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ABSTRACT. In this paper, we consider actions of locally compact Ore semi-
groups on compact topological spaces. Under mild assumptions on the semi-
group and the action, we construct a semi-direct product groupoid with a
Haar system. We also show that it is Morita-equivalent to a transformation
groupoid. We apply this construction to the Wiener–Hopf C∗-algebras.
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1. INTRODUCTION

Because of developments in groupoid C∗-algebras and a sustained interest
for C∗-algebras attached to semigroups and semigroup actions, it seems timely
to revisit the groupoid approach to Wiener–Hopf C∗-algebras initiated in [14].
Recall that the Wiener–Hopf operators on the real half-line are operators on the
Hilbert space L2([0, ∞)) given by

W( f )ξ(s) =
∞∫

0

f (s− t)ξ(t)dt

where f ∈ L1(R). The Wiener–Hopf C∗-algebraW([0, ∞)) of the real half-line is
the C∗-algebra generated by these operators. It has a particular simple structure
which illuminates the basic index theory of these operators. Replacing the real
half-line by a closed subsemigroup P in a locally compact group G, one defines
similarly the Wiener–Hopf C∗-algebraW(G, P) (it is also called the Toeplitz alge-
bra of (G, P)). The article [14] studies the case when P is a cone in G = Rn, more
specifically a polyhedral cone or a homogeneous self-dual cone. The groupoid
description of these algebras gives their ideal structure; this was a first step to-
wards index theorems for the corresponding Wiener–Hopf operators; the whole
program, including index theorems and K-theory, has been successfully carried
out recently by A. Alldridge and coauthor [1], [2], [3]. Groupoids were used
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by A. Nica in [18], [19], [20], [21] to study the C∗-algebra of various subsemi-
groups of non-commutative goups. He also discovered that some conditions on
the semigroup P had to be imposed in order to obtain the groupoid description.
In the discrete case, he introduced the class of quasi-lattice ordered semigroups,
which includes the important example of the free semigroups. In the continuous
case, he introduced a condition (M), which is satisfied by the closed convex cones
with non-empty interior in Rn and by the positive semigroup of the Heisenberg
group. After establishing condition (M) for Lie subsemigroups of Lie groups,
J. Hilgert and K.-H. Neeb also applied in [7], [8] groupoid techniques to study
their Wiener–Hopf C∗-algebras.

In the present work, we show that a groupoid description is available for the
Wiener–Hopf C∗-algebras of an arbitrary locally compact Ore semigroup P. Our
groupoid is constructed as the semidirect product X o P, where X is the order
compactification of P. The semidirect product construction was already used in
Proposition 3.1 of [6] and requires the Ore condition. It generalizes a groupoid
construction introduced in [24] to describe the Cuntz algebra and developed by
Deaconu [5].

In [6], the semigroup P is assumed to be discrete; then the semidirect prod-
uct is an étale groupoid. We show that, when the semigroup P is locally compact,
the semidirect groupoid is locally compact and has a continuous Haar system.

Previous constructions introduced the Wiener–Hopf groupoid as a reduc-
tion of a semidirect product by a group. The present construction is more natural
and avoids the delicate operation of groupoid reduction. However, it turns out
that our groupoid is in fact a reduction of a semidirect product by a group (and
agrees with the original one in the cases previously considered).

We use first a general result, Theorem 1.8 of [10], by Khoshkam and Skan-
dalis to conclude that our groupoid is Morita equivalent to a semidirect product
by a group. It seems appropriate to view this result as a dilation theorem when
it is applied to a semidirect product by a semigroup. We also note that this is a
particular case of the classical Mackey range construction. Because our semidi-
rect product groupoid comes from an injective action, it can indeed be viewed as
a reduction of the dilation. These results show that the Wiener–Hopf C∗-algebras
we consider are Morita equivalent to a reduced crossed product of a commutative
C∗-algebra by a group G, which makes the computation of its K-theory possible
in some cases.

Let us relate briefly the groupoid approach to Wiener–Hopf algebras to the
general theory of semigroup C∗-algebras and semigroup crossed products.

The reduced C∗-algebra of a discrete semigroup P is usually defined as the
C∗-algebra generated by the Wiener–Hopf operators {W(δs) : s ∈ P}; it agrees
with our Wiener–Hopf algebra when P is a discrete Ore semigroup.

Several definitions of the universal C∗-algebra of a discrete semigroup or
semigroup action have been proposed. Let us quote some of the earliest articles
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on this subject [16], [17], [23] and refer the reader to [4] for a very complete re-
cent survey. The universal C∗-algebra C∗(G, P) of a quasi-lattice ordered group
(G, P) introduced by Nica in [20] is realised in [11] as a crossed product by a
semigroup of endomorphisms, however, contrarily to W(G, P), C∗(G, P) is not
given as a groupoid C∗-algebra (except for the amenable case where it agrees
with W(G, P)). In [6], the full C∗-algebra C∗(X o P) of a semidirect product by
a discrete Ore semigroup P is shown to be an Exel crossed product. Xin Li, mo-
tivated by the study of ring C∗-algebras, gives in [12] a new definition of the full
semigroup C∗-algebra of a discrete cancellative semigroup (and of full crossed
products of semigroup actions). Under weak assumptions which cover both
Nica’s quasi-lattice ordered semigroups and Ore semigroups, he shows in [13]
that the full semigroup C∗-algebra admits a groupoid presentation. A motiva-
tion for the present paper is to consider C∗-algebras associated to locally compact
semigroups.

The organization of this paper is as follows.
In Section 2, we first introduce the class of locally compact semigroups con-

sidered in this work, namely the continuous Ore semigroups. Given such a semi-
group P, its Wiener–Hopf C∗-algebra is defined as the C∗-algebra of operators
on L2(P) generated by the Wiener–Hopf operators with symbol in L1(P) (or in
L1(G) if one prefers).

Section 3 gives the construction of the topological groupoid associated with
the action of a topological Ore semigroup on a compact topological space. This
is the semi-direct product groupoid alluded to earlier. This work is limited to the
case of an injective action. We give some basic examples.

In Section 4, our main Theorem 4.3 gives a very simple necessary and suf-
ficient condition for the existence of a continuous Haar system for a semidirect
product by a locally compact Ore semigroup. It combines techniques of [8] and
ideas of [18].

In Section 5, we show that the Wiener–Hopf C∗-algebra of a continuous Ore
semigroup P is isomorphic to the reduced C∗-algebra of the semi-direct product
groupoid X o P, where X is the order compactification of P. It also results from
our study that continuous Ore semigroups satisfy Nica’s condition (M).

Section 6 contains the dilation theorem mentioned above and an alterna-
tive description of the Wiener–Hopf groupoid. For the sake of completeness, we
recall the necessary background about groupoid equivalence and give the proof
of Theorem 1.8 of [10] which characterizes the groupoids which are equivalent to
semidirect products by groups. This is applied to the computation of the K-theory
of some Wiener–Hopf C∗-algebras.

Section 7 gives the example of the “ax + b” semigroup on R.
All the topological spaces considered in this paper are assumed to be Haus-

dorff and second countable.
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2. THE REGULAR C∗-ALGEBRA OF A CONTINUOUS ORE SEMIGROUP

Throughout this paper, we let P to denote a closed subsemigroup of a lo-
cally compact group G containing the identity element e. We also assume the
following:

(C1) The group G = PP−1, and
(C2) The interior of P in G, denoted Int(P), is dense in P.

REMARK 2.1. Note that:
(i) (C1) is equivalent to the fact that P generates G and given a, b ∈ P, the

intersection aP ∩ bP is non-empty. Such semigroups are called right reversible
Ore semigroups.

(ii) Also note that PInt(P) and Int(P)P are contained in Int(P). Thus Int(P) is
a semigroup. Since Int(P) is nonempty, we have G = Int(P)Int(P)−1.

