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ABSTRACT. The transition probability PA( f , g) of positive linear functionals
f and g on a unital ∗-algebra A was defined by A. Uhlmann, Rep. Math. Phys.
9(1976), 273–279. In this paper we study this notion in the context of unbounded
Hilbert space representations of the ∗-algebra A and derive a number of basic
results. The main technical assumption is the essential self-adjointness of the
GNS representations π f and πg. Applications to functionals given by den-
sity matrices or by integrals and to vector functionals on the Weyl algebra are
given.

KEYWORDS: Transition probability, non-commutative probability, unbounded rep-
resentations.

MSC (2010): 46L50, 47L60, 81P68.

1. INTRODUCTION

Let f and g be states on a unital ∗-algebra A. Suppose that these states are
realized as vectors states of a common ∗-representation π of A on a Hilbert space
with unit vectors ϕ and ψ, respectively, that is, f (a) = 〈π(a)ϕ, ϕ〉 and g(a) =
〈π(a)ψ, ψ〉 for a ∈ A. In quantum physics the number |〈ϕ, ψ〉|2 is then interpreted
as the transition probability from f to g in these vector states. The (abstract) tran-
sition probability PA( f , g) is defined as the supremum of values |〈ϕ, ψ〉|2, where
the supremum is taken over all realizations of f and g as vector states in some
common ∗-representation of A. This definition was introduced by A. Uhlmann
[18]. The square root

√
PA( f , g) is also called fidelity in the literature [3], [11].

The transition probability is related to other important topics such as Bu-
res’ distance [9], Sakai’s non-commutative Radon–Nikodym theorem [6], and the
geometric mean of Pusz and Woronowicz [13]. There are an extensive literature
about the finite dimensional case (see e.g. the monograph [8]) and a number of
results for C∗-algebras and von Neumann algebras (see e.g. [1], [2], [3], [4], [6],
[7], [20]). In contrast it seems that the case of unbounded representations has been
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not yet studied. The aim of the present paper is to fill this gap and to study the
transition probability PA( f , g) for positive linear functionals f and g on a general
unital ∗-algebra A.

Since the ∗-representations of A act by unbounded operators on Hilbert
spaces, a number of technical problems of unbounded representation theory [16]
come up. Dealing with these difficulties in a proper way is a main purpose of this
paper.

In Section 2 we collect all basic definitions and facts on unbounded Hilbert
space representations that will be used throughout this paper.

In Section 3 we state and prove our main theorems about the transition
probability PA( f , g) for a general ∗-algebras. The crucial assumption for these re-
sults is the essential self-adjointness of the GNS representations π f and πg. This
means that we restrict ourselves to a class of "nice" functionals. Let π be a fixed
biclosed ∗-representation π of A such that the functionals f and g are realized
as vector functionals by vectors ϕ and ψ, respectively. (The assumption that π is
biclosed is no restriction of generality, since any ∗-representation has a biclosed
extension.)

Our first main result (Theorem 3.5) states that the transition probability
PA( f , g) is the supremum of |〈Tϕ, ψ〉|2 taken over all operators T in the com-
mutant π(A)′ss with norm ‖T‖ 6 1.

The second main result (Theorem 3.7) says that the supremum in the defi-
nition of PA( f , g) is always attained, that is, there are vectors ϕ′ and ψ′ in the do-
main of π representing the functionals f and g, respectively, such that PA( f , g) =
|〈ϕ′, ψ′〉|2.

The third main result (Theorem 3.8) gives a generalization of Uhlmann’s
formula PA( f , g) = h(c+b)2 for positive functionals of the form f (·) = h(b+ · b)
and g(·) = h(c+ · c).

In Section 4 we apply Theorem 3.7 from Section 3 to generalize two standard
formulas (4.2) and (4.11) for transition probabilities to the unbounded case; these
formulas concern trace functionals ft(a) = Tr ρ(a)t and functionals of the form
fη(a) =

∫
aηdµ on ∗-algebras of functions. A simple counter-example based

on the Hamburger moment problem shows that these formulas can fail if the
assumption of essential self-adjointness of GNS representations is omitted.

In Section 5 we determine the transition probability of positive functionals
on the Weyl algebra given by certain functions from C∞

0 (R). In this case both GNS
representations π f and πg are not essentially self-adjoint and the corresponding
formula for PA( f , g) is in general different from the standard formula (4.2).

Throughout this paper we suppose that A is a complex unital ∗-algebra. The
involution of A is denoted by a → a+ and the unit element of A by 1. Let P(A)
be the set of all positive linear functionals on A. Recall that a linear functional
f on A is called positive if f (a+a) > 0 for all a ∈ A. Let ∑ A2 be the set of all
finite sum of squares a+a, where a ∈ A. All notions and facts on von Neumann
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algebras and on unbounded operators used in this paper can be found in [12] and
[17], respectively.

2. BASICS ON UNBOUNDED REPRESENTATIONS

Proofs of all unproven facts stated in this section and more details can be
found in the monograph [16], see e.g. [5]. Proposition 2.2 below is a new result
that might be of interest in itself.

Let (D, 〈·, ·〉) be a unitary space and (H, 〈·, ·〉) the Hilbert space completion
of (D, 〈·, ·〉). We denote by L(D) the algebra of all linear operators a : D → D,
by ID the identity map of D and by B(H) the ∗-algebra of all bounded linear
operators onH.

DEFINITION 2.1. A representation of A on D is an algebra homomorphism π
of A into the algebra L(D) such that π(1) = ID and π(a) is a closable operator on
H for a ∈ A. We then write D(π) := D andH(π) := H.

A ∗-representation π of A on D is a representation π satisfying

〈π(a)ϕ, ψ〉 = 〈ϕ, π(a+)ψ〉 for a ∈ A, ϕ, ψ ∈ D(π).(2.1)

Let π be a representation of A. Then

D(π∗) :=
⋂

a∈A
D(π(a)∗) and π∗(a) := π(a+)∗dD(π∗) for a ∈ A,(2.2)

defines a representation π∗ of A on D(π∗), called the adjoint representation to π.
Clearly, π is a ∗-representation if and only if π ⊆ π∗.

If π is a ∗-representation of A, then

D(π) :=
⋂

a∈A
D(π(a)) and π(a) := π(a)dD(π), a ∈ A,(2.3)

D(π∗∗) :=
⋂

a∈A
D(π∗(a)∗) and π∗∗(a) := π∗(a+)∗dD(π∗∗), a ∈ A,(2.4)

are ∗-representations π∗ and π∗∗ of A, called the closure respectively the biclosure
of π. Then

π ⊆ π ⊆ π∗∗ ⊆ π∗.

If π is a ∗-representation, then H(π) = H(π∗). But for a representation π it may
happen that the domain D(π∗) is not dense inH(π), that is,H(π∗) 6= H(π).

PROPOSITION 2.2. Let π and ρ be representations of a ∗-algebra A such that
ρ ⊆ π. Then:

(i) PH(ρ)π
∗(a) ⊆ ρ∗(a)PH(ρ), where PH(ρ) is the projection ofH(π) ontoH(ρ).

(ii) IfH(ρ) = H(π), then π∗ ⊆ ρ∗.
(iii) ρ∗∗ ⊆ π∗∗.
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Proof. (i) Let P denote the projection PH(ρ) and fix ψ ∈ D(π∗). Let ϕ ∈ D(ρ)
and a ∈ A. Using the assumption ρ ⊆ π we obtain

〈ρ(a+)ϕ, Pψ〉 = 〈Pρ(a+)ϕ, ψ〉 = 〈ρ(a+)ϕ, ψ〉 = 〈π(a+)ϕ, ψ〉
= 〈ϕ, π(a+)∗ψ〉 = 〈ϕ, π∗(a)ψ〉 = 〈Pϕ, π∗(a)ψ〉 = 〈ϕ, Pπ∗(a)ψ〉.

