RELATIVE COMMUTANT OF AN UNBOUNDED OPERATOR AFFILIATED WITH A FINITE VON NEUMANN ALGEBRA

DON HADWIN, JUNHAO SHEN, WENMING WU and WEI YUAN

Communicated by Kenneth R. Davidson

Abstract

This paper is concerned with the commutant of unbounded operators affiliated with finite von Neumann algebras. We prove an unbounded Fuglede-Putnam type theorem and present examples of closed operators affiliated with some II_{1} factor with trivial relative commutant in the factor.

Keywords: Fuglede-Putnam theorem, II_{1} factors, unbounded operators, relative commutant, transitive lattice.

MSC (2010): Primary 47C15; Secondary 47A05.

1. INTRODUCTION

The celebrated Fuglede theorem ([4], Theorem I) states that if a bounded operator acting on a Hilbert space commutes with a normal (maybe unbounded) operator, then it also commutes with any function of the normal operator, e.g. the adjoint of the normal operator. Putnam generalized this fact in 1951 ([13], Lemma). The proof of the Fuglede-Putnam theorem cited in many textbooks is given by Rosenblum [14]. Since then, there have been some attempts to extend the Fuglede-Putnam theorem. We refer the interested reader to the survey [10] by M.H. Mortad. One purpose of this paper is to prove a version of Fuglede-Putnam theorem for unbounded operators affiliated with finite von Neumann algebras.

Given a finite von Neumann algebra \mathfrak{A}, we will use \mathfrak{A}^{\prime} to denote its commutant. A densely defined closed operator T is affiliated with \mathfrak{A}, denoted by $T \eta \mathfrak{A}$, if $T U=U T$ for any unitary U in \mathfrak{A}^{\prime}. Murray and von Neumann showed that all densely defined closed operators affiliated with a II_{1} factor \mathfrak{A} form a *algebra under the operations of addition $\widehat{+}$ and multiplication $\widehat{\cdot}$ (see Section 2). We will use $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ to denote this algebra and prove that if $T \widehat{\cdot}=M \uparrow T$, then $T \hat{\cdot} N^{*}=M^{*} \uparrow T$ where $T, M, N \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ and M, N are normal. As a consequence, we deduce that there exists a $T \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ for any separable II_{1} factor \mathfrak{A} such that T commutes with no non-scalar normal operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$.

Since $\{T\}^{\prime} \cap \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})(\supseteq\{T\})$ is never trivial, it would be interesting to investigate whether the relative commutant of $T \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ in \mathfrak{A} could be trivial, i.e., $\{T\}^{\prime} \cap \mathfrak{A}=\mathbb{C} I$. By using the group-measure space construction, we can provide some examples of closed operators with trivial relative commutant. As a corollary, we show the existence of relative transitive subspace lattices consisting of four nontrivial projections in some II_{1} factors. This answers one of the problems listed in [1] on the number of nontrivial projections in relative transitive lattices in II_{1} factors.

This paper is organized as follows. We first recall some definitions and basic properties of the group-measure space construction and the algebra $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ in Section 2. The unbounded version of Fuglede-Putnam theorem for the elements in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ is proved in Section 3. The examples of closed operators with trivial relative commutant and transitive subspace lattices of projections consisting of four nontrivial elements in some II_{1} factors are given in Section 4.

2. PREMIMINARIES

If not explicitly stated otherwise, we will use \mathcal{H} to denote a separable Hilbert space throughout this paper. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators acting on \mathcal{H}. A von Neumann algebra \mathfrak{A} is a $*$-subalgebra of $\mathcal{B}(\mathcal{H})$ that is closed in the weak operator topology and contains the identity operator I. If the center $\mathfrak{A} \cap \mathfrak{A}^{\prime}$ of \mathfrak{A} is trivial, then \mathfrak{A} is called a factor. A von Neumann algebra \mathfrak{A} is called finite if there is a faithful normal tracial state on it. An infinite dimensional finite factor is called a I_{1} factor.

The left regular representation of icc (infinite conjugacy classes) groups provide us ample examples of II_{1} factors. Given a discrete group G, let $l^{2}(G)=\{\xi$: $\left.\left.G \rightarrow \mathbb{C}\left|\sum_{g \in G}\right| \xi(g)\right|^{2}<+\infty\right\}$ be the Hilbert space with inner product defined by

$$
\langle\xi, \beta\rangle=\sum_{g \in G} \xi(g) \overline{\beta(g)}
$$

For any $h \in G$, we define a unitary operator l_{h} by $\left(l_{h} \xi\right)(g)=\xi\left(h^{-1} g\right)$. The group von Neumann algebra \mathcal{L}_{G} is the von Neumann algebra generated by the unitary operators $l_{h}, h \in G$. If G is an icc group, then \mathcal{L}_{G} is a factor of type I_{1}.

The crossed product (or group-measure space construction) is a generalization of the above construction. Suppose (X, \mathcal{B}, μ) is a non-atomic probability space and G is a countable group. Let $L^{2}(X)$ be the Hilbert space of all square integrable complex functions on $X . L^{\infty}(X)$, the space of all essentially bounded measurable complex functions on X, is a maximal abelian subalgebra of $\mathcal{B}\left(L^{2}(X)\right)$. For notational simplicity, we will use f to denote the multiplication operator on $L^{2}(X)$, i.e., $(f \xi)(x)=f(x) \xi(x), f \in L^{\infty}(X)$ and $\xi \in L^{2}(X)$.

Let G act as a group of transformations on X preserving measurability, i.e., for any $g \in G, g(S) \in \mathcal{B}$ if and only if $S \in \mathcal{B}$. For the sake of simplicity, we only consider the action that also keep the measure invariant, i.e., $\mu \circ g(S)=\mu(S)$ for any $S \in \mathcal{B}$. For the general case, we refer the reader to the Section 8.6 of [8]. It is clear that the mapping $g \rightarrow \alpha_{g}$, where α_{g} is defined as $\alpha_{g}(f)(x)=f\left(g^{-1} x\right)$ for every measurable function f, induces a homomorphism from G into the group of $*$-automorphisms of the von Neumann algebra $L^{\infty}(X)$. Furthermore this representation is unitarily implemented. Indeed, let U_{g} be the unitary defined by $U_{g} \xi(x)=\xi\left(g^{-1} x\right)$ where $\xi \in L^{2}(X)$. Then $\alpha_{g}(f)=U_{g} f U_{g}^{*}$.

The crossed product of the von Neumann algebra $L^{\infty}(X)$ by the action α of G is the von Neumann algebra $L^{\infty}(X) \rtimes_{\alpha} G$, acting on the Hilbert space $L^{2}(X) \otimes$ $l^{2}(G)$, generated by the operators

$$
\Psi(f)=\sum_{g \in G} \alpha_{g}^{-1}(f) \otimes E_{g}, \quad L_{g}=I \otimes l_{g} \quad \forall f \in L^{\infty}(X), g \in G
$$

where E_{g} is the orthogonal projection from $l^{2}(G)$ onto the one-dimensional subspace spanned by the vector $e_{g} \in l^{2}(G)$, i.e., $e_{g}(h)=\delta_{g, h}, g, h \in G$. We say that G acts ergodically if $S \in \mathcal{B}$ and $\mu(g S \backslash S)=0$ for each $g \in G$ implies $\mu(S)=0$ or $\mu(X \backslash S)=0$. If we further assume that G acts freely, i.e., $\{x \in X: g(x)=x\}$ is a null set for each $g \in G \backslash\{e\}$, then $L^{\infty}(X) \rtimes_{\alpha} G$ is a factor of type II_{1} (see Proposition 8.6.10 of [8]).

