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ABSTRACT. A systematic analysis of the structure of finite-dimensional near-
ly-invariant subspaces of the Hardy space on the half-plane of index p (with
1 < p < ∞) is made, and a criterion given by which they may be recognised.
As a consequence, a new approach to Hitt’s theorem on nearly-invariant sub-
spaces is developed. Moreover, an analogue is given of Hayashi’s theorem for
finite-dimensional Toeplitz kernels; this is used to establish a necessary and
sufficient condition for a Toeplitz kernel to be non-trivial and of dimension n,
in terms of a factorisation of its symbol, analogous to Nakazi’s work for the
disc.
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1. INTRODUCTION

Let Hp(D) denote the Hardy space on the unit disc D, and let S∗ denote the
backward shift operator defined by

(S∗ f )(z) =
f (z)− f (0)

z
.

Nearly S∗-invariant (abbreviated to n. S∗-invariant) subspaces of H2(D), i.e., the
closed subspaces E of H2(D) such that z−1E ∩ H2(D) ⊂ E , were introduced by
Hitt in [17] and have since been the subject of various works ([8], [9], [15], [16],
[21], [22]). They are defined analogously in the Hp setting, for any p ∈ (1, ∞),
whether we consider the setting of the disc or the upper half-plane. The kernel of
a Toeplitz operator Tg with an essentially bounded symbol g is a n. S∗-invariant
subspace in each of these settings.

By Hitt’s theorem, any n. S∗-invariant subspace of H2(D) can be described
as a product E = f Kθ where f is the function of unit norm which is orthogonal to
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E ∩ zH2(D) in H2(D) and satisfies f (0) > 0, and θ is an inner function vanishing
at the origin. Here Kθ denotes H2(D)	 θH2(D).

In [15] Hayashi addressed the question of which nontrivial closed subspaces
of H2(D) are Toeplitz kernels (i.e., kernels of Toeplitz operators) and showed that
they were precisely those that could be represented as a product E = f Kθ where
f ∈ H2(D) with f 2 rigid in H1(D) and θ is an inner function vanishing at the
origin.

These results were further developed by Sarason in [21] and [22]. Their
generalisation to the vectorial case in H2(D) was studied in [9], where a nice in-
troduction to these problems and the corresponding known results can be found.

Few attempts have been made to extend them to the Hp setting, possibly
due to the lack of a Hilbert space structure allowing one to use a similar line of
reasoning. In [13] Dyakonov addressed the question of which closed subspaces of
Hp(D), 1 6 p 6 ∞, are Toeplitz kernels and proposed an alternative parametrisa-
tion of the kernel of a Toeplitz operator Tg based on Bourgain’s factorisation ([1],
[3]) for its symbol, trying to cover the whole range p ∈ [1, ∞] and avoid the use
of rigid functions. One disadvantage of this approach is that not only is such a
representation highly non-unique, but also it does not indicate the dimension of
the Toeplitz kernel and, in particular, whether it is trivial or not.

The question of whether the natural extension of Hitt’s and Hayashi’s re-
sults to the Hp setting holds, where naturally f and θ should depend on p, re-
mains open.

In this paper we study the case of finite-dimensional subspaces of H+
p (using

the upper half-plane instead of the disk as in [7]) by taking an approach that may
provide some useful lines of reasoning to study the unsolved problem of whether
Hitt’s and Hayashi’s theorems can be extended to all nontrivial subspaces of H+

p
(or Hp(D)). After some preliminary results and notation, the main results are
contained in Sections 2 and 3. In Section 2 we establish an analogue of Hitt’s the-
orem and we moreover present a simple criterion to recognise a n. S∗-invariant
subspace in H+

p , p ∈ (1, ∞), by studying the quotients of any two non-zero func-
tions in the subspace. In Section 3 we present an analogue of Hayashi’s result for
finite-dimensional Toeplitz kernels and use it to establish a necessary and suffi-
cient condition for the kernel of a Toeplitz operator Tg to be non-trivial and of di-
mension n, in terms of a factorisation of its symbol. Some of these results provide
analogues of the work of Nakazi [20] in the disc, although they are equivalent to
Nakazi’s results only for p = 2.

We take 0 < p 6 ∞ and H+
p , H−p to be the Hardy spaces of the upper and

lower half-planes C+ and C− respectively ([12]). We write Lp to denote Lp(R).
By GH±∞ we denote the class of invertible elements in H±∞ , and similarly for GL∞.

