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ABSTRACT. Given a graph E and a labeling map ω, we consider the quasi-
free action αω of R on the graph algebra C∗(E). For a finite graph E, we give
a complete characterization of all KMSβ states of a graph algebra in terms of a

polyhedral set in RE0
. This characterization allows us to generalize the results

of an Huef, Laca, Raeburn, and Sims. We make an explicit construction of all
KMSβ states for β above a critical inverse temperature βc, as well as a precise
description of the KMS states for graphs with a certain strongly connected
subgraph. In addition, we find a correspondence between the KMS states of
a graph algebra and its dual-graph algebra when E is a row-finite graph with
no sinks.
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1. INTRODUCTION

Given a graph E = (E0, E1, r, s) and a labeling map ω : E1 → R, we consider
the quasi-free action αω : R y C∗(E) that satisfies αω

t (se) = eiω(e)tse for all e ∈
E1 and αω

t (pv) = pv for all v ∈ E0, which reduces to the gauge action of R,
when ω(e) = 1 for all edges e ∈ E1. For the gauge action γ of R, Enomoto,
Fujii and Watatani [6] gave a description of the KMS states of the Cuntz–Krieger
algebra OA, in terms of the eigenvalues of A. In particular, they showed that
when A is an irreducible matrix, there exists a unique KMS state that has inverse
temperature ln ρ(A), where ρ(A) is the spectral radius of A (or, equivalently, the
Perron–Frobenius eigenvalue of A). Exel and Laca [7] extended the results in [6]
for quasi-free actions, where the labels are all positive and A is a finite matrix with
no zero rows or columns. When A is an irreducible matrix, they gave a complete
description of the KMS states for the Toeplitz–Cuntz–Krieger algebra TA. Among
their results, they showed that at a critical inverse temperature βc > 0, there exists
a unique KMSβc state of TA. In addition, this state factors through OA and is the
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only KMS state for the C∗-dynamical system consisting of quasi-fee actions on
OA. Zacharias [18] also showed that there exists a unique KMS state of OA and is
the only KMS state for the C∗-dynamical system consisting of quasi-free actions
on OA but without the use of the Toeplitz–Cuntz–Krieger algebra. The unique βc
satisfies ρ(Dβc A) = 1, where Dβc is a diagonal matrix and each diagonal entry is
of the form e−βcλ for some label λ > 0.

More recently, there has been interest in the investigation of KMS states of
C∗-algebras that are constructed from directed graphs. In [9], [10], [11], finite
graphs were analyzed and, in [4], [5], emphasis was towards infinite graphs. In
[10] and [11], an Huef, Laca, Raeburn and Sims gave considerable insight into
KMS states on the C∗-algebras of finite graphs for the gauge action of R; their pa-
pers consisted of studying KMS states on the Toeplitz algebra T C∗(E) for a finite
graph E. In [10], they gave an explicit description of all KMSβ states, when β is
above the critical inverse temperature ln ρ(A), where A is the vertex matrix of the
corresponding graph. It was also shown that if E is a strongly connected graph,
then there is a unique KMSln ρ(A) state of T C∗(E) that factors through C∗(E). In
[11], they continued their analysis, with emphasis on graph algebras having re-
ducible vertex matrices, by looking at the strongly connected components of a
finite graph E and their interactions.

In this paper, we extend the results of the theorems in [10] to quasi-free
actions (also known as generalized gauge actions). The characterization in Theo-
rem 3.3 of this paper allows us to focus our attention on the graph algebra C∗(E)
directly. Then, as a consequence, we use Proposition 2.5 to recover the results for
the Toeplitz algebra T C∗(E). We believe that the results in [11] can be extended
to quasi-free actions, using the same techniques of this paper, but we leave that
for future work.

The notation and preliminaries needed for this paper are in Section 2.
In Section 3, we characterize the simplex of all KMS states in terms of a

polyhedral set in RE0
, which allows us to readily compute its extreme points and

we illustrate this through examples in Section 9.
In Section 4, we find KMS states at a critical inverse temperature βc; when

ω(e) > 0 for all e ∈ E1, we show that this βc exists and is unique.
In Section 5, we give a precise description of the KMS states above a critical

inverse temperature and extend Theorem 3.1 of [10]. If H is the set of sinks and
E\H is a strongly connected subgraph of E, then we give a precise description
of all KMS states of C∗(E); in particular, there is a unique KMSβc state and it
factors through a unique KMSβc state of C∗(E\H). As a consequence, we extend
Theorem 4.3 in [10] (see Section 6).

In Section 7, we analyze the connection between the KMS states of a graph
algebra and its dual-graph algebra, when E is a row-finite graph with no sinks.

In Section 8, we extend Proposition 5.1 of [10].
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2. NOTATION AND PRELIMINARIES

2.1. GRAPH ALGEBRAS. A directed graph E = (E0, E1, r, s) consists of countable
sets E0 and E1 of vertices and edges, respectively, with range and source maps
r, s : E1 → E0. A directed graph E = (E0, E1, r, s) is called finite if both E0 and
E1 are finite and is called row-finite if |s−1(v)| < ∞ for all v ∈ E0. A path of
length n > 1 is a finite sequence of edges µ := µ1µ2 · · · µn with r(µi) = s(µi+1)
for 1 6 i 6 n − 1. We regard vertices as paths of length 0. For n > 0, we let
En denote the set of all paths of length n and define E∗ :=

⋃
n>0

En. The range

and source maps extend to E∗ in a natural way. For vertices v and w, we define
vEnw to be the set {µ ∈ En : s(µ) = v and r(µ) = w}. A cycle is a path with its
range and source equal; namely, a path µ := µ1µ2 · · · µn is a cycle provided that
r(µn) = s(µ1). A vertex that does not emit an edge is called a sink and we denote
E0

sinks to be the set of all sinks in E0. A vertex that emits at least one edge but not
infinitely many edges is called a regular vertex and we denote E0

reg to be the set of
all regular vertices in E0.

If E is a graph, a Cuntz–Krieger E-family in a C∗-algebra is a set of mutually
orthogonal projections {pv : v ∈ E0} and partial isometries {se : e ∈ E1} with
mutually orthogonal ranges that satisfy the following Cuntz–Krieger relations:

(CK1) s∗e se = pr(e)

(CK2) pv = ∑
{e∈E1 :s(e)=v}

ses∗e whenever 0 < |s−1(v)| < ∞, and

(CK3) ses∗e 6 ps(e).

The graph C∗-algebra (or, simply, the graph algebra) of E is the C∗-algebra
generated by the universal Cuntz–Krieger E-family and is denoted by C∗(E).