From this equality it follows that Pψ ∈ D(ρ(a+)∗) and ρ(a+)∗Pψ = Pπ∗(a)ψ.
Hence ψ ∈ ⋂

b∈A
D(ρ(b)∗) = D(ρ∗) and ρ∗(a)Pψ = Pπ∗(a)ψ. This proves that

Pπ∗(a) ⊆ ρ∗(a)P.
(ii) follows at once from (i), since P = I by the assumptionH(ρ) = H(π).
(iii) Let ξ ∈ D(ρ∗∗) and ψ ∈ D(π∗). Since H(ρ∗∗) ⊆ H(ρ∗) ⊆ H(ρ) by

definition, Pξ = ξ. By (i), Pψ ∈ D(ρ∗) and ρ∗(a)Pψ = Pπ∗(a)ψ. Therefore, we
derive

〈π∗(a)ψ, ξ〉 = 〈π∗(a)ψ, Pξ〉 = 〈Pπ∗(a)ψ, ξ〉
= 〈ρ∗(a)Pψ, ξ〉 = 〈ψ, Pρ∗(a)∗ξ〉 = 〈ψ, ρ∗∗(a+)ξ〉

for a ∈ A. Hence ξ ∈ D(π∗(a)∗) and π∗(a)∗ξ = ρ∗∗(a+)ξ for a ∈ A. This implies
that ξ ∈ D(π∗∗) and π∗∗(a+)ξ = π∗(a)∗ξ = ρ∗∗(a+)ξ. Thus we have proved
that ρ∗∗ ⊆ π∗∗.

DEFINITION 2.3. A ∗-representation π of a ∗-algebra A is called
(i) closed if π = π, or equivalently, if D(π) = D(π),

(ii) biclosed if π = π∗∗, or equivalently, if D(π) = D(π∗∗),
(iii) self-adjoint if π = π∗, or equivalently, if D(π) = D(π∗),
(iv) essentially self-adjoint if π∗ is self-adjoint, that is, if π∗ = π∗∗, or equiva-

lently, if D(π∗∗) = D(π∗).

REMARK 2.4. It should be emphasized that the preceding definition of es-
sential self-adjointness is different form the definition given in [16]. In Defini-
tion 8.1.10 of [16], a ∗-representation was called essentially self-adjoint if π is
self-adjoint, that is, if π = π∗.

Let π be a ∗-representation. Then the ∗-representations π and π∗∗ are closed,
π∗∗ is biclosed and (π)∗ = π∗. It may happen that π 6= π∗∗, so that π is closed,
but not biclosed. The locally convex topology on D(π) defined by the family of
seminorms {‖ · ‖a := ‖π(a) · ‖; a ∈ A} is called the graph topology and denoted
by tπ(A). Then the ∗-representation π is closed if and only if the locally convex
space D(π)[tπ(A)] is complete.

PROPOSITION 2.5. If π1 is a self-adjoint ∗-subrepresentation of a ∗-representation
π of A, then there exists a ∗-representation π2 of A on the Hilbert spaceH(π)	H(π1)
such that π = π1 ⊕ π2.

For the proof see Corollary 8.3.3 of [16].
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For a ∗-representation of A we define two commutants:

π(A)′s = {T ∈ B(H(π)) : Tϕ ∈ D(π),

Tπ(a)ϕ = π(a)Tϕ for a ∈ A, ϕ ∈ D(π)},

π(A)′ss = {T ∈ B(H(π) : Tπ(a) ⊆ π(a)T, T∗π(a) ⊆ π(a)T∗}.

The symmetrized commutant π(A)′ss is always a von Neumann algebra. If π is
closed, then

π(A)′ss = π(A)′s ∩ (π(A)′s)
∗.(2.5)

If π1 and π2 are representations of A, the interwining space I(π1, π2) consists
of all bounded linear operators T ofH(π1) intoH(π2) satisfying

Tϕ ∈ D(π2) and Tπ1(a)ϕ = π2(a)Tϕ for a ∈ A, ϕ ∈ D(π1).(2.6)

The ∗-representation π f in the following proposition is called the GNS rep-
resentation associated with the positive linear functional f .

PROPOSITION 2.6. Suppose that f ∈ P(A). Then there exists a ∗-representation
π f with algebraically cyclic vector ϕ f , that is, D(π f ) = π f (A)ϕ f , such that

f (a) = 〈π f (a)ϕ f , ϕ f 〉, a ∈ A.

If π is another ∗-representation of A with algebraically cyclic vector ϕ such that f (a) =
〈π(a)ϕ, ϕ〉 for all a ∈ A, then there exists a unitary operator U of H(π) onto H(π f )
such that UD(π) = D(π f ) and π f (a) = U∗π(a)U for a ∈ A.

For the proof see Theorem 8.6.4. of [16].
We study some of the preceding notions by a simple example.

EXAMPLE 2.7 (One-dimensional Hamburger moment problem). Let A by
the polynomial ∗-algebra C[x] with involution determined by x+ := x. We de-
note by M(R) the set of positive Borel measures µ such that p(x) ∈ L1(R, µ) for
all p ∈ C[x]. The number sn =

∫
xndµ(x) is the n-th moment and the sequence

s(µ) = (sn)n∈N0 is called the moment sequence of a measure µ ∈ M(R). The
moment sequence s(µ), or likewise the measure µ, is called determinate, if the mo-
ment sequence s(µ) determines the measure µ uniquely, that is, if s(µ) = s(ν) for
some ν ∈ M(R) implies that ν = µ.

For µ ∈ M(R) we define a ∗-representation πµ of A = C[x] by πµ(p)q =

p · q for p ∈ A and q ∈ D(πµ) := C[x] on the Hilbert space H(πµ) := L2(R, µ).
Put fµ(p) =

∫
p(x)dµ(x) for p ∈ C[x]. Obviously, the vector 1 ∈ D(πµ) := C[x]

is algebraically cyclic for πµ. Therefore, since fµ(p) = 〈πµ(p)1, 1〉 for p ∈ C[x],
πµ is (unitarily equivalent to) the GNS representation π fµ

of the positive linear
functional fµ on A = C[x].

STATEMENT 2.8. The ∗-representation πµ is essentially self-adjoint if and only if
the moment sequence s(µ) is determinate.
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Proof. By a well-known result on the Hamburger moment problem (see e.g.
Theorem 16.11 of [17]), the moment sequence s(µ) is determinate if and only if
the operator πµ(x) is essentially self-adjoint. By Proposition 8.1(v) of [16], the
latter holds if and only if the ∗-representation (πµ)∗ is self-adjoint, that is, if πµ is
essentially self-adjoint.

By Proposition 8.1(vii) of [16], the closure πµ of the ∗-representation πµ is
self-adjoint if and only if all powers of the operator πµ(x) are essentially self-
adjoint. This is a rather strong condition. It is fulfilled (for instance) if 1 is an
analytic vector for the symmetric operator πµ(x), that is, if there exists a constant
M > 0 such that

‖πµ(x)n1‖ = s1/2
2n 6 Mnn! for n ∈ N.

From the theory of moment problems it is well-known that there are examples of
measures µ ∈ M(R) for which πµ(x) is essentially self-adjoint, but πµ(x2) is not.
In this case πµ is essentially self-adjoint (which means that (πµ)∗ is self-adjoint),
but the closure πµ of πµ is not self-adjoint.