For G ∈ L∞ and 1 < p < ∞, the Toeplitz operator TG : H+
p → H+

p is de-
fined by

TG f+ = P+(G f+), f+ ∈ H+
p ,



FINITE-DIMENSIONAL TOEPLITZ KERNELS AND NEARLY-INVARIANT SUBSPACES 77

where P+ denotes the projection of Lp onto H+
p parallel to H−p . A Toeplitz kernel,

or T-kernel, is a subspace of H+
p , 1 < p < ∞, which is the kernel of some Toeplitz

operator.

2. NEARLY S∗-INVARIANT SUBSPACES AND MODEL SPACES

For 1 < p < ∞, and θ ∈ H+
∞ inner, we define the model space Kp

θ ⊂ H+
p by

Kp
θ = H+

p ∩ θH−p .

In particular K2
θ = H+

2 	 θH+
2 . We shall write Kθ rather than Kp

θ when no confu-
sion is likely.

We shall require the functions

λ±(ξ) = ξ ± i and r(ξ) =
ξ − i
ξ + i

,

and write S for the operator Tr on H+
p of multiplication by r, with S∗ the opera-

tor Tr.

DEFINITION 2.1 ([7]). Let E be a proper closed subspace of H+
p , 1 < p < ∞,

and η a complex-valued function defined a.e. on R. We say that E is nearly η-
invariant if, for every f+ ∈ E such that η f+ ∈ H+

p , we have η f+ ∈ E ; that is,
ηE ∩ H+

p ⊂ E . If E is nearly η-invariant with η ∈ L∞, then we also say that E is
nearly Tη-invariant.

We abbreviate “nearly η-invariant” to “n. η-invariant".
Throughout this section E will denote a n. S∗-invariant subspace of H+

p , that
is, a nearly η-invariant subspace for η = r. It is clear that E is one-dimensional
if and only if E = span{ f+} where f+ ∈ H+

p and f+(i) 6= 0. More generally, we
have:

PROPOSITION 2.2. If dim E > N, N ∈ N, then there are (at least) N linearly
independent elements of E which do not vanish at i.

Proof. If E is a n. S∗-invariant subspace of H+
p , then there exists f+1 ∈ E such

that f+1 (i) 6= 0. Let { f+1 , f+2 , . . . , f+N } be a set of linearly independent elements
of E and define f̃ j+ := aj f1+ + bj f j+, j = 2, . . . , N, where bj 6= 0 are such that
f̃ j+(i) 6= 0. Then f1+, f̃2+, . . . , f̃N+ are linearly independent elements of E that do
not vanish at i.

Thus, if dim E = N, we can choose a basis for E such that none of its ele-
ments vanishes at i.

We also have the following.

PROPOSITION 2.3. If dim E > N, with N ∈ N, then there exists at least one
element ψ+ ∈ E with a zero of order N − 1 at i.
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Proof. In any subspace of H+
p with N linearly independent elements there

exists an element ψ+ with a zero of order m > N− 1 at i. Since E is n. S∗-invariant,
r−m+N−1ψ+ belongs to E and has a zero of order N − 1 at i.

Remark that if dim E = N then the function ψ+ of Proposition 2.3 is unique
up to a constant factor.

As a consequence, we can represent a finite dimensional n. S∗-invariant sub-
space in terms of a model space as follows.

THEOREM 2.4. Let E be a n. S∗-invariant subspace of H+
p with dim E = N

(where N ∈ N) and let ψ+ ∈ E admit a zero of order N − 1 at i. Defining ψ̃+ :=
r−N+1ψ+, we have

(2.1) E = λ+ψ̃+KrN .

Proof. It is clear that ψ̃+, rψ̃+, . . . , rN−1ψ̃+ are linearly independent elements
of E , so that E = span{ψ̃+, rψ̃+, . . . , rN−1ψ̃+}. Thus ϕ+ ∈ E if and only if, for
some A1, . . . , AN ∈ C, we have

ϕ+ = (A1 + A2r + · · ·+ ANrN−1)ψ̃+

= ψ̃+λ+

( A1

λ+
+ A2r

1
λ+

+ · · ·+ ANrN−1 1
λ+

)
,

and A1
λ+

+ A2r 1
λ+

+ · · ·+ ANrN−1 1
λ+

is the general form of an element in KrN .

The representation (2.1) is unique modulo rational functions belonging to
GH+

∞ and equivalence of inner functions. To state this more precisely, we intro-
duce here some notation.

DEFINITION 2.5 ([6]). If θ1 and θ2 are inner functions, we say that θ1 ∼ θ2 if
and only if there are functions h± ∈ GH±∞ such that

(2.2) θ1 = h−θ2h+

and we say that Kθ1 ∼ Kθ2 if and only if

(2.3) Kθ1 = h+Kθ2 with h+ ∈ GH+
∞ .