2.2. STRONGLY CONNECTED GRAPH AND ITS DUAL GRAPH. Let E be a graph.
Define the dual graph Ê by Ê0 = E1 and Ê1 = E2 where rÊ(e f ) = f and sÊ(e f ) =
e. We note that if E is row-finite, then so is Ê. The vertex matrix of the dual graph
corresponds to the edge matrix of the original graph:

AÊ(e, f ) =

{
1 if e f is a path,
0 if e f is a not path,

= BE(e, f ).

We say non-empty graph E is strongly connected if for every pair of vertices v, w ∈
E0, there is a path |µ| > 1 such that s(µ) = v and r(µ) = w.

PROPOSITION 2.1. If E is a strongly connected directed graph, then so is Ê.

Proof. Suppose E is strongly connected and e, f ∈ Ê0. Let r(e) = x and
s( f ) = y. Since E is strongly connected, there is a path α = α1α2 · · · αn from x
to y. Thus, eα1, α2α3, . . . , αn f are paths of length two in E, so they correspond to
edges in Ê. Hence, we have that (eα1)(α1α2) · · · (αn−1αn)(αn f ) is a path from e to
f in Ê, as required.
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2.3. THE TOEPLITZ ALGEBRA. The Toeplitz algebra T C∗(E) is isomorphic to the
graph algebra C∗(ET ), where the associated graph ET comes from E and is de-
fined below. We refer the reader to Theorem 4.1 of [8] for the definition of the
Toeplitz algebra T C∗(E).

DEFINITION 2.2. Let E = (E0, E1, r, s) be a graph and set R(E) := {v ∈ E0 :
0 < |s−1(v)| < ∞}. Define a new graph ET by letting

E0
T := E0 ∪ {v′ : v ∈ R(E)},

E1
T := E1 ∪ {e′ : e ∈ E1 and r(e) ∈ R(E)},

with range and source maps extended to E1
T by s(e′) = s(e), and r(e′) = r(e)′.

PROPOSITION 2.3 ([14]). Let E be a graph and let {se, pv} be a generating Toeplitz–
Cuntz–Krieger E-family in T C∗(E). Then the Toeplitz algebra T C∗(E) is canonically
isomorphic to the graph algebra C∗(ET ). Furthermore, if we define

qw :=


pw if w /∈ R(E),

∑
{e∈E1 :s(e)=w}

ses∗e if w ∈ R(E),

pv − ∑
{e∈E1 :s(e)=v}

ses∗e if w = v′ for some v ∈ R(E),

t f :=

{
s f qr( f ) if f ∈ E1,
seqr(e)′ if f = e′ for some e ∈ E1,

then {t f , qw} generates a Cuntz–Krieger ET -family in T C∗(E).

REMARK 2.4. The above proposition is just a specific example of a more
general result: it was shown that every relative graph algebra C∗(E, V), where
V ⊆ R(E), is canonically isomorphic to the graph algebra C∗(EV) (see Theo-
rem 3.7 of [14]). Since the Toeplitz algebra T C∗(E) is the relative graph algebra
C∗(E, ∅), we adopted the notation C∗(ET ) instead of C∗(E∅).

PROPOSITION 2.5. Let E = (E0, E1, r, s) be a graph. Let ω be a labeling map on
E1 and extend ω to E1

T by ω(e′) = ω(e). Then (C∗(ET ), αω) is covariantly isomorphic
to (T C∗(E), αω).

The proof follows immediately from Proposition 2.3.

2.4. IDEAL STRUCTURE. A set H of E0 is hereditary if, for any e ∈ E1, we have
s(e) ∈ H implies r(e) ∈ H. A hereditary set H is saturated if, whenever v ∈ E0

is a regular vertex with r(vE1) ⊆ H, then v ∈ H. If H ⊆ E0 is a hereditary set,
the saturation of H is the smallest saturated subset H of E0 containing H. It was
shown that there is a bijective correspondence between the gauge-invariant ideals
in C∗(E) and the saturated hereditary subsets of E0 (see [16] and the references
therein).



KMS STATES FOR QUASI-FREE ACTIONS ON FINITE-GRAPH ALGEBRAS 123

2.5. KMS STATES AND GROUND STATES. Given a C∗-algebra A and a homo-
morphism (dynamics) σ : R → Aut(A), an element a ∈ A is called analytic if
t → σt(a) extends to an entire function on C. For β ∈ (0, ∞), a KMSβ state of
(A, σ) is a state φ of A which satisfies the KMSβ condition

φ(ab) = φ(bσiβ(a))(2.1)

for all a, b analytic in A. A KMS0 state of (A, σ) is a state φ of A that is invariant,
with respect to σ and that satisfies the trace condition φ(ab) = φ(ba) for all a, b ∈
A. A KMS∞ state is a weak∗ limit of a sequence of KMSβn states as βn → ∞ and a
ground state is a state φ such that the functions φa,b : z 7→ φ(aαz(b)) are bounded
in the upper-half plane for every a, b analytic in A. Standard references for KMS
states and ground states can be found in [3] and [15].

Throughout this paper, we consider the quasi-free action αω of R on C∗(E)
that corresponds to a labeling map ω on E1. This labeling map has an extention
to E∗, which we also denote by ω, and is defined below.

DEFINITION 2.6. Let ω : E1 → R be a labeling map on E1. We say ω is
a labeling map on E∗ if we extend ω to E∗ by ω(µ) = ω(µ1) + · · · + ω(µn) for
µ = µ1 · · · µn ∈ E∗\E0 and ω(v) = 0 for v ∈ E0.

In [5], it was shown that if ω(µ) 6= 0 for all µ ∈ E∗\E0, then σ is a KMSβ

state of (C∗(E), αω) if and only if

σ(sµsν) = δµ,νe−βω(µ)σ(pr(µ)).(2.2)

In Theorem 3.10 of [5], it was shown that there is a bijective correspondence
between the KMSβ states of (C∗(E), αω) and a certain class of tracial states on
C0(E0):

DEFINITION 2.7. Let ω be a labeling map on E1 that is bounded below and
let β > 0. Given a tracial state τ on C0(E0) ∼= span{pv}v∈E0 , we can define a trace
on C0(E0) by

Fω,β(τ)(pv) = lim
D→s−1(v)

∑
e∈D

e−βω(e)τ(pr(e)),

where the limit is taken on finite subsets D of s−1(v) and Fω,β(τ)(pv) = 0 if
s−1(v) = ∅ [5].