3. MAIN RESULTS ON TRANSITION PROBABILITIES

Let RepA denote the family of all ∗-representations of A. Given π ∈ RepA
and f ∈ P(A), let S(π, f ) be the set of all representing vectors for the functional f
inD(π), that is, S(π, f ) is the set of vectors ϕ ∈ D(π) such that f (a) = 〈π(a)ϕ, ϕ〉
for a ∈ A. Note that S(π, f ) may be empty, but by Proposition 2.6 for each f ∈
P(A) there exists a ∗-representation π of A for which S(π, f ) is not empty. If f is
a state, that is, if f (1) = 1, then all vectors ϕ ∈ S(π, f ) are unit vectors.

DEFINITION 3.1. For f , g ∈ P(A) the transition probability PA( f , g) of f and
g is defined by

PA( f , g) = sup
π∈RepA

sup
ϕ∈S(π, f ),ψ∈S(π,g)

|〈ϕ, ψ〉|2.(3.1)

If A is a unital ∗-subalgebra of B and f , g ∈ P(B), it is obvious that

PB( f , g) 6 PA( f dA, gdA),(3.2)

because the restriction of any ∗-representation of B is a ∗-representation of A.
Let G( f , g) denote the set of all linear functionals on A satisfying

|F(b+a)|2 6 f (a+a)g(b+b) for a, b ∈ A.(3.3)

Any vector ϕ ∈ S(π, f ) is called an amplitude of f in the representation π and any
linear functional of G( f , g) is called a transition form from f to g. If ϕ ∈ S(π, f )
and ψ ∈ S(π, g), then the functional Fϕ,ψ defined by

Fϕ,ψ(a) := 〈π(a)ϕ, ψ〉, a ∈ A,(3.4)
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is a transition form from f to g. Indeed, for a, b ∈ A we have

|Fϕ,ψ(b+a)|2 = |〈π(b+a)ϕ, ψ〉|2 = |〈π(a)ϕ, π(b)ψ〉|2

6 ‖π(a)ϕ‖2‖π(b)ψ‖2 = f (a+a)g(b+b)

which proves that Fϕ,ψ ∈ G( f , g). By Theorem 3.2 below, each functional F ∈
G( f , g) arises in this manner. The number |Fϕ,ψ(1)|2 = |〈ϕ, ψ〉|2 is called the
transition probability of the amplitudes ϕ and ψ and by definition the transition
probability PA( f , g) is the supremum of all such transition amplitudes.

The following description of the transition probability was proved by
P.M. Alberti for C∗-algebras [1] and by A. Uhlmann for general ∗-algebras [19].

THEOREM 3.2. Suppose that f , g ∈ P(A). Then

PA( f , g) = sup
F∈G( f ,g)

|F(1)|2.(3.5)

There exist a ∗-representation π of A and vectors ϕ ∈ S(π, f ) and ψ ∈ S(π, g) such
that

PA( f , g) = |〈ϕ, ψ〉|2.(3.6)

Next we express the transition forms of G( f , g) and hence the transition
probability in terms of intertwiners of the corresponding GNS representations.
This provides a powerful tool for computing transition probabilities. Recall that
π f denotes the GNS representation of A associated with f ∈ P(A) and ϕ f is the
corresponding algebraically cyclic vector.

PROPOSITION 3.3. Suppose that f , g ∈ P(A). Then there a one-to-one corre-
spondence between the sets G( f , g) and I(π f , (πg)∗) given by

F(b+a) = 〈Tπ f (a)ϕ f , πg(b)ϕg〉 for a, b ∈ A,(3.7)

where F ∈ G( f , g) and T ∈ I(π f , (πg)∗). In particular, F(1) = 〈Tϕ f , ϕg〉.

Proof. Let F ∈ G( f , g). Then

|F(b+a)|2 6 f (a∗a)g(b∗b) = ‖π f (a)ϕ f ‖2‖πg(b)ϕg‖2 for a, b ∈ A.

Hence there exists a bounded linear operator T of H(πg) into H(π f ) such that
‖T‖ 6 1 and (3.7) holds. Let a, b, c ∈ A. Using (3.7) we obtain

〈Tπ f (a)ϕ f , πg(c+)πg(b)ϕg〉 = F((c+b)+a) = F(b+(ca))

= 〈Tπ f (c)π f (a)ϕ f , πg(b)ϕg〉.

Hence Tπ f (b)ϕ f ∈ D(πg(c)∗) and πg(c)∗Tπ f (a)ϕ f = Tπ f (c+)π f (a)ϕ f . Be-
cause c ∈ A was arbitrary, Tπ f (a)ϕ f ∈ D((πg)∗). Then

(πg)
∗(c+)Tπ f (a)ϕ f = Tπ f (c+)π f (a)ϕ f for a ∈ A,

which means that T ∈ I(π f , (πg)∗).
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Conversely, let T ∈ I(π f , (πg)∗) and ‖T‖ 6 1. Define F(a) = 〈Tπ f (a)ϕ f , ϕg〉
for a ∈ A. It is straightforward to check that (3.7) holds and hence (3.3), that is,
F ∈ G( f , g).

Clearly, by (3.7), F = 0 is equivalent to T = 0. Thus we have a one-to-one
correspondence between functionals F and operators T.

Combining Theorem 3.2 and Proposition 3.3 and using the formula F(1) =
〈Tϕ f , ϕg〉 we obtain

COROLLARY 3.4. For any f , g ∈ P(A) we have

PA( f , g) = sup
T∈I(π f ,(πg)∗),‖T‖61

|〈Tϕ f , ϕg〉|2.(3.8)

If the GNS representations of f and g are essentially self-adjoint, a number
of stronger results can be obtained.

THEOREM 3.5. Suppose that f and g are positive linear functionals on A such
that their GNS representations π f and πg are essentially self-adjoint. Let π be a biclosed
∗-representation of A such that the sets S(π, f ) and S(π, g) are not empty. Fix vectors
ϕ ∈ S(π, f ) and ψ ∈ S(π, g). Then

P( f , g) = sup
T∈π(A)′ss ,‖T‖61

|〈Tϕ, ψ〉|2.(3.9)

Proof. Let T ∈ π(A)′ss and ‖T‖ 6 1. Similarly, as in the proof of Proposi-
tion 3.3, we define F(a) = 〈Tπ(a)ϕ, ψ〉, a ∈ A. Since π(A)′ss ⊆ π(A)′s, we obtain

|F(b+a)|2 = |〈Tπ(b+a)ϕ, ψ〉|2 = |〈π(b+)Tπ(a)ϕ, ψ〉|2

= |〈Tπ(a)ϕ, π(b)ψ〉|2 6 ‖π(a)ϕ‖2‖π(b)ψ‖2 = f (a+a)g(b+b)

for a, b ∈ A, that is, F ∈ G( f , g). Clearly, we have 〈Tϕ, ψ〉 = F(1). Let ρ f and
ρg denote the restrictions πdπ(A)ϕ and πdπ(A)ψ, respectively. Since ρ f ⊆ π

and ρg ⊆ π and π is biclosed, it follows from Proposition 2.2(iii) that (ρ f )
∗∗ ⊆

π∗∗ = π and (ρg)∗∗ ⊆ π∗∗ = π. Since ϕ ∈ S(π, f ) and ψ ∈ S(π, g), the repre-
sentations ρ f and ρg are unitarily equivalent to the GNS representations π f and
πg, respectively. For notational simplicity we identify ρ f with π f and ρg with πg.
Since ρ f and ρg are essentially self-adjoint by assumption, (ρ f )

∗∗ and (ρg)∗∗ are
self-adjoint. Therefore, by Proposition 2.5, there are subrepresentations ρ1 and ρ2
of π such that π = (ρ f )

