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ABSTRACT. We prove a Boyd-type interpolation result for noncommutative
maximal operators of restricted weak type. Our result positively answers an
open question in T. Bekjan, Z. Chen, A. Osȩkowski, arXiv: 1108.2795 [math.OA].
As a special case, we find a restricted weak type version of the noncommuta-
tive Marcinkiewicz interpolation theorem, due to Junge and Xu, with interpo-
lation constant of optimal order.

KEYWORDS: Noncommutative symmetric spaces, Doob’s maximal inequality, non-
commutative maximal inequalities, interpolation theory.

MSC (2010): 46B70, 46L52, 46L53.

1. INTRODUCTION

To any sequence (Tn)n>1 of sublinear operators on a space of measurable
functions one can associate the operator

T f (t) =
(

sup
n>1

Tn

)
( f )(t) := sup

n>1
|Tn f (t)|.

A function of the form T f is usually called a maximal function. We shall refer to T
as the maximal operator of the sequence (Tn)n>1. These operators occur naturally
in many situations in harmonic analysis and probability theory. One is often
interested to show that a maximal operator defines a bounded sublinear operator
on an Lp-space or, more generally, on a Banach function space. For instance, the
celebrated Doob maximal inequality states that for any increasing sequence of
conditional expectations and any 1 < p 6 ∞,

(1.1)
∥∥∥ sup

n>1
En( f )

∥∥∥
Lp

6 cp‖ f ‖Lp .

A fruitful strategy to prove maximal inequalities with sharp constants is to
first prove weak type estimates for the maximal operator. Let (A, Σ, ν) be a σ-
finite measure space. Recall that a sublinear operator T is of Marcinkiewicz weak
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type (or M-weak type) (p, p) if for any f ∈ Lp(A),

(1.2) [ν(|T f | > v)]1/p 6 Cv−1‖ f ‖Lp(A) (v > 0).

If T is bounded in Lp then T is said to be of strong type (p, p). To prove (1.1)
one may first show that sup

n>1
En is of M-weak type (1, 1) and strong type (∞, ∞)

and then apply Marcinkiewicz’ interpolation theorem. This yields a constant cp

of optimal order O((p − 1)−1) as p ↓ 1. More generally, Boyd’s interpolation
theorem implies that sup

n>1
En is bounded on any symmetric Banach function space

with lower Boyd index pE > 1. Weak type interpolation has proven effective for
a host of maximal inequalities (see e.g. [2], [15] for examples).

In this paper we deal with interpolation questions for maximal operators
of weak type which correspond to a sequence (Tn)n>1 of positive, sublinear op-
erators on noncommutative symmetric spaces associated with a semi-finite von
Neumann algebraM. In this setting, the maximal operator sup

n>1
Tn is a fictitious

object: for example, if x ∈ Lp(M)+ then sup
n>1

Tn(x) may not exist in terms of the

standard ordering of Lp(M)+. Indeed, even for two positive semi-definite n× n
matrices x, y there may not be a matrix z satisfying

〈zξ, ξ〉 = max{〈xξ, ξ〉, 〈yξ, ξ〉} (ξ ∈ Cn).

Even though sup
n>1

Tn(x) is not well-defined as an operator, one can still make sense

of the quantity “
∥∥∥ sup

n>1
Tn(x)

∥∥∥
p
” by viewing the sequence (Tn(x))n>1 as an ele-

ment of the noncommutative vector-valued space Lp(M; `∞), as introduced by
Pisier [14]. With this point of view, Junge [10] showed that one can obtain a non-
commutative extension of (1.1). He proved that for any increasing sequence of
conditional expectations inM and 1 < p 6 ∞,

(1.3) ‖(En(x))n>1‖Lp(M;`∞) 6 Cp‖x‖Lp(M).

More recently, Junge and Xu [12] proved a Marcinkiewicz interpolation theorem
for noncommutative maximal operators (see Theorem 3.3 below). This result
allows one to prove (1.3) elegantly by interpolating between the M-weak type
(1, 1)-maximal inequality for conditional expectations obtained by Cuculescu [5]
and the trivial case p = ∞. This approach yields a constant Cp of the order
O((p − 1)−2) when p ↓ 1, which is known to be optimal [11]. The difference
between the optimal order of the constants in the classical and noncommuta-
tive Doob maximal inequalities underlines the fact that, in general, the extension
of maximal inequalities to the noncommutative setting requires nontrivial new
ideas.

The purpose of the present paper is to prove interpolation results for non-
commutative maximal operators of restricted weak type. In the classical case, this
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means that (1.2) is only required to hold for indicator functions f = χA, where
A is any set of finite measure. Stein and Weiss [16] showed that Marcinkiewicz’
interpolation theorem remains valid under this relaxed notion of weak type. This
extension has proven especially useful for interpolation problems in harmonic
analysis, where the weak-type condition (1.2) is typically hard to verify (see e.g.
[2], [16]). We expect that the results proved in this paper will be similarly useful
in a noncommutative context.

The main result of this paper is the following Boyd-type interpolation theo-
rem, see also Theorem 5.2 for a slightly more precise statement. Any unexplained
terminology can be found in Sections 2 and 3.

THEOREM 1.1. Let 1 6 p < q 6 ∞, let M,N be semi-finite von Neumann
algebras and let E be a fully symmetric Banach function space on R+ with Boyd indices
pE 6 qE. Suppose that (Tα)α∈A is a net of order preserving, sublinear maps which is of
restricted weak types (p, p) and (q, q). If p < p′ < pE and either qE < q′ < q < ∞ or
q = ∞, then for any x ∈ E(M)+,

(1.4) ‖(Tα(x))α∈A‖E(N ;`∞) 6 Cp,p′ ,q,q′‖Sp′ ,q′‖E→E‖x‖E(M),

where Sp′ ,q′ is Calderón’s operator and Cp,p′ ,q,q′ is of order O((p′ − p)−1) as p′ ↓ p and
of order O((q− q′)−1) as q′ ↑ q.