Let µ be a left Haar measure on G and let ∆ be the modular function asso-
ciated to G. Sometimes we write dg for the Haar measure µ. We always view
L2(P) as a closed subspace of L2(G) by extending a function on P to one on G by
declaring its value outside P as zero. For a ∈ P, let Va be the operator on L2(P)
defined as follows: For ξ ∈ L2(P), define Va(ξ) by the formula

Va(ξ)(x) = ξ(xa)∆(a)1/2.

For ξ ∈ L2(P), V∗a (ξ) is then given by

V∗a (ξ)(x) =

{
ξ(xa−1)∆(a)−1/2 if x ∈ Pa,
0 if x /∈ Pa.

For g ∈ G, let Ug be the unitary on L2(G) defined by the right regular represen-
tation i.e. if η ∈ L2(G), then Ug(η)(x) = ∆(g)1/2η(xg).

Let us denote the orthogonal projection of L2(G) onto L2(P) by E. Observe
that for a ∈ P, Va = EUaE. Now the following are easily verifiable:

(1) the maps P 3 a→ Va ∈ B(L2(P)) and P 3 a→ V∗a ∈ B(L2(P)) are strongly
continuous,

(2) for a, b ∈ P, VaVb = Vab,
(3) for a ∈ P, V∗a is an isometry, and
(4) if g = ab−1, then VaV∗b = EUgE.

For f ∈ L1(P), let W f be the bounded operator on L2(P) given by

W f =
∫

a∈P

f (a)Va dµ(a).

The operator W f is the Wiener–Hopf operator associated to the symbol f .
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If f ∈ L1(G), we let

W f =
∫

g∈G

f (g)EUgE dµ(g).

The C∗-algebra generated by {W f : f ∈ L1(G)} is called the Wiener–Hopf algebra
associated to P and let us denote it byW(P).

PROPOSITION 2.2. Let C∗red(P), also called the reduced C∗-algebra of P, be the
C∗-algebra generated by {W f : f ∈ L1(P)}. Then C∗red(P) =W(P).

We need the following lemma to prove Proposition 2.2.

LEMMA 2.3. Let

F := {ψ ∗ φ : ψ ∈ L1(P), φ ∈ L1(P−1) and ψ, φ have compact support}.

Then the linear span of F is dense in L1(G).

Proof. First note that if Kn is a decreasing sequence of compact sets with

non-empty interior such that
⋂
n

Kn = {e} then χn :=
1

µ(Kn)
1Kn is an approximate

identity in L1(G).
Now let Un be a decreasing sequence of compact sets such that e ∈ Int(Un)

and
⋂
n

Un = {e}. Since e ∈ Int(Un) ∩ P and Int(P) is dense in P, it follows

that Int(Un) ∩ Int(P) is non-empty. Set Vn := Un ∩ P. Then Vn is a decreasing
sequence of compact sets with non-empty interior such that

⋂
n

Vn = {e}. Let

φn :=
1

µ(Vn)
1Vn .

Then φn ∈ L1(P) and (φn) is an approximate identity in L1(G).
Consider f ∈ Cc(G) and let K be its support. Since G = (Int(P))(Int(P))−1,

it follows that there exists a1, a2, . . . , am ∈ Int(P) such that

K ⊂
m⋃

i=1

aiInt(P)−1.

By choosing a partition of unity, we can write f =
m
∑

i=1
fi where supp( fi) ⊂

ai(Int(P))−1. For each i = 1, 2, . . . , m, let

f̃i = La−1
i

fi,

where for a ∈ G and φ ∈ Cc(G), we let La(φ)(x) = φ(a−1x). Then f̃i ∈ L1(P−1).
Also note that since ai ∈ P, it follows that Lai φn ∈ L1(P) for each i and each n.
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Observe that F 3
m

∑
i=1

Lai φn ∗ f̃i =
m

∑
i=1

Lai (φn ∗ f̃i). Since left translations on

L1(G) are bounded operators, it follows that as n tends to infinity,
m
∑

i=1
Lai φn ∗ f̃i

converges to
m
∑

i=1
Lai f̃i which equals f .

Thus we have proved that Cc(G) is contained in the closure of the linear
span of F . Since Cc(G) is dense in L1(G), the proof is complete.

Let A := {(a, g) ∈ P× G : g−1a ∈ P}. Define σ : A → P× P by σ(a, g) =
(a, g−1a). Note that σ is a bijection.

LEMMA 2.4. The Radon–Nikodym derivative of the push-forward measure σ∗(µ×
µ|A) is given by

d(σ∗(µ× µ))

d(µ× µ)
(a, b) = ∆(b)−1.

Proof. Let φ, ψ ∈ L1(P) be positive. Now we calculate to find the following
and completes the proof:∫

φ(a)ψ(g−1a)1P(a)1P(g−1a)1A(a, g) dadg

=
∫

φ(a)1P(a)
( ∫

ψ(g−1a)1P(g−1a)1A(a, g) dg
)

da

=
∫

φ(a)1P(a)
( ∫

ψ(ga)1P(ga)1A(a, g−1)∆(g)−1dg
)

da

=
∫

φ(a)1P(a)
( ∫

ψ(b)1P(b)∆(b)−1 db
)

da

=
∫

φ(a)ψ(b)1P(a)1P(b)∆(b)−1 dadb.

Proof of Proposition 2.2. It is clear that C∗red(P) ⊂ W(P). Let φ ∈ L1(P) and
ψ ∈ L1(P−1) be given. Define φ̃, ψ̃ as

φ̃(a) := φ(a), ψ̃(a) := ∆(a)−1ψ(a−1).

Then φ̃, ψ̃ ∈ L1(P). Let ξ, η ∈ L2(P) be given. We have

〈Wφ̃W∗
ψ̃

ξ, η〉 =
∫

φ(a)ψ(b−1)〈VaV∗b ξ, η〉∆(b)−1 dadb

=
∫

φ(a)ψ(a−1g)1A(a, g)〈EUgEξ, η〉 dadg (by Lemma 2.4)

=
∫

φ(a)ψ(a−1g)〈EUgEξ, η〉 dadg (since ψ ∈ L1(P−1))

=
∫
(φ ∗ ψ)(g)〈EUgEξ, η〉 dg = 〈Wφ∗ψξ, η〉.

Thus it follows that Wφ∗ψ ∈ C∗red(P). Now by Lemma 2.3, the proof is com-
plete.
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3. SEMIGROUP ACTIONS AND GROUPOIDS

DEFINITION 3.1. Let X be a topological space and P be a cancellative topo-
logical semigroup with identity e. A right action of P on X is a continuous map
X× P→ X, the image of (x, a) ∈ X× P is denoted by xa, such that:

(i) for x ∈ X, xe = x, and
(ii) for x ∈ X and a, b ∈ P, (xa)b = x(ab).

In what follows, we assume that X is compact and P satisfies the hypotheses
of Section 2. Morover we assume that the action is injective i.e. for every a ∈ P,
the map X 3 x → xa ∈ X is injective. This implies in particular that for a ∈ P,
the map X 3 x → xa ∈ X is a homeomorphism from X to Xa.

EXAMPLE 3.2. Let X = [0, ∞], the one point compactification of [0, ∞) and
P = [0, ∞), the additive semigroup. The semigroup P acts on the right on X by
translations. Here we understand that ∞ + a = ∞.

Before we discuss the next example, let us review the Vietoris topology.
Let (X, d) be a locally compact metric space. Let C(X) be the collection of all
closed subsets of X. Then C(X) endowed with Vietoris topology is compact and
is metrisable. We only need to know the convergence. Let (An) be a sequence in
C(X). Define

lim inf An = {x ∈ X : lim sup d(x, An) = 0}, and

lim sup An = {x ∈ X : lim inf d(x, An) = 0}.

Then An converges in C(X) if and only if lim sup An = lim inf An. Moreover
if lim sup An = lim inf An = A then An converges to A. It is an easy exercise to
show that if F is a closed subset of X then {A ∈ C(X) : A ⊂ F} is closed. Or
equivalently, if U is open in X then {A ∈ C(X) : A ∩U 6= ∅} is open.