∗∗ ⊕ ρ1 and π = (ρg)∗∗ ⊕ ρ2.
Conversely, suppose that F ∈ G( f , g). By Proposition 3.3, there is an inter-

twiner T0 ∈ I(ρ f , (ρg)∗) ∼= I(π f , (πg)∗)) such that ‖T0‖ 6 1 and (3.7) holds with
T replaced by T0. Define T : H(ρ f ) ⊕H(ρ1) → H(ρg) ⊕H(ρ2) by T(ξ f , ξ1) =
(T0ξ f , 0). Clearly, T∗ acts by T∗(ηg, η2) = (T∗0 ηg, 0). Since (ρg)∗∗ = (ρg)∗ and
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(ρ f )
∗∗ = (ρ f )

∗ by assumption and T0 ∈ I(ρ f , (ρg)∗), it follows from Proposi-
tion 8.2.3(iii) and (iv), in [16] that

T0 ∈ I((ρ f )
∗∗, (ρg)

∗) = I((ρ f )
∗∗, (ρg)

∗∗),

T∗0 ∈ I((ρg)
∗∗, (ρ f )

∗) = I((ρg)
∗∗, (ρ f )

∗∗).

From these relations we easily derive that the operators T and T∗ are in π(A)′s, so
that T ∈ π(A)′ss by (2.5). Then we have ‖T‖ = ‖T0‖ 6 1 and F(1) = 〈T0 ϕ, ψ〉 =
〈Tϕ, ψ〉. Together with the first paragraph of this proof we have shown that the
supremum over the operators T ∈ π(A)′ss, ‖T‖ 6 1, is equal to the supremum
over the functionals F ∈ G( f , g). Since the latter is equal to PA( f , g) by Theo-
rem 3.2, this proves (3.9).

REMARK 3.6. A slight modification of the preceding proof shows the fol-
lowing: If we assume that the closures π f and πg of the GNS representations π f
and πg are self-adjoint, then the assertion of Theorem 3.5 remains valid if it is
only assumed that π is closed rather than biclosed. A similar remark applies also
for the subsequent applications of Theorem 3.5 given below.

Theorem 3.5 says that (in the case of essentially self-adjoint GNS representa-
tions π f and πg) the transition probability P( f , g) is given by formula (3.9) in any
fixed biclosed ∗-representation π for which the sets S(π, f ) and S(π, g) are not
empty and for arbitrary fixed vectors ϕ ∈ S(π, f ) and ψ ∈ S(π, g). In particular,
we may take π := (π f )

∗∗ ⊕ (πg)∗∗, ϕ := ϕ f , and ψ := ϕg.

THEOREM 3.7. Suppose that f , g ∈ P(A) and the GNS representations π f and
πg are essentially self-adjoint. Suppose that π is a biclosed ∗-representation of A and
there exist vectors ϕ ∈ S(π, f ) and ψ ∈ S(π, g). Let Fϕ and Fψ denote the vector
functionals on the von Neumann algebraM := (π(A)′ss)

′ given by Fϕ(x) = 〈xϕ, ϕ〉
and Fψ(x) = 〈xψ, ψ〉, x ∈ M. Then we have

PA( f , g) = PM(Fϕ, Fψ).(3.10)

Further, there exist vectors ϕ′ ∈ S(π, f ) and ψ′ ∈ S(π, g) such that 〈xϕ′, ϕ′〉 =
〈xϕ, ϕ〉 and 〈xψ′, ψ′〉 = 〈xψ, ψ〉 for x ∈ M and

PA( f , g) = |〈ϕ′, ψ′〉|2.(3.11)

Proof. Since π(A)′ss is a von Neumann algebra, we have T ∈ π(A)′ss if
and only if T ∈ (π(A)′ss)

′′ = M′ . Therefore, applying formula (3.9) to the ∗-
representation π of A and to the identity representation of the von Neumann
algebra M, it follows that the supremum of |〈Tϕ, ψ〉|2 over all operators T ∈
π(A)′ss = M′, ‖T‖ 6 1, is equal to PA( f , g) and also to PM(Fϕ, Fψ). This yields
the equality (3.10).

Now we prove the existence of vectors ϕ′ and ψ′ having the desired prop-
erties. In order to do so we go into the details of the proof of Appendix 7 in [2].
Besides we use some facts from von Neumann algebra theory [12]. We define a
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normal linear functional on the von Neumann algebraM′ by h(·) = 〈·ϕ, ψ〉. Let
h = Ru|h| be the polar decomposition of h, where u is a partial isometry fromM′.
Then we have |h| = Ru∗h and hence ‖h‖ = ‖|h|‖ = |h|(1) = h(u∗) = 〈u∗ϕ, ψ〉.
Therefore, we obtain

PM(Fϕ, Fψ) = sup
T∈M′ ,‖T‖61

|〈Tϕ, ψ〉|2 = ‖h‖2 = 〈u∗ϕ, ψ〉2,(3.12)

where the first equality follows formula (3.9) applied to the von Neumann alge-
bra M. In the proof of Appendix 7 in [2] it was shown that there exist partial
isometries v, w ∈ M′ satisfying

〈u∗ϕ, ψ〉 = 〈v∗wϕ, ψ〉,(3.13)

w∗w > p(ϕ), v∗v > p(ψ),(3.14)

where p(ϕ) and p(ψ) are the projections ofM′ onto the closures ofMϕ andMψ,
respectively. Set ϕ′ := wϕ and ψ′ := vψ. Comparing (3.13) with (3.12) and (3.10)
we obtain (3.11).

From (3.14) it follows that 〈xϕ′, ϕ′〉 = 〈xϕ, ϕ〉 and 〈xψ′, ψ′〉 = 〈xψ, ψ〉 for
x ∈ M and that w∗wϕ = ϕ and v∗vψ = ψ. Since w, w∗ ∈ M′ = π(a)′ss and π
is closed, we have w, w∗ ∈ π(a)′s by (2.5). Therefore, w and w∗ leave the domain
D(π) invariant, so that ϕ′ = wϕ ∈ D(π) and ψ′ = vψ ∈ D(π). For a ∈ A we
derive

〈π(a)ϕ′, ϕ′〉 = 〈π(a)xϕ, wϕ〉 = 〈w∗π(a)wϕ, ϕ〉
= 〈π(a)w∗wϕ, ϕ〉 = 〈π(a)ϕ, ϕ〉 = f (a).

That is, ϕ′ ∈ S(π, f ). Similarly, ψ′ ∈ S(π, g).

Theorem 3.10 allows us to reduce the computation of the transition proba-
bility of the functionals f and g on A to that of the vector functionals Fϕ and Fψ

of the von Neumann algebraM = (π(A)′ss)
′. In the next section we will apply

this result in two important situations.
The following theorem generalizes a classical result of A. Uhlmann [18] to

the unbounded case.

THEOREM 3.8. Let f , g ∈ P(A) be such that the GNS representations π f and
πg are essentially self-adjoint. Suppose that there exist a positive linear functional h on
A and elements b, c ∈ A such that f (a) = h(b+ab) and g(a) = h(c+ac) for a ∈ A.
Assume that c+b ∈ ∑ A2. Then

PA( f , g) = h(c+b)2.