Theorem 1.1 unifies and extends two main interpolation results for noncom-
mutative maximal operators in the literature.

Firstly, Bekjan, Chen and Osȩkowski [1] proved a special case of our re-
sult for maximal operators of M-weak type (p, p) and strong type (∞, ∞), with a
larger, suboptimal interpolation constant.

Secondly, specialized to E = Lr for p < r < q, our result extends the earlier
mentioned interpolation theorem in [12] to noncommutative maximal operators
of restricted weak type, see the discussion following Corollary 5.3 for a detailed
comparison. In this case, the constant in (1.4) is of order O((r − p)−2) as r ↓ p
and O((q − r)−2) as r ↑ q. In particular, if p = 1 and q = ∞ then Theorem 1.1
implies (1.3) with constant of the best possible order. In this sense, the constant
in (1.4) is optimal.

In Section 5 we illustrate the use of Theorem 1.1 by proving Doob’s maximal
inequality in noncommutative symmetric Banach function spaces under minimal
conditions on the underlying function space, see Corollary 5.4. In addition, we
provide an interpolation result for the generalized moments of noncommutative
maximal operators (Theorem 5.5), which resolves an open question in [1].

2. PRELIMINARIES

We start by briefly recalling some relevant terminology. Let S(R+) be the
linear space of all measurable, a.e. finite functions g on R+ which satisfy λ(|g| >
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v) < ∞ for some v > 0, where λ is Lebesgue measure on R+. For any g ∈ S(R+)
let µ(g) denote its decreasing rearrangement

µt(g) = inf{v > 0 : λ(|g| > v) 6 t} (t > 0).

A normed linear subspace E of S(R+) is called a symmetric Banach function space
if it is complete and if for any g ∈ S(R+) and h ∈ E satisfying µ(g) 6 µ(h), we
have g ∈ E and ‖g‖E 6 ‖h‖E. Let H be the Hardy–Littlewood operator

Hg(t) =
1
t

t∫
0

µt(g) dt (g ∈ S(R+)).

For g, h ∈ S(R+) we write g ≺≺ h if Hg 6 Hh. We say that a symmetric Banach
function space E is fully symmetric if for any g ∈ S(R+) and h ∈ E satisfying
g ≺≺ h, we have g ∈ E and ‖g‖E 6 ‖h‖E.

Fix a von Neumann algebraM acting on a Hilbert space (H, 〈·, ·〉), which
is equipped with a normal, semi-finite, faithful trace τ. Let S(τ) denote the linear
space of all τ-measurable operators and let S(τ)+ be its positive cone. For any
x ∈ S(τ) its decreasing rearrangement is defined by

µt(x) = inf{v > 0 : τ(λ(v,∞)(x)) 6 t} (t > 0),

where λ(x) denotes the spectral measure of |x|. Suppose that a =
n
∑

i=1
αiei, with

α1 > α2 > · · · > αn > 0 and e1, . . . , en projections in M satisfying eiej = 0 for
i 6= j and τ(ei) < ∞ for 1 6 i 6 n. As in the commutative case (see [2]), it is
elementary to show that

(2.1) µ(a) =
n

∑
j=1

αjχ[ρj−1,ρj)
,

where ρ0 = 0, ρj =
j

∑
i=1

τ(pi), j = 1, . . . , n. We will also use the submajorization

inequality (see Theorem 4.4 of [8])

(2.2) µ(x + y) ≺≺ µ(x) + µ(y) (x, y ∈ S(τ)).

If E is a symmetric Banach function space on R+, then we define the associated
noncommutative symmetric space

E(M) := {x ∈ S(τ) : ‖µ(x)‖E < ∞}.

The space E(M) is a Banach space under the norm ‖x‖E(M) := ‖µ(x)‖E. For
E = Lp this construction yields the usual noncommutative Lp-spaces.

For any directed set A we let E(M; `∞(A))+ denote the set of all nets x =
(xα)α∈A in E(M)+ for which there exists an a ∈ E(M)+ such that xα 6 a for all
α ∈ A. For these elements we set

‖x‖E(M;`∞) := inf{‖a‖E(M) : xα 6 a for all α ∈ A}.
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One may show that, up to a constant depending only on E, this expression coin-
cides with the norm of the noncommutative symmetric `∞-valued space E(M; `∞)
introduced in [6].

Let us finally fix the following notation. For any set A we let χA be its
indicator. Also, we write u .α v if u 6 cαv for some constant cα depending only
on α.

3. THREE FLAVORS OF WEAK TYPE

Before defining the different types of maximal operators, let us recall the
classical notions of weak type and restricted weak type for a sublinear operator
T on S(R+). For 0 < p, q 6 ∞ let Lp,q denote the Lorentz spaces on R+, i.e., the
subspace of all g in S(R+) such that

‖g‖Lp,q =


( ∞∫

0
t(q/p)−1µt(g)q dt

)1/q
(0 < q < ∞),

sup
0<t<∞

t1/pµt(g) (q = ∞),

is finite. Given 0 < p < ∞, we say that T is of weak type (p, p) if there is a
constant Cp > 0 such that for any g ∈ Lp,1(R+),

(3.1) λ(|Tg| > v)1/p 6 Cpv−1‖g‖Lp,1(R+)
.