THEOREM 2.8 ([5]). Let γ be the standard gauge action ofT on C∗(E) and C∗(E)γ

the fixed-point subalgebra of C∗(E). Let ω be a labeling map on E1 that is bounded below
and let β > 0. If σ is a state on C∗(E)γ satisfying (2.2), then its restriction τ to C0(E0)
satisfies:

(K1) Fω,β(τ)(a) = τ(a) for all a ∈ span{pv : 0 < |s−1(v)| < ∞};
(K2) Fω,β(τ)(a) 6 τ(a) for all a ∈ C0(E0)+.

Conversely, if τ is a tracial state on C0(E0) satisfying (K1) and (K2), then there
is a unique state σ on C∗(E)γ satisfying (2.2) with σ|C0(E0) = τ. This correspondence
preserves convex combinations.
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3. CHARACTERIZING KMS STATES FOR QUASI-FREE ACTIONS

In this section, we characterize the KMSβ states of C∗(E) in terms of vectors
that satisfy a certain Property Pβ defined below. When E is a finite graph, the

simplex of all KMSβ states of C∗(E) can be viewed as a polyhedral set in RE0
,

and, in turn, we can readily compute its extreme points.

DEFINITION 3.1. Let E = (E0, E1, r, s) be a row-finite graph and αω : R y
C∗(E) be the quasi-free action that corresponds to the labeling map ω : E1 → R.
Let β ∈ R and Cβ ∈ ME0(R) the matrix defined by Cβ(v, w) := ∑

e∈vE1w
e−βω(e).

Note that, if vE1w = ∅, then Cβ(v, w) = 0, by standard convention. (The matrix
Cβ may also be written as Cβ,E or Cβ,E,ω, if we need to be more specific). We
say that a vector m := (mv)v∈E0 satisfies Property Pβ on E0 if m is a probability
measure with (Cβm)v = mv, whenever v is a regular vertex.

REMARK 3.2. If we reduce to the gauge action, we note that Cβ = e−β A,
where A is the vertex matrix of E. Note that, if m satisfies Property Pβ on E0, then
m satisfies the subinvariance relation Cβm 6 m. That is, (Cβm)v 6 mv for each
v ∈ E0. Also, if E is a strongly connected graph, then Cβ is an irreducible matrix.

THEOREM 3.3. Let E be a row-finite graph, ω a labeling map on E1 that is bounded
below, and β > 0. Let Kβ,αω be the set of all KMSβ states for the quasi-free action αω on
C∗(E) and let Lβ,αω := {m = (mv)v∈E0 : m satisfies Property Pβ on E0}. Suppose that
ω satisfies ω(µ) 6= 0 for all µ ∈ E∗\E0. Then Kβ,αω is affine-isomorphic to Lβ,αω . More
specifically, for each m ∈ Lβ,αω , the corresponding KMSβ state φm satisfies

φm(sµs∗ν) = δµ,νe−βω(µ)mr(µ).(3.1)

Proof. Let {se, pv} be the canonical Cuntz–Krieger E-family that generates
C∗(E). Let π : C∗(E) → B(H) be a faithful nondegenerate representation and
define Pv := π(pv) and Se := π(se). Define a map Ψ : Kβ,γ → RE0

by Ψ(φ) = mφ,
where mφ := (φ(pv))v∈E0 . Clearly, Ψ is an affine map that is weak∗-continuous.
Since φ is a state, we have that mφ is a probability measure. Also, whenever v is a
regular vertex, we have

mφ
v = φ(pv) = ∑

e∈vE1

φ(ses∗e ) = ∑
e∈vE1

e−βω(e)φ(pr(e))

= ∑
w∈E0

∑
e∈vE1w

e−βω(e)φ(pw) = ∑
w∈E0

Cβ(v, w)φ(pw) = (Cβmφ)v.

Thus, (Cβmφ)v = mφ
v and mφ ∈ Lβ,αω .

To show the image of Ψ is Lβ,αω , choose an x ∈ Lβ,αω . Define a tracial state
τ on C0(E0) by τ(a) = ∑

v∈E0
xv(π|C0(E0)(a)Pv, Pv). Indeed, τ(1) = ∑

v∈E0
xv = 1. If v
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is a regular vertex, then

Fω,β(τ)(pv) = ∑
e∈vE1

e−βω(e)τ(pr(e)) = ∑
w∈E0

∑
e∈vE1w

e−βω(e)xw

= ∑
w∈E0

Cβ(v, w)xw(3.2)

= xv(3.3)

= τ(pv),

where (3.2) equals (3.3) since x ∈ Lβ,αω . By Theorem 2.8, we have a unique state
σ on the core of C∗(E) that satisfies (2.2) with σ|C0(E0) = τ. Hence, φ = σ ◦Φ is a
KMSβ state on C∗(E) by Theorem 3.3 of [5]. So, Ψ(φ)(v) = φ(pv) = σ(pv) = xv
and Ψ(φ) = x.

To prove injectivity, suppose Ψ(φ1) = Ψ(φ2). Then φ1(pv) = φ2(pv) for all
v ∈ E0. Hence, by Proposition 3.2 of [5], both KMSβ states coincide on its core.
Since ω(µ) 6= 0 for all µ ∈ E∗, the KMSβ states are equal.

REMARK 3.4. We note that if x = (xv)v∈E0 is in Lβ,αω , it will satisfy the
following equations:

xv − ∑
w∈E0

Cβ(v, w)xw = 0 for each v ∈ E0
reg ,

∑
w∈E0

xw = 1.

Let Rβ be the coefficient matrix of the linear system above and d = (0 0 · · · 1)tr.
Then we have that

Lβ,αω = {x = (xv)v∈E0 : Rβx = d, x > 0}.(3.4)

For the gauge action γ of R, we can multiply each row (except the row of ones)
of Rβ by eβ to allow for simpler calculations (see Example 9.1). We denote this
by R̃β.

When E is a finite graph, Lβ,αω is a polyhedral set. Thus, we can easily
calculate the extreme points of the set Kβ,αω of all KMSβ states of (C∗(E), αω) (see
Section 9).