Proof. Recall that πh is the GNS representation of h with algebraically cyclic
vector ϕh. By the assumptions f (·) = h(b+ · b) and g(·) = h(c+ · c) we have
πh(b)ϕh ∈ S(πh, f ) and πh(c)ϕh ∈ S(πh, g). Therefore,

h(c+b)2 = 〈πh(b)ϕh, πh(c)ϕ〉2 6 PA( f , g).
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To prove the converse inequality we want to apply Theorem 3.5 to the biclosed
representation π := (πh)

∗∗. Suppose that T ∈ π(A)′ss and ‖T‖ 6 1. Set R :=
π(c+b). Since c+b ∈ ∑ A2 by assumption, R is a positive, hence symmetric, oper-
ator. Since π := (πh)

∗∗ is closed, we have T ∈ π(A)′s. Using these facts and the
Cauchy–Schwarz inequality we derive

|〈Tπh(b)ϕh, πh(c)ϕh〉|2 = |〈Tπ(b)ϕh, π(c)ϕh〉|2 = |〈π(b)Tϕh, π(c)ϕh〉|2

= |〈RTϕh, ϕh〉|2 6 〈RTϕh, Tϕh〉〈Rϕh, ϕh〉
= 〈RTϕh, Tϕh〉h(c+b).(3.15)

Since T ∈ π(A)′ss, we have TR ⊆ RT. There exists a positive self-adjoint exten-
sion R̃ of R on H(π) such that TR̃ ⊆ R̃T ([17], Exercise 14.14). The latter implies
that TR̃1/2 ⊆ R̃1/2T and hence

〈RTϕh, Tϕh〉 = 〈R̃Tϕh, Tϕh〉 = 〈R̃1/2Tϕh, R̃1/2Tϕh〉

= 〈TR̃1/2 ϕh, TR̃1/2 ϕh〉 6 〈R̃1/2 ϕh, R̃1/2 ϕh〉

= 〈R̃ϕh, ϕh〉 = 〈Rϕh, ϕh〉 = 〈πh(c+b)ϕh, ϕh〉 = h(c+b).(3.16)

Inserting (3.16) into (3.15) we get

|〈Tπh(b)ϕh, πh(c)ϕh〉|2 6 h(c+b).

Hence PA( f , g) 6 h(c+b) by Theorem 3.5.

REMARK 3.9. (i) The assumption c+b ∈ ∑ A2 was only needed to ensure
that the operator R = π(c+b) ≡ (πh)

∗∗(c+b) is positive. Clearly, this is satisfied if
F(c+b) > 0 for all positive linear functionals F on A.

(ii) If the closures of the GNS representations π f and πg are self-adjoint, we can
set π := πh in the preceding proof and it suffices to assume that h(a+c+ba) > 0
for all a ∈ A instead of c+b ∈ ∑ A2.

4. TWO APPLICATIONS

To formulate our first application we begin with some preliminaries.
Let ρ be a closed ∗-representation of A. We denote by B1(ρ(A))+ the set of

positive trace class operators onH(ρ) such that tH(ρ) ⊆ D(ρ) and the closure of
ρ(a)tρ(b) is trace class for all a, b ∈ A.

Now let t ∈ B1(ρ(A))+. We define a positive linear functional ft by

ft(a) := Tr ρ(a)t, a ∈ A,

where Tr denotes the trace on the Hilbert space H(ρ). Note that ft(a) > 0 if
ρ(a) > 0 (that is, 〈ρ(a)ϕ, ϕ〉 > 0 for all ϕ ∈ D(ρ)).

In unbounded representation theory a large class of positive linear function-
als is of the form ft. We illustrate this by restating the following theorem proved
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in [15]. Recall that a Frechet–Montel space is a complete metrizable locally convex
space such that each bounded sequence has a convergent subsequence.

THEOREM 4.1. Let f be a linear functional on A and let ρ be a closed ∗-repre-
sentation of A. Suppose that the locally convex space D(ρ)[tρ(A)] is a Frechet–Montel
space and f (a) > 0 whenever ρ(a) > 0 for a ∈ A. Then there exists an operator
t ∈ B1(ρ(A))+ such that f = ft, that is, f (a) = Tr ρ(a)t for a ∈ A.

Further, let M be a type I factor acting on the Hilbert space H(ρ) and let
trM denote its canonical trace. In particular t is of trace class, so Ft(x) = Tr xt,
x ∈ M, defines a positive normal linear functional Ft onM. Hence there exists a
unique positive element t̂ ∈ M such that trM(t̂) < ∞ and

Ft(x) ≡ Tr xt = trMxt̂ for x ∈ M.(4.1)

The element t̂ can be obtained as follows. SinceM is a type I factor, there exist
Hilbert spacesH0 andH1 such that, up to unitary equivalence,H(π) = H0⊗H1
andM = B(H0)⊗ C · IH1 . The canonical trace ofM is then given by trM(y⊗
λ · IH1) := Tr 1λy, where Tr 1 denotes the trace on the Hilbert space H1. Now
F̃t(y) := Ft(y⊗ IH1), y ∈ B(H0), defines a positive normal linear functional F̃t on
B(H0). Hence there exists a unique positive trace class operator t̃ on the Hilbert
space H0 such F̃t(y) = Tr yt̃ for y ∈ B(H0). Set t̂ := t̃ ⊗ IH1 . Then we have
trM t̂ = Tr 1t < ∞ and (4.1) holds by construction.

Note that trM = Tr and t = t̂ ifM = B(H(ρ)).

THEOREM 4.2. Let ρ be a closed ∗-representation of A such that the von Neumann
algebraM := (ρ(A)′ss)

′ is a type I factor. For s, t ∈ B1(ρ(A))+, let fs, ft denote the
positive linear functionals on A defined by

fs(a) = Tr ρ(a)s, ft(a) = Tr ρ(a)t for a ∈ A.

Suppose that the GNS representations π fs and π ft are essentially self-adjoint. Then

PA( fs, ft) = (trM|t̂1/2 ŝ1/2|)2 = (trM(ŝ1/2 t̂ŝ1/2)1/2)2.(4.2)

Proof. Let ρ∞ be the orthogonal sum
∞⊕

n=0
ρ on H∞ =

∞⊕
n=0
H(ρ). Since ρ is

biclosed, so is the ∗-representation ρ∞ of A. We want to apply Theorem 3.7. First
we will describe the GNS representations π fs and π ft as ∗-subrepresentations
of ρ∞.

The result is well-known ifH(ρ) is finite dimensional [18], so we can assume
that H(ρ) is infinite dimensional. Since s ∈ B1(ρ(A))+, there are a sequence
(λn)n∈N of nonnegative numbers and an orthonormal sequence (ϕn)n∈N ofH(ρ)
such that ϕn ∈ D(ρ) for n ∈ N,

sϕ = ∑
n
〈ϕ, ϕn〉λn ϕn for ϕ ∈ H(ρ),
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and (ρ(a)λ1/2
n ϕn)n∈N ∈ H∞ for all a ∈ A. Further, for a ∈ A we have

fs(a) =
∞

∑
n=1
〈ρ(a)ϕn, λn ϕn〉.(4.3)

All these facts are contained in Propositions 5.1.9 and 5.1.12 in [16]. Hence

ρΦ(a)(ρ(b)λ1/2
n ϕn) := (ρ(ab)λ1/2

n ϕn), a, b ∈ A,

defines a ∗-representation ρΦ of A on the domain

D(ρΦ) := {(ρ(a)λ1/2
n ϕn)n∈N; a ∈ A}

with algebraically cyclic vector Φ := (λ1/2
n ϕn)n∈N. From (4.3) we derive

fs(a) =
∞

∑
n=1
〈ρ(a)λ1/2

n ϕn, λ1/2
n ϕn〉 = 〈ρΦ(a)Φ, Φ〉 =: fΦ(a), a ∈ A,

that is, fs is equal to the vector functional fΦ in the representaton ρΦ. Therefore,
by the uniqueness of the GNS representation, π fs is unitarily equivalent to ρΦ.
Likewise, the GNS representation π ft is unitarily equivalent to the corresponding
∗-representation ρΨ, where tϕ = ∑

n
〈ϕ, ψn〉µnψn is a corresponding representation

of the operator t and Ψ := (µ1/2
n ψn)n∈N. Clearly, since ρΦ ⊆ ρ∞ and ρΨ ⊆ ρ∞, we

have Φ ∈ S(ρ∞, fs) and Ψ ∈ S(ρ∞, ft).
Let M∞ denote the von Neumann algebra (ρ∞(A)′ss)