It is clear that θ1 ∼ θ2 ⇒ Kθ1 ∼ Kθ2 ([6]). We will use the notation

(2.4)
Kθ1

Kθ2

' h+

whenever (2.3) holds.

THEOREM 2.6. Let E ⊂ H+
p be a n. S∗-invariant subspace with dimension N ∈

N. If, for some function F+ ∈ H+
p and an inner function θ, we have

(2.5) E = λ+F+Kθ ,
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then F+(i) 6= 0, θ ∼ rN and, for any function ψ̃+ satisfying (2.1),

(2.6)
Kθ

KrN
' ψ̃+

F+
∈ R∩ GH+

∞

whereR denotes the set of all rational functions in L∞.

Proof. It is clear that F+(i) 6= 0, by Proposition 2.2. On the other hand, since
dim Kθ = dim E = N, θ is a rational inner function and therefore θ = h−rNh+
where h± ∈ GH±∞ are rational functions. It follows that Kθ = h+KrN and from
(2.1) and (2.5) we have

(2.7) E = λ+ψ̃+KrN = λ+F+h+KrN .

Since the second equality in (2.7) implies that F+h+ ∈ E , it follows from the first
equality in (2.7) that, for some constants A1, A2, . . . , AN ∈ C, with A1 6= 0,

(2.8) F+h+ = ψ̃+(A1 + A2r + · · ·+ ANrN−1).

For N = 1 this means that F+h+ = A1ψ̃+ with A1 6= 0 and therefore

(2.9)
ψ̃+

F+
=

h+
A1

,

so that (2.6) holds. If N > 1 it follows from (2.7) that we also have

(2.10) rj+1F+h+ ∈ E for all j = 0, 1, . . . , N − 2

and, taking (2.8) into account,

(2.11) rj+1F+h+= ψ̃+(A1rj+1+· · ·+ AN−j−1rN−1)+ψ̃+(AN−jrN+· · ·+ANrN+j).

Since, by (2.10), the left hand side of this equality represents a function in E and
ψ̃+(A1rj+1 + · · ·+ AN−j−1rN−1) ∈ λ+ψ̃+KrN = E , we see that (2.11) implies that

ηj := ψ̃+(AN−jrN + · · ·+ ANrN+j) ∈ E

and therefore, since ηj has a zero of order greater or equal to N at i, ηj = 0 for all
j = 0, 1, . . . , N − 2. We have thus

AN−jrN + · · ·+ ANrN+j = 0 for all j = 0, 1, . . . , N − 2

and it follows that AN = AN−1 = · · · = A2 = 0. From (2.8) we see therefore that
(2.9) and, consequently, (2.6) hold.

Defining ϕ∗+ = ψ̃+

λN−1
+

, and noting that the set of functions

{λN−1
+ , λN−2

+ λ−, . . . , λ+λN−2
− , λN−1

− }

forms a basis for the space PN−1 of all polynomials of degree at most N − 1, we
arrive at the following result.
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THEOREM 2.7. Let E be a n. S∗-invariant subspace of H+
p with dim E = N. Then

there is a function ϕ∗+ ∈ E \ rH+
p such that

(2.12) E = {ϕ∗+p+ : p+ ∈ PN−1}.
In the case that E is a Toeplitz kernel, and hence nearly-invariant under

division by every inner function ([7]), we may also conclude that ϕ∗+ is outer. In
fact, a nontrivial Toeplitz kernel cannot be contained in θH+

p if θ is a non constant
inner function ([6], Theorem 2.4).

We may ask then if, conversely, any set of the form (2.12) is a n. S∗-invariant
subspace of H+

p and, in case ϕ∗+ is outer, if it is a Toeplitz kernel. While the latter
question will be dealt with in the next section, the answer to the former is given in
the following theorem, which moreover provides a simple criterion to recognise
a finite-dimensional n. S∗-invariant subspace of H+

p , p ∈ (1, ∞).

THEOREM 2.8. Suppose that E ⊂ H+
p and dim E = N. Then E is n. S∗-invariant

if and only if:
(i) E contains at least one function that does not vanish at i, and

(ii) the quotient of any two functions in E is equal to a quotient of two polynomials of
degrees at most N − 1.