An operator T is of restricted weak type (p, p) (as introduced by Stein and Weiss
in [16]) if (3.1) holds only for indicators g = χA, where A is any measurable set
of finite measure. As is well known, for a given 0 < p < ∞,

strong type⇒ M-weak type⇒ weak type⇒ restricted weak type

and the reverse implications do not hold in general.
For our discussion below we recall the following characterization of weak

type operators due to Calderón. For 0 < p < q < ∞ we define Calderón’s operator
Sp,q as the linear operator

Sp,qg(t) =
1
p

t−(1/p)
t∫

0

s1/pg(s)
ds
s
+

1
q

t−(1/q)
∞∫

t

s1/qg(s)
ds
s

(t > 0, g ∈ S(R+))

and for 0 < p < ∞ we set

Sp,∞g(t) =
1
p

t−(1/p)
t∫

0

s1/pg(s)
ds
s

(t > 0, g ∈ S(R+)).

In [4] Calderón proved that a sublinear operator T on S(R+) is simultaneously of
weak types (p, p) and (q, q) if and only if it satisfies

(3.2) µt(Tg) .p,q (Sp,qµ(g))(t) (for all g ∈ S(R+)).
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In fact, Calderón’s proof shows that T is of restricted weak types (p, p) and (q, q)
if and only if it satisfies

(3.3) µt(TχA) .p,q (Sp,qµ(χA))(t),

for any measurable set A of finite measure.
We now extend these definitions to noncommutative maximal operators.

Throughout, let M and N be von Neumann algebras equipped with normal,
semi-finite, faithful traces τ and σ, respectively. For any projection e we set e⊥ :=
1 − e. Also, if f is another projection, then we let e ∨ f and e ∧ f denote the
supremum and infimum, respectively, of e and f .

DEFINITION 3.1. For any 0 < r < ∞ we say that a net (Tα)α∈A of maps
Tα : Lr(M)+ → S(σ)+ is of M-weak type (r, r) if there is a constant Cr > 0 such
that for any x ∈ Lr(M)+ and any θ > 0, there exists a projection e(θ) = e(θ)x
satisfying

(3.4) σ((e(θ))⊥) 6 (Crθ−1)r‖x‖r
Lr(M) and e(θ)Tα(x)e(θ) 6 θ, for all α ∈ A.

A net (Tα)α∈A of maps Tα : Lr,1(M)+ → S(σ)+ is of restricted weak type (r, r) if
there is a constant Cr > 0 such that for any projection f in Lr,1(M)+ and any
θ > 0, there is a projection e(θ) = e(θ)f such that

(3.5) σ((e(θ))⊥) 6 (Crθ−1)rτ( f ) and e(θ)Tα( f )e(θ) 6 θ, for all α ∈ A.

A net (Tα)α∈A of maps Tα : M+ → N+ is of restricted weak type (∞, ∞) if there is
a constant C∞ > 0 such that for any projection f inM,

sup
α∈A
‖Tα( f )‖∞ 6 C∞.

A net (Tα)α∈A of maps Tα : Lr(M)+ → S(σ)+ is of strong type (r, r) if

‖(Tα(x))α∈A‖Lr(N ;`∞) 6 Cr‖x‖Lr(M).

In the commutative case, a sequence (Tn)n>1 is of restricted weak type (r, r)
in the sense of Definition 3.1 if sup

n>1
Tn is of restricted weak type (r, r) in the clas-

sical sense. Indeed, in this case one may take e(θ) = χ[0,θ]

(
sup
n>1

Tn( f )
)

. Thus,

loosely speaking, (3.5) states that the fictitious noncommutative maximal opera-
tor “sup

α
Tα” is of restricted weak type (r, r).

REMARK 3.2. In the noncommutative literature (e.g. in [1], [12]), it has be-
come customary to refer to property (3.4) as weak type, instead of M-weak type.
The terminology used here is in accordance with the classical literature on inter-
polation theory.
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We will often assume that the maps Tα satisfy additional properties. We call
a map T : S(τ)+ → S(σ)+ sublinear if

T(cx + dy) 6 cT(x) + dT(y) (c, d ∈ R+, x, y ∈ S(τ)+)

and order preserving if T(x) 6 T(y) whenever x 6 y in S(τ)+.
Using real interpolation and duality techniques Junge and Xu proved the

following version of Marcinkiewicz’ interpolation theorem for noncommutative
maximal operators.

THEOREM 3.3 ([12], Theorem 3.1). Let 1 6 p < q 6 ∞. If a net (Tα)α∈A of
positive, subadditive maps (Tα) is of M-weak type (p, p) and strong type (q, q), then for
any p < r < q,

(3.6) ‖(Tα(x))α∈A‖Lr(N ;`∞) . C1−θ
p Cθ

q

( rp
r− p

)2
‖x‖Lr(M),

where θ is chosen such that 1/r = (1− θ)/p + θ/q.

In Corollary 5.3 below we will obtain an extension of this result to maximal
operators of restricted weak types (p, p) and (q, q).

4. A CALDERÓN-TYPE BOUND FOR MAXIMAL OPERATORS OF WEAK TYPE

Our starting point for the proof of Theorem 1.1 is the characterization (3.3).
A first thought is to attempt to establish the following direct generalization: if
(Tα) is of restricted weak types (p, p) and (q, q) then one may try to find, for
every projection f , a positive measurable operator a satisfying Tα( f ) 6 a for all
α and

µt(a) .p,q (Sp,qµ( f ))(t) (t > 0).