′. Then, by Theo-
rem 3.7, we have

PA( fs, ft) ≡ PA( fΦ, fΨ) = PM∞(FΦ, FΨ).(4.4)

Let x∈B(H∞). We write x as a matrix (xjk)j,k∈N with entries xjk∈B(H(ρ)).
Clearly, x belongs to ρ∞(A)′ss if and only if each entry xjk is in ρ(A)′ss. Further, it
is easily verified that x is in (ρ∞(A)′ss)

′ if and only if there is a (uniquely deter-
mined) operator x0 ∈ (ρ(A)′ss)

′ such that xjk = δjkx0 for all j, k ∈ N. The map
π(x0) := x defines a ∗-isomorphism of von Neumann algebrasM := (ρ(A)′ss)

′

andM∞ = (ρ∞(A)′ss)
′, that is, π is a ∗-representation ofM.

As above, we let Fs and Ft denote the normal functionals on M defined
by Fs(x) := Tr xs and Ft(x) := Tr xt, x ∈ M. Repeating the preceding reasoning
with ρ and A replaced by π andM, respectively, we obtain Fs(·) = 〈π0(·)Φ, Φ〉 ≡
FΦ(·) and Ft = FΨ. Hence PM(Fs, Ft) = PM∞(FΦ, FΨ), so that

PA( fs, ft) = PM(Fs, Ft)(4.5)

by (4.4). It is proved in Corollary 1 of [3] (see also [18]) that

PM(Fs, Ft) = (trM|t̂1/2 ŝ1/2|)2.

Combined with (4.5) this yields (4.8) and completes the proof.
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Let us keep the assumptions and the notation of Theorem 4.2. In general,
PA( fs, ft) is different from (Tr (s1/2ts1/2)1/2)2 as simple examples show. How-
ever, if in addition ρ is irreducible (that is, ρ(A)′ss = C · I), then s = ŝ and t = t̂ as
noted above and therefore by (4.2),

PA( fs, ft) = (Tr (s1/2ts1/2)1/2)2.(4.6)

We now apply the preceding theorem to an interesting example.

EXAMPLE 4.3 (Schrödinger representation of the Weyl algebra). Let A be
the Weyl algebra, that is, A is the unital ∗-algebra generated by two hermitian
generators p and q satisfying

pq− qp = −i1,

and let ρ be the Schrödinger representation of A, that is,

(ρ(q)ϕ)(x) = xϕ(x), (ρ(p)ϕ)(x) = −iϕ′(x), ϕ ∈ D(ρ) := S(R),(4.7)

on L2(R). Since ρ is irreducible, ρ∞(A)′ss = C · I. Hence M = B(H(ρ)) and
trM = Tr . Therefore, if s, t ∈ B1(π(A))+ and if the GNS representations π fs and
π ft are essentially self-adjoint, it follows from Theorem 4.2 and formula (4.6) that

PA( fs, ft) = (Tr |t1/2s1/2|)2 = (Tr (s1/2ts1/2)1/2)2.(4.8)

Let us specialize this to the rank one case, that is, let s = ϕ⊗ ϕ and t = ψ⊗ψ
with ϕ, ψ ∈ D(ρ), so that fs(a) = 〈ρ(a)ϕ, ϕ〉 and ft(a) = 〈ρ(a)ψ, ψ〉 for a ∈ A.
Then formula (4.8) yields

PA( fs, ft) = |〈ϕ, ψ〉|2.(4.9)

Recall that (4.9) holds if the GNS representations π fs and π ft are essentially self-
adjoint. We shall see in Section 5 below that (4.9) is no longer true if this assump-
tion is omitted.

Now we turn to the second main application.

THEOREM 4.4. Let X be a locally compact topological Hausdorff space. Suppose
that A is a ∗-subalgebra of C(X) which contains the constant function 1 and separates
the points of X. Let µ be a positive regular Borel measure on X such that A ⊆ L1(X, µ)
and let η, ξ ∈ L∞(X, µ) be nonnegative functions. Define positive linear functionals fη

and fξ on A by

fη(a) =
∫
X

a(x)η(x)dµ(x), fξ(a) =
∫
X

a(x)ξ(x)dµ(x), a ∈ A.(4.10)

Suppose that the GNS representations π fη
and π fξ

are essentially self-adjoint. Then

PA( fη , fξ) =
( ∫

X

η(x)1/2ξ(x)1/2dµ(x)
)2

.(4.11)
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Proof. We define a closed ∗-representation π of the ∗-algebra A on L2(X, µ)
by π(a)ϕ = a · ϕ for a ∈ A and ϕ in the domain

D(π) := {ϕ ∈ L2(X, µ) : a · ϕ ∈ L2(X, µ) for a ∈ A}.

First we prove that π(A)′ss = L∞(X, µ), where the functions of L∞(X, µ)
act as multiplication operators on L2(X, µ). Let A denote the ∗-subalgebra of
L∞(X, µ) generated by the functions (a ± i)−1, where a = a+ ∈ A. Obviously,
L∞(X, µ) ⊆ π(A)′ss. Conversely, let x ∈ π(A)′ss. It is straightforward to show
that for any a = a+ ∈ A the operator π(a) is self-adjoint and hence equal to
the (self-adjoint) multiplication operator by the function a. By definition x com-
mutes with π(a) , hence with (π(a)± iI)−1 = (a± i)−1, and therefore with the
whole algebra A. The ∗-algebra A separates the points of X, so does the ∗-algebra
A. Therefore, from the Stone–Weierstrass theorem ([10], Corollary 8.2), applied
to the one point compactification of X, it follows that A is norm dense in C0(X).
Hence x commutes with C0(X) and so with its closure L∞(X, µ) in the weak oper-
ator topology. Thus, x ∈ L∞(X, µ)′. Since L∞(X, µ)′ = L∞(X, µ), we have shown
that π(A)′ss = L∞(X, µ). Therefore,M := (π(A)′ss)

′ = L∞(X, µ).
Let Fη and Fξ denote the positive linear functionals onM defined by (4.10)

with A replaced byM. ForM = L∞(X, µ) it is well-known (see e.g. formula (14)

in [1]) that PM(Fη , Fξ)=
(∫

X
η(x)1/2ξ(x)1/2dµ(x)

)2
. Since PA( fη , fξ)=PM(Fη , Fξ)

by Theorem 3.7, we obtain (4.11).

In the following two examples we reconsider the one dimensional Ham-
burger moment problem (see Example 2.7) and we specialize the preceding theo-
rem to the case where X = R and A = C[x].

EXAMPLE 4.5 (Determinate Hamburger moment problems). Let µη and µξ

be the positive Borel measures on R defined by dµη = ηdµ and dµξ = ξdµ. Since
C[x] ⊆ L1(R, µ) and η, ξ ∈ L∞(R, µ) by the assumptions of Theorem 4.4, µη and
µξ are in M(R). If both measures µη and µξ are determinate, then the GNS rep-
resentations π fµη

and π fµξ
are essentially self-adjoint (as shown in Example 2.7)

and hence formula (4.11) holds by Theorem 4.4.

EXAMPLE 4.6 (Indeterminate Hamburger moment problems). Suppose ν ∈
M(R) is an indeterminate measure such that ν(R) = 1.