Proof. The conditions are obviously necessary, by Theorem 2.7.
To show their sufficiency, we may clearly take N > 1. Pick a basis v+1 , . . . , v+N

of E , and assume that v+1 (i) 6= 0, as we can by Proposition 2.2.
For each k = 1, . . . , N we write

v+k =
pk
qk

v+1 ,

where p1 = q1 = 1, and in general pk, qk are polynomials of degree at most N− 1
with no common factors. Since v+1 (i) 6= 0, we have qk(i) 6= 0 for all k = 2, . . . , N.

Let d denote the least common multiple of the polynomials qk, k = 2, . . . , N.
Clearly the set of zeroes of d is finite and does not contain i. We claim that there
exists a complex linear combination

r =
c2v+2 + · · ·+ cNv+N

v+1
,

such that every zero of multiplicity m in d is a pole of order m in r, which implies
that d has at most N − 1 zeroes, counting multiplicity.

For suppose that z0 is a zero of d with multiplicity m. Then, for some k0 ∈
{2, . . . , N}, z0 must be a zero of qk0 with multiplicity m and, in a neighbourhood
of z0, we have

v+k (ξ)
v+1 (ξ)

=
1

(ξ − z0)m (bk + O(ξ − z0)), k = 2, . . . , N,
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where at least one bk is non-zero. The point z0 will be a pole of order m in r if

and only if
N
∑

k=2
ckbk 6= 0. Repeating the same reasoning for all zeroes of d, we see

that it is sufficient to choose a point (c2, . . . , cN) in CN−1 which does not belong

to finitely-many hyperplanes of the form
N
∑

k=2
ckbk = 0.

Our conclusion is that all the v+k
v+1

can be written over a common denominator

d ∈ PN−1. Thus

E =
{

v+1
N

∑
k=1

αk p̃k
d

: α1, . . . , αN ∈ C
}

for some polynomials p̃1, . . . , p̃N belonging to PN−1, and indeed we may take
p̃1 = d. Since dim E = N, we see that

E =
{

v+1
Q
d

: Q ∈ PN−1

}
.

Now near-invariance is clear: since d(i) 6= 0, if a function f ∈ E vanishes at i,
then so does the corresponding polynomial Q, and thus f

r ∈ E .

The results of Theorems 2.4 and 2.6 naturally lead to the question of how
they relate to Hitt’s characterisation of n. S∗-invariant subspaces [17], [21] in the
case when p = 2 and n 6= 1, since in general ψ̃+ is not orthogonal to the space E0
given by

(2.13) E0 := E ∩ rH+
2 = span{ψ+, r−1ψ+, . . . , r−(N−2)ψ+},

using the notation of Theorem 2.4.
We can nevertheless obtain an element ϕ+ ∈ E ∩ E⊥0 by Gram–Schmidt

orthogonalisation of the basis

{ψ+, r−1ψ+, . . . , r−(N−2)ψ+, r−(N−1)ψ+},

where r−(N−1)ψ+ = ψ̃+ as in Theorem 2.4, which yields an orthogonal basis
{ϕ1+, . . . , ϕN+}.

In particular we have

(2.14) ψ+ = ϕ1+ and ϕ+ := ϕN+ ∈ E 	 E0.

Since E0 has codimension 1 in E , the orthogonal element ϕ+ is unique apart from
a constant factor. From (2.1) it follows that, for some constants A0, A1, . . . , AN−1 ∈
C, with A := AN−1 6= 0, and C1, C2, . . . , CN−1 ∈ C we have

ϕ+ = A0ψ+ + A1r−1ψ+ + · · ·+ AN−1r−(N−1)ψ+

= A(r−1 − C1)(r−1 − C2) · · · (r−1 − CN−1)ψ+

= A(r−1 − Cj)
N−1

∏
s=1, s 6=j

(r−1 − Cs)ψ+
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for any j = 1, 2, . . . , N − 1. So, defining

ψ∗j+ =
N−1

∏
s=1, s 6=j

(r−1 − Cs)ψ+,

we then have

(2.15) ϕ+ = Ar−1ψ∗j+ − ACjψ
∗
j+.

Now ϕ+ ∈ E⊥0 and ψ∗j+ ∈ E0, so 〈ϕ+, ψ∗j+〉 = 0 and thus the constant Cj in (2.15)
is given by

Cj =
〈r−1ψ∗j+, ψ∗j+〉
〈ψ∗j+, ψ∗j+〉

.

Since ‖r−1ψ∗j+‖2 = ‖ψ∗j+‖2, it follows from the fact that the Cauchy–Schwarz
inequality is strict unless the vectors involved are linearly dependent that |Cj|<1.