Recall that a densely defined operator T acting on \mathcal{H} is closed if its graph $\mathscr{G}(T)=\{(\xi, T \xi): \xi \in \mathscr{D}(T)\}$ is closed in $\mathcal{H} \oplus \mathcal{H}$, where $\mathscr{D}(T)$ is the domain of T. A densely defined operator T is called closable if the closure of $\mathscr{G}(T)$ is the graph of an operator. Murray and von Neumann proved the following maximality result for the closed operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$, the set of operators affiliated with a finite von Neumann algebra \mathfrak{A}.

Proposition 2.1 ([11], Theorem 16.4.2). Let $T_{1}, T_{2} \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If $T_{1} \subseteq T_{2}$, i.e., $\mathscr{D}\left(T_{1}\right) \subseteq \mathscr{D}\left(T_{2}\right)$ and $T_{1} \xi=T_{2} \xi$ for any $\xi \in \mathscr{D}\left(T_{1}\right)$, then $T_{1}=T_{2}$.

Furthermore if two elements T_{1}, T_{2} of $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ agree on a dense subspace of \mathcal{H}, then $T_{1}=T_{2}$ (see Lemma 3.3 of [15]). By Lemma 16.4.3 of [11], for any two elements T_{1} and T_{2} in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A}), T_{1}+T_{2}$ and $T_{1} T_{2}$ are densely defined and closable. And the closed extensions of $T_{1}+T_{2}$ and $T_{1} T_{2}$ are in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. We will use $T_{1} \widehat{+} T_{2}$ and $T_{1} \widehat{\cdot} T_{2}$ to denote these closures. Then $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$, provided with the operations $\hat{+}$ and \hat{r}, is a $*$-algebra. For the simplicity of notations and without special statement, we still use $T_{1}+T_{2}$ and $T_{1} T_{2}$ to denote the sum $T_{1} \widehat{+} T_{2}$ and the product T_{1} 〔 T_{2}.

3. AN UNBOUNDED VERSION FUGLEDE-PUTNAM THEOREM

The celebrated Fuglede-Putnam theorem in its classical form is as follows:

THEOREM 3.1 (Fuglede-Putnam theorem [4], [13]). If T is a bounded operator acting on a Hilbert space and M and N are (maybe unbounded) normal operators, then

$$
T N \subseteq M T \Rightarrow T N^{*} \subseteq M^{*} T
$$

Throughout this section, we will assume that \mathfrak{A} is a finite von Neumann algebra and τ is a faithful normal tracial state on \mathfrak{A}. We will prove the following Fuglede-Putnam type theorem for elements in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$.

THEOREM 3.2. Let $T \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If N, M are normal operators in \mathfrak{A} and $T N=$ $M T$, then $T N^{*}=M^{*} T$.

The following fact is well-known. We include the proof for the sake of completeness.

Lemma 3.3. Let N be a normal operator in \mathfrak{A}. If P is a projection in \mathfrak{A} such that $(I-P) N P=0$, then $P N=N P$.

Proof. Let $N_{1}=P N P, N_{2}=P N(I-P)$ and $N_{3}=(I-P) N(I-P)$. We need to show that $N_{2}=0$. Since $N=N_{1}+N_{2}+N_{3}$ and

$$
\begin{aligned}
N_{1} N_{1}^{*}+N_{2} N_{2}^{*} & =P\left(N_{1}+N_{2}+N_{3}\right)\left(N_{1}^{*}+N_{2}^{*}+N_{3}^{*}\right) P \\
& =P N N^{*} P=P N^{*} N P=N_{1}^{*} N_{1}
\end{aligned}
$$

we have

$$
\tau\left(N_{1} N_{1}^{*}+N_{2} N_{2}^{*}\right)=\tau\left(N_{1}^{*} N_{1}+N_{2} N_{2}^{*}\right)=\tau\left(N_{1}^{*} N_{1}\right) .
$$

Thus $\tau\left(N_{2} N_{2}^{*}\right)=0$ and $N_{2}=0$.
To prove Theorem 3.2, we first show the following technical lemma.
Lemma 3.4. Let H be a positive element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If M and N are normal operators in \mathfrak{A} and $N H=H M$, then $N^{*} H=H M^{*}, N H=H N$ and $M H=H M$. Furthermore, if $\operatorname{Ker}(H)=\{0\}$, then $M=N$.

Proof. Let E_{0} be the orthogonal projection from \mathcal{H} onto $\operatorname{Ker}(H)$. If $E_{0} \neq\{0\}$, then it is not hard to check that $\left(I-E_{0}\right) M E_{0}=0$. By Lemma 3.3, $E_{0} M=M E_{0}$. Note that $H N^{*}=M^{*} H$. The same argument shows that $E_{0} N^{*}=N^{*} E_{0}$. Thus $E_{0} N=N E_{0}$.

By considering $\left(I-E_{0}\right) H,\left(I-E_{0}\right) N$ and $\left(I-E_{0}\right) M$, we could assume $\operatorname{Ker}(H)=\{0\}$. Let $\left\{E_{\lambda}\right\}$ be the resolution of the identity for H in \mathfrak{A} such that

$$
H=\int_{0}^{\infty} \lambda \mathrm{d} E_{\lambda}
$$

For fixed $\lambda>0$, let $P_{1}=E_{\lambda}, P_{2}=I-P_{1}$ and

$$
H=H_{1}+H_{2}:=P_{1} H+P_{2} H \quad \text { and } \quad H^{-1}=H_{1}^{-1}+H_{2}^{-1}=P_{1} H^{-1}+P_{2} H^{-1} .
$$

Note that H_{1} and H_{2}^{-1} are bounded and $H_{i} H_{i}^{-1}=P i, i=1,2$. Let $N=$ $\sum_{i=j=1}^{2} N_{i j}:=\sum_{i=j=1}^{2} P_{i} N P_{j}$ and $M=\sum_{i=j=1}^{2} M_{i j}:=\sum_{i=j=1}^{2} P_{i} M P_{j}$.