Let Vν denote the set of all positive Borel measures µ ∈ M(R) which have
the same moments as ν, that is,

∫
xndν(x) =

∫
xndµ(x) for all n ∈ N0. Since ν

is indeterminate and Vν is convex and weakly compact, there exists a measure
µ ∈ Vν which is not an extreme point of Vν, that is, there are measures µ1, µ2 ∈
Vν, µj 6= µ for j = 1, 2, such that µ = 1

2 (µ1 + µ2). Since µj(M) 6 2µ(M) for
all measurable sets M and µ1 + µ2 = 2µ, there exists functions η, ξ ∈ L∞(R, ν)
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satisfying

η(x) + ξ(x) = 2, ‖ξ‖∞ 6 2, ‖η‖∞ 6 2, dµ1 = ηdµ, dµ2 = ξdµ.(4.12)

Define f (p) =
∫

p(x)dµ(x) for p ∈ C[x]. Since µ1, µ2, µ ∈ Vν, the function-
als fη and fξ defined by (4.10) are equal to f . Therefore, since f (1) = µ(R) =
ν(R) = 1, we have PA( fη , fξ) = PA( f , f ) = 1.

Put J :=
( ∫

X
η(x)1/2ξ(x)1/2dµ(x)

)2
. From (4.12) we obtain η(x)ξ(x) = η(x)

(2− η(x)) 6 1 and hence J 6 1, since µ(R) = 1. If J would be equal to 1, then
η(x)(2− η(x)) = 1 µ-a.e. on R which implies that η(x) = 1 µ-a.e. on R by (4.12).
But then µ1 = µ2 = µ which contradicts the choice of measures µ1 and µ2. Thus
we have proved that J 6= 1 = PA( fη , fξ), that is, formula (4.11) does not hold in
this case.

The classical moment problem leads to a number of open problems concern-
ing transition probabilities. We will state three of them.

Let M(Rd), d ∈ N, denote the set of positive Borel measures µ on Rd such
that all polynomials p ∈ C[x1, . . . , xd] are µ-integrable. For µ ∈ M(Rd) we define
a positive linear functional gµ on the ∗-algebra A := C[x1, . . . , xd] by

gµ(p) =
∫

pdµ, p ∈ C[x1, . . . , xd].

Then the main problem is the following:

Problem 1. Given µ, ν ∈ M(Rd), what is PA(gµ, gν) ?

This seems to be a difficult problem and it is hard to expect a sufficiently
complete answer. For d = 1 Example 4.5 contains some answer under the as-
sumption that both measures µη and µξ are determinate. This suggests the fol-
lowing questions:

Problem 2. What about the case when the measures µη and/or µξ in Example 4.5
are not determinate?

Problem 3. Is formula (4.11) still valid in the multi-dimensional case d > 1 if µη

and µξ are determinate ?

It can be shown that the answer to Problem 3 is affirmative if all multi-
plication operators πµ(xj), j = 1, . . . , d, are essentially self-adjoint. The latter
assumption is sufficient, but not neccessary for µ being determinate [14]. In the
multi-dimensional case determinacy turns out to be much more difficult than in
the one-dimensional case, see e.g. [14].
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5. VECTOR FUNCTIONALS OF THE SCHRÖDINGER REPRESENTATION

The crucial assumption for the results in preceding sections was the essen-
tial self-adjointness of GNS representations π f and πg. In this section we consider
the simplest situation where π f and πg are not essentially self-adjoint.

In this section A denotes the Weyl algebra (see Example 4.3) and π is the
Schrödinger representation of A given by (4.7). For η ∈ D(π) = S(R) let fη

denote the positive linear functional fη on A given by

fη(x) = 〈π(x)η, η〉, x ∈ A.

Consider the following condition on the function η:
(∗) There are finitely many mutually disjoint open intervals Jl(η) = (αl , βl), l =

1, . . . , r, such that η(t) 6= 0 for t ∈ J(η) :=
⋃
l

Jl(η) and η(n)(t) = 0 for t ∈ R/J(η)

and all n ∈ N0.
The main result of this section is the following theorem.

THEOREM 5.1. Suppose that ϕ and ψ are functions of C∞
0 (R) satisfying condition

(∗). Then

PA( fϕ, fψ) =
(

∑
k,l

∣∣∣ ∫
Jk(ϕ)∩Jl(ψ)

ϕ(x)ψ(x)dx
∣∣∣)2

.(5.1)

(If Jk(ϕ) ∩ Jl(ψ) is empty, the corresponding integral is set zero.)

Before we turn to the proof of the theorem let us discuss formula (5.1) in
two simple cases.

Case 1. If both sets J (ϕ) and J (ψ) consist of a single interval, then

PA( fϕ, fψ) =
∣∣∣ ∫
R

ϕ(x)ψ(x)dx
∣∣∣2 = |〈ϕ, ψ〉|2,

that is, in this case formula (4.9) holds.
Case 2. Let ϕ, ψ ∈ C∞

0 (R) be such that J (ϕ) = J (ψ), Jk(ϕ) = Jk(ψ) and
ϕ(x) = εkψ(x) on Jk(ϕ) for k = 1, . . . , r, where εk ∈ {1,−1}. Then formula (5.1)
yields PA( fϕ, fψ) = ‖ϕ‖4. It is easy to choose ϕ 6= 0 and the numbers εk such that
〈ϕ, ψ〉 = 0, so formula (4.9) does not hold in this case.

The proof of Theorem 5.1 requires a number of technical preparations. The
first aim is to desribe the closure π fη

of the GNS representation π fη
for a function

η ∈ C∞
0 (R) satisfying condition (∗).
Let ρη denote the restriction of π to the dense domain

D(ρη) =
{

ξ ∈
r⊕

l=1

C∞([αl , βl ]) : ξ(k)(αl) = ξ(k)(βl) = 0, k ∈ N0, l = 1, . . . , r
}

in the Hilbert space L2(J (η)). The following lemma says that ρη is unitarily
equivalent to π fη

.
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LEMMA 5.2. There is a unitary operator U of H(π fη
) onto L2(J (η)) given by

U(π fη
(a)η) = ρη(a)η, a ∈ A, such that ρη = Uπ fη

U∗.

Proof. From the properties of GNS representations it follows easily that the
unitary operator U defined by U(π fη

(a)η) = ρη(a)η, a ∈ A, provides unitary
equivalences τη = Uπ fη

U∗ and τη = Uπ fη
U∗, where τη denotes the restriction of

π to D(ρη) = π(A)η. Clearly, τη ⊆ ρη and hence τη ⊆ ρη , since ρη is obviously
closed. To prove the statement it therefore suffices to show that ρη is the closure
of τη , that is, π(A)η is dense in D(ρη) in the graph topology of ρη(A). For this
the auxiliary Lemmas 5.3 and 5.4 proved below are essentially used.

Each element a ∈ A is of a finite sum of terms f (q)pn, where n ∈ N0 and
f ∈ C[q]. Since η ∈ C∞

0 (R), the set J (η) and hence the operators π0( f (q)) are
bounded. Therefore, the graph topology tρη(A) is generated by the seminorms
‖ρη(p)n · ‖, n ∈ N0, on D(ρη). Let ψ ∈ D(ρη).

First assume that ψ vanishes in some neighbourhoods of the end points
αl , βl . Then, by Lemma 5.4, for any m ∈ N there is sequence ( fn)n∈N of poly-
nomials such that

lim
n

ρη((ip)k)(ρη( f (q))η − ψ) = lim
n
(( fnη)(k) − ψ(k)) = 0

in L2(J (η)) for k = 0, . . . , m. This shows that ψ is in the closure of ρη(A)η with
respect to the graph topology of ρη(A).