4. KMS STATES AT A CRITICAL INVERSE TEMPERATURE

In this section, we show that there exists a KMS state at a critical inverse
temperature βc > 0, where βc satisfies ρ(Cβc) = 1 and Cβc is the matrix defined
in Definition 3.1. First, we will prove the existence and uniqueness of βc. We
recall that the edge matrix of E is the matrix B ∈ ME1(N) defined by

B(e, f ) =

{
1 if e f is a path,
0 if e f is not a path.
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LEMMA 4.1. Let E be a strongly connected finite graph with ω(e) > 0 for all
e ∈ E1 (or ω(e) < 0 for all e ∈ E1). For each β, let Dβ be the diagonal matrix in
ME1(R) having diagonal entries e−βω(e) and B ∈ ME1(N) the edge matrix of E. Then
there exists a unique βc > 0 (βc 6 0) with ρ(Dβc B) = 1. Furthermore, if E is a strongly
connected graph that consists of a single cycle, then βc = 0. Otherwise, if ω(e) > 0 for
all e ∈ E1 (or ω(e) < 0 for all e ∈ E1), then βc > 0 (βc < 0).

Proof. Assume ω(e) > 0 for all e ∈ E1. Since E is strongly connected, so
is Ê by Proposition 2.1. Thus, B is irreducible and this implies that DβB is ir-
reducible for each β. By Proposition 18.3 of [7], there exists a βc that satisfies
ρ(Dβc B) = 1. By the Perron–Frobenius theorem, ρ(Dβc B) = 1 if and only if we
have an eigenvector (y f ) f with y f > 0 and ∑

f∈E1
y f = 1 such that Dβc By = y. Let

ae := ∑
f∈E1

B(e, f )y f and ϕ(x) = ∑
e∈E1

aexω(e) − 1. Since E is strongly connected,

|r−1(s(e))| > 1 for every e ∈ E1 and thus ∑
e∈E1

ae = ∑
e∈E1
|r−1(s(e))|ye > 1. Hence,

ϕ is a real valued function that has a unique positive real root ξ ∈ (0, 1]. Since
Dβc By = y, we have that ξ = e−βc and therefore, βc > 0.

If E is a cycle, then |r−1(s(e))| = 1 for all e ∈ E1 and hence βc = 0. Oth-
erwise, there is a vertex v ∈ E0 that receives two edges, say e and f . Since E
is strongly connected, v is not a sink and so it emits some edge g ∈ E1. So
e, f ∈ r−1(s(g)) and we get that |r−1(s(g))| > 2. Thus, ∑

e∈E1
ae > 1 and there-

fore, βc > 0.

REMARK 4.2. If E is strongly connected and ω(e) = 0 for all e ∈ E1, then
ρ(DβB) = ρ(B) = ρ(A) by Proposition 4.1 in [12]. Hence, if E is a cycle, then
ρ(DβB) = 1 for all β by Lemma A.1 in [10]. Otherwise, ρ(A) > 1 and there is
no such β. Also note that if ω(e) = 0 for some, but not all edges e ∈ E1, then
there need not exist a β that satisfies ρ(DβB) = 1. For example, let E be the graph
below having labels 0 and 1.

v w1

0

0

Then ρ(DβB) 6= 1 for all β ∈ R.

PROPOSITION 4.3. Let E be a strongly connected finite graph with ω(e) > 0 for
all e ∈ E1 (or ω(e) < 0 for all e ∈ E1). Then there exists a unique βc > 0 (βc 6 0) with
ρ(Cβc) = 1. Furthermore, if E is a strongly connected graph that consists of a single
cycle, then βc = 0. Otherwise, if ω(e) > 0 for all e ∈ E1 (or ω(e) < 0 for all e ∈ E1),
then βc > 0 (βc < 0).
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Proof. Let Sβ be the E0 × E1 matrix defined by

Sβ(v, e) =

{
e−βω(e) if s(e) = v,
0 otherwise.

and let R be the E1 × E0 matrix defined by

R(e, v) =

{
1 if r(e) = v,
0 otherwise.

Then RSβ = BDβ and SβR = Cβ. Since ρ(Cβ) = ρ(BDβ) = ρ(DβB), we have that
the rest follows from Lemma 4.1.

PROPOSITION 4.4. Let E be a finite graph with ω(e) > 0 for all e ∈ E1 (or
ω(e) < 0 for all e ∈ E1). Then there exists a unique βc > 0 (βc 6 0) with ρ(Cβc) = 1.

Proof. Let F1, F2, . . . , Fn be the strongly connected components of E. From
the Seneta decomposition of Cβ, we have that ρ(Cβ) = max{ρ(Cβ,Fk ) : k =
1, 2, . . . , n}, where each Cβ,Fk is an irreducible matrix (see [17] and [11]). For each
k = 1, 2, . . . n, there is a unique βk > 0 that satisfies ρ(Cβk ,Fk ) = 1 by Propo-
sition 4.3. Let βc := max{βk : k = 1, 2, . . . , n}. Then βc > βk implies that
ρ(Cβc,Fk ) 6 ρ(Cβk ,Fk ) = 1 and hence, ρ(Cβc) = 1. Suppose that there exist a
β̃c > 0 with β̃c 6= βc and ρ(C

β̃c
) = 1. Suppose without loss of generality that

β̃c > βc > 0. For each k = 1, 2, . . . n, we have that 1 > ρ(Cβc,Fk ) > ρ(C
β̃c,Fk

) by
the min-max version of the Collatz-Wielandt formula. This is a contradiction and
therefore, βc uniquely satisfies ρ(Cβc) = 1.

From this point on, if ω(e) > 0 for all e ∈ E1, then the critical inverse
temperature is the unique β that satisfies ρ(Cβ) = 1 and this is denoted by βc.

PROPOSITION 4.5. Let E be a finite graph and β > 0 be such that ρ(Cβ) = 1.
Then there exists a KMSβ state.

Proof. Let H be the set of sinks and decompose E0 as E0\H ∪ H. Then we
can write the matrix Cβ as a block matrix

Cβ =

(
Cβ,E\H F

0 0

)
,(4.1)

and so, Cβ is an upper triangular block matrix with ρ(Cβ) = ρ(Cβ,E\H). Since
Cβ > 0, there exists a z = (zv)v∈E0\H with z > 0 and ‖z‖1 = 1 so that Cβ,E\Hz = z
(see, for example, 8.3 of [13]). Let x = (z 0)tr. Then ‖x‖1 = 1 and Cβx = x.
Hence, by Theorem 3.3, there exists a KMSβ state that satisfies

φx(sµs∗ν) = δµ,νe−βω(µ)xr(µ).
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The following corollary shows the existence of a KMS state for quasi-free
actions acting on finite graph algebras. This extends Corollary 4.2 of [10] to quasi-
free actions; in addition, the results show the existence of a KMS state for not only
the Toeplitz algebra, but the graph algebra as well. Thus, there exists a KMS state
of (T C∗(E), αω) that will always factor through a KMS state of (C∗(E), αω). It is
noteworthy that there are no restrictions on the structure of the graph E, such as
strong connectivity.