Since $H^{-1} N H=M$, we have

$$
\begin{array}{ll}
M_{11}=H_{1}^{-1} N_{11} H_{1}, & M_{12}=H_{1}^{-1} N_{12} H_{2} \\
M_{21}=H_{2}^{-1} N_{21} H_{1}, & M_{22}=H_{2}^{-1} N_{22} H_{2}
\end{array}
$$

Since M is normal, we have $\tau\left(P_{1} M^{*} M P_{1}\right)=\tau\left(P_{1} M M^{*} P_{1}\right)$ and

$$
\begin{aligned}
\tau\left(H_{1} N_{11}^{*} H_{1}^{-2} N_{11} H_{1}\right. & \left.+H_{1} N_{21}^{*} H_{2}^{-2} N_{21} H_{1}\right) \\
& =\tau\left(H_{1}^{-1} N_{11} H_{1}^{2} N_{11}^{*} H_{1}^{-1}+H_{1}^{-1} N_{12} H_{2}^{2} N_{12}^{*} H_{1}^{-1}\right)
\end{aligned}
$$

Note that

$$
\tau\left(H_{1} N_{11}^{*} H_{1}^{-2} N_{11} H_{1}\right)=\tau\left(M_{11}^{*} M_{11}\right)=\tau\left(M_{11} M_{11}^{*}\right)=\tau\left(H_{1}^{-1} N_{11} H_{1}^{2} N_{11}^{*} H_{1}^{-1}\right)
$$

We have

$$
\tau\left(H_{1} N_{21}^{*} H_{2}^{-2} N_{21} H_{1}\right)=\tau\left(H_{1}^{-1} N_{12} H_{2}^{2} N_{12}^{*} H_{1}^{-1}\right)
$$

Since $\left\|H_{1}\right\| \leqslant \lambda$ and $\left\|H_{2}^{-1}\right\| \leqslant 1 / \lambda$, we have

$$
\begin{aligned}
\tau\left(H_{1} N_{21}^{*} H_{2}^{-2} N_{21} H_{1}\right) & \leqslant \frac{1}{\lambda^{2}} \tau\left(H_{1} N_{21}^{*} N_{21} H_{1}\right)=\frac{1}{\lambda^{2}} \tau\left(N_{21} H_{1}^{2} N_{21}^{*}\right) \\
& \leqslant \tau\left(N_{21} N_{21}^{*}\right)=\tau\left(N_{21}^{*} N_{21}\right)
\end{aligned}
$$

Let $Q=E_{\beta}-E_{\lambda}$ where $\beta>\lambda$. Then

$$
\begin{aligned}
\tau\left(H_{1}^{-1} N_{12} H_{2}^{2} N_{12}^{*} H_{1}^{-1}\right) & \geqslant \beta^{2} \tau\left(H_{1}^{-1} N_{12}(I-Q) N_{12}^{*} H_{1}^{-1}\right)+\lambda^{2} \tau\left(H_{1}^{-1} N_{12} Q N_{12}^{*} H_{1}^{-1}\right) \\
& =\beta^{2} \tau\left((I-Q) N_{12}^{*} H_{1}^{-2} N_{12}(I-Q)\right)+\lambda^{2} \tau\left(Q N_{12}^{*} H_{1}^{-2} N_{12} Q\right) \\
& \geqslant \frac{\beta^{2}}{\lambda^{2}} \tau\left((I-Q) N_{12}^{*} N_{12}(I-Q)\right)+\tau\left(Q N_{12}^{*} N_{12} Q\right) \\
& =\frac{\beta^{2}}{\lambda^{2}} \tau\left(N_{12}(I-Q) N_{12}^{*}\right)+\tau\left(N_{12} Q N_{12}^{*}\right) .
\end{aligned}
$$

By $N^{*} N=N N^{*}$, it is not hard to check that $\tau\left(N_{12} N_{12}^{*}\right)=\tau\left(N_{21}^{*} N_{21}\right)$. Therefore

$$
\frac{\beta^{2}}{\lambda^{2}} \tau\left(N_{12}(I-Q) N_{12}^{*}\right)+\tau\left(N_{12} Q N_{12}^{*}\right) \leqslant \tau\left(N_{12} N_{12}^{*}\right) .
$$

It is clear that

$$
\frac{\beta^{2}}{\lambda^{2}} \tau\left(N_{12}(I-Q) N_{12}^{*}\right) \leqslant \tau\left(N_{12}(I-Q) N_{12}^{*}\right)
$$

implies $N_{12}(I-Q) N_{12}^{*}=0$. Since $E_{\lambda}=\bigwedge_{\alpha>\lambda} E_{\alpha}$, we have $N_{12} N_{12}^{*}=0$. By Lemma 3.3. we have $E_{\lambda} N=N E_{\lambda}$. Since this is true for any $\lambda>0, N$ commutes with any element in the abelian von Neumann algebra generated by the projections $\left\{E_{\lambda}\right\}$. Specially, $N(I+H)^{-1}=(I+H)^{-1} N$. It is now clear that $N H=H N$. Recall that $\operatorname{Ker}(H)=\{0\}$. Thus $H(N-M)=0$ implies $N=M$.

With the help of the preceding lemma we can now prove Theorem 3.2.
Proof of Theorem 3.2 Let $T=U H$ be the polar decomposition of T (since \mathfrak{A} is a finite von Neumann algebra, we can assume that U is unitary). $T N=M T$ is equivalent to $H N=\left(U^{*} M U\right) H$. By Lemma 3.4. $H N^{*}=\left(U^{*} M^{*} U\right) H$. Thus $T N^{*}=M^{*} T$.

We can extend Theorem 3.2 to make it work for normal elements in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$.
COROLLARY 3.5. Let T and N be closed operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If N is normal and $N T=T N$, then $N^{*} T=T N^{*}$.

Proof. For each positive integer n, let E_{n} be the spectral projection for N corresponding to the set $\{z:|z| \leqslant n\}$. It is clear that $\left\{E_{n}\right\}$ is an increasing sequence of projections which converges to I in the strong operator topology. Since $N T=T N$, we have

$$
\left(E_{n} N E_{n}\right)\left(E_{n} T E_{n}\right)=\left(E_{n} T E_{n}\right)\left(E_{n} N E_{n}\right) .
$$

Note that $E_{n} N E_{n}$ is bounded. By Theorem 3.2,

$$
E_{n} N^{*} T E_{n}=\left(E_{n} N^{*} E_{n}\right)\left(E_{n} T E_{n}\right)=\left(E_{n} T E_{n}\right)\left(E_{n} N^{*} E_{n}\right)=E_{n} T N^{*} E_{n}
$$

Note that $E_{n} \leqslant E_{m}$ if $n \leqslant m$. Multiplying both sides of the equation $E_{m} N^{*} T E_{m}=E_{m} T N^{*} E_{m}$ from right by $E_{n}(n \leqslant m)$, we have

$$
E_{m} N^{*} T E_{n}=E_{m} T N^{*} E_{n} .
$$

Let m tend to infinity, we get $N^{*} T E_{n}=T N^{*} E_{n}$. Thus, $E_{n} T^{*} N=E_{n} N T^{*}$. Now, let n tend to infinity, we have $T^{*} N=N T^{*}$ and $N^{*} T=T N^{*}$.

Corollary 3.6. Let T, N and M be closed operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If N and M are normal and $M T=T N$, then $M^{*} T=T N^{*}$.

Proof. Note that

$$
\mathfrak{A} \otimes M_{2}(\mathbb{C})=\left\{\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right): A_{i j} \in \mathfrak{A}\right\}
$$

is also a finite von Neumann algebra. Consider the matrices of operators

$$
N_{1}=\left(\begin{array}{cc}
N & 0 \\
0 & M
\end{array}\right) \quad \text { and } \quad T_{1}=\left(\begin{array}{cc}
0 & 0 \\
T & 0
\end{array}\right) .
$$

N_{1} and T_{1} are in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A}) \otimes M_{2}(\mathbb{C})$. It is well-known that $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A}) \otimes M_{2}(C) \cong$ $\mathscr{A}_{\widetilde{\mathfrak{F}}}\left(\mathfrak{A} \otimes M_{2}(\mathbb{C})\right)$. The operator N_{1} is normal and $N_{1} T_{1}=T_{1} N_{1}$. By Corollary 3.5. we have $N_{1}^{*} T_{1}=T_{1} N_{1}^{*}$. Comparing the (2,1)-entry then gives $M^{*} T=T N^{*}$.