Unfortunately, if N is noncommutative then this assertion is in general false. In-
deed, it would imply that the noncommutative Doob maximal inequality (1.3)
holds with constant of order O((p− 1)−1) for p ↓ 1, whereas order O((p− 1)−2)
is known to be optimal [11]. However, we can find a bound of the form

µt(a) 6 Cp,p′ ,q,q′(Sp′ ,q′µ( f ))(t),

where p < p′ < q′ < q and Cp,p′ ,q,q′ is singular as p′ ↓ p and q′ ↑ q.
For 0 < p, q < ∞ we introduce the constants

κp,q = 21/p max{Cp(1− 2−p)−(1/p), Cq(1− 2−q)−(1/q)},

κp,∞ = max{Cp(1− 2−p)−(1/p), C∞},
(4.1)

where Cp and Cq are the restricted weak type (p, p) and (q, q) constants in (3.5).
If p, q > 1 then κp,q 6 4 max{Cp, Cq} and κp,∞ 6 2 max{Cp, C∞}. Also, for p <
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p′ < q′ < q < ∞ we set

γp,p′ = ∑
k60

2(k−1)(1−(p/p′)), δq,q′ = ∑
k>0

2(k−1)(1−(q/q′)).

Note that

γp,p′ = O((p′ − p)−1) as p′ ↓ p; δq,q′ = O((q− q′)−1) as q′ ↑ q.

LEMMA 4.1. Fix 0 < p < q 6 ∞. Let (Tα)α∈A be a net of positive maps which
is of restricted weak types (p, p) and (q, q). Let p < p′ < q′ < q. If q < ∞ and f
is a projection in Lp,1(M)+ + Lq,1(M)+, then there exists a constant Kp,p′ ,q,q′ and an
a ∈ S(σ)+ such that

Tα( f ) 6 a (α ∈ A), and(4.2)

µt(a) 6 κp,qKp,p′ ,q,q′Sp′ ,q′µ( f )(t) (t > 0).(4.3)

Moreover, the constant Kp,p′ ,q,q′ satisfies

Kp,p′ ,q,q′ 6 4 max{γp,p′ , δq,q′}.(4.4)

If q = ∞, then for every projection f ∈ M+ there exists a constant Kp,p′ ,∞,∞ 6 4γp,p′

and an a ∈ N+ satisfying (4.2) and

(4.5) µt(a) 6 κp,∞Kp,p′ ,∞,∞Sp′ ,∞µ( f )(t) (t > 0).

Proof. We use the functions θp,q : R+ → R+, which for 0 < p, q 6 ∞ are
defined by

θp,q(t) = t−(1/p)χ[1,∞)(t) + t−(1/q)χ(0,1)(t) (t > 0)

and for 0 < p < ∞ given by

θp,∞(t) = t−(1/p)χ[1,∞)(t) + χ(0,1)(t) (t > 0).

We first prove the result for q < ∞. In this case τ( f ) < ∞. Using the change of
variable s = t/u, we find

Sp,qµ( f )(t) =
1∫

0

µt/u( f )
1
q

u−1−(1/q)du +

∞∫
1

µt/u( f )
1
p

u−1−(1/p)du

=

∞∫
0

χ(0,τ( f )]

( t
u

)
(−θ′p,q(u))du = θp,q

( t
τ( f )

)
.(4.6)

Thus, we need to find an a ∈ S(σ)+ satisfying (4.2) and

(4.7) µt(a) 6 κp,qKp,p′ ,q,q′θp′ ,q′
( t

τ( f )

)
(t > 0).

Let us first assume that κp,q 6 1. For any θ > 1 fix a projection e(θ)q satisfying (3.5)

for r = q and for 0 < θ 6 1 we pick e(θ)p such that (3.5) holds for r = p. For every
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k ∈ Z we define

ek =
(∧

l>k

e(2
l)

q

)
(k > 0), ek =

( ∧
0>l>k

e(2
l)

p

)
∧
( ∧

l>0

e(2
l)

q

)
(k 6 0),

and we set

dk = ek − ek−1.

Observe that (ek)k∈Z is increasing, and therefore dkdl = 0 for k 6= l and d2
k = dk.

Note that ek 6 e(2
k)

q for k > 0 and ek 6 e(2
k)

p for k 6 0, hence ekTα(x)ek 6 2k for all
k. If k > 0 then, using κp,q 6 1,

σ(e⊥k )6∑
l>k

σ((e(2
l)

q )⊥)6∑
l>k

Cq
q2−lqτ( f )62−kqCq

q
1

1− 2−q τ( f )62−kqτ( f ),(4.8)

and in particular it follows that ek ↑ 1 for k → ∞. Moreover, if k 6 0, then again
using κp,q 6 1,

σ(e⊥k ) 6 ∑
0>l>k

σ((e(2
l)

p )⊥) + ∑
l>0

σ((e(2
l)

q )⊥)(4.9)

6 2−kp(Cp
p(1− 2−p)−1 + Cq

q(1− 2−q)−1)τ( f ) 6 2−kpτ( f ).

Finally, we set e−∞ :=
∧

k60
ek. Since ek ↑ 1,

(4.10) e0 = ∑
k60

dk + e−∞, e⊥0 = ∑
k>0

dk.

Set Kp,p′ ,q,q′ = 4 max{γp,p′ , δq,q′} and let (aN)N>1 be the sequence inM+ given by

aN = Kp,p′ ,q,q′
(

∑
−∞<k60

2(k−1)p/p′dk + ∑
0<k6N

2(k−1)q/q′dk

)
.