EXAMPLE 3.3. Consider C(G), the space of closed subsets of G. We endow
C(G) with the Vietoris topology. Then G acts on C(G) on the right. For A ∈ C(G)
and g ∈ G, Ag = {ag : a ∈ A}. Let X be the closure of {P−1a : a ∈ P} in C(G).
Then P leaves X invariant. The space X is called the order compactification of P.

Let X be a compact space on which P acts on the right injectively. Let

G := {(x, g) ∈ X× G : ∃ a, b ∈ P, y ∈ X such that g = ab−1, xa = yb}.

First let us prove that G is closed in X× G. We need a little lemma.

LEMMA 3.4. Let g ∈ G and let x, y ∈ X. Suppose g = ab−1 = a1b−1
1 . Then

xa = yb if and only if xa1 = yb1.

Proof. Since a1b−1
1 = ab−1, it follows that a−1

1 a = b−1
1 b. Choose α, β ∈ P

such that a−1
1 a = αβ−1. Then a1α = aβ and b1α = bβ. Now observe the following
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equivalences that complete the proof:

xa1 = yb1 ⇔ xa1α = yb1α (as the action is injective)

⇔ xaβ = ybβ

⇔ xa = yb (as the action is injective).

COROLLARY 3.5. Let g∈G and x∈X be given. Then the following are equivalent:
(i) (x, g) ∈ G.

(ii) There exists a unique y ∈ X such that if g = ab−1 with a, b ∈ P then xa = yb.
We denote the unique element y as s(x, g).

The proof follows from Lemma 3.4 and the injectivity of the action.
Now we prove that G is closed. Let (xn, gn) be a sequence in G such that

(xn, gn) converges to (x, g). Write g = ab−1. Choose open sets U, V in G, having
compact closures, such that (a, b) ∈ U × V. Then UV−1 is an open set in G
containing g. Hence gn ∈ UV−1 eventually. Then gn = anb−1

n with an ∈ U and
bn ∈ V. Let yn ∈ X be such that xnan = ynbn. If necessary, by passing to a
subsequence of (an, bn, yn), which is possible as U × V × X has compact closure
in G × G × X, we can assume that (an, bn, yn) converges, say to (a1, b1, y). Then
the equality xnan = ynbn implies that xa1 = yb1.

But gn = anb−1
n converges to g. Hence a1b−1

1 = ab−1. Now by Lemma 2.2, it
follows that xa = yb. Thus (x, g) ∈ G. Hence G is closed.

We endow G with the subspace topology induced by the product topology
on X × G. Let s : G → X be defined as follows. For (x, g) ∈ G, s(x, g) is the
unique element in X such that if g = ab−1 with a, b ∈ P then xa = s(x, g)b. The
fact that s is well defined follows from Corollary 3.5.

We claim that s is continuous. Let (xn, gn) be a sequence in G such that
(xn, gn) converges to (x, g). Let yn = s(xn, gn). Since X is compact, to show s is
continuous, it is enough to show that if yn converges to y then y = s(x, g). So
suppose yn converges to y. As in the proof of the closedness of G, we can write
gn = anb−1

n with an, bn lying in a compact subset of P. Then xnan = ynbn. Let
(ank , bnk ) be a convergent subsequence and let (a, b) be its limit. Then it follows
that xa = yb. But anb−1

n = gn converges to g. Therefore g = ab−1. Hence
y = s(x, g). This proves that s : G → X is continuous.

The space G has a groupoid structure. The multiplication and the inversion
are given as follows:

(x, g)(y, h) = (x, gh) if y = s(x, g); (x, g)−1 = (s(x, g), g−1).

Let us verify if (x, g) and (y, h) in G are composable, then (x, gh) ∈ G. Let g =
ab−1, h = cd−1 (where a, b, c, d ∈ P) and z = s(y, h). Choose α, β ∈ P such that
b−1c = αβ−1. Then gh = (aα)(dβ)−1. Now

x(aα) = (xa)α = (yb)α = y(cβ) = (zd)β = z(dβ).

Hence (x, gh) ∈ G. The inverse is well defined follows from the definition.
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Since the map s is continuous, it follows that the multiplication and the in-
version are continuous. Since G is closed, G is locally compact. Thus G is a locally
compact Hausdorff topological groupoid. The unit space G(0) is homeomorphic
to X. We denote this groupoid G by X o P and call X o P as the semi-direct
product of X by P.

4. EXISTENCE OF HAAR SYSTEM

The main aim of this section is to show that the topological groupoid X o P
has a left Haar system under some assumptions on the action. The proofs rely
heavily on the techniques used in [8]. We start with a lemma which is crucial to
what follows. It is really Lemma II.12, page 97 in [8]. We include the proof for
completeness.

LEMMA 4.1. Let P be a closed subsemigroup of a locally compact group G. Assume
that e ∈ P and Int(P) is dense in P. Let A ⊂ G be closed and AP ⊂ A. Then

(i) the interior of A, Int(A), is dense in A, and
(ii) the boundary of A, ∂A, has measure 0.

Proof. Observe that AInt(P) is an open set contained in A. Hence AInt(P) is
contained in Int(A). Since Int(P) is dense in P, it follows that AInt(P) and Int(A)
are dense in A.

Let U be an open set containing e such that U has compact closure. We claim
that there exists a sequence sn ∈ U ∩ Int(P) such that sn ∈ Int(P)sn+1.

Since U ∩ P contains e, U ∩ Int(P) is non-empty. Choose s1 ∈ U ∩ Int(P).
Assume that we have choosen s1, s2, . . . , sn. Now U ∩ Int(P) ∩ P−1sn contains sn.
Since (Int(P))−1sn is dense in P−1sn, it follows that U ∩ Int(P) ∩ Int(P)−1sn is
non-empty. Choose sn+1 ∈ U ∩ Int(P) ∩ Int(P)−1sn. This proves the claim.

To show that ∂A has measure zero, it suffices to show that if K ⊂ G is
compact, then ∂A ∩ K has measure zero. Fix a right Haar measure λ on G.

Let sn be a sequence in U∩ Int(P) such that sn ∈ Int(P)sn+1. Since Int(P) is a
semigroup, it follows that if m > n then sn ∈ Int(P)sm. Since AInt(P) ⊂ Int(A), it
follows that if m > n, ∂Asn ⊂ Int(A)sm. Hence if m > n, (∂A∩K)sn ∩ (∂A∩K)sm
is empty.

Now calculate to find that
∞

∑
n=1

λ(∂A ∩ K) =
∞

∑
n=1

λ((∂A ∩ K)sn) = λ
( ∞⋃

n=1

(∂A ∩ K)sn

)
6 λ(KU) < ∞.

Hence λ(∂A ∩ K) = 0. This completes the proof.

For x ∈ X, let Gx := r−1(x). Here r : G → X is the range map. For x ∈ X, let

Qx := {g ∈ G : ∃ a, b ∈ P such that g = ab−1 and xa ∈ Xb}.
Note that Gx = {x} ×Qx for x ∈ X. Also g ∈ Qx if and only if (x, g) ∈ G.
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Since G is closed in X×G, it follows that Qx, being the preimage of G under
the map g → (x, g), is a closed subset of G. Also note that for z ∈ X and a ∈ P,
(z, a) ∈ G. Now if g ∈ Qx and a ∈ P then (x, g) and (s(x, g), a) are composable
and hence its product (x, ga) ∈ G. Thus QxP ⊂ Qx. Now the following is an
immediate corollary of Lemma 4.1.

COROLLARY 4.2. For x ∈ X, let Qx := {g ∈ G : (x, g) ∈ G}. Then Qx is
closed, its interior is dense in Qx and its boundary has measure 0.

For x ∈ X, let λx be the measure on G defined as follows. For f ∈ Cc(G),∫
f dλx =

∫
f (x, g)1Qx (g)dg.

Here dg denotes the left Haar measure on G.
We can now state our main theorem.

THEOREM 4.3. The following are equivalent:
(i) The groupoid G has a left Haar system.