Recall that the numerical range of a closed operator T, denoted by $W(T)$, is defined as

$$
W(T)=\left\{\langle T \xi, \xi\rangle: \xi \in \mathscr{D}(T),\|\xi\|_{2}=1\right\} .
$$

In [3], Embry proved the following theorem.

Theorem 3.7 ([3], Theorem 1). Let N and M be two commuting bounded normal operators and T a bounded operator such that $0 \notin W(T)$. If $M T=T N$, then $N=M$.

We will obtain similar result for unbounded operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. For the proof of this fact we give first the following few useful facts.

Lemma 3.8. Let T be an element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If $A \in \mathfrak{A}$ such that $A \cdot T=T \widehat{\cdot} A$, then $\mathscr{D}(T) \subseteq \mathscr{D}(T A)=\{\beta: A \beta \in \mathscr{D}(T)\}$. Thus $A T \subseteq T A$.

Proof. Let $\xi \in \mathscr{D}(T) \subseteq \mathscr{D}(A \prec T)=\mathscr{D}(T \prec A)$. By the definition of $T \prec A$, for any $1 \leqslant n \in \mathbb{N}$, there is $\xi_{n} \in \mathscr{D}(T A)$ such that

$$
\left\|\xi_{n}-\xi\right\| \leqslant \frac{1}{n}, \quad\left\|T\left(A \xi_{n}\right)-T \widehat{\cdot} A \xi\right\| \leqslant \frac{1}{n}
$$

Since $A \xi_{n} \rightarrow A \xi$ and T is closed, we have $T(A \xi)=(T \prec A) \xi$. Thus $A \xi \in$ $\mathscr{D}(T)$.

Corollary 3.9. Let T be an element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If N is a normal operator in \mathfrak{A} such that $N T=T N$, then $A T=T A$ for each A affiliated with the abelian von Neumann algebra \mathfrak{A} generated by N.

Proof. By Theorem 3.2, Lemma 3.8 and Lemma 5.6 .13 of [8], we have $T A=$ $A T$ for any $A \in \mathfrak{A}$. Let $B=U H \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ where U is a unitary in \mathfrak{A} and H is a positive element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. Since $(I+H)^{-1} T=T(I+H)^{-1}$, we have $H T=T H$. Therefore $B T=T B$.

The next corollary follows easily from Corollary 3.9 and the argument of Corollary 3.6. and we leave it to the reader to supply the reasonably easy proof.

Corollary 3.10. Let T be an element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. If N is a normal operator in \mathfrak{A} such that $N T=T N$, then $A T=T A$ for each A affiliated with the abelian von Neumann algebra \mathcal{A} generated by N.

Proof. By Theorem 3.2, Lemma 3.8 and Lemma 5.6.13 of [], we have TA = $A T$ for any $A \in \mathcal{A}$. Let $B=U H \in \mathscr{A}_{\widehat{F}}(\mathcal{A})$ where U is a unitary in \mathcal{A} and H is a positive element in $\mathscr{A}_{\mathfrak{F}}(\mathcal{A})$. Since $(I+H)^{-1} T=T(I+H)^{-1}$, we have $H T=T H$. Therefore $B T=T B$.

By Corollary 3.10 and an argument parallel to that used in [3], we have the following fact.

Corollary 3.11. Let T, N and M be closed operators in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. Suppose that N and M are two commuting normal elements and $M T=T N$. If $0 \notin W(T)$, then $N=M$.

Proof. Let $N=N_{1}+i N_{2}$ and $M=M_{1}+i M_{2}$ where N_{1}, N_{2}, M_{1} and M_{2} are selfadjoint elements in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. Note that $M T=T N$ implies that $M^{*} T=T N^{*}$ by Corollary 3.6 Thus we know $M_{i} T=T N_{i}, i=1,2$. Similarly, as $N M=M N$
and $N M^{*}=M^{*} N$, we have $N M_{i}=M_{i} N, i=1,2$. Therefore, $N_{i} M_{j}=M_{j} N_{i}$, $i, j \in\{1,2\}$.

To show $N=M$, we only need to prove that $N_{i}=M_{i}$ for $i=1,2$. By the above argument, we could assume that N and M are two commuting selfadjoint elements. If N and M are selfadjoint, then $(i I+M)^{-1}$ and $(i I+N)^{-1}$ are bounded. Note that $M T=T N$ if and only if $(i I+M)^{-1} T=T(i I+N)^{-1}$. Let χ be the characteristic function for a Borel subset of \mathbb{C}. By Corollary 3.10, we know $E T=T F$ where $E=\chi\left((i I+M)^{-1}\right)$ and $F=\chi\left((i I+N)^{-1}\right)$. Noting that $E F=F E$, we have

$$
\left[F T^{*}(I-F)\right] T[(I-F) T F]=T^{*} E(I-F) T(I-F) T F=T^{*}(I-F) T F(I-F) T F=0,
$$

and

$$
\left[(I-F) T^{*} F\right] T[F T(I-F)]=T^{*}(I-E) F T F T(I-F)=T^{*} F T(I-F) F T(I-F)=0
$$

Since $0 \notin W(T)$, the above equations imply that $(I-F) T F=0$ and $F T(I-$ $F)=0$. Thus $T F=F T$. Consequently, $T(i I+N)^{-1}=(i I+N)^{-1} T$ by Lemma 5.6.13 of [8]). Note that $0 \notin W(T)$ implies that $\operatorname{Ker}\left(T^{*}\right)=\{0\}$. Therefore $(i I+N)^{-1} T=(i I+M)^{-1} T$ implies $(i I+N)^{-1}=(i I+M)^{-1}$ and $N=M$.

The following result is well-known. For the sake of completeness, we give the proof here.

Lemma 3.12. Let \mathfrak{A} be a separable II_{1} factor. There exist two maximal abelian selfadjoint subalgebras $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ such that $\mathfrak{M}_{1} \cap \mathfrak{M}_{2}=\mathbb{C} I$.

Proof. By Corollary 4.1 in [12], there is a hyperfinite subfactor \mathcal{R} such that $\mathcal{R}^{\prime} \cap \mathfrak{A}=\mathbb{C} I$. Let $\widetilde{\mathfrak{M}}_{1}$ and $\widetilde{\mathfrak{M}}_{2}$ be two orthogonal maximal abelian selfadjoint subalgebras which generate \mathcal{R}. There exist two maximal abelian selfadjoint subalgebras \mathfrak{M}_{1} and \mathfrak{M}_{2} of \mathfrak{A} containing $\widetilde{\mathfrak{M}}_{1}$ and $\widetilde{\mathfrak{M}}_{2}$ respectively. If $T \in \mathfrak{M}_{1} \cap \mathfrak{M}_{2}$, then T commutes with all elements in $\widetilde{\mathfrak{M}}_{1}$ and $\widetilde{\mathfrak{M}}_{2}$. Hence $T \in \mathcal{R}^{\prime} \cap \mathfrak{A}=\mathbb{C} I$.

COROLLARy 3.13. If \mathfrak{A} is a separable II_{1} factor, then there exists a closed operator $T \in \mathscr{A}_{\widehat{\mathfrak{F}}}(\mathfrak{A})$ such that $N T \neq T N$ for any normal element $N \in \mathscr{A}_{\widehat{\mathfrak{F}}}(\mathfrak{A}) \backslash \mathbb{C} I$.