Now we may write

(2.16) r−1(ξ)− Cj =
ξ + i
ξ − i

− Cj =
(1− Cj)(ξ − ξ j)

ξ − i
,

where ξ j = −i
1 + Cj

1− Cj
∈ C− since |Cj| < 1. We have thus proved the following.

THEOREM 2.9. Let ϕ+ ∈ E 	 E0 with ϕ+ 6= 0. Then

(2.17) ϕ+(ξ) = A
(ξ − ξ1) · · · (ξ − ξN−1)

(ξ − i)N−1 ψ+(ξ),

where A ∈ C \ {0}, ξ1, . . . , ξN−1 ∈ C− and ψ+ ∈ E has a zero of order N − 1 at i.

It follows from Theorems 2.4 and 2.9 that E = λ+ψ̃+KrN = λ+ϕ+h+KrN ,
where h+ ∈ GH+

∞ is given by

h+(ξ) =
(ξ + i)N−1

(ξ − ξ1) · · · (ξ − ξN−1)
.

Now
h+KrN = h+ ker Tr−N = ker Th−1

+ r−N = ker Tg−B,

where g− ∈ GH−∞ is given by

g−(ξ) =
(ξ − ξ1) · · · (ξ − ξN−1)

(ξ − i)N−1

and B is the Blaschke product given by

(2.18) B =
ξ − i
ξ + i

ξ − ξ1
ξ − ξ1

· · ·
ξ − ξN−1
ξ − ξN−1

.

Since ker Tg−B = ker TB = KB, we have established the following theorem.
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THEOREM 2.10. Let E be a n. S∗-invariant subspace of H+
2 with dim E = N. Let

ψ+ be the (unique, up to a constant factor) element of E admitting a zero of order N − 1
at i, and let ϕ+ ∈ E 	 E0. Then

E = λ+ϕ+KB,

where B is the finite Blaschke product given by (2.18), where ξ1, . . . , ξN−1 are the zeroes
of the rational function ϕ+

ψ+
.

Besides establishing a clear relation between Theorem 2.4 and Hitt’s theo-
rem, this result moreover defines explicitly the model space associated with Hitt’s
representation.

3. ON FINITE-DIMENSIONAL TOEPLITZ KERNELS

Next we address two closely related questions: when does a Toeplitz operator
have a nontrivial kernel of finite dimension, and when is a finite-dimensional subspace of
H+

p a T-kernel?
Here we need the theory of rigid functions.

DEFINITION 3.1. A function f+ ∈ H+
q \ {0}, with 0 < q < ∞, is called rigid

if and only if, for any g+ ∈ H+
q such that g+

f+
> 0 a.e. on R, we have g+ = λ f+ for

some λ ∈ R+.

A rigid function is outer (in H+
q ), and every rigid function in H+

q is the
square of an outer function in H+

p , with p = 2q ([7], [22]). If f+ ∈ H+
p and f 2

+ is
rigid in H+

p/2, we say that f+ is square-rigid in H+
p .

It was shown in [22] that a one-dimensional subspace of H2(D) is a T-kernel
if and only if it is spanned by a function that is square-rigid in H2(D). An anal-
ogous result holds for one-dimensional subspaces of H+

p , for 1 < p < ∞, as
follows.

THEOREM 3.2 ([7]). Let f+ ∈ H+
p , 1 < p < ∞. Then span{ f+} is a T-kernel

in H+
p if and only if f+ is outer and square-rigid in H+

p . In that case span{ f+} =
ker Tf+/ f+

.

As a consequence, we also have:

COROLLARY 3.3. If O+ ∈ H+
p is outer and square-rigid then, for every k ∈ N,

(3.1) ker Tr−kO+/O+
= span{O+, rO+, . . . , rkO+} = λ+O+Krk+1 .

Proof. It is clear that O+, rO+, . . . , rkO+ are linearly independent and belong
to ker Tr−kO+/O+

. If the dimension of the latter was greater than k + 1 we would
have ([2])

ker TO+/O+
= ker Trk(r−kO+/O+)

> 1,
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which is false since ker TO+/O+
= span{O+} by Theorem 3.2.

The following theorem is an analogue of Hayashi’s result ([15]) for finite-
dimensional subspaces of H+

p .

THEOREM 3.4. Suppose that E ⊂ H+
p and dim E = N. Then E is a T-kernel if

and only if E = λ+O+KrN , with O+ a square-rigid outer function in H+
p .