As our candidate for the sought operator a ∈ S(σ)+ we would like to define
a := lim

N→∞
aN . To show that this limit exists in S(σ), we will first show that the

estimate (4.7) is satisfied for a = aN , uniformly in N. Since the coefficients of the
dk are increasing, we find using (2.1) that

µ(aN) = Kp,p′ ,q,q′
(

∑
k60

2(k−1)p/p′χ[σ(eN−ek),σ(eN−ek−1))

+ ∑
0<k6N−1

2(k−1)q/q′χ[σ(eN−ek),σ(eN−ek−1))
+ 2(N−1)q/q′χ[0,σ(eN−eN−1))

)
6 Kp,p′ ,q,q′

(
∑
k60

2(k−1)p/p′χ[σ(1−ek),σ(1−ek−1))

+ ∑
0<k6N−1

2(k−1)q/q′χ[σ(1−ek),σ(1−ek−1))
+ 2(N−1)q/q′χ[0,σ(1−eN−1))

)
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and by applying (4.8) and (4.9) it follows that

µ(aN) 6 Kp,p′ ,q,q′
(

∑
k60

2(k−1)p/p′χ[2−kpτ( f ),2−(k−1)pτ( f ))

+ ∑
0<k<N

2(k−1)q/q′χ[2−kqτ( f ),2−(k−1)qτ( f )) + 2(N−1)q/q′χ[0,2−(N−1)qτ( f ))

)
.

If k 6 0 and 2−kpτ( f ) 6 t < 2−(k−1)pτ( f ), then

2k−1 <
( t

τ( f )

)−(1/p)

and therefore

2(k−1)p/p′ <
( t

τ( f )

)−(1/p′)
.

For all k > 0 and 2−kqτ( f ) 6 t < 2−(k−1)qτ( f ) we find

2k−1 <
( t

τ( f )

)−(1/q)

and so

2(k−1)q/q′ <
( t

τ( f )

)−(1/q′)
.

We conclude that for any t > 0,

µt(aN) 6 Kp,p′ ,q,q′
(( t

τ( f )

)−(1/p′)
χ[τ( f ),∞)(t) +

( t
τ( f )

)−(1/q′)
χ(0,τ( f ))(t)

)
6 Kp,p′ ,q,q′θp′ ,q′

( t
τ( f )

)
.

Since this inequality holds uniformly in N, we conclude that (aN)N>1 is an in-
creasing sequence which is bounded in measure. Hence, by Theorem 5.10 of [13],
there exists an a ∈ S(σ)+ such that aN ↑ a in S(σ)+. We claim that a has the
asserted properties. Since µ(aN) ↑ µ(a) ([13], Proposition 6.5) it is clear that (4.7)
holds. Since Tα( f ) > 0, we know that (see e.g. Lemma 5.9 of [6])

Tα( f ) 6 2e0Tα( f )e0 + 2e⊥0 Tα( f )e⊥0 .

For any ξ in the domain D(a1/2) of a1/2 we have

‖a1/2ξ‖2= lim
N→∞

〈aNξ, ξ〉=Kp,p′ ,q,q′
(

∑
k60

2(k−1)p/p′〈dkξ, ξ〉+∑
k>0

2(k−1)q/q′〈dkξ, ξ〉
)

.

Notice that e−∞Tα( f )e−∞ = e−∞ekTα( f )eke−∞ 6 2ke−∞ for all k 6 0 and therefore
e−∞Tα( f )e−∞ = 0. Moreover,

‖e0Tα( f )e−∞‖∞ 6 ‖e0Tα( f )e0‖1/2
∞ ‖e−∞Tα( f )e−∞‖1/2

∞ = 0.

Together with (4.10) this implies that any ξ ∈ D(a1/2) satisfies

〈e0Tα( f )e0ξ, ξ〉 =
〈(

∑
k60

dk

)
Tα( f )

(
∑
l60

dl

)
ξ, ξ
〉
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6 ∑
k,l60
‖dkTα( f )dl‖∞‖dkξ‖‖dlξ‖

6 ∑
k,l60
‖dkTα( f )dk‖1/2

∞ ‖dlTα( f )dl‖1/2
∞ ‖dkξ‖‖dlξ‖

=
(

∑
k60
‖dkTα( f )dk‖1/2

∞ ‖dkξ‖
)2

.(4.11)

Since
‖dkTα( f )dk‖1/2

∞ 6 2k/2 = 21/22(k−1)p/2p′2(k−1)(1−(p/p′))/2

we find by applying the Cauchy–Schwarz inequality in (4.11),

〈e0Tα( f )e0ξ, ξ〉 6 2γp,p′ ∑
k60

2(k−1)p/p′‖dkξ‖2 =
〈

∑
k60

2γp,p′2
(k−1)p/p′dkξ, ξ

〉
.

By similar reasoning,

〈e⊥0 Tα( f )e⊥0 ξ, ξ〉 6
〈

∑
k>0

2δq,q′2
(k−1)q/q′dkξ, ξ

〉
.

Putting these estimates together we conclude that ξ ∈ D(Tα( f )1/2) and

〈Tα( f )ξ, ξ〉 6 ∑
k60

4γp,p′2
(k−1)p/p′〈dkξ, ξ〉+ ∑

k>0
4δq,q′2

(k−1)q/q′〈dkξ, ξ〉 6 〈aξ, ξ〉,

which establishes (4.2) (cf. Proposition 4.5 of [13]). This completes the proof in
the case q < ∞ under the additional assumption κp,q 6 1.