(ii) The map X× Int(P)→ X is open.
(iii) If U ⊂ Int(P) is open, then XU is open in X.
(iv) For a ∈ P, XInt(P)a is open in X.
(v) The measures (λx)x∈X form a left Haar system.

Proof. Suppose G has a Haar system. Then the source map s : G → X is
open. Observe that X × Int(P) ⊂ G. Also X × Int(P), being open in X × G, is
open in G. Thus the action X × Int(P) → X, which is the source map, is open.
This proves (i) implies (ii).

The implication (ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious. Now let us prove
(iv)⇒ (v).

Assume (iv). For x ∈ X, Int(Qx) = Qx. Hence supp(λx) = Gx. Now we
check that for h ∈ Cc(G), the map X 3 x →

∫
hdλx is continuous. For φ ∈

C(X) and f ∈ Cc(G), let (φ⊗ f )(x, g) = φ(x) f (g). Then φ⊗ f ∈ Cc(G) and the
linear span of {φ⊗ f : φ ∈ C(X), f ∈ Cc(G)} is dense in Cc(G) for the inductive
limit topology. Hence it is enough to check that X 3 x →

∫
1Qx (g) f (g)dg is

continuous for every f ∈ Cc(G).
Fix f ∈ Cc(G). Let (xn) be a sequence in X such that (xn) converges to x.
We claim that 1Qxn

→ 1Qx a.e.
Suppose g /∈ Qx. Then (x, g) /∈ G. Since G is closed in X× G, it follows that

(xn, g) /∈ G eventually. Hence g /∈ Qxn eventually. Thus we have shown that 1Qxn
converges (pointwise) to 1Qx on G−Qx.

Now suppose g ∈ Int(Qx). Let g = ab−1 with a, b ∈ P. The map G × G 3
(α, β) → αβ−1 ∈ G is continuous. It follows that there exists open sets U,V in
G such that a ∈ U, b ∈ V and UV−1 ⊂ Int(Qx). As Int(P)b is dense in Pb and
V ∩ Pb contains b, it follows that the intersection V ∩ Int(P)b is non-empty. Let
c ∈ V ∩ Int(P)b. Then ac−1 ∈ Qx. Thus xa ∈ Xc which implies xa ∈ XInt(P)b.
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But XInt(P)b is open in X by assumption (iv). Also the sequence xna → xa.
Therefore xna ∈ XInt(P)b eventually. Thus xna ∈ Xb eventually which implies
that eventually (xn, g) ∈ G or in other words g ∈ Qxn . This shows that 1Qxn
converges to 1Qx on Int(Qx).

Also by Corollary 4.2, ∂Qx has measure 0. Thus 1Qxn
→ 1Qx a.e.

By the dominated convergence theorem, it follows that for f ∈ Cc(G), the
map X 3 x →

∫
1Qx (g) f (g)dg is continuous.

Now let us verify left invariance. Let (x, g) ∈ G and denote s(x, g) by y.
Observe that Qy = g−1Qx. Consider a function f ∈ Cc(G). Now∫

f ((x, g)(y, h))1Qy(h)dh =
∫

f (x, gh)1g−1Qx
(h)dh =

∫
f (x, u)1g−1Qx

(g−1u)du

=
∫

f (x, u)1Qx (u)du.

This implies left invariance. Thus we have shown that (iv) implies (v). The re-
maining implication (v) implies (i) is just definition. This completes the proof.

The above theorem should be compared to Proposition 1.3 of [18] which
gives a necessary and sufficient condition such that the usual Haar system of a
transformation groupoid G = U o G restricts to a Haar system of the reduced
groupoid GV where V is a non-void locally closed subset of U. Under our as-
sumptions, we obtain a much more convenient condition.

COROLLARY 4.4. Let U × G → U be a continuous action where U is a locally
compact Hausdorff space. Let V ⊂ U be a compact subset of U and let P := {g ∈ G :
Vg ⊂ V}. Observe that P is a closed subsemigroup of G. Suppose G = PP−1 and
Int(P) is dense in P. Then the following are equivalent:

(i) The usual Haar system on U oG reduces to a Haar system of the reduced groupoid
(U o G)|V .

(ii) The map V × Int(P)→ V is open.

Proof. Observe that the reduction (U oG)|V = V o P. Now the equivalence
follows from Theorem 4.3.

We record the following useful fact from the proof of Theorem 4.3.

REMARK 4.5. Let X be a compact space on which P acts on the right injec-
tively. Suppose G := X o P has a Haar system. Then the map X 3 x → Qx ∈
C(G) is continuous where C(G) is the space of closed subsets of G with the Vi-
etoris topology. For let (xn) be a sequence in X converging to x. Since C(G) is
compact, we can assume that Qxn converges and let A be its limit. If g ∈ A then
there exists gn ∈ Qxn i.e. (xn, gn) ∈ G such that gn → g. Since G is closed in
X× G and (xn, gn)→ (x, g), it follows that (x, g) ∈ G. Thus g ∈ Qx and A ⊂ Qx.
The proof of the implication (iv) ⇒ (v) of Theorem 4.3 implies that 1Qxn

→ 1Qx

on Int(Qx). Hence Int(Qx) ⊂ A. But A is closed and Int(Qx) is dense in Qx.
Therefore we have A = Qx.



502 JEAN RENAULT AND S. SUNDAR

The conditions in Theorem 4.3 are not always satisfied. Here is an example.

Let G :=
{ [a b

0 1

]
: a > 0, b ∈ R

}
. Then G is isomorphic to the semidirect

product RoR∗+. Here the multiplicative group R∗+ acts on R by multiplication.
Let P := [0, ∞)× [1, ∞). Observe that the semigroup P is a closed in G, PP−1 = G
and Int(P) is dense in P.

Let CP1 := C ∪ {∞} be the one-point compactification of C. Consider the
compact subset Y := {z ∈ CP1 : Im(z) > 0}. Then G acts on Y on the right and
the action is given by the formula

z ·
[

a b
0 1

]
=

z− b
a

.

Here ∞ is left invariant. Let

X := {z ∈ Y : Re(z) 6 0, Im(z) 6 1} ∪ {∞}.

Then P leaves X invariant. The action of P on X is obviously injective. Note
that Int(P) = (0, ∞) × (1, ∞). We leave it to the reader to verify that X0 :=
X(Int(P)) = {(x, y) : x < 0, y < 1} ∪ {∞} which is not open in X. For (−n, 1) /∈
X0 but converges to ∞ ∈ X0.

5. WIENER–HOPF C∗-ALGEBRAS AS GROUPOID C∗-ALGEBRAS

The main aim of this section is to show that Wiener–Hopf C∗-algebras can
be realised as the reduced C∗-algebra of a groupoid.

Let X be a compact Hausdorff space on which P acts on the right. Assume
that the action X× Int(P)→ X is open so that the groupoid X o P has a left Haar
system. We endow X o P with the left Haar system (λx)x∈X as in Theorem 4.3.
Consider the following conditions:

(A1) there exists x0 ∈ X such that Qx0 = P,
(A2) the set {x0a : a ∈ P} is dense in X, and
(A3) for x, y ∈ X, if Qx = Qy then x = y.

These conditions were introduced in a slightly different form by Nica in
[18] when he defines a generating system over P. The dilation of X constructed
in the next section is a minimal generating system over P in his terminology. We
show that if (A1), (A2) and (A3) are satisfied then the Wiener–Hopf C∗-algebra is
isomorphic to C∗red(X o P).

First we show that such a compact space exists. It turns out such a space is
in fact unique. Recall the order compactification of P, from Example 3.3, which
is the closure of {P−1a : a ∈ P} in the space of closed subsets of G under the
Vietoris topology. The semigroup P acts on the order compactification by right
multiplication.
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PROPOSITION 5.1. Let X be the order compactification of P. Then we have the
following:

(i) The groupoid X o P has a Haar system.
(ii) For the pair (X, P), the conditions (A1), (A2) and (A3) hold.

(iii) Suppose X̃ is a compact Hausdorff space with an injective right action of P. Sup-
pose that X̃ o P has a Haar system and (A1), (A2) and (A3) are satisfied then the map
X̃ 3 x → Q−1

x ∈ X is a P-equivariant homeomorphism.