Proof. By Lemma 3.12, there exist two maximal abelian selfadjoint subalgebras \mathfrak{M}_{1} and \mathfrak{M}_{2} of \mathfrak{A} such that $\mathfrak{M}_{1} \cap \mathfrak{M}_{2}=\mathbb{C}$. Let $T=H_{1}+i H_{2}$ where H_{1} and H_{2} are two positive invertible (the inverse is a bounded positive operator in \mathfrak{A}) operators that generate \mathfrak{M}_{1} and \mathfrak{M}_{2} respectively. Suppose that N is a nontrivial normal operator in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ and $N T=T N$. By Corollary 3.5, $N^{*} T=T N^{*}$. Hence $N T^{*}=T^{*} N$. This implies that $N H_{1}=H_{1} N$ and $N H_{2}=N H_{2}$. Note that $\left(I+N^{*} N\right)^{-1}$ is in $\mathfrak{M}_{1} \cap \mathfrak{M}_{2}=\mathbb{C} I$. Thus $N^{*} N$ must be a scalar and $N=c U$ where $c \in \mathbb{C}$ and U is a unitary. If N is a unitary, then N is in $\mathfrak{M}_{1} \cap \mathfrak{M}_{2}=\mathbb{C} I$.

4. UNBOUNDED OPERATOR WITH TRIVIAL RELATIVE COMMUTANT

In this section, we will construct unbounded operators affiliated with some II_{1} factors with trivial relative commutant in the factors.

As in Section 2, let (X, \mathcal{B}, μ) be a non-atomic probability space. Consider the von Neumann algebra $\mathfrak{A}=L^{\infty}(X) \rtimes_{\alpha} G$ where G is a countable discrete group acting on X and leaving μ invariant. Suppose that G acts ergodically and freely, then \mathfrak{A} is a factor of type II_{1}. Recall that \mathfrak{A}, as a subalgebra of $\mathcal{B}\left(L^{2}(X) \otimes l^{2}(G)\right)$, is generated by the operators

$$
\Psi(f)=\sum_{g \in G} \alpha_{g}^{-1}(f) \otimes E_{g}, \quad L_{g}=I \otimes l_{g}, \quad \forall f \in L^{\infty}(X), g \in G
$$

where E_{g} is the orthogonal projection from $l^{2}(G)$ onto the subspace spanned by the vector $e_{g} \in l^{2}(G)$.

Fix $n(\in \mathbb{N})$ different elements $s_{1}, s_{2}, \ldots, s_{n}$ in G. Let $\left\{h_{s_{i}}\right\}_{i=1}^{n}$ be n measurable functions on X satisfying $\mu\left(\left\{x: h_{s_{i}}(x)=0\right.\right.$ or $\left.\left.\infty\right\}\right)=0$. It is easy to see that $\Psi\left(h_{s_{i}}\right)$ is affiliated with the von Neumann algebra $\left\{\Psi(f): f \in L^{\infty}(X)\right\}$. Thus

$$
\begin{equation*}
T=\sum_{i=1}^{n} \Psi\left(h_{s_{i}}\right) L_{s_{i}}=\sum_{i=1}^{n} L_{s_{i}} \Psi\left(\alpha_{s_{i}}^{-1}\left(h_{s_{i}}\right)\right) \tag{4.1}
\end{equation*}
$$

is an element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. Let $\left\{\chi_{m}\right\}_{m=1}^{\infty} \in L^{\infty}(X)$ be a sequence of characteristic functions satisfies the following three conditions:
(I) $\chi_{m_{1}} \chi_{m_{2}}=\chi_{m_{1}}$ for $m_{1} \leqslant m_{2}$;
(II) $\bigcup_{m} \chi_{m} L^{2}(X)$ is dense in $L^{2}(X)$;
(III) for each $m, h_{s_{i}} \chi_{m}, \alpha_{s_{i}}^{-1}\left(h_{s_{i}}\right) \chi_{m}$ are bounded, $i=1, \ldots, n$.

Let

$$
\begin{equation*}
P_{m}=\Psi\left(\chi_{m}\right)=\sum_{g \in G} \alpha_{g}^{-1}\left(\chi_{m}\right) \otimes E_{g} . \tag{4.2}
\end{equation*}
$$

Then it is not hard to check that $T P_{m}$ and $T^{*} P_{m}$ are both bounded. Thus $P_{m} \mathcal{H} \subseteq$ $\mathscr{D}(T) \cap \mathscr{D}\left(T^{*}\right)$. By Proposition 2.1. it is easy to see that $\bigcup_{m} P_{m} \mathcal{H}$ is a common core for T and T^{*}. To proceed further, we will need the following technical result.

Lemma 4.1. With the above notations, let $A=\sum_{s} \Psi\left(f_{s}\right) L_{s} \in L^{\infty}(X) \times_{\alpha} G$. If $A T=T A\left(T\right.$ is the element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ defined by equation (4.1)), then

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{g}^{-1}\left(f_{s s_{i}^{-1}}\right) \alpha_{s_{i} s^{-1} g}^{-1}\left(h_{s_{i}}\right)=\sum_{i=1}^{n} \alpha_{g}^{-1}\left(h_{s_{i}}\right) \alpha_{s_{i}^{-1} g}^{-1}\left(f_{s_{i}^{-1} s}\right), \quad \forall g, s \in G \tag{4.3}
\end{equation*}
$$

Proof. Since $A T=T A, \mathscr{D}(T A)=\mathscr{D}(A T) \supseteq \mathscr{D}(T) \cap \mathscr{D}\left(T^{*}\right) \supseteq \bigcup_{m} P_{m} \mathcal{H}$. Note that by the definition of P_{m} (see equation (4.2)), there is a dense linear subspace

$$
\mathscr{D}_{g}=\bigcup_{m} \alpha_{g}^{-1}\left(\chi_{m}\right) L^{2}(X) \subseteq L^{2}(X)
$$

such that $\mathscr{D}_{g} \otimes e_{g}=\left\{\xi \otimes e_{g}: \xi \in \mathscr{D}_{g}\right\} \subseteq \bigcup_{m} P_{m} \mathcal{H}$. Since $\left\{\chi_{m}\right\}$, as projections in $\mathcal{B}\left(L^{2}(X)\right)$, tend to I in the strong operator topology, it is not hard to see that $\mathscr{D}_{g} \cap \mathscr{D}_{l}$ is also a dense subspace for g and l in G. For $\xi, \beta \in \mathscr{D}_{g} \cap \mathscr{D}_{l}$, we have