COROLLARY 4.6. Let E be a finite graph and ω(e) > 0 for all e ∈ E1. Then there
exists a KMSβc state.

This is a consequence of Proposition 4.4 and Proposition 4.5.
As a consequence of Corollary 4.6, we get the existence of a KMSln ρ(A)1/k

state, when all the edges have label k > 0. In particular, when k = 1, the action
reduces to the gauge action of the reals and we have the existence of a KMSln ρ(A)

state. This was exactly the critical inverse temperature described in [10].

COROLLARY 4.7. Let E be a finite graph with at least one cycle and ω(e) = k > 0
for all e ∈ E1. Then there exists a KMSln ρ(A)1/k state.

Proof. We note that Cβ = e−βk A and βc = ln ρ(A)1/k. Since E has at least
one cycle, ρ(A) > 1 (see Appendix A of [10]). Thus, we have a KMSln ρ(A)1/k state
by Corollary 4.6 above.

5. KMS STATES ABOVE THE CRITICAL INVERSE TEMPERATURE

In this section, we study the KMS states above a critical inverse temperature
and extend the results of Theorem 3.1 in [10].

THEOREM 5.1. Let E be a finite directed graph and Cβ ∈ ME0(R) be the matrix
defined by Cβ(v, w) = ∑

e∈vE1w
e−βω(e). Let αω be the quasi-free action corresponding to a

labeling map ω, where ω(µ) 6= 0 for all µ ∈ E∗\E0. Assume β is such that ρ(Cβ) < 1.
(i) For v ∈ E0, the series ∑

µ∈E∗v
e−βω(µ) either converges or is finite with sum yv > 1.

Set y := (yv) ∈ [1, ∞)E0
and consider ε ∈ [0, ∞)E0

. Then m := (I − Cβ)
−1ε is a

probability measure on E0 if and only if ε · y = 1.
(ii) Suppose ε ∈ [0, ∞)E0

satisfies ε · y = 1 and εv = 0 whenever v is a regular
vertex. Then there is a KMSβ state φε on (C∗(E), αω) satisfying

φε(sµs∗ν) = δµ,νe−βω(µ)mr(µ).(5.1)

(iii) The map ε 7−→ φε is an affine isomorphism of

∑
β

:= {ε ∈ [0, ∞)E0
: ε · y = 1 and εv = 0 for v ∈ E0

reg}
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onto the simplex of KMSβ states of (C∗(E), αω). The inverse of this isomorphism takes
the KMSβ state φ to (I − Cβ)mφ, where mφ := (φ(pv))v.

Proof. (i) Let v ∈ E0. Note that Cn
β(w, v) = ∑

µ∈wEnv
e−βω(µ). Then

∑
µ∈E∗v

e−βω(µ) =
∞

∑
n=0

∑
µ∈Env

e−βω(µ) =
∞

∑
n=0

∑
w∈E0

∑
µ∈wEnv

e−βω(µ)(5.2)

=
∞

∑
n=0

∑
w∈E0

Cn
β(w, v).(5.3)

Since ρ(Cβ) < 1, the series
∞
∑

n=0
Cn

β converges in the operator norm. Thus, for

every fixed w ∈ E0, the series
∞
∑

n=0
Cn

β(w, v) converges and hence, the last sum in

(5.3) converges. Also, since C0
β(v, v) = 1 , we have yv > 1.

The expansion m =
∞
∑

n=0
Cn

βε shows that m > 0 and

m(E0) = ∑
v∈E0

mv = ∑
v∈E0

((I − Cβ)
−1ε)v

= ∑
v∈E0

(( ∞

∑
n=0

Cn
β

)
ε
)

v
= ∑

v∈E0

∞

∑
n=0

∑
w∈E0

Cn
β(v, w)εw

= ∑
w∈E0

εw

(
∑

v∈E0

∞

∑
n=0

Cn
β(v, w)

)
= ∑

w∈E0

εw

(
∑

µ∈E∗w
e−βω(e)

)
= ε · y.

(ii) By (i) we have a probability measure m := (I − Cβ)
−1ε on E0. Let v be a

regular vertex. Then εv = 0 and we get that mv = (∑∞
n=0 Cn+1

β ε)v and

(Cβm)v = (Cβ(I − Cβ)
−1ε)v =

(( ∞

∑
n=0

Cn+1
β

)
ε
)

v
= mv.

Hence, by Theorem 3.3, there exists a KMSβ state that satisfies (3.1).
(iii) To see that every KMSβ state φ has the form φε, note that mφ =

(φ(pv))v∈E0 satisfies Property Pβ on E0 and take ε := (I − Cβ)mφ. Then m :=
(I − Cβ)

−1ε = mφ shows that φ = φε. The formula (5.1) also shows that the

map F : ε 7−→ φε is injective and that F is weak∗-continuous from ∑
β
⊂ RE0

to

the state space of C∗(E). To show that F is affine, let λ ∈ (0, 1) and ε1, ε2 ∈ ∑
β

and let ε := λε1 + (1− λ)ε2. Let m := (I − Cβ)
−1ε, m1 := (I − Cβ)

−1ε1, and
m2 := (I − Cβ)

−1ε2. Then m = λm1 + (1− λ)m2 and φε = λφε1 + (1− λ)φε2 .

REMARK 5.2. In part (ii) of Theorem 5.1, we could have, instead, let {se, pv}
be the canonical Cuntz–Krieger E-family that generates C∗(E), π : C∗(E) →
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B(H) be a faithful nondegenerate representation and defined Pv := π(pv) and
Se := π(se). For µ ∈ E∗ we set ∆µ := e−βω(µ)εr(µ). Define

φε(a) = ∑
µ∈E∗

∆µ(π(a)Sµ|Sµ) for a ∈ C∗(E).

The rest follows from the argument in the proof of Theorem 3.1(b) in [10].

COROLLARY 5.3. Suppose β is such that ρ(Cβ) < 1. Then there exists a KMSβ

state if and only if E has a sink. If |E0
sinks| 6= 0, then ∑

β
is a simplex of dimension

|E0
sinks| − 1.

Proof. Suppose E is a graph with no sinks. Then εv = 0 for all v ∈ E0.
Thus, ε · y 6= 1 and by Theorem 5.1(iii) ∑

β
= ∅ and there are no KMSβ states of

(C∗(E), αω). Suppose now that E has a sink v and define εv := (εv
w) = (δw,vy−1

v ).
Then εv · y = 1, so there is a KMSβ state φεv . We can also note that {φεv}v∈E0

sinks
are the set of all extreme points of the simplex of KMSβ states of (C∗(E), αω).