Proof. Let E = λ+ϕ+KrN , according to Theorem 2.4. If E is a T-kernel, then
ϕ+ must be outer, as remarked in Section 2, so we may write ϕ+ = O+, with O+

outer. Since E is a T-kernel containing O+, it must contain the minimal kernel
Kmin(O+) = ker TO+/O+

.
Let ψ+ ∈ ker TO+/O+

⊂ E ; then ψ+ = λ+O+k+, where k+ ∈ KrN and, for

some ψ− ∈ H−p , we have O+
O+

ψ+ = ψ−. On the other hand,

O+

O+
ψ+ = ψ− ⇐⇒ O+λ+k+ = ψ− ⇐⇒

λ+

λ−
k+ =

λ−1
− ψ−

O+

and, since λ−1
− ψ−
O+

∈ Lp ∩N+, we have λ−1
− ψ−
O+

∈ H−p , i.e., ψ−
O+
∈ λ−H−p .

From

λ+k+︸ ︷︷ ︸
∈λ+H+

p

=
ψ−
O+︸︷︷︸
∈λ−H−p

,

it follows that both sides are constant ([23]), so that ψ− = cO+ and ψ+ = cO+

with c ∈ C. Thus ker TO+/O+
= span{O+}, which is the same as saying that O2

+

is rigid in H+
p/2.

Conversely, assume that E = O+λ+KrN with O2
+ rigid in H+

p/2. Then, by
Corollary 3.3,

E = λ+O+KrN = ker Tr−(N−1)(O+/O+)
,

so E is a T-kernel.

Using the result of Theorem 3.4 we can also characterise any non zero finite-
dimensional T-kernel and establish conditions for a T-kernel to be trivial, in terms
of a factorisation of the symbol of the corresponding Toeplitz operator.

We will need the following results.

THEOREM 3.5 ([7]). For every ϕ+ ∈ H+
p \ {0} there exists a T-kernel containing

ϕ+, denoted by Kmin(ϕ+), such that for any g ∈ L∞ we have

(3.2) ϕ+ ∈ ker Tg ⇒ Kmin(ϕ+) ⊂ ker Tg

and, if ϕ+ = I+O+ is an inner-outer factorisation of ϕ+,

(3.3) Kmin(ϕ+) = ker TI+O+/O+
.
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Kmin(ϕ+) is called the minimal kernel for ϕ+. It can be shown moreover that
a nontrivial, proper, n. S∗-invariant subspace E of H+

p (1 < p < ∞) is a T-kernel
if and only if there exists ϕ+ ∈ H+

p such that E = Kmin(ϕ+) ([7]).

DEFINITION 3.6 ([6]). If K = Kmin(ϕ+), we say that ϕ+ is a maximal function
for K.

Clearly, if ϕ+ is a maximal function for ker Tg, then we have gϕ+ = ϕ−
where ϕ− ∈ H−p is outer ([6]).

THEOREM 3.7. For g ∈ L∞, ker Tg is nontrivial and of finite dimension if and
only if, for some N ∈ N, g admits a factorisation

(3.4) g = g−r−N g−1
+ ,

where g−
λ−
∈ H−p is outer and g+

λ+
∈ H+

p is outer and square-rigid. In that case ker Tg =

ker Tr−N(g+/g+) and dim ker Tg = N.

Proof. Step 1. Let O+ = g+
λ+

, O− = g−
λ−

. If g admits a representation of
the form (3.4) then {O+, rO+, . . . , rN−1O+} ⊂ ker Tg and so, by Corollary 3.3,
ker Tg ⊃ ker Tr−N+1(O+/O+)

6= {0}. On the other hand, if ϕ+ ∈ ker Tg, we have
gϕ+ = ϕ− with ϕ− ∈ H−p which, taking (3.4) into account, is equivalent to

(3.5) r−N+1 O+

O+
ϕ+ =

O+ϕ−
O−

.

Since the right hand side of (3.5) represents a function whose conjugate be-
longs to the Smirnov classN+ as well as to Lp, it is a function in H−p ; it follows that
ϕ+ ∈ ker Tr−N+1(O+/O+)

. Therefore (3.4) implies that ker Tg ⊂ ker Tr−N+1(O+/O+)
.

It follows that ker Tg = ker Tr−N+1(O+/O+)
= λ+O+KrN and dim ker Tg = N.