$$
\begin{aligned}
\left\langle T A \xi \otimes e_{l}, \beta \otimes e_{g}\right\rangle & =\left\langle\left(\sum_{s} \Psi\left(f_{s}\right) L_{s}\right) \xi \otimes e_{l},\left(\sum_{i=1}^{n} L_{s_{i}^{-1}} \Psi\left(\bar{h}_{s_{i}}\right)\right) \beta \otimes e_{g}\right\rangle \\
& =\left\langle\sum_{s} \alpha_{s l}^{-1}\left(f_{s}\right) \xi \otimes e_{s l}, \sum_{i=1}^{n} \alpha_{g}^{-1}\left(\bar{h}_{s_{i}}\right) \beta \otimes e_{s_{i}^{-1} g}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} \alpha_{g}^{-1}\left(h_{s_{i}}\right) \alpha_{s_{i}^{-1} g}^{-1}\left(f_{s_{i}^{-1} g l^{-1}}\right) \xi, \beta\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle A T \xi \otimes e_{l}, \beta \otimes e_{g}\right\rangle & =\left\langle\left(\sum_{i=1}^{n} \Psi\left(h_{s_{i}}\right) L_{s_{i}}\right) \xi \otimes e_{l},\left(\sum_{s} L_{s^{-1}} \Psi\left(\bar{f}_{s}\right)\right) \beta \otimes e_{g}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} \alpha_{s_{i} l}^{-1}\left(h_{s_{i}}\right) \xi \otimes e_{s_{i} l}, \sum_{s} \alpha_{g}^{-1}\left(\bar{f}_{s}\right) \beta \otimes e_{s^{-1} g}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} \alpha_{g}^{-1}\left(f_{g l-1} s_{s_{i}^{-1}}\right) \alpha_{s_{i} l}^{-1}\left(h_{s_{i}}\right) \xi, \beta\right\rangle .
\end{aligned}
$$

Since $\mathscr{D}_{g} \cap \mathscr{D}_{l}$ is dense in $L^{2}(X)$, the above two equations imply

$$
\sum_{i=1}^{n} \alpha_{g}^{-1}\left(h_{s_{i}}\right) \alpha_{s_{i}^{-1} g}^{-1}\left(f_{s_{i}^{-1} g l^{-1}}\right)=\sum_{i=1}^{n} \alpha_{g}^{-1}\left(f_{g l^{-1} s_{i}^{-1}}\right) \alpha_{s_{i} l}^{-1}\left(h_{s_{i}}\right)
$$

Let $g l^{-1}=s$, we obtain the desired equation (4.3).
With the help of the preceding lemma, we can now give some unbounded operators affiliated with some I_{1} factor \mathfrak{A} with trivial relative commutant in \mathfrak{A}.
4.1. Hyperfinite case. Let $X=[0,1]$ be the unit interval endowed with the normalized Lebesgue measure and $G=\mathbb{Z}$. Fix an irrational number r in $[0,1]$, we consider the action of G on X given by $n(x)=(x-n r) \bmod 1$ for $n \in \mathbb{Z}$. Clearly the action satisfies $\mu \circ n=\mu$. Let $\alpha_{n}(f)(x)=f((x+n r) \bmod 1)$ for any measurable function f on X. It is well-known that the action is free, ergodic and $\mathcal{R}=L^{\infty}(X) \rtimes_{\alpha} G$ is the hyperfinite I_{1} factor. In the following, we will use α to denote α_{1}. Note that $\alpha_{n}=\alpha^{n}$.

Let $T=\Psi\left(h_{1}\right) L_{1} \in \mathscr{A}_{\mathfrak{F}}(\mathcal{R})$ and $A=\sum_{k \in \mathbb{Z}} \Psi\left(f_{k}\right) L_{k} \in \mathcal{R}$. If $A T=T A$ then let $n=1, s_{1}=1, g=n, s=m+1$ in equation (4.3). We have

$$
\alpha_{-n}\left(f_{m}\right) \alpha_{m-n}\left(h_{1}\right)=\alpha_{-n}\left(h_{1}\right) \alpha_{1-n}\left(f_{m}\right)
$$

Applying α_{n} to both side of the above equation, we get

$$
\begin{equation*}
f_{m} \alpha_{m}\left(h_{1}\right)=h_{1} \alpha\left(f_{m}\right) \tag{4.4}
\end{equation*}
$$

Recall that h_{1} is a measurable function on X such that $\mu\left(\left\{x: h_{1}(x)=0\right.\right.$ or $\left.\left.\infty\right\}\right)=0$.

Let

$$
k_{m}= \begin{cases}h_{1} \alpha_{1}\left(h_{1}\right) \cdots \alpha_{m-1}\left(h_{1}\right) & \text { if } m>0 \\ 1 & \text { if } m=0, \\ \alpha_{-1}\left(1 / h_{1}\right) \alpha_{-2}\left(1 / h_{1}\right) \cdots \alpha_{m}\left(1 / h_{1}\right) & \text { if } m<0\end{cases}
$$

Then equation (4.4) implies that $\alpha\left(f_{m} / k_{m}\right)=f_{m} / k_{m}$.
By Lemma 8.6.6 of [8]), there exist constants $c_{n}, n \in \mathbb{Z}$, such that $f_{m}=c_{m} k_{m}$ almost everywhere. If we choose h_{1} such that k_{m} is unbounded for each $m \neq 0$ (for example $h_{1}=(1-x) / x$ satisfies the condition), then A is bounded if and only if $c_{m}=0$ for all $m \neq 0$. Thus the relative commutant of T in \mathcal{R} is trivial.

Recall that a Cartan subalgebra \mathcal{M} in a II_{1} factor \mathfrak{A} is a maximal abelian $*-$ subalgebra with normalizer $\mathcal{N}_{\mathfrak{A}}(\mathcal{M})=\left\{U \in \mathcal{U}(\mathcal{M}): U^{*} \mathcal{M} U=\mathcal{M}\right\}$ generating \mathfrak{A}, where $\mathcal{U}(\mathfrak{A})$ is the group of all unitary operators in \mathfrak{A}. By the above discussion, we have the following fact.

Lemma 4.2. Let $\mathcal{R}=L^{\infty}(X) \rtimes_{\alpha} \mathbb{Z}$ be the hyperfinite II_{1} factor. There exists a closed operator $T \in \mathscr{A}_{\mathfrak{F}}(\mathcal{R})$ such that $\{T\}^{\prime} \cap \mathcal{R}=\mathbb{C} I$ and T generates \mathcal{R}, i.e., U and $(I+H)^{-1}$ generate \mathcal{R}, where $T=H U$ is the polar decomposition of T. Furthermore, $(I+H)^{-1}$ generates a Cartan subalgebra of \mathcal{R}.

Proof. As stated above, let $h_{1}=(1-x) / x$, then $T=\Psi\left(h_{1}\right) L_{1}$ is an element in $\mathscr{A}_{\widetilde{F}}(\mathcal{R})$ such that $\{T\}^{\prime} \cap \mathcal{R}=\mathbb{C} I$. Note that $\left\{\Psi(f): f \in L^{\infty}(X)\right\}$ is a Cartan subalgebra of \mathcal{R} since the action is free (see Theorem 8.6.1 of [8])). It is clear that $\left(I+h_{1}\right)^{-1}=x$ generates $\left\{\Psi(f): f \in L^{\infty}(X)\right\}$. And $\left(I+h_{1}\right)^{-1}$ and L_{1} generate \mathcal{R}.
4.2. $\mathrm{A} \mathrm{II}_{1}$ FACTOR With abelian central sequence algebra. We now consider the factor studied in [16]. Let $X=[0,1]$ be the unit interval endowed with the normalized Lebesgue measure and $G=F_{2}$ be the free group generated by two generators a, b. The action of G on X is determined by $\alpha_{a}(h)(x)=h\left(a^{-1}(x)\right)=$ $h((x+r) \bmod 1)$ and $\alpha_{b}(h)(x)=h(x)$ for any $h \in L^{\infty}(X)$, where $r \in[0,1]$ is a fixed irrational number.