In the general case, define T̃α( f ) = κ−1
p,q Tα( f ). If e(θ) satisfies (3.5), then

ẽ(θ) := e(κp,qθ) satisfies, for r = p, q,

τ((ẽ(θ))⊥) 6 (Crκ−1
p,qθ−1)rτ( f ) and ẽ(θ)T̃α( f )ẽ(θ) 6 θ, for all α ∈ A.

Therefore, κ̃p,q 6 1 and by the above we find an ã ∈ S(σ)+ such that T̃α( f ) 6 ã
for all α ∈ A and

µt(ã) 6 Kp,p′ ,q,q′Sp,qµ( f )(t) (t > 0).

The operator a := κp,q ã has the desired properties.
Suppose now that q = ∞. Let us first note that if τ( f ) = ∞, then µ( f ) =

χ[0,∞) and we can take a = C∞1. If τ( f ) < ∞, then we may assume that κp,∞ 6 1.
For k 6 0 we set

ek =
( ∧

0>l>k

e(2
l)

p

)
and let dk = ek − ek−1 as before. We define a ∈ N+ to be the operator

a = 2e⊥0 + ∑
k60

4γp,p′2
(k−1)p/p′dk.

By following the argument presented above one shows that a satisfies (4.2) and
(4.3). The details are left to the reader.



526 SJOERD DIRKSEN

REMARK 4.2. IfN is commutative, then one can show using essentially the
same arguments that a ∈ S(σ)+ defined by

a = ∑
k∈Z

2k+1dk

satisfies (4.2) and
µt(a) 6 4κp,qSp,qµ( f )(t) (t > 0).

In this case one uses that dkTα( f )dl = 0 whenever k 6= l.

In order to obtain interpolation results for noncommutative maximal op-
erators, we need to extend Lemma 4.1 from projections to arbitrary measurable
operators. We achieve this by representing a given measurable operator x as a
series of weighted projections and applying Lemma 4.1 term-wise.

THEOREM 4.3. Fix 1 6 p < q 6 ∞. Let (Tα)α∈A be a net of order preserving,
sublinear operators which is of restricted weak types (p, p) and (q, q). Let p < p′ and,
if q < ∞, we fix q′ < q. Then for any x ∈ Lp′ ,1(M)+ + Lq′ ,1(M)+ there exists an
a ∈ S(σ)+ such that Tα(x) 6 a for all α ∈ A and

(4.12) µ(a) ≺≺ 4κp,qKp,p′ ,q,q′Sp′ ,q′µ(x).

If q = ∞, then for any x ∈ Lp′ ,1(M)+ +M+ there exists an a ∈ S(σ)+ satisfying
(4.12) with q′ = ∞ and Tα(x) 6 a for all α ∈ A.

Proof. Suppose first that x ∈ Lp′ ,1(M). Let λ(x) be the spectral measure of
x. For any k ∈ Z, define fk = λ(2k ,∞)(x) and consider the dyadic discretization
x̂ = ∑

j∈Z
2j+1λ(2j ,2j+1](x). Clearly, x 6 x̂ 6 2x. By summation by parts,

x̂ = ∑
j∈Z

∑
k6j

2kλ(2j ,2j+1](x) = ∑
k∈Z

∑
j>k

2kλ(2j ,2j+1](x) = ∑
k∈Z

2k fk.

Also, by (2.1) and summation by parts

µ(x̂) = ∑
j∈Z

2j+1χ[τ( f j+1),τ( f j))
= ∑

j∈Z
∑
k6j

(2k+1 − 2k)χ[τ( f j+1),τ( f j))

= ∑
k∈Z

2kχ[0,τ( fk))
= ∑

k∈Z
2kµ( fk).(4.13)

Let âk ∈ S(σ)+ be the operator obtained by applying Lemma 4.1 to fk. For N > 1

define x̂N =
N
∑

k=−N
2k fk and set aN =

N
∑

k=−N
2k âk. By sublinearity of Tα,

Tα(x̂N) 6
N

∑
k=−N

2kTα( fk) 6 aN .

By (2.2),

µ(aN) ≺≺
N

∑
k=−N

2kµ(âk).
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Using lemma 4.1, linearity of Sp′ ,q′ and (4.13) we find for any t > 0

N

∑
k=−N

2kµt(âk) 6 κp,qKp,p′ ,q,q′
N

∑
k=−N

2kSp′ ,q′µ( fk)(t)

6 κp,qKp,p′ ,q,q′Sp′ ,q′µ(x̂)(t) 6 2κp,qKp,p′ ,q,q′Sp′ ,q′µ(x)(t).

This shows in particular that (aN)N>1 is increasing and bounded in measure.
Therefore, by Theorem 5.10 of [13] there exists an a ∈ S(σ)+ such that aN ↑ a
in S(σ)+. Since µ(aN) ↑ µ(a), we conclude by monotone convergence that (4.12)
holds. It is clear that Tα(x̂N) 6 a for all N > 1. Note that Tα is of M-weak
type (p′, p′), with M-weak type constant bounded by Cp(p′ − 1)−1, by the same
argument as in the commutative case ([2], Theorem 5.3). Therefore,

‖Tα(x̂)− Tα(x̂N)‖p′ ,∞ 6 ‖Tα(x̂− x̂N)‖p′ ,∞ .p,p′ ‖x̂− x̂N‖p′ ,1 → 0,

as N → ∞ by dominated convergence. In particular, Tα(x̂N)→ Tα(x̂) in measure.
Since Tα is order preserving, we conclude that

(4.14) Tα(x) 6 Tα(x̂) 6 a.

