ‖T(k)
a ‖ 6 Ck(‖T

(0)
a ‖+ · · ·+ ‖T

(k−1)
a ‖) for all a ∈ L∞.

By Theorem 4.2 this is certainly the case when a > 0 or when a dA is replaced by
any Carleson measure. Unfortunately (5.1) does not hold for any k > 1, as the
example that we construct next will show.

LEMMA 5.1. For a ∈ L∞ and ` > 0 there are constants c0, . . . , c` depending only
on ` such that

T(`)
a = c0∆̃0Ta + · · ·+ c`∆̃`Ta.

Proof. By the second formula of Lemma 2.3,

T(`)
a = T(0)

a + ∆̃
`−1

∑
m=0

1
(m + 1)(m + 2)

[T(m)
a + T(m−1)

a + · · ·+ T(0)
a ].

This proves the lemma for ` = 1 and assuming inductively that it holds for T(m)
a

with m = 1, . . . , `− 1, it also shows that it holds for T(`)
a .

COROLLARY 5.2. For all k > 0 and a ∈ L∞ there is Ck > 0 such that

k

∑
`=0
‖T(`)

a ‖ 6 Ck

k

∑
`=0
‖∆̃`Ta‖.

The proof of Lemma 5.1 clearly shows that both the lemma and its corollary
hold if a dA is replaced by any finite measure µ such that T(k)

µ is bounded for
every k > 0. In particular, they hold when |µ| is a Carleson measure.

Let k > 1 and suppose that (5.1) holds. This, together with (2.4) imply the
first of the following inequalities

‖∆̃kTa‖ 6 C1(k)
k−1

∑
`=0
‖T(`)

a ‖ 6 C2(k)
k−1

∑
`=0
‖∆̃`Ta‖ for all a ∈ L∞,

for some C1(k) > 0, where the second inequality comes from the corollary. Thus,
the next example disproves (5.1).

EXAMPLE 5.3. We claim that if k > 1 there is no positive constant Ck such
that

‖∆̃kTa‖ 6 Ck

k−1

∑
`=0
‖∆̃`Ta‖ for all a ∈ L∞.

For j > 0 recall that Ej = ej ⊗ ej, and we write Ej = 0 if j < 0. An iteration of (2.5)
shows that ∆̃`Ej is a linear combination of Ej−`, . . . , Ej+` in such a way that there
are positive constants c` and C` independent of j with c`(j + 1)2` 6 ‖∆̃`Ej‖ 6
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C`(j + 1)2` for all ` > 0. In particular, if 0 6 ` 6 k, there are constants c and C
depending only on k such that

c(j + 1)2` 6 ‖∆̃`Ej‖ 6 C(j + 1)2` ∀` = 0, . . . , k and j > 0.

By Theorem 4.3 of [12], TBn(Ej)
→ Ej when n → ∞. Hence, Proposition 2.5, the

commutativity of Bn and ∆̃, and the previous comments yield

∆̃`TBn(Ej)
= T∆̃`Bn(Ej)

= TBn(∆̃`Ej)
→ ∆̃`Ej as n→ ∞.

Therefore for each pair of integers k, j > 0 we can choose n = n(k, j) large enough
so that

c
2
(j + 1)2` 6 ‖∆̃`TBn(Ej)

‖ 6 2C(j + 1)2` ∀` = 0, . . . , k.

Taking aj := (j + 1)−2kBn(Ej) ∈ L∞, the above inequalities show that,

k−1

∑
`=0
‖∆̃`Taj‖ 6 2C

k

∑
p=1

1
(j + 1)2p 6

2C
(j + 1)2 − 1

while
c
2
6 ‖∆̃kTaj‖

for all j > 1. Taking j→ ∞ shows our claim.
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