It is proved in Proposition 3.1 of [16] that $\mathfrak{A}=L^{\infty}(X) \rtimes_{\alpha} F_{2}$ is a prime II_{1} factor with nontrivial abelian central sequence algebra.

Proposition 4.3. With the above notations, there exists $T \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ with trivial relative commutant in the factor $\mathfrak{A}=L^{\infty}(X) \rtimes_{\alpha} F_{2}$.

$$
\text { Proof. Let } h_{a}(x)=(1-x) / x \text { and } T=\Psi\left(h_{a}\right) L_{a} \in \mathscr{A}_{\mathfrak{F}}(\mathfrak{A}) \text {. If } A=\sum_{s} \Psi\left(f_{s}\right) L_{s}
$$ in \mathfrak{A} commutes with T, then by equation (4.3) we have

$$
\begin{equation*}
\alpha_{g}^{-1}\left(h_{a}\right) \alpha_{a^{-1} g}^{-1}\left(f_{a^{-1} s}\right)=\alpha_{g}^{-1}\left(f_{s a^{-1}}\right) \alpha_{a s^{-1} g}^{-1}\left(h_{a}\right), \quad \forall g, s \in F_{2} \tag{4.5}
\end{equation*}
$$

For simplicity of notation, we will use α^{n} to denote $\alpha_{a^{n}}$. Let ρ be the group homomorphism from F_{2} to \mathbb{Z} such that $\rho(a)=1, \rho(b)=0$. Substitute g and s in
equation (4.5) with a and sa respectively. If $\rho(s)=m$, then we have

$$
\begin{equation*}
\alpha^{-1}\left(h_{a}\right) f_{a^{-1} s a}=\alpha^{-1}\left(f_{s}\right) \alpha^{m-1}\left(h_{a}\right), \quad \forall s \in G \text { and } \rho(s)=m \tag{4.6}
\end{equation*}
$$

Let

$$
k_{m}= \begin{cases}h_{a} \alpha^{1}\left(h_{a}\right) \alpha^{2}\left(h_{a}\right) \cdots \alpha^{m-1}\left(h_{a}\right) & \text { if } m>0 \\ 1 & \text { if } m=0 \\ \alpha^{-1}\left(1 / h_{a}\right) \alpha^{-2}\left(1 / h_{a}\right) \cdots \alpha^{m}\left(1 / h_{1}\right) & \text { if } m<0\end{cases}
$$

The equation (4.6) implies that

$$
\frac{f_{a^{-1} s a}}{k_{m}}=\alpha^{-1}\left(f_{s} / k_{m}\right)
$$

An easy induction gives

$$
\begin{equation*}
f_{a^{-n}} a_{a^{n}}=\alpha^{-n}\left(f_{s} / k_{m}\right) k_{m}, \quad \forall n \in \mathbb{Z}, \forall s \in G \text { with } \rho(s)=m \tag{4.7}
\end{equation*}
$$

We claim that $f_{s}=0$ if s contains $b^{ \pm 1}$ in its reduced form. To prove this statement, we will use the Furstenberg's multiple recurrence theorem which we quote below for the convenience of the reader.

THEOREM 4.4 ([2], Theorem 7.4). Let (X, \mathcal{B}, μ) be a probability space and α : $(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be a measure preserving map, i.e., $\mu\left(\alpha^{-1}(B)\right)=\mu(B)$ for any $B \in \mathcal{B}$. If $B \in \mathcal{B}$ with $\mu(B)>0$, then for any $k \in \mathbb{N}$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(B \cap \alpha^{-n}(B) \cap \alpha^{-2 n}(B) \cap \cdots \cap \alpha^{-k n}(B)\right)>0
$$

Since $\mu\left(\left\{x: k_{m}(x)=\infty\right\}\right)=0$, we only need to show that $f_{s} / k_{m}=0$. This can be proved by contradiction. If $h:=f_{s} / k_{m} \neq 0$, note that $\mu\left(\left\{x: k_{m}(x)=\right.\right.$ $0\})=0$, then there exist two constants $c>0$ and $\delta>0$ such that the measure of the set

$$
S=\left\{x:|h(x)|>c \text { and }|k m(x)| \geqslant \frac{\delta}{c}\right\}
$$

is non zero.
By the Furstenberg's multiple recurrence theorem, there is $\varepsilon>0$ such that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(S \cap a^{-n}(S)\right)=\varepsilon>0
$$

Let $\left\{n_{i}\right\}_{i}$ be a subsequence such that $\mu\left(S \cap a^{-n_{i}}(S)\right) \geqslant \varepsilon$. If $x \in S \cap a^{-n_{i}}(S)$, then $\left|f_{a^{-n_{i s a^{n}}}}(x)\right|=\left|h\left(a^{n_{i}}(x)\right)\right|\left|k_{m}(x)\right| \geqslant \delta$ by equation (4.7). Therefore

$$
\infty=\sum_{i} \delta^{2} \varepsilon \leqslant \sum_{i} \int_{S \cap a^{-n_{i}}(S)}\left|f_{a^{-n_{i s a^{n}}}}\right|^{2} \mathrm{~d} \mu \leqslant \sum_{i} \int_{X}\left|f_{a^{-n_{i s a^{n_{i}}}}}(x)\right|^{2} \mathrm{~d} \mu<\infty .
$$

It is a contradiction and f_{s} must equals 0 .

Hence, if $A=\sum_{s} \Psi\left(f_{s}\right) L_{s}$ commutes with T, then $f_{s}=0$ if s contains $b^{ \pm 1}$ in the reduced form. Now using the same argument as in proof of the hyperfinite case, we can easily deduce that $f_{s}=0$ if s is not the unit of F_{2} and A is a scalar.

4.3. Relative transitive subspace lattices in a II_{1} Factor. For a subset \mathcal{L}

 of $\mathcal{P}(\mathcal{H})$ where $\mathcal{P}(\mathcal{H})$ is the set of orthogonal projections in $\mathcal{B}(\mathcal{H})$, let $\operatorname{Alg}(\mathcal{L})=$ $\{T \in \mathcal{B}(\mathcal{H}):(I-P) T P=0, \forall P \in \mathcal{L}\}$. If $\operatorname{Alg}(\mathcal{L})=\mathbb{C} I$, then \mathcal{L} is called a transitive family of projections. It is easy to see that any pair of subspaces is not transitive. Halmos gave an example of a transitive lattice with 5 nontrivial projections in [5]. Harrison, Radjavi and Rosenthal presented an example of a transitive quadruple of projections in [6]. The existence of transitive triples, that is transitive family with only three nontrivial projections, is proved recently by V. Lomonosov and F. Nazarov in [9].Let \mathfrak{A} be a II_{1} factor and $\mathcal{L} \subseteq \mathfrak{A}$ be a family of projections in \mathfrak{A}. \mathcal{L} is said to be transitive relative to \mathfrak{A} if the only elements in \mathfrak{A} that leave all projections in \mathcal{L} invariant are scalars. In [1], J. Bannon showed that if \mathfrak{A} is a II_{1} factor generated by two selfadjoint elements, then there is a transitive family of projections in $\mathfrak{A} \otimes$ $M_{2}(\mathbb{C})$ with 5 nontrivial projections.