The result follows analogously if x ∈ Lq′ ,1(M) if q′ < q < ∞.
Suppose now that x ∈ M+ and q = ∞. Let N∗ be such that 2N∗ 6 ‖x‖∞ 6

2N∗+1 and define for all N > 1 the operator aN = ∑
−N6k6N∗

2k âk in N+. By the

argument above, the operator a = lim
N→∞

aN is well-defined in S(σ)+ and

µ(a) ≺≺ 2κp,∞Kp,p′ ,∞,∞Sp′ ,∞µ(x).

Since Tα is sublinear and order preserving, we have for any N > 1,

Tα(x̂) 6 Tα

(
∑

k6−N
2k fk

)
+

N∗

∑
k=−N+1

2kTα( fk)

6 2−N+1Tα(λ(0,∞)(x)) + ∑
k∈Z

2kTα( fk) 6 2−N+1C∞1 + a.

As this holds for all N > 1, we conclude that again (4.14) holds.
Finally, let x = x1 + x2 with x1 ∈ Lp′ ,1(M)+ and x2 ∈ Lq′ ,1(M)+ (or x2 ∈

M+ if q = ∞) and let a1, a2 ∈ S(σ)+ be two operators verifying the asserted
properties for x1, x2. Set a = a1 + a2, then Tα(x) 6 a and moreover,

µ(a) ≺≺ µ(a1) + µ(a2)

≺≺ 2κp,qKp,p′ ,q,q′Sp′ ,q′(µ(x1) + µ(x2)) 6 4κp,qKp,p′ ,q,q′Sp′ ,q′(µ(x)).

This concludes the proof.

REMARK 4.4. One cannot replace (4.12) in Theorem 4.3 by the stronger as-
sertion

µ(a) 6 4κp,qKp,p′ ,q,q′Sp′ ,q′µ(x).
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Indeed, if N is commutative this would mean that

µ(a) .p,q Sp,qµ(x),

as Kp,p′ ,q,q′ is not singular for p′ ↓ p or q′ ↑ q in this case. In particular, by
Calderón’s characterization (3.2) this would imply that every maximal opera-
tor of restricted weak types (1, 1) and (∞, ∞) is in fact of weak types (1, 1) and
(∞, ∞). However, this is not true (see e.g. [9] for a counterexample).

5. INTERPOLATION OF NONCOMMUTATIVE MAXIMAL INEQUALITIES

To extract interpolation results from Theorem 4.3 we recall the fundamental
connection, due to Boyd [3], between Boyd’s indices and Calderón’s operators.
The Boyd indices of a symmetric Banach function space E on R+ are defined by

pE = lim
s→∞

log s
log ‖D1/s‖

and qE = lim
s↓0

log s
log ‖D1/s‖

,

where D1/s is the dilation operator (D1/sg)(t) = g(t/s), t ∈ R+.

THEOREM 5.1 ([3]). If E is a symmetric Banach function space on R+, then the
following hold:

(i) If 1 6 p < q < ∞, then Sp,q is bounded on E if and only if p < pE 6 qE < q.
(ii) If 1 6 p < ∞, then Sp,∞ is bounded on E if and only if p < pE.

By combining Theorems 4.3 and 5.1 we obtain the following interpolation
theorem, which extends Theorem 5.4 of [1], as well as Theorem 6.5 of [6], to a
larger class of noncommutative maximal operators. More importantly, we find a
better interpolation constant (which is essentially optimal, cf. the discussion after
Corollary 5.3).

THEOREM 5.2. Let 1 6 p < q 6 ∞ and let E be a fully symmetric Banach
function space. Let (Tα)α∈A be a net of order preserving, sublinear maps which is of
restricted weak types (p, p) and (q, q). Let κp,q be the constant in (4.1) and Kp,p′ ,q,q′ be
the constant in (4.4). If p < p′ < pE and either qE < q′ < q < ∞ or q = ∞, then for
any x ∈ E(M)+,

(5.1) ‖(Tα(x))α∈A‖E(N ;`∞) 6 4κp,qKp,p′ ,q,q′‖Sp′ ,q′‖E→E‖x‖E(M).

Proof. If x ∈ E(M)+ then x ∈ Lp′ ,1(M)+ + Lq′ ,1(M)+ if q < ∞ and x ∈
Lp′ ,1(M)+ +M+ if q = ∞ by the assumptions on pE and qE. Let a ∈ S(σ)+ be
the operator given by Theorem 4.3. Since E is fully symmetric, it follows from
(4.12) and Theorem 5.1 that a ∈ E(M)+ and

‖a‖E(M) 6 4κp,qKp,p′ ,q,q′‖Sp′ ,q′µ(x)‖E 6 4κp,qKp,p′ ,q,q′‖Sp′ ,q′‖E→E‖x‖E(M).

Thus, (Tα(x))α∈A is in E(N ; `∞) and (5.1) holds.
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The following Marcinkiewicz-type interpolation theorem for noncommuta-
tive maximal operators is a special case of Theorem 5.2.

COROLLARY 5.3. Fix 1 6 p < p′ < r < q′ < q 6 ∞. If (Tα)α∈A is a net of
order preserving, sublinear maps which is simultaneously of restricted weak types (p, p)
and (q, q) with constants Cp and Cq, then for any x ∈ Lr(M)+,

‖(Tα(x))α∈A‖Lr(N ;`∞).max{Cp, Cq}
( p′

p′−p
+

q′

q−q′
)( r

r−p′
+

r
q′−r

)
‖x‖Lr(M).

In particular,

(5.2) ‖(Tα(x))α∈A‖Lr(N ;`∞) . max{Cp, Cq}
( rp

r− p
+

rq
q− r

)2
‖x‖Lr(M).