To see this note the set ∑
β

is a polyhedral set in RE0
with basic feasible solutions

{εv}v∈E0
sinks

(see Theorem 2.6.4 in [2]).

REMARK 5.4. The graph ET is a graph with |E0| sinks. Hence, by Propo-
sition 2.3, the simplex of KMSβ states of (T C∗(E), αω) is of dimension |E0| − 1
(compare with Remark 3.2 in [10]).

6. KMS STATES OF GRAPHS WITH A STRONGLY CONNECTED SUBGRAPH

Below we give a complete description of the KMS states of (C∗(E), αω),
where E is a finite graph, H is the set of sinks in E0 and E\H is strongly con-
nected. As a consequence of Theorem 6.1, we extend the results of Theorem 4.3
in [10].

THEOREM 6.1. Let E be a finite graph with no sources and H be the set of sinks.
Let ω(e) > 0 for all e ∈ E1. Suppose that E\H := (E0\H, E1\r−1(H), r, s) is strongly
connected and let x = (y 0)tr, where y = (yv)v∈E0\H is the unimodular Perron–
Frobenius eigenvector of the matrix Cβc,E\H .

(i) If β > βc, then the set of all KMSβ states of (C∗(E), αω) is a simplex of dimension
|H| − 1 and is affine-isomorphic to

∑
β

:= {ε ∈ [0, ∞)E0
: ε · y = 1 and εv = 0 for v ∈ E0

reg}.

(ii) The system (C∗(E), αω) has a unique KMSβc state φ. This state satisfies

φ(sµs∗ν) = δµ,νe−βω(µ)xr(µ)(6.1)
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and factors through a KMSβc state φ of (C∗(E\H), αω).
(iii) The state φ is the only KMS state of (C∗(E\H), αω).
(iv) If β < βc, then (C∗(E), αω) has no KMSβ states.

Proof. (i) Follows from Theorem 5.1 and Corollary 5.3.
(ii) By Corollary 4.6, there exists a KMSβc state φ that satisfies (6.1). Suppose

there exists another KMSβc state φ̃. Then, by Theorem 3.3, there exists an x̃ ∈ RE0

that satisfies Property β on E0, where Cβc is of the form (4.1) with x̃ = (ỹ z)tr

and ỹ ∈ RE0\H . Then we have that Cβc,E\H ỹ 6 Cβc,E\H ỹ + Fz = ỹ. Since ρ(Cβc) =

ρ(Cβc,E\H), we have Cβc,E\H ỹ = ỹ (see Theorem 1.6 of [17]). Thus, Fz = 0. Since E
has no sources, we get that F has no zero columns and thus z = 0. Hence, ỹ is the
unimodular Perron–Frobenius eigenvector of the vertex matrix Cβc,E\H and thus
φ̃ = φ.

Suppose H 6= ∅. Since E\H is strongly connected, it contains a cycle and
thus, |E0| > 2. Let w be the basepoint of a cycle in E. Then, for every regular
vertex v ∈ E0

reg = E0\H, there is a path from v to w since E\H is strongly con-
nected. This implies that r(s−1(v)) " H. Hence, H = H and so H is a saturated
hereditary subset of E0. Since C∗(E)/IH ∼= C∗(E\H) and φ(pv) = 0 for all v ∈ H,
φ factors through a KMSβc state φ of (C∗(E\H), αω) (see Lemma 2.2 of [11]).

(iii) Follows immediately from Perron–Frobenius theory and Theorem 3.3.
(iv) Suppose φ is a KMSβ state of (C∗(E), αω). Then, by Theorem 3.3, there

exists a y ∈ RE0\H such that Cβ,E\Hy 6 Cβ,E\Hy + Fy = y. Since y > 0, we have
that ρ(Cβc) = 1 > ρ(Cβ) by Theorem 1.6 of [17]. Hence, β > βc.

REMARK 6.2. Suppose E is a strongly connected graph. If E consists of a
single cycle, then there is a unique KMS0 state by Proposition 4.3 and Theorem 6.1
above. Otherwise, (C∗(E), αω) has no KMS0 states.

REMARK 6.3. If E is strongly connected, then ET is a graph with no sources
and ET \H = E. Thus, Theorem 6.1 holds for (T C∗(E), αω) when ω(e) > 0 for all
e ∈ E1, by Proposition 2.3. In particular, Theorem 4.3 of [10] follows immediately
as a consequence of Theorem 6.1, above.

7. KMS STATES ON THE DUAL-GRAPH ALGEBRA

In this section, we study the KMS states on the dual-graph algebra C∗(Ê)
and find a correspondence to the KMS states on the graph algebra C∗(E). Given
a KMS state of one of the algebras, we are able to construct the corresponding
KMS state of the other.

DEFINITION 7.1. Let E = (E0, E1, r, s) be a row-finite graph, H the set of
sinks in E, and αω : R y C∗(E) be a quasi-free action, where ω is a labeling map
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on the edges E1. Let β ∈ R, Dβ = diag(e−βω(e))e∈E1 and B ∈ ME1(N) the edge
matrix of E. We say that a vector y := (ye)e∈E1 satisfies Property Pβ on E1 if y is a
probability measure on E1 and (DβBy)e = ye whenever e ∈ E1\r−1(H).

REMARK 7.2. We note that if a vector y satisfies Property Pβ on E1, then y
satisfies the subinvariance relation DβBy 6 y.

PROPOSITION 7.3. Let E = (E0, E1, r, s) be a row-finite graph. Let ω : E1 → R
be a labeling map on E1 that is bounded below. Define a labeling ω̂ : E2 → R on the
edges of the dual graph by ω̂(e f ) = ω(e) for all e f ∈ E2 and let η be the corresponding
quasi-free action on C∗(Ê). Suppose that ω̂(µ̂) 6= 0 for all µ̂ ∈ Ê∗\E1. For each β > 0,
let K̂β,ηω̂ be the set of all KMSβ states of (C∗(Ê), ηω̂) and let Lβ,ηω̂ := {y = (ye)e∈E1 :

y satisfies Property Pβ on E1}. Then K̂β,ηω̂ is affine-isomorphic to Lβ,ηω̂ .

Proof. We have that Cβ,Ê,ω̂ is a matrix in ME1(R) and Cβ,Ê,ω̂ = DβB, where

B ∈ ME1(N) is the edge matrix of E and Dβ = diag(e−βω(e))e∈E1 . The rest follows
from Theorem 3.3.