Step 2. Conversely, let now ker Tg be a (n. S∗-invariant) subspace of H+
p

with dimension N. Let ϕ+ be a maximal function for ker Tg. By Theorem 3.4,
ker Tg = O+λ+KrN , where O+ ∈ ker Tg is outer and square-rigid, so we have

(3.6) r−NO−1
+ λ−1

+ ϕ+ = ψ−,

where ψ− ∈ H−p is outer by Lemma 3.8 below. On the other hand,

(3.7) gϕ+ = O−

where O− is outer since ϕ+ is maximal in ker Tg. From (3.6) and (3.7) we obtain

g =
O−
ψ−

r−N O−1
+

λ+

where O−
ψ−λ−

= gr−N+1O+ ∈ H−p is outer and
(

O−1
+

λ+

)−1
λ−1
+ = O+ is outer and

square-rigid.
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LEMMA 3.8. For g ∈ L∞ let ϕ+ be a maximal function in ker Tg = O+λ+KrN ,
N ∈ N, as in Theorem 3.4. Then ψ− = r−NO−1

+ λ−1
+ ϕ+ is outer in H−p .

Proof. Since ϕ+ ∈ ker Tg, we have ϕ+ = O+λ+h+ with h+ ∈ ker Tr−N =
KrN and thus

(3.8) r−NO−1
+ λ−1

+ ϕ+ = ψ− ∈ H−p .

Remark that O−1
+ λ−1

+ ϕ+ ∈ N+ ∩ Lp, so that O−1
+ λ−1

+ ϕ+ ∈ H+
p . If ψ− = I−O− is

an inner-outer factorisation of ψ− in H−p , then it follows from (3.8) that we have
I−O−1

+ λ−1
+ ϕ+ ∈ ker Tr−N . Therefore I−ϕ+ ∈ O+λ+ ker Tr−N = ker Tg and it

follows that ϕ+ ∈ ker TI−g. We conclude that I− must be constant since ker Tg is
the minimal kernel for ϕ+, and ker TI−g $ ker Tg if I− is not constant ([7]).

A similar characterisation of non-trivial finite-dimensional Toeplitz kernels
in Hp(D) was obtained by Nakazi ([20], Theorem 7). The result can be stated as
follows (here T denotes the unit circle):

THEOREM 3.9 ([20]). Let 1 < p < ∞, and g̃ ∈ L∞(T), with n ∈ N and let Tg̃ be
the associated Toeplitz operator on Hp(D). Then the following conditions are equivalent:

(i) dim ker Tg̃ = n;
(ii) there is a square-rigid outer function f+ ∈ Hp(D) such that ker Tg̃ = {p f+ :

p ∈ Pn−1};
(iii) there is an outer function h ∈ H∞(D) with |g̃| = |h| on T, and a square-rigid

outer function f+ ∈ Hp(D) such that

(3.9)
g̃
|g̃|

h
|h| = zn f+

f+
on T.

To compare (3.9) with (3.4), we shall suppose for simplicity that |g| = 1.

Let m : D → C+ denote the conformal bijection given by m(z) = i
1 + z
1− z

for

z ∈ D, and extending this to T, let g̃ = g ◦ m. There is a well-known isometric
isomorphism V : Lp(T)→ Lp(R), whose restriction maps Hp(D) onto H+

p ; it can
be defined by

(Vψ)(ξ) =
1

π1/p
1

(ξ + i)2/p ψ(m−1(ξ)), ξ ∈ R.

However, V does not map the complementary space zHp(D) onto H−p unless p =
2, so that Toeplitz operators on the disc and half-plane are no longer equivalent.
It is therefore not surprising to note that the condition f+ ∈ Hp(D) in Nakazi’s
Theorem 3.9 is not equivalent to the condition g+

λ+
∈ H+

p in Theorem 3.7 unless
p = 2.

Nevertheless, if we define w(t) = |t− 1|1−2/p, then we have that the Toe-
plitz operator Tg defined on H+

p is equivalent to a Toeplitz operator on a weighted



FINITE-DIMENSIONAL TOEPLITZ KERNELS AND NEARLY-INVARIANT SUBSPACES 87

Hardy space H+
p,w; to define this, let Lp,w(T) = w−1Lp(T) and note that B :

Lp(R)→ Lp,w(T), given by

(Bϕ)(t) =
1

1− t
ϕ
(

i
1 + t
1− t

)
, t ∈ T,

is an isomorphism between Lp(R) and Lp,w(T) (see [19]). Now let ST denote the
singular integral operator on Lp,w(T) defined by

(STψ)(t) =
1
πi

∫
T

ψ(τ)

τ − t
dτ, t ∈ T,

and H±p,w the images of the projections 1
2 (I ± ST). Then H±p = B−1H±p,w.

Thus the Toeplitz operator Tg on H+
p is equivalent to a Toeplitz operator Tg̃

on H+
p,w by Tg = B−1Tg̃B.
For p = 2 we have w = 1 and there is a unitary equivalence between Tg (on

H+
2 ) and Tg̃ (on H2(D)), so that we recover a case of Theorem 3.9 from our work.