Proof. Using Hardy’s inequalities (see e.g. Lemma III.3.9 of [2]) one readily
shows that

(5.3) ‖Sp′ ,q′‖Lr→Lr 6
( r

r− p′
+

r
q′ − r

)
.

Since pLr = qLr = r, the first assertion is now immediate from Theorem 5.2.
Taking p′ = p/2 + r/2 and q′ = r/2 + q/2 yields (5.2).

Let us compare this result to Theorem 3.3. Thanks to the strong type as-
sumption on the right endpoint, the interpolation constant in (3.6) does not de-
pend on q. Also the dependence on the constants Cp and Cq is better than in (5.2).
On the other hand, Corollary 5.3 requires only a restricted weak type assumption
on both endpoints, which is easier to verify in practice, and the interpolation con-
stant is of the right order under these conditions. Also, it is clear that the interpo-
lation result for more general noncommutative symmetric spaces in Theorem 5.2
cannot be obtained using the real interpolation techniques used in [12].

As an illustration of our interpolation results, we deduce Doob’s maximal
inequality. This result was obtained in [10], [12] for E = Lp and, using a differ-
ent argument using duality, for more general symmetric Banach function spaces
in [6]. The proof here removes some unnecessary assumptions on E from Theo-
rem 6.7 of [6], and yields a constant of optimal order (in contrast to [6]). Note that
the assumption pE > 1 cannot be removed, as Doob’s maximal inequality fails if
E = L1.

COROLLARY 5.4. LetM be a semi-finite von Neumann algebra and let (En)n>1
be an increasing sequence of conditional expectations inM. If E is a symmetric Banach
function space on R+ with pE > 1, then there is a constant CE depending only on E such
that

‖(En(x))n>1‖E(M;`∞) 6 CE‖x‖E(M) (x ∈ E(M)).

If p > 1 then CLp is of optimal order O((p− 1)−2) as p ↓ 1.

Proof. If pE > 1, then E is fully symmetric up to a constant, i.e., if g ∈ S(R+)
and h ∈ E satisfy g ≺≺ h, then g ∈ E and ‖g‖E .E ‖h‖E (see the proof of
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Lemma 3.6 in [7]). Since (En)n>1 is of M-weak type (1, 1) (cf. [5]) and strong type
(∞, ∞), the result now follows from Theorem 5.2 and Corollary 5.3.

To conclude this paper, we deduce an interpolation theorem for the gener-
alized moments of noncommutative maximal operators from Theorem 4.3. Re-
call the following definitions. Let Φ : [0, ∞) → [0, ∞] be a convex Orlicz func-
tion, i.e., a continuous, convex and increasing function satisfying Φ(0) = 0 and
lim
t→∞

Φ(t) = ∞. The Orlicz space LΦ is the subspace of all f in S(R+) such that for

some k > 0,
∞∫

0

Φ
( | f (t)|

k

)
dt < ∞.

We may equip LΦ with the Luxemburg norm

‖ f ‖LΦ
= inf

{
k > 0 :

∞∫
0

Φ
( | f (t)|

k

)
dt 6 1

}
.

Under this norm LΦ is a symmetric Banach function space [2]. We define the
indices of Φ by

pΦ = sup
{

p > 0 :
t∫

0

s−pΦ(s)
ds
s
'p t−pΦ(t) for all t > 0

}
,

qΦ = inf
{

q > 0 :
∞∫

t

s−qΦ(s)
ds
s
'q t−qΦ(t) for all t > 0

}
.

We say that Φ satisfies the global ∆2-condition if for some constant C > 0,

(5.4) Φ(2t) 6 CΦ(t) (t > 0).

It is known that pΦ and qΦ coincide with the Boyd indices of LΦ. Moreover, one
may show that (5.4) holds if and only if qΦ < ∞. For more details we refer to the
discussion in [6].

THEOREM 5.5. Let 1 6 p < q 6 ∞ and let Φ be an Orlicz function satisfying the
global ∆2-condition. Let (Tα)α∈A be a net of order preserving, sublinear maps which is
of restricted weak types (p, p) and (q, q). If p < pΦ and either qΦ < q < ∞ or q = ∞,
then for any x ∈ LΦ(M)+ there exists an a ∈ LΦ(N )+ such that Tα(x) 6 a for all
α ∈ A and

σ(Φ(a)) .p,q,Φ τ(Φ(x)).

Proof. Suppose that q < ∞. Fix p < p′ < p̃ < pΦ 6 qΦ < q̃ < q′ < q. Let
x ∈ LΦ(M)+ and let a ∈ S(σ)+ be the operator provided by Theorem 4.3. We
know that

µ(a) 6 Hµ(a) .p,p′ ,q,q′ HSp′ ,q′µ(x).
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By (5.3), Sp′ ,q′ and H = S1,∞ are bounded on L p̃(R+) and Lq̃(R+). By Theorem 2
of [17], (see also Theorem 4.4 of [6]), we can now conclude that a ∈ LΦ(N )+ and

σ(Φ(a)) .p,p′ ,q,q′ ,Φ

∞∫
0

Φ(HSp′ ,q′µ(x)(t))dt

.p′ ,p̃,q′ ,q̃,Φ

∞∫
0

Φ(µt(x))dt = τ(Φ(x)).

The proof in the case q = ∞ is similar.

In the special case that (Tα) is of M-weak type (p, p) and strong type (∞, ∞),
the above result was obtained in Theorem 3.2 of [1]. The general case proved here
affirmatively answers an open question in this paper ([1], Remark 3.3(2)).
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