REMARK 7.4. If we instead define a labeling map ω̂ : E2 → R on the edges
of the dual graph by ω̂(e f ) = ω( f ) for all e f ∈ E2, we get Cβ,Ê,ω̂ = BDβ. We
could apply Theorem 3.3 and obtain a similar affine-isomorphism as in Proposi-
tion 7.3. However, we will need the labeling map defined in Proposition 7.3 to
find a correspondence between the KMS states on the graph algebra and dual-
graph algebra.

LEMMA 7.5. Suppose E is a row-finite graph with no sinks and ω : E1 → R a
labeling of the edges of E. Define a labeling ω̂ : E2 → R on the edges of the dual graph
by ω̂(e f ) = ω(e) for all e f ∈ E2 and let ηω̂ be the corresponding quasi-free action on
C∗(Ê). Then (C∗(Ê), ηω̂,R) is covariantly isomorphic to (C∗(E), αω,R).

Proof. Let {qe, re f } be the universal Cuntz–Krieger family for Ê and {pv, se}
the universal Cuntz–Krieger family for E. By Corollary 2.6 in [16], there is an
isomorphism Φ : C∗(Ê)→ C∗(E) with Φ(qe) = ses∗e and Φ(re f ) = ses f s∗f . Then

(Φ ◦ ηt)(qe) = Φ(qe) = ses∗e = (αt ◦Φ)(qe)

and

(Φ ◦ ηt)(re f ) = eω̂(e f )itΦ(re f ) = eω(e)itses f s∗f = (αt ◦Φ)(re f ).

THEOREM 7.6. Suppose E is a row-finite graph without sinks and β > 0. Let
ω : E1 → R be bounded below and ω(µ) 6= 0 for all µ ∈ E∗\E0. Then K̂β,ηω̂ is
affine-isomorphic to Kβ,αω . Furthermore, if x = (xv)v∈E0 is the corresponding vector for
the KMS state φx in Kβ,αω , then y := (ye)e∈E1 , where ye = φx(ses∗e ) is the vector with
corresponding KMS state φ̂y in K̂β,ηω̂ . Conversely, if y = (ye)e∈E1 is the vector with
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corresponding KMS state φ̂y in K̂β,ηω̂ , then x = (xv)v∈E0 , where xv = ∑
e∈vE1

ye is the

corresponding vector for the KMS state φx in Kβ,αω .

Proof. By Lemma 7.5, the first part of the statement holds. For the second
part, let φ̂y be a KMSβ state corresponding to y ∈ Lβ,ηω̂ . Let Φ : K̂β,ηω̂ → Kβ,αω ;
φ̂y 7→ φx by

φx(sµs∗ν) = e−βω(µ)xr(µ),

where xv = ∑
e∈vE1

ye. We have that xv > 0 for every v ∈ E0 and ∑
v∈E0

xv = 1, since

E is a row-finite graph with no sinks. For each v ∈ E0,

(Cβx)v − xv = ∑
w∈E0

Cβ(v, w)xw − xv = ∑
w∈E0

(
∑

e∈vE1w

e−βω(e)xw

)
− xv

= ∑
e∈vE1

e−βω(e)xr(e) − xv = ∑
e∈vE1

e−βω(e)
(

∑
s( f )=r(e)

y f

)
− xv

= ∑
e∈vE1

(
∑

f∈E1

DβB(e, f )y f

)
− xv = ∑

e∈vE1

ye − xv = 0.

So, by Theorem 3.3, we have that φx is a KMSβ state and thus, Φ is a well-defined
map.

To show Φ is injective, suppose φx = φx̃. Then φx(ses∗e ) = e−βω(e)xr(e) = ye

and similarly, φx̃(ses∗e ) = ỹe. Since ω(µ) 6= 0 for all µ ∈ E∗\E0, we have that
ω̂(µ̂) 6= 0 for all µ̂ ∈ Ê∗\E1. By Proposition 7.3, φ̂y = φ̂ỹ since ye = ỹe for all
e ∈ E1 and y is a probability measure on E1.

To prove surjectivity, suppose φ is a KMSβ of (C∗(E), αω). Let ye := φ(ses∗e )
and y := (ye)e∈E1 . Then y satisfies Property Pβ on E1. Hence, by Proposition 7.3,
there exists KMSβ state φ̂y of (C∗(Ê), ηω̂). Since φ(pv) = ∑

s(e)=v
φ(ses∗e ) = ∑

s(e)=v
ye,

we have that Φ(φ̂y) = φx = φ. We have that Φ is an affine and weak∗-continuous
map from K̂β,ηω̂ to Kβ,αω . Therefore, Φ is the affine-isomorphism and hence, the
correspondence follows as desired.

8. GROUND STATES AND KMS∞ STATES

PROPOSITION 8.1. Let E be a finite directed graph and let αω : R y C∗(E) be
the quasi-free action corresponding to a labeling map ω, where ω(e) > 0 for all e ∈ E1.
Suppose that ε is a probability measure on E0. Then there is a KMS∞ state φε satisfying

φε(sµs∗ν) =

{
0 unless |µ| = |ν| = 0 and µ = ν,
εv if µ = ν = v ∈ E0.
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Every ground state of (C∗(E), αω) is a KMS∞ state and the map ε 7−→ φε is an affine
isomorphism of the simplex of probability measures of E0 onto the set of ground states of
(C∗(E), αω).

Proof. Choose a sequence β j → ∞ as j→ ∞ with β j > βc. For each j, define

(yj
v) as in Theorem 5.1(i) by yj

v = ∑
µ∈E∗v

e−β jω(µ). Set ε
j
v := εv(y

j
v)
−1, and let φj be

the KMSβ j state φεj of (C∗(E), αω), described in Theorem 5.1(ii). We note that if
we choose an M > 0 so that β j > M > βc for all j sufficiently large, we can apply

the dominated convergence theorem and prove that yj
v → 1 as j → ∞. The rest

follows from the argument in Theorem 5.1 of [10].

9. EXAMPLES

In the examples below, we calculate the KMS states of (C∗(E), αω) and
(T C∗(E), αω). By Proposition 2.3, finding the KMS states of (T C∗(E), αω) re-
duces to finding the KMS states of (C∗(ET ), αω).

By Theorem 3.3, we can compute the KMS states by finding all elements in
the polyhedral set Lβ,αω (see (3.4) in Remark 3.4). Calculating the extreme points
in Lβ,αω coincides with finding all basic feasible solutions (see Theorem 2.6.4
of [2]).

Below, the solid lines represent all of the edges in the graph E and the solid
lines along with the dashed lines represent all of the edges of the graph ET .