Proof. To prove (i), by Theorem 4.3, it is enough to show that if W ⊂ Int(P)
is open then XW is open in X.

Let W be an open subset of Int(P).
We claim that XW = {A ∈ X : A ∩W 6= ∅}. Suppose A ∈ XW. Then

A = Bw for some w ∈ W and B ∈ X. Since P−1 ⊂ B, it follows that w ∈ Bw = A.
Thus A ∩W 6= ∅.

Now suppose A ∈ X be such that A ∩W 6= ∅. Choose a sequence an ∈ P
such that P−1an → A. Choose w ∈ A ∩W. Then there exists bn ∈ P such
that b−1

n an → w. Since X is compact, by passing to a subsequence, if necessary,
we can assume P−1bn converges and let B ∈ X be its limit. Since the action
of G on C(G) is continous, it follows that (P−1bn)b−1

n an converges to Bw. But
P−1bnb−1

n an = P−1an converges to A. Hence A = Bw for some B ∈ X and
w ∈W. This proves the claim.

By definition of the Vietoris topology, it follows that {A ∈ X : A ∩W 6= ∅}
is open in X. This proves (i).

We claim that for A ∈ X, QA = A−1. Let A ∈ X be given. It is clear
that QA = {g ∈ G : Ag ∈ X}. Let g ∈ QA be given. Then there exists a
sequence an ∈ P such that P−1an → Ag. Hence P−1ang−1 → A in C(G). But then
a−1

n ang−1 → g−1. Thus g−1 ∈ A or equivalently g ∈ A−1.
Now suppose g ∈ A−1. Choose a sequence an ∈ P such that P−1an → A.

Then there exists a sequence bn ∈ P such that b−1
n an → g−1. Since the action of

G on C(G) is continuous, it follows that P−1bn = (P−1an)a−1
n bn converges to Ag.

Hence Ag ∈ X which implies g ∈ QA. This proves the claim.
Now take x0 = P−1 ∈ X. The fact that QA = A−1 for A ∈ X implies that

(A1) and (A3) holds. Condition (A2) is just the definition of X.
From Remark 4.5, it follows that the map X̃ 3 x → Q−1

x ∈ C(G) is con-
tinuous. Also observe that for x ∈ X and a ∈ P, we have Qxa = a−1Qx. This
observation along with compactness of X̃ and conditions (A1) and (A2) imply
that the map x → Q−1

x has range X and is P-equivariant. Now (A3) gives the
injectivity. Since X̃ is compact, (iii) follows. This completes the proof.

We need the following proposition from [14].

PROPOSITION 5.2 ([14], Proposition 2.17). Let G be a groupoid with Haar sys-
tem. Let µ be a measure on the unit space G(0) such that µ(U) > 0 for every non-empty
open invariant subset U of G(0). Then Ind µ is a faithful representation of C∗red(G).
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REMARK 5.3. A part of the proposition quoted in 2.16 of [14] is wrong,
namely the exactness of the sequence

0→ C∗r (GU)→ C∗r (G)→ C∗r (GF)→ 0

where U is an open invariant subset of G(0) and F = G(0)\U. It holds for the
full C∗-algebras. However the statement of Proposition 5.2 is proved in complete
detail in 2.17 of [14].

Now let (X, P) be the unique dynamical system for which (A1), (A2) and
(A3) holds. Consider the groupoid G := X o P with the Haar system (λx)x∈X .
For f ∈ Cc(G), let f̃ : G → C be defined by f̃ (x, g) = f (g). Since X is compact, it
follows that f̃ ∈ Cc(G).

Consider the Dirac delta measure δx0 on X. Since the orbit of {x0} is dense,
it follows, from Proposition 5.2, that the induced representation Ind(δx0) gives
a faithful representation of C∗red(G). Also observe that Gx0 = {x0} × P by (A1).
Thus L2(Gx0) is unitarily equivalent to L2(P). Now calculate to find that for f ∈
Cc(G) and ξ ∈ L2(P),

Ind(δx0)( f̃ )(ξ)(a)=
∫

f̃ ((x0, a)−1(x0, b))ξ(b)1P(b)db =
∫

f (a−1b)ξ(b)1P(b)db

=
∫

f (u)ξ(au)1P(au)du=
∫

∆(u)−1/2f (u)∆(u)1/2ξ(au)1P(au)du.

Thus it follows that Ind(δx0)( f̃ ) = W f̂ where f̂ (u) = ∆(u)−1/2 f (u). Thus it
follows thatW(P) ⊂ C∗red(G). To see the other inclusion we need the following
lemma.

NOTATIONS. If φ ∈ C(X) and f ∈ Cc(G), let φ ⊗ f ∈ Cc(G) be defined by the
equation (φ ⊗ f )(x, g) = φ(x) f (g). For φ ∈ C(X), f ∈ Cc(G) and a ∈ P, let
Ra(φ) ∈ C(X) be defined by Ra(φ)(x) = φ(xa) and let La( f ) ∈ Cc(G) be defined
by La( f )(g) = f (a−1g).

LEMMA 5.4. Let F be a subset of C(X) which is closed under conjugation. As-
sume that F contains the constant function 1 and the algebra generated by F is dense
in C(X). Then, with respect to the inductive limit topology on Cc(G), the ∗-algebra
generated by {φ⊗ f : φ ∈ F , f ∈ Cc(G)} is dense in Cc(G).

Proof. Let φ1, φ2 ∈ C(X) and f1, f2 ∈ Cc(G) be given. Now for (x, g) ∈ G,

((φ1 ⊗ f1) ∗ (φ2 ⊗ f2))(x, g) = φ1(x)
∫

φ2(s(x, g) · h) f1(gh) f2(h−1)1Qs(x,g)
(h)dh

= φ1(x)
∫

φ2(s(x, gh)) f1(gh) f2(h−1)1Qx (gh)dh

= φ1(x)
∫

φ2(s(x, u)) f1(u) f2(u−1g)1Qx (u)du.
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Let a ∈ Int(P) be given. Choose a decreasing sequence of compact neighbour-

hoods Un containing a in the interior such that Un ⊂ Int(P) and
∞⋂

n=1
Un = {a}.

Let fn ∈ Cc(G) be such that fn > 0, supp( fn) ⊂ Un and
∫

fn(g)dg = 1. We
claim that if φ, ψ ∈ C(X) and f ∈ Cc(G) then with respect to the inductive limit
topology (φ⊗ fn) ∗ (ψ⊗ f )→ φRa(ψ)⊗ La( f ). It is clear from the above formula
that (φ⊗ fn) ∗ (ψ⊗ f ) is supported in X×U1supp( f ) which is compact.

Let ε > 0. Since X is compact and f is compactly supported, it follows that
there exists N ∈ N such that for n > N, (x, u, g) ∈ X×Un × G, we have

|ψ(xu) f (u−1g)− ψ(xa) f (a−1g)| 6 ε.

We leave the details of the proof to the reader. Now let n > N be fixed. Now
calculate as follows to find that for (x, g) ∈ G
|((φ⊗ fn) ∗ (ψ⊗ f ))(x, g)− (φRaψ⊗ La( f ))(x, g)|

=
∣∣∣ ∫
u∈Un

φ(x)ψ(xu) fn(u) f (u−1g)du−
∫

u∈Un

φ(x)ψ(xa) fn(u) f (a−1g)du
∣∣∣

6 |φ(x)|
∫

u∈Un

|ψ(xu) f (u−1g)− ψ(xa) f (a−1g)| fn(u)du 6 ε‖φ‖∞.

This proves the claim.
Now let A be the ∗-algebra generated by {φ⊗ f : φ ∈ F , f ∈ Cc(G)}. Since

F is dense in C(X), it is enough to show that for φ1, φ2, . . . , φn ∈ F and f ∈ Cc(G),
(φ1φ2 · · · φn)⊗ f ∈ A. We prove this by induction on n. For n = 1, it is clear.