For p 6= 2, Theorem 3.7 can be used to extend Nakazi’s result to a weighted
Hardy space on D; alternatively, Nakazi’s result can be used to provide versions
of Theorems 3.4 and 3.7 for weighted Hardy spaces of the upper half-plane.

Returning to the half-plane, we have the following.

THEOREM 3.10. If g ∈ L∞ admits a factorisation

(3.10) g = g−θg−1
+

where g−
λ−
∈ H−p is outer, g+

λ+
∈ H+

p is outer and square-rigid and θ ∈ H+
∞ is an inner

function, or if

(3.11) g = g−rN g−1
+ ,

where g−
λ−
∈H−p is outer and square-rigid, g+

λ+
∈H+

p is outer and N ∈ N, then ker Tg={0}.

Proof. Let O+ =
g−1
+

λ+
and O− = g−

λ−
. We have ϕ+ ∈ ker Tg if and only if

ϕ+ ∈ H+
p and gϕ+ = ϕ− with ϕ− ∈ H−p which, from (3.10), is equivalent to

O−λ−θO−1
+ λ−1

+ ϕ+ = ϕ−.

Thus if ϕ+ ∈ ker Tg we have

O+

O+

ϕ+

λ+
=

O+ϕ−
O−

λ−1
− θ

where the right hand side represents a function in H−p since its conjugate is in
Lp and in the Smirnov class N+. Therefore λ−1

+ ϕ+ ∈ ker TO+/O+
and, by near

invariance with respect to λ+ ([7]), we also have ϕ+ ∈ ker TO+/O+
. We conclude

that ϕ+ = 0 since ker TO+/O+
is one-dimensional.
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If g admits a representation (3.11) then g admits a factorisation (3.4) and,
by Theorem 3.7, ker T∗g = ker Tg 6= {0}. By Coburn’s lemma, it follows that
ker Tg = {0} .

It is well known that various properties of a Toeplitz operator can be de-
scribed in terms of an appropriate factorisation of its symbol. The representations
(3.4) and (3.11) generalise the so called Lp factorisation, which is a representation
of g as a product

(3.12) g = g−dg−1
+

where

(3.13)
g±
λ±
∈ H±p ,

g−1
±

λ±
∈ H±q ,

1
p
+

1
q
= 1

and

(3.14) d = rk, k ∈ Z.

The Toeplitz operator Tg is Fredholm if and only if g admits a factorisation (3.12)
satisfying the conditions (3.13), (3.14) and such that g−P+g−1

− I is a densely de-
fined bounded operator in Lp. In that case (3.12) is called a generalised p-factoris-
ation, or Wiener–Hopf factorisation relative to Lp, and we have dim ker Tg = k if
k > 0, dim ker T∗g = −k if k 6 0 ([5], [18], [19]).

As an illustration, we consider g(ξ) = rα, α ∈ [− 1
2 , 1

2 ], where we assume
the discontinuity to be at ∞. A Wiener–Hopf factorisation relative to L2 exists for
all α 6= ± 1

2 and Tg is invertible in H+
2 ([11]). If α = ± 1

2 then g does not admit
a Wiener–Hopf factorisation relative to L2. However we can write g = g−rN g−1

+

with g− = (ξ − i)−1/2, g−1
+ = (ξ + i)1/2 and N = 0 if α = − 1

2 , N = 1 if α = 1
2 . It

is clear that g±λ−1
± ∈ H±2 are outer and, since we have

Kmin(g+λ−1
+ ) = ker Tr−3/2 = span{g+λ−1

+ },

the function g+λ−1
+ is square-rigid. We have thus ker Tg = ker T∗g = {0}, in

accordance with Theorem 3.10.
The representation (3.12) is called a bounded factorisation if g±1

− ∈ H−∞ and
g±1
+ ∈ H+

∞ ([4]). In various subalgebras of L∞, every invertible element admits a
bounded factorisation (3.12) where d is an inner function. This is the case for the
Wiener algebra and the algebra of all Hölder continuous functions with exponent
µ ∈ (0, 1), with d = rk, k ∈ Z ([18], [19]), and the algebra AP of almost periodic
functions, with d(ξ) = exp(−iλξ), λ ∈ R ([10], [14]).

In the latter case, we easily see moreover that, for every g ∈ AP which
is invertible in L∞ (and thus also in AP), ker Tg is either trivial or isomorphic
to an infinite dimensional model space Kθ with θ(ξ) = exp(iλξ), depending on
whether λ 6 0 or λ > 0.
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