EXAMPLE 9.1. In this example, we calculate the KMS state for the gauge ac-
tion γ of R, where the graph E has one sink and ET has many more sinks. This
example was computed in Example 6.4 of [11] using strongly connected compo-
nents, but we calculate it here using Theorem 3.3.

v wu1 u2

v′ w′u
′
2

(a) KMSβ states of (C∗(E), γ):

R̃β =


eβ − 2 −1 0 −1

0 eβ −1 0
0 0 eβ − 3 0
1 1 1 1

 , d =


0
0
0
1

 .
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(i) For β > ln 3, we have a unique KMSβ state that corresponds to the

vector mβ
1 =

(
1

eβ−1
0 0 eβ−2

eβ−1

)tr
.

(ii) For β = ln 3, we have a 2-dimensional simplex of KMSβ states with
extreme points that correspond to the vectors

mβ
1 =

( 1
5

1
5

3
5 0

)tr and mβ
2 =

( 1
2 0 0 1

2

)tr .

(iii) For ln 2 < β < ln 3, we have a unique KMSβ state that corresponds
to the vector

mβ
1 =

(
1

eβ−1
0 0 eβ−2

eβ−1

)tr
.

(iv) For β = ln 2, we have a unique KMSβ state corresponding to the

vector mβ
1 =

(
1 0 0 0

)tr .
(v) For β< ln 2, no solution exists and therefore, there are no KMSβ states.

(b) KMSβ states of (C∗(ET ), γ):

R̃β =


eβ − 2 −1 0 −1 −2 −1 0

0 eβ −1 0 0 0 −1
0 0 eβ − 3 0 0 0 −3
1 1 1 1 1 1 1

 , d =


0
0
...
1

 .

(i) For β > ln 3 , we have a 3-dimensional simplex of KMSβ states with

extreme points that correspond to the vectors mβ
1=
(

1
eβ−1

0 0 eβ−2
eβ−1

0 0 0
)tr

,

mβ
2 =

(
2

eβ 0 0 0 eβ−2
eβ 0 0

)tr
, mβ

3 =
(

1
eβ−1

0 0 0 0 eβ−2
eβ−1

0
)tr

, and

mβ
4 =

(
1

e2β−eβ−1
eβ−2

e2β−eβ−1
3eβ−6

e2β−eβ−1
0 0 0 e2β−5eβ+6

e2β−eβ−1

)tr
.

(ii) For β = ln 3, we have 3-dimensional simplex of KMSβ states with

extreme points that correspond to the vectors mβ
1 =

( 1
2 0 0 1

2 0 0 0
)tr ,

mβ
2 =

( 2
3 0 0 0 1

3 0 0
)tr , mβ

3 =
( 1

2 0 0 0 0 1
2 0

)tr and mβ
4 =( 1

5
1
5

3
5 0 · · · 0

)tr .
(iii) For ln 2<β<ln 3, we have a 2-dimensional simplex of KMSβ states

with extreme points that correspond to the vectors

mβ
1 =

(
1

eβ−1
0 0 eβ−2

eβ−1
0 0 0

)tr
, mβ

2 =
(

2
eβ 0 0 0 eβ−2

eβ 0 0
)tr

,

and mβ
3 =

(
1

eβ−1
0 0 0 0 eβ−2

eβ−1
0
)tr

.

(iv) For β = ln 2, we have a unique KMSβ state corresponding to the

vector mβ
1 =

(
1 0 · · · 0

)tr .
(v) For β < ln 2, no solution exists and therefore there are no KMSβ

states.
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EXAMPLE 9.2. In this example, we find the KMS states for a quasi-free ac-
tion that is not the gauge action, with labels that are both positive and negative.

v w

v′ w′

√
2

√
2

−π

√
3

√
3

√
3

√
2

√
2

−π

√
3

√
3

√
3

(a) KMSβ states of (C∗(E), αω):

Rβ =

1− 2e−β
√

2 −eβπ

0 1− 3e−β
√

3

1 1

 , d =

0
0
1

 .

(i) For β > ln 3√
3

, no solution exists and therefore, there are no KMSβ

states.
(ii) For β = ln 3√

3
, we have a unique KMSβ state corresponding to the

vector mβ
1 =

(
1

1−2ξ
√

2+π+ξπ

ξπ(1−2ξ
√

2)

1−2ξ
√

2+π+ξπ

)tr
, where ξ = ( 1

3 )
1/
√

3.

(iii) For ln 2√
2

< β < ln 3√
3

, no solution exists and therefore, there are no
KMSβ states.

(iv) For β = ln 2√
2

, we have a unique KMSβ state corresponding to the

vector mβ
1 =

(
1 0

)tr .
(v) For β < ln 2√

2
, no solution exists and therefore, there are no KMSβ states.

(b) KMSβ states of (C∗(ET ), αω):

Rβ =

1− 2e−β
√

2 −eβπ −2e−β
√

2 −eβπ

0 1− 3e−β
√

3 0 −3e−β
√

3

1 1 1 1

 , d =

0
0
1

 .

(i) For β > ln 3√
3

, we have a 1-dimensional simplex of KMSβ states with

extreme points that correspond to the vectors mβ
1 =

(
2ξ
√

2 0 1− 2ξ
√

2 0
)tr

and mβ
2=

(
1

1−2ξ
√

2+π+ξπ

3ξ
√

3+π(1−2ξ
√

2)

1−2ξ
√

2+π+ξπ
0 ξπ(1−2ξ

√
2)(1−3ξ

√
3)

1−2ξ
√

2+π+ξπ

)tr
, where ξ=e−β.

(ii) For β= ln 3√
3

, we have a 1-dimensional simplex of KMSβ states with ex-



KMS STATES FOR QUASI-FREE ACTIONS ON FINITE-GRAPH ALGEBRAS 137

treme points that correspond to the vectors mβ
1=

(
1

1−2ξ
√

2+π+ξπ

ξπ(1−2ξ
√

2)

1−2ξ
√

2+π+ξπ
0 0
)tr

and mβ
2 =

(
2ξ
√

2 0 1− 2ξ
√

2 0
)tr

,
where ξ = ( 1

3 )
1/
√

3.

(iii) For ln 2√
2
< β < ln 3√

3
, we have a unique KMSβ state that corresponds

to the vector mβ
1 =

(
2ξ
√

2 0 1− 2ξ
√

2 0
)tr

, where ξ = e−β.

(iv) For β = ln 2√
2

, we have a unique KMSβ state corresponding to the

vector mβ
1 =

(
1 0 0 0

)tr .
(v) For β < ln 2√

2
, no solution exists and therefore, there are no KMSβ

states.
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