Now let φ, φ1, φ2, . . . , φn ∈ F and f ∈ Cc(G) be given. Set ψ = φ1φ2 · · · φn.
By induction hypothesis, it follows that ψ⊗ f ∈ A.

By our preceding discussion, it follows that for every a ∈ Int(P), φRaψ ⊗
La f ∈ A. Now let an be a sequence in Int(P) such that an → e. Then φRan ψ⊗
Lan f → φψ⊗ f . Thus it follows that φψ⊗ f ∈ A. This completes the proof.

THEOREM 5.5. Let X be a compact space on which P acts on the right. Assume
that the action X o Int(P) → X is open. If (X, P) satisfies (A1), (A2) and (A3) then
W(P) is isomorphic to C∗red(X o P).

Proof. We have already shown that W(P) ⊂ C∗red(X o P). Clearly 1⊗ f ∈
W(P) for f ∈ Cc(G). For f ∈ Cc(G), let φ f ∈ C(X) be given by φ f (x) =∫

1Qx (t) f (t)dt. Condition (A2) implies that the {φ f : f ∈ Cc(G)} separates
points of x. This is because for every x, Int(Qx) is dense in Qx and the bound-
ary of Qx has measure zero. Thus if 1Qx = 1Qy a.e. then Qx = Qy. Hence
F := {φ f : f ∈ Cc(G)} separates points of X and the unital ∗-subalgebra gen-
erated by F is dense in C(X). Now by Lemma 5.4, to complete the proof, it is
enough to show that φ f ⊗ g ∈ W(P) for every f , g ∈ Cc(G). The proof of this is
exactly the same as the proof of Proposition 3.5 in [14]. One just have to replace
1X(xt) in [14] by 1Qx (t). Hence we omit the proof.
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We now indicate briefly, without proof, that the groupoid obtained in [14]
and in Proposition 5.1 are isomorphic. Let us recall the groupoid considered in
[14]. Denote the algebra of uniformly continuous bounded functions on G by
UCb(G). Also G acts on UCb(G) by right translation. Let Ỹ be the spectrum of
the commutative C∗-subalgebra, denoted byA, of UCb(G) generated by {1P ∗ f :
f ∈ Cc(G)} where

1P ∗ f (t) =
∫

1P(ts) f (s−1)ds =
∫

1P−1t(s) f (s)∆(s)−1ds.

Evaluation at points of G gives multiplicative linear functionals of A and one
obtains a G-equivariant map τ : G → Ỹ. Denote the closure τ(P) by X̃ which is
P-invariant. The groupoid considered in [14] is X̃ o P or equivalently Ỹ o G|X̃ .
For a ∈ P and f ∈ Cc(G), the equation

1P ∗ f (a) =
∫

1P−1a(s) f (s)∆(s)−1ds

indicates that X̃ is the closure of {1P−1a : a ∈ P} in L∞(G) where L∞(G) is given
the weak*-topology. We show in the next proposition that the map X 3 A →
1A ∈ L∞(G) is a P-equivariant embedding whose image is X̃.

We finish this section by showing that Ore semigroups satisfies condition (M)
due to Nica. Let us recall the following definition due to Nica. Recall from [18]
that a subset A of G is said to be solid if Int(A) is dense in A and the support of
µ|A is A. Here µ is a Haar measure on G.

DEFINITION 5.6 ([18]). A semigroup P ⊂ G is said to satisfy condition (M)
if every element in the weak*-closure of {1P−1a : a ∈ P} in L∞(G) is of the form
1A for a solid closed subset A of G.

PROPOSITION 5.7. Let P be a closed Ore semigroup of G such that Int(P) is dense
in P. Denote the order compactification of P by X.

(i) The map X 3 A→ 1A ∈ L∞(G) is a continuous P-equivariant embedding.
(ii) The semigroup P satisfies condition (M).

Proof. The continuity of the map X 3 A → 1A ∈ L∞(G) follows from the
fact that {1QA dg}A∈X is a Haar system for X o P and QA = A−1 for A ∈ X.
Observe that if A ∈ X then P−1 A ⊂ A. Thus by Lemma 4.1, it follows Int(A)
is dense in A and the boundary of A has measure 0. Suppose 1A = 1B a.e. for
A, B ∈ X. Then A\B has measure zero. Hence the open set Int(A)\B has measure
zero. This implies that Int(A)\B is empty. But Int(A) is dense in A. Thus it
follows that A\B is empty. Similarly B\A is empty. This implies that the map
X 3 A → 1A ∈ L∞(G) is injective. We leave the P-equivariance to the reader.
This proves (i).

By (i), the weak∗-closure of {1P−1a : a ∈ P} in L∞(G) is {1A : A ∈ X}. But
for A ∈ X, Int(A) = A. Thus A is a solid closed subset for A ∈ X. This shows
that P satisfies condition (M). This completes the proof.
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6. MORITA EQUIVALENCE

The groupoid G = X o P of the previous sections is defined as a semidirect
product by the semigroup P. It admits a more usual presentation, namely as a
reduction of a semidirect product Y o G by the group G. As an intermediate
step, we shall exhibit a Morita equivalence between X o P and Y o G, where
the G-space Y is given by a classical construction, namely the Mackey range of a
cocycle.

Let us first recall some definitions and notations concerning groupoid ac-
tions. A more detailed exposition can be found in [15]. Let G be a locally compact
groupoid with range and source maps r, s : G → G(0), assumed to be open. Let
Z be a locally compact space on which G acts on the left. By definition, there is
a map ρ : Z → G(0), assumed to be open and surjective and called the moment
map and an action map (γ, z) ∈ G ∗ Z → γz ∈ Z, where

G ∗ Z := {(γ, z) : s(γ) = ρ(z)}

is the set of composable pairs. The set G ∗Z has the structure of a groupoid, called
the semidirect groupoid of the action and denoted by G n Z, and given by

(γ, γ
′
z)(γ

′
, z) = (γγ

′
, z), (γ, z)−1 = (γ−1, γ · z).

Endowed with the product topology G × Z, it becomes a topological groupoid.
Let us check that the range and source maps are open, because it is the only fact
we need. Since s = inv ◦ r and the inverse map inv((γ, z)) = (γ−1, γ · z) is clearly
a homeomorphism, it suffices to check that the range map is open. This map is
simply the second projection π2 : G ∗ Z → Z. If U × V is open in G × Z, then
π2((U ×V) ∩ (G ∗ Z)) = ρ−1(s(U)) ∩V is open.

Recall that the action is said to be free if γ · z = z implies that γ is a unit and
proper if the map G ∗ Z 3 (γ, z) → (γ · z, z) ∈ Z× Z is proper. If the action of G
on Z is proper, the quotient G\Z is locally compact and Hausdorff.

Given two locally compact groupoids G and H, a groupoid equivalence
(also called Morita equivalence) is a locally compact space Z which is a left G-
space, a right H-space, the actions are free and proper, they commute and the
corresponding moment maps ρ and σ identify respectively G\Z ' H(0) and
Z/H ' G(0). Theorem 2.8 of [15] says that, when G and H are endowed with
Haar systems, Cc(Z) can be completed into a (C∗(G), C∗(H)) imprimitivity bi-
module. This is stated there for the full C∗-algebras but the same result holds for
the reduced C∗-algebras. For a complete proof of the reduced version, the reader
is referred to [25].

A space endowed with a left G-action and a rightH-action which commute
is called a (G,H)-space. We shall encounter the following example of (G,H)-
space. Let j : G → H be a continuous groupoid homomorphism. The space

Z(j) = {(x, ζ) ∈ G(0) ×H : j(0)(x) = r(ζ)}
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carries the left action γ(s(γ), ζ) = (r(γ), j(γ)ζ) of G and the right action (x, ζ)ζ ′ =
(x, ζζ ′) of H. Note that the right action of H is free and proper. With an abuse of
language, we call Z(j) the graph of j.