With the help of unbounded operators with trivial relative commutant, we can construct relative transitive quadruples of projections.

Proposition 4.5. Suppose $T=H U$ is a closed operator in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$ with trivial relative commutant in the II_{1} factor \mathfrak{A}, where U is unitary and H is a positive element in $\mathscr{A}_{\mathfrak{F}}(\mathfrak{A})$. Then the following family of projections

$$
\begin{aligned}
& P_{1}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right), \quad P_{3}=\left(\begin{array}{cc}
I / 2 & I / 2 \\
I / 2 & I / 2
\end{array}\right), \\
& P_{4}=\left(\begin{array}{cc}
K & \sqrt{K(I-K)} U \\
U^{*} \sqrt{K(I-K)} & I-U^{*} K U
\end{array}\right)
\end{aligned}
$$

is a relative transitive quadruple of projections in $\mathfrak{A} \otimes M_{2}(\mathbb{C})$, where $K=H^{2}(I+$ $\left.H^{2}\right)^{-1}$.

Proof. An easy computation shows that if $A \in \mathfrak{A} \otimes M_{2}(\mathbb{C})$ such that ($I-$ $\left.P_{i}\right) A P_{i}=0, i=1,2,3$, then $A=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{1}\end{array}\right)$ where $A_{1} \in \mathfrak{A}$. Note that the range of P_{4} is $S=\{(T \xi, \xi): \xi \in \mathscr{D}(T)\}$. Thus $\left(I-P_{4}\right) A P_{4}=0$ implies that $\left(\left(A_{1} T\right) \xi, A_{1} \xi\right) \in S$. This is true only if $A_{1} T=T A_{1}$. Since the relative commutant of T in \mathfrak{A} is trivial, A_{1} must be a scalar.

Therefore, by Proposition 4.5 and the discussion in Section 4.1 and Section 4.2, we know that transitive quadruples of projections do exist in some II_{1} factors.

We conclude this section by pointing out that any family of projections in a II_{1} factor with less than four nontrivial elements is not transitive relative to the
factor. If P_{1} and P_{2} are two nontrivial projections in a II_{1} factor, then the partial isometry from E_{1} onto E_{2} leaves P_{1} and P_{2} invariant, where $E_{1} \leqslant I-P_{1}$ and $E_{2} \leqslant P_{2}$. For a family of projections with three nontrivial elements, we have the following fact.

Proposition 4.6. If $\mathcal{L}=\left\{P_{1}, P_{2}, P_{3}\right\}$ is a subset of three projections in a I_{1} factor \mathfrak{A}, then \mathcal{L} is not transitive relative to \mathfrak{A}.

Proof. We first show that if \mathcal{L} is transitive then $P_{i} \vee P_{j}=I$ and $P_{i} \wedge P_{j}=0$, $i \neq j$. Without loss of generality, we may assume that $\tau\left(P_{1}\right) \leqslant 1 / 2$ and $\tau\left(P_{2}\right) \leqslant$ $1 / 2$, where τ is the faithful normal trace on \mathfrak{A}. Let $E=I-P_{1} \vee P_{2}$. If $E \neq 0$, then it is not hard to check that any partial isometry V satisfying $V^{*} V \leqslant E$ and $V V^{*} \leqslant P_{3}$ is in $\operatorname{Alg}(\mathcal{L})$. $\operatorname{As} \operatorname{Alg}(\mathcal{L})=\mathbb{C} I$, we have $E=0$. By the Kaplansky formula $\tau\left(P_{1}\right)+\tau\left(P_{2}\right)=\tau\left(P_{1} \vee P_{2}\right)+\tau\left(P_{1} \wedge P_{2}\right)$, we have $\tau\left(P_{1}\right)=\tau\left(P_{2}\right)=1 / 2$ and $\tau\left(P_{1} \wedge P_{2}\right)=0$. Hence, $P_{1} \wedge P_{2}=0$.

If $\tau\left(P_{3}\right)>1 / 2$, we may consider $I-\mathcal{L}=\left\{I-P_{1}, I-P_{2}, I-P_{3}\right\}$ instead (note that \mathcal{L} is transitive if and only if $I-\mathcal{L}$ is transitive). And the exact same argument shows that $P_{3} \wedge P_{i}=0$ and $P_{3} \vee P_{i}=I, i=1,2$. From Theorem 2.1. of [7], we have $\operatorname{Alg}(\mathcal{L}) \neq \mathbb{C} I$ and the proof is complete.

Acknowledgements. This paper was partially supported by the National Science Foundation of China (NSFC) under grant numbers 11271390, 11371222, 11301511, 11321101 and 11371290.

REFERENCES

[1] J.P. BANNON, Transitive families of projections in factors of type II_{1}, Proc. Amer. Math. Soc. 133(2004), 835-840.
[2] M. Einsiedler, T. Ward, Eergodic Theory with a View Towards Number Theory, Grad. Texts in Math., vol. 259. Springer-Verlag, London 2011.
[3] M.R. Embry, Similarities involving normal operators on Hilbert space, Pacific J. Math. 35(1970), 331-336.
[4] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36(1950), 35-40.
[5] P.R. Halmos, Ten problems in Hilbert spaces, Bull. Amer. Math. Soc. 76(1970), 887933.
[6] K.J. Harrison, H. Radjavi, P. Rosenthal, A transitive medial subspace lattice, Proc. Amer. Math. Soc. 28(1971), 119-121.
[7] C. Hou, W. Yuan, Minimal generating reflexive lattices of projections in finite von Neumann algebras, Math. Ann. 353(2012), 499-517.
[8] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras. I, II, Grad. Stud. Math., vol. 16, Amer. Math. Soc., Providence, RI 1997, pp. 15-16.
[9] V. Lomonosov, F. NaZarov, Transitive triple, manuscript, 2013.
[10] M. Mortad, Products and sums of bounded and unbounded normal operators: Fuglede-Putnam versus Embry [English], Rev. Roumaine Math. Pures Appl. 56(2011), 195-205.
[11] F. Murray, J. von Neumann, On rings of operators, Ann. Math. 37(1936), 116-229.
[12] S. POPA, On a problem of R.V. Kadison on maximal abelian $*$-subalgebras in factors, Invent. Math. 65(1981), 269-281.
[13] C.R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73(1951), 357362.
[14] M. Rosenblum, On a theorem of Fuglede and Putnam, J. London Math. Soc. 33(1958), 376-377.
[15] C.F. SKAU, Finite subalgebras of a von Neumann algebra, J. Funct. Anal. 25(1977), 211-235.
[16] W.M. Wu, W. Yuan, A remark on central sequence algebras of the tensor product of II_{1} factors, Proc. Amer. Math. Soc. 142(2014), 2829-2835.

DON HADWIN, Mathematics Department, University of New Hampshire, Durham, NH 03824, U.S.A.
E-mail address: don@unh.edu
JUNHAO SHEN, Mathematics Department, University of New Hampshire, Durham, NH 03824, U.S.A.
E-mail address: junhao.shen@unh.edu
WENMING WU, School of Mathematical Science, Chongeing Normal University, Chongeing, 401331, China
E-mail address: wuwm@amss.ac.cn
WEI YUAN, Academy of Mathematics and System Science, Chinese Academy of Science, Beijing, 100084, China
E-mail address: wyuan@math.ac.cn