The case of a general function ψ is reduced to the preceding case as follows.
Suppose that ε > 0 and 2ε < min

l
|βl − αl |. We define

ψε(x) = ψ(x− ε + 2ε(x− αl − ε)(βl − αl − 2ε)−1) for x ∈ (αl , βl)

and l = 1, . . . , r and ψε(x) = 0 otherwise. Then ψε vanishes in some neighbour-
hoods of the end points αl , βl , so ψε is in the closure of ρη(A)η as shown in the
preceding paragraph. Using the dominated Lebesgue convergence theorem it
follows that

lim
ε→+0

ρη((ip)k)(ψε − ψ) = lim
ε→+0

(ψ
(k)
ε − ψ(k)) = 0

in L2(J (η)) for k ∈ N0. Therefore, since ψε is in the closure of ρη(A)η, so is ψ.

LEMMA 5.3. Suppose that g ∈ C(k)([α, β]), where α, β ∈ R and k ∈ N. Then
there exists a sequence ( fn)n∈N of polynomials such that f (j)

n (x) =⇒ g(j)(x) uniformly
on [α, β] for j = 0, . . . , k as n→ ∞.

Proof. By the Weierstrass theorem there is a sequence (hn)n∈N of polyno-
mials such that hn(x) =⇒ g(k)(x) uniformly on [α, β]. Fix γ ∈ [α, β] and set
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hn,k := hn. Then

hn,k−1(x) := g(k)(γ) +
x∫

γ

hn,k(s)ds =⇒ g(k−1)(x) = g(k)(γ) +
x∫

γ

g(k)(s)ds.

Clearly, (hn,k−1)n∈N is a sequence of polynomials and we have h′n,k−1(x) = hn,k(x)
on [α, β]. Proceeding by induction we obtain sequences (hn,k−j)n∈N, j = 0, . . . , k,
of polynomials such that hn,k−j(x) =⇒ g(k−j)(x) and h′n,k−j(x) = hn,k+1−j(x) on
[α, β]. Setting fn := hn,0 the sequence ( fn)n∈N has the desired properties.

LEMMA 5.4. Suppose that η ∈ C∞
0 (R) satisfies condition (∗). Let ψ ∈

r⊕
l=1

C(m)
0 ((αl , βl)), where m ∈ N. Then there exists a sequence ( fn)n∈N of polynomi-

als such that lim
n→∞

( fnη)(k) = ψ(k) in L2(J (η)) for k = 0, . . . , m.

Proof. By the assumption ψ vanishes in some neighbourhoods of the end
points αl and βl . Set ψ(x) = 0 on R/J (η). Then, ψη−1 becomes a function of
C(m)([α, β]), where α := min

l
αl and β := max

l
βl . Therefore, by Lemma 5.3, there

exists a sequence ( fn)n∈N of polynomials such that f (j)
n (x) =⇒ (ψη−1)(j)(x) for

j = 0, . . . , m uniformly on [α, β]. Then

( fnη)(k) =
k

∑
j=0

(
k
j

)
f (j)
n η(k−j) =⇒

k

∑
j=0

(
k
j

)
(ψη−1)(j)η(k−j) = ψ(k)

as n→ ∞ uniformly on [α, β] and hence in L2(J (η)).

Now we are able to give the

Proof of Theorem 5.1. Let us abbreviate πϕ = π fϕ
and πψ = π fψ

. By Lem-
ma 5.2 the closure πψ = π fψ

of the GNS representation π fψ
is unitarily equivalent

to the representation ρψ. For notational simplicy we shall identify the represen-
tations πψ and ρψ via the unitary U defined in Lemma 5.2. Using this description
of πψ

∼= ρψ it is straightforward to check that the domain D((πψ)∗) consists of all
functions g ∈ C∞(J (ψ)) such that their restrictions to Jl(ψ) extend to functions
of C∞(Jl(ψ)) and g(t) = 0 on R/J (ψ). Further, we have (πψ)∗( f (q))g = f · g
and (πψ)∗(p)g = −ig′ for g ∈ D((πψ)∗) and f ∈ C[q].

Suppose that T ∈ I(πϕ, (πψ)∗) and ‖T‖ 6 1. Set ξ := Tϕ. By the intertwin-
ing property of T, for each polynomial f we have

T( f · ϕ) = Tπϕ( f (q))ϕ = (πψ)
∗( f (q))Tϕ = (πψ)

∗( f (q))ξ = f · ξ.(5.2)

Therefore, since ‖T‖ 6 1, we obtain
β∫

α

| f (x)|2|ξ(x)|2dx =

β∫
α

|T( f · ϕ)(x)|2dx 6

β∫
α

| f (x)|2|ϕ(x)|2dx(5.3)



462 KONRAD SCHMÜDGEN

for all polynomials f and hence for all functions f ∈ C[α, β] by the Weierstrass
theorem. Hence (5.3) implies that

|ξ(x)| 6 |ϕ(x)| on [α, β].(5.4)

Therefore, ξ(x) = 0 if x ∈ R/J (ϕ). Clearly, ξ(x) = 0 if x ∈ R/J (ψ), since
ξ ∈ D((πψ)∗). Since ϕ satisfies condition (∗), the set { f · ϕ : f ∈ C[x]} is dense
in L2(J (ϕ)) = H(πϕ). Therefore, it follows from (5.2) that T is equal to the mul-
tiplication operator by the bounded function ξϕ−1. (Note that ξϕ−1 is bounded
by (5.4).) In particular, we obtain

ϕ′ · ξϕ−1 = Tϕ′ = Tπϕ(ip)ϕ = (πψ)
∗(ip)Tϕ = (πψ)

∗(ip)ξ = ξ ′.

Thus, ϕ′(x)ξ(x) = ϕ(x)ξ ′(x) which in turn implies that ( ξ
ϕ )
′(x) = 0 for all

x ∈ J (ϕ) ∩ J (ψ). Hence ξ
ϕ is constant, say ξ(x) = λϕ(x) for some constant

λ ∈ C on each connected component of J (ϕ) ∩ J (ψ). By (5.4), |λ| 6 1. The
connected components of the open set J (ϕ) ∩ J (ψ) are precisely the intervals
Jl(ϕ) ∩ Jk(ψ) provided the latter is not empty.

Conversely, suppose that for all indices l, k such that Jl(ϕ) ∩ Jk(ψ) 6= ∅
a complex number λk,l , where |λk,l | 6 1, is given. Set ξ(x) = λkl ϕ(x) for x ∈
Jl(ϕ) ∩ Jk(ψ) and ξ(x) = 0 otherwise. From the description of the domain
D((πψ)∗) given in the first paragraph of this proof it follows that ξ ∈ D((πψ)∗).
Define T(πϕ(a)ϕ) := (πψ)∗(a)ξ, a ∈ A. It is easily checked that T extends by
continuity to an operator T of H(πϕ) = L2(J (ϕ)) into H((πψ)∗) = L2(J (ψ))
such that T ∈ I(πϕ, (πψ)∗) and ‖T‖ 6 1. Since Tϕ = ξ, we have

〈Tϕ, ψ〉 = ∑
k,l

λk,l

∫
Jk(ϕ)∩Jl(ψ)

ϕ(x)ψ(x)dx.

Therefore, the supremum of expressions |〈Tϕ, ψ〉| is obtained if we choose λk,l

such that the number λk,l
∫

Jk(ϕ)∩Jl(ψ)

ϕψdx is equal to its modulus
∣∣∣ ∫
Jk(ϕ)∩Jk(ψ)

ϕψdx
∣∣∣.

This implies formula (5.1).
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