Now we recall the Mackey range contruction. Let G be a locally compact
groupoid with unit space X = G(0), G a locally compact group and c : G → G a
continuous cocycle (i.e. a continuous groupoid homomorphism). We consider its
graph Z = Z(c) = X × G as above. The left action of G and the right action of G
are given by

γ(s(γ), a) = (r(γ), c(γ)a), (x, a)b = (x, ab).

As already mentioned, the right action of G is free and proper, but not the left
action of G. Thus, in general the quotient Y = G\Z is singular (for example,
not Hausdorff). It is then natural to introduce the semidirect groupoid G n Z,
called the skew-product of the cocycle and denoted by G(c), as a substitute for
this quotient space. The Mackey range of c is defined in ergodic theory as the
standard quotient Y = G\\Z (i.e. the space of ergodic components), viewed as
a right G-space. Under the assumption that the left action of G on Z is proper,
Y = G\Z is a locally compact Hausdorff space endowed with a continuous action
of G. Moreover, if the action of G on Z is also free, then the skew-product G(c) is
equivalent to the quotient space Y = G\Z. We give now conditions under which
the action of G on Z is free and proper.

DEFINITION 6.1 ([10], Definition 1.6). One says that a cocycle c : G → G is:
(i) faithful if the map from G 3 γ → (r(γ), c(γ), s(γ)) ∈ G(0) × G × G(0) is

injective;
(ii) closed if the above map from G to G(0) × G× G(0) is closed;

(iii) injective if the map from G to G(0) × G sending γ to (r(γ), c(γ)) is injective.

One observes that, with above notation, Z is a free G-space if and only if c
is faithful and that Z is a free and proper G-space if and only if c is faithful and
closed. There is a slight abuse of language in (iii); an equivalent definition is that
c−1(e) ⊂ G(0). It is clear that a cocycle which is injective is faithful and that the
converse does not always hold.

THEOREM 6.2 ([10], Theorem 1.8). Let G be a locally compact groupoid with
unit space X = G(0), G a locally compact group and c : G → G a continuous cocycle.
Assume that c is faithful and closed. Then,

(i) the (G, G)-space Z = Z(c) = X × G is a groupoid equivalence between G and
the semidirect product Y o G, where Y = G\Z is the Mackey range of the cocycle;

(ii) the map j : G → Y o G such that j(γ) = ([r(γ), e], c(γ)), where e is the unit
element of G and [r(γ), e] is the class of (r(γ), e) in G\Z, is a groupoid homomorphism;
its graph Z(j) is exactly Z as a (G, Y o G)-space;

(iii) the image X′ = j(0)(X) = {[x, e], x ∈ G(0)} of G(0) in Y meets every orbit under
the action of G;
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(iv) if moreover c is injective and G(0) is compact, then j is an isomorphism of G onto
the reduction (Y o G)|X′ .

Proof. The right action of G on Z gives a right action of the semi-direct prod-
uct Y o G: the moment map σ : Z → Y = G\Z is the quotient map. One defines
z(σ(z), a) = za for z ∈ Z and a ∈ G. This action remains free and proper. Since
c is faithful and closed, the left action of G is also free and proper. The identifica-
tions X ' Z/Y o G and Y ' G\Z are obvious. This proves (i). Let us check that
the map j of (ii) is a groupoid homomorphism. Let (γ, γ′) ∈ G(2). We have

j(γ)j(γ′) = ([r(γ), e], c(γ))([r(γ′), e], c(γ′))

= ([r(γ), e], c(γ))([γ(s(γ), e)], c(γ′))

= ([r(γ), e], c(γ))([r(γ), c(γ)], c(γ′))

= ([r(γ), e], c(γ))([r(γ), e]c(γ), c(γ′))

= ([r(γγ′), e], c(γγ′)) = j(γγ′).

The map j(0) : X → Y = G\Z is given by j(0)(x) = [x, e]. Therefore, we can
identify Z(j) = {(x, (y, a)) ∈ X × (Y × G) : j(0)(x) = y} and Z = X × G by
sending (x, ([x, e], a)) to (x, a). Then, it is straightforward to check that the left
actions of G (respectively right actions of YoG) are the same. Since for all (x, a) ∈
X× G, we have (x, a) = (x, e)a, the assertion (iii) is true. Let us finally prove (iv).
By construction, j is injective if and only if c is injective. Let us check that the
image of j is (Y o G)|X′ . The range of j(γ) is [r(γ), e] and its source is [s(γ), e]
which both belong to X′. Conversely, suppose that (y, a) belongs to (Y o G)|X′ .
Since y ∈ X′, it is of the form [x, e] with x ∈ X. Since ya = [x, a] ∈ X′, there exists
γ ∈ G such that (x, a) = γ(s(γ), e). This implies that (y, a) = ([r(γ), e], c(γ)) =

j(γ). If X = G(0) is compact, X′ = j(0)(X) is compact j(0) is a homeomorphism
of X onto X′. The compactness of X and the closedness of c imply that the map
(r, c) : G → X × G is closed. The map j(0) × id : X × G → Y × G is also closed.
Hence j : G → Y × G which is the composition of these maps is also closed.
Since it is injective, it is a homeomorphism onto a closed subset of Y × G. This
completes the proof.

REMARK 6.3. Theorem 1.8 of [10] gives the assertions (i) and (ii) (and not
(iii) and (iv)) of the above theorem. We have given the proof in full (essentially
the same as the original proof) to emphasize that its key point is the Mackey range
construction, although it does not appear under that name in the original proof.
Moreover the authors make a third assumption on the cocycle: they require it to
be transverse. But this is exactly the condition that the source map of the skew-
product G(c) is open. We have seen that this condition is automatically satisfied
(provided that, as usual the range and source maps of G are open).

We apply this to the semi-direct product G = X o P, where X is a compact
Hausdorff space on which P acts on the right. We assume that the action X o
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Int(P) → X is an open map or equivalently X o P has a Haar system. Then the
range and source maps of X o P are open. The canonical cocycle c : X o P →
G, which is given by c(x, ab−1) = ab−1 is faithful and closed. Therefore G is
equivalent to the Mackey range semi-direct product Y o G, where Y = G\X× G.
In fact, since c is injective and we assume that X is compact, G is isomorphic to
the reduction (Y o G)|X′ , where X′ = {[x, e], x ∈ X}.

PROPOSITION 6.4. Under the above assumptions, let X0 = XInt(P) and j(0) :
X → Y be the embedding given by the theorem.

(i) the embedding j(0) : X → Y is P-equivariant;
(ii) the image j(0)(X0) is open in Y; and

(iii) Y =
⋃

a∈P
j(X)a−1 =

⋃
a∈Int(P)

j(0)(X0)a−1;

(iv) conditions (i), (ii) and (iii) of Theorem 6.4 uniquely determines Y up to a G-
equivariant isomorphism.

Proof. Observe that for x ∈ X and a ∈ P, (x, a) ∈ X o P and (x, a) · (xa, e) =
(x, a) i.e. [(xa, e)] = [(x, a)]. Since G = PP−1, it follows that Y =

⋃
a∈P

X
′
a−1. Now

we verify that the image of X0 := X(Int(P)) in Y is open. It is equivalent to
showing that

A := {(x, ab−1) ∈ X× G : there exists y ∈ X0, xa = yb}
is open in X × G. Let (x, g) ∈ A be given. Write g = ab−1 with a, b ∈ Int(P).
Let y ∈ X0 be such that xa = yb. Then xa ∈ X(Int(P))b which is open in X.
Thus there exist an open set U × V ⊂ X × Int(P) containing (x, a) and UV ⊂
X0b. Then U × Vb−1 ⊂ A and contains (x, g). Thus A is open in X o G. Since
G = Int(P)Int(P)−1, it is clear that Y =

⋃
a∈Int(P)

j(0)(X0)a−1. We leave (iv) to the

reader.

The following is an immediate consequence of Theorem 6.2.

PROPOSITION 6.5. Let P be a subsemigroup of a locally compact group G such
that PP−1 = G and Int(P) is dense in P. Suppose that P contains the identity el-
ement of G. Let X be the order compactification of P as in Proposition 5.1 and Y be
the unique G-space as in Proposition 6.4. Then the Wiener–Hopf C∗-algebra W(P) is
Morita-equivalent to the reduced crossed product C0(Y)ored G.

Proof. Theorem 5.5 implies thatW(P) is isomorphic to C∗red(Xo P). By The-
orem 6.2, it follows that the groupoids X o P and Y o G are equivalent. Applying
Theorem 13 of [25], we obtain that W(P) is Morita-equivalent to the reduced
crossed product C0(Y)ored G.

The Morita equivalence established in this section is useful to compute the
K-groups. For example, we have the following version of Connes–Thom isomor-
phism for solid closed convex cones. Let P ⊂ Rn be a closed convex cone (i.e. P is
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convex and αv ∈ P if α > 0 and v ∈ P). Assume that P spans Rn. Then by duality
theory, it follows that Int(P) is dense in P. We use additive notation for actions
of P.

PROPOSITION 6.6. Let P be a closed convex cone in Rn such that P− P = Rn.
Let X be a compact Hausdorff space on which P acts and assume that the action X ×
Int(P) → X is open. Set X0 = X + Int(P). Then Ki(C∗(X o P)) is isomorphic to
Ki+n(C0(X0)) for i = 0, 1.

Proof. Let Y be the dilation of X as in Proposition 6.4. For s ∈ Rn, let Ls
be the translation on C0(Y) defined by Ls( f )(y) = f (y − s) for f ∈ C0(Y) and
y ∈ Y. We consider C0(X0) as a subset of C0(Y). Then for s ∈ P, Ls leaves C0(X0)
invariant.

As X o P is Morita equivalent to Y oRn, it follows that thus Ki(C∗(X o P))
is isomorphic to Ki(C0(Y)oRn). Now by Connes–Thom isomorphism, it follows
that Ki(C∗(X o P)) is isomorphic to Ki+n(C0(Y)). Thus it remains to show that
for i = 0, 1, Ki(C0(Y)) ∼= Ki(C0(X0)).

For a ∈ Int(P), let Aa be the closure of { f ∈ Cc(Y) : supp( f ) ⊂ X0 − a}.
Since (Int(P),<) is directed, where we write a < b if b − a ∈ Int(P), it follows
that

⋃
a∈Int(P)

Aa is dense in C0(Y). Also if a < b then Aa ⊂ Ab. Thus C0(Y) is the

inductive limit of (Aa)a∈Int(P). Clearly Aa is isomorphic to C0(X0 − a) ∼= C0(X0).
For a, b ∈ Int(P) with a < b, let ib,a : Aa → Ab be the inclusion. Under the

isomorphism Aa ∼= C0(X0), the map ib,a : C0(X0) → C0(X0) is nothing but Lb−a.
Then (Lt(b−a))t∈[0,1] is a homotopy of homomorphisms on C0(X0) connecting the
identity map to Lb−a. Thus the connecting map ia,b induce the identity map at
the K-theory level. The proof is now complete by appealing to the continuity of
K-groups under inductive limits.

REMARK 6.7. Proposition 6.6 gives a conceptual explanation of the vanish-
ing of K-groups of the classical Wiener Hopf algebras associated to the additive
semigroup [0, ∞). In this case X = [0, ∞], the one point compactification of [0, ∞),
and X0 = (0, ∞] ∼= (0, 1] whose K-groups are trivial. Similar observations have
been made in [9]. The index theorems associated to Wiener–Hopf operators (as-
sociated to polyhedral cones) have been studied extensively in [1], [2] and [3]. In
particular, it is established that the K-theory of the Wiener–Hopf algebra associ-
ated to polyhedral cones is trivial.

7. AN EXAMPLE

We finish this article with an example. Let

G :=
{(a b

0 1

)
: a > 0, b ∈ R

}
.
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The group G is isomorphic to the semidirect product Ro (0, ∞). Let P = [0, ∞)o
[1, ∞). Then P is a semigroup and we leave it to the reader to verify that PP−1 =
P−1P = G. Also observe that Int(P) = (0, ∞)o (1, ∞).

Let Y := [−∞, ∞)× [0, ∞]. The group G acts on Y on the right and the action
is given by the formula; let

(x, y) ·
(

a b
0 1

)
=
( x− b

a
,

y
a

)
.

Let X := [−∞, 0]× [0, 1]. Then X is P-invariant i.e. XP ⊂ X. Let X0 := X(Int(P)).
We leave it to the reader to verify that X0 = [−∞, 0)× [0, 1). Thus X0 is open in
Y and hence in X. Thus for every γ ∈ P, X0γ is open in Y and consequently in X.
By Theorem 4.3, it follows that the groupoid X o P has a Haar system. We now
verify the conditions (A1), (A2) and (A3) of Section 5.

For (x, y) ∈ X, let Q(x,y) := {g ∈ G : (x, y)g ∈ X}. Then, by definition, it
follows that

Q(x,y) =
{(a b

0 1

)
: x 6 b, y 6 a

}
.

Let x0 = (0, 1) ∈ X. Then Qx0 = P. Note that the P-orbit of x0 is (−∞, 0]× (0, 1]
which is dense in X. Thus (A1) and (A2) are satisfied.

Let (x1, y1), (x2, y2) ∈ X be such that Q(x1,y1)
= Q(x2,y2)

. Suppose x1 < x2.

Choose b ∈ R be such that x1 < b < x2. Then
(

1 b
0 1

)
is in Q(x1,y1)

but not in

Q(x2,y2)
. Hence x1 > x2. Similarly x2 > x1. Thus x1 = x2.

Suppose y1 < y2. Choose a > 0 be such that y1 < a < y2. Then
(

a 0
0 1

)
is

in Q(x1,y1)
but not in Q(x2,y2)

. Thus y1 > y2. Similarly y2 > y1. Hence y1 = y2.
Thus (x1, y1) = (x2, y2). Hence (A3) is satisfied.

Also observe that Y =
⋃

γ∈Int(P)

X0γ−1 =
⋃

γ∈P
Xγ−1. Thus by Theorem 5.5 and

the Morita equivalence established in Section 6, it follows that the Wiener–Hopf
C∗-algebra associated to P is isomorphic to C∗red(X o P) and is Morita equivalent
to the crossed product C0(Y)o (Ro (0, ∞)).

So far we have only considered the right regular representation. One could
also consider the left regular representation. Suppose that P is a closed subsemi-
group of G. Assume that PP−1 = P−1P = G and Int(P) is dense in P. For g ∈ G,
let Lg be the unitary on L2(G) defined by Lg( f )(x) = f (g−1x). Let us denote the

C∗-algebra on L2(P) generated by
{ ∫

g∈P
f (g)ELgE dg : f ∈ Cc(G)

}
by Wl(P).

Here E denotes the projection onto L2(P). We denote the Wiener–Hopf algebra
associated to the right regular representation by Wr(P). Consider the unitary
U : L2(G)→ L2(G) defined by (U f )(x) := f (x−1)∆(x−1)1/2. The conjugation by
U mapsWl(P) ontoWr(P−1).



GROUPOIDS ASSOCIATED TO ORE SEMIGROUP ACTIONS 513

Let us now return to the example of P = [0, ∞)o [1, ∞) ⊂ G = Ro (0, ∞).
Observe that P−1 = (−∞, 0] o (0, 1]. The map G ∈ (b, a) → (−b, a) ∈ G is
an isomorphism, preserves the Haar measure and sends P−1 onto P̃ := [0, ∞)o
(0, 1]. Thus we haveWl(P) ' Wr(P−1) ' Wr(P̃).

Let X̃ := [−∞, 0] × [1, ∞] ⊂ Y. Then X̃ is P̃ invariant. We leave it to the
reader to check that X̃0 := X̃Int(P̃) = [−∞, 0) × (1, ∞] which is open in Y. As
before one can show thatWr(P̃) is isomorphic to C∗red(X̃ o P̃) and Morita equiv-
alent to C0(Y)o (Ro (0, ∞)). It would be interesting to decide whether Wl(P)
andWr(P) are isomorphic or not.
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