C*-ALGEBRAS GENERATED BY MULTIPLICATION OPERATORS AND COMPOSITION OPERATORS WITH RATIONAL SYMBOL

HIROYASU HAMADA

Communicated by Kenneth R. Davidson

ABSTRACT. Let *R* be a rational function of degree at least two, let J_R be the Julia set of *R* and let μ^L be the Lyubich measure of *R*. We study the *C**-algebra \mathcal{MC}_R generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator C_R induced by *R* on $L^2(J_R, \mu^L)$. We show that the *C**-algebra \mathcal{MC}_R is isomorphic to the *C**-algebra $\mathcal{O}_R(J_R)$ associated with the complex dynamical system $\{R^{\circ n}\}_{n=1}^{\infty}$.

KEYWORDS: Composition operator, multiplication operator, Frobenius–Perron operator, C*-algebra, complex dynamical system.

MSC (2010): Primary 46L55, 47B33; Secondary 37F10, 46L08.

1. INTRODUCTION

Let \mathbb{D} be the open unit disk in the complex plane and $H^2(\mathbb{D})$ the Hardy space of analytic functions whose power series have square-summable coefficients. For an analytic self-map φ on the unit disk \mathbb{D} , the composition operator C_{φ} on the Hardy space $H^2(\mathbb{D})$ is defined by $C_{\varphi}g = g \circ \varphi$ for $g \in H^2(\mathbb{D})$. Let \mathbb{T} be the unit circle in the complex plane and $L^2(\mathbb{T})$ the square integrable measurable functions on \mathbb{T} with respect to the normalized Lebesgue measure. The Hardy space $H^2(\mathbb{D})$ can be identified as the closed subspace of $L^2(\mathbb{T})$ consisting of the functions whose negative Fourier coefficients vanish. Let P_{H^2} be the projection from $L^2(\mathbb{T})$ onto the Hardy space $H^2(\mathbb{D})$. For $a \in L^{\infty}(\mathbb{T})$, the Toeplitz operator T_a on the Hardy space $H^2(\mathbb{D})$ is defined by $T_a f = P_{H^2} a f$ for $f \in H^2(\mathbb{D})$. Recently several authors considered C*-algebras generated by composition operators (and Toeplitz operators). Most of their studies have focused on composition operators induced by linear fractional maps ([6], [7], [13], [14], [15], [18], [20], [21], [22]).

There are some studies about C^* -algebras generated by composition operators and Toeplitz operators for finite Blaschke products. Finite Blaschke products

are examples of rational functions. For an analytic self-map φ on the unit disk \mathbb{D} , we denote by \mathcal{TC}_{φ} the Toeplitz-composition C^* -algebra generated by both the composition operator C_{φ} and the Toeplitz operator T_z . Its quotient algebra by the ideal \mathcal{K} of the compact operators is denoted by \mathcal{OC}_{φ} . Let R be a finite Blaschke product of degree at least two with R(0) = 0. Watatani and the author [5] proved that the quotient algebra \mathcal{OC}_R is isomorphic to the C^* -algebra $\mathcal{O}_R(J_R)$ associated with the complex dynamical system introduced in [11]. In [4] we extend this result for general finite Blaschke products. Let R be a finite Blaschke product R of degree at least two. We showed that the quotient algebra \mathcal{OC}_R is isomorphic to a certain Cuntz–Pimsner algebra and there is a relation between the quotient algebra \mathcal{OC}_R and the C^* -algebra \mathcal{OC}_R and \mathcal{OC}_R and the C^* -algebra \mathcal{OC}_R and \mathcal{OC}_R and \mathcal{OC}_R are slightly different.

In this paper we give a relation between a C^* -algebra containing a composition operator and the C^* -algebra $\mathcal{O}_R(J_R)$ for a general rational function R of degree at least two. In the above studies we deal with composition operators on the Hardy space $H^2(\mathbb{D})$, while we consider composition operators on L^2 spaces in this case. Composition operators on L^2 spaces has been studied by many authors (see for example [23]). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let φ a nonsingular transformation on Ω . We define a measurable function by $C_{\varphi}f = f \circ \varphi$ for $f \in L^2(\Omega, \mathcal{F}, \mu)$. If C_{φ} is bounded operator on $L^2(\Omega, \mathcal{F}, \mu)$, we call C_{φ} the composition operator with φ .

Let *R* be a rational function of degree at least two. We consider the Julia set J_R of *R*, the Borel σ -algebra $\mathcal{B}(J_R)$ on J_R and the Lyubich measure μ^L of *R*. Let us denote by \mathcal{MC}_R the *C*^{*}-algebra generated by multiplication operators M_a for $a \in C(J_R)$ and the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$. We regard the *C*^{*}-algebra \mathcal{MC}_R and multiplication operators, respectively. We prove that the *C*^{*}-algebra \mathcal{MC}_R is isomorphic to the *C*^{*}-algebra $\mathcal{O}_R(J_R)$ associated with the complex dynamical system.

There are two important points to prove this theorem. The first one is to analyze operators of the form $C_R^*M_aC_R$ for $a \in C(J_R)$. We now consider a more general case. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and φ is a non-singular transformation. If C_{φ} is bounded, then we have $C_{\varphi}^*M_aC_{\varphi} = M_{\mathcal{L}_{\varphi}(a)}$ for $a \in L^{\infty}(\Omega, \mathcal{F}, \mu)$, where \mathcal{L}_{φ} is the Frobenius–Perron operator for φ . This is an extension of covariant relations considered by Exel and Vershik [2]. Moreover similar relations have been studied on the Hardy space $H^2(\mathbb{D})$. Let φ be an inner function on \mathbb{D} . Jury showed a covariant relation $C_{\varphi}^*T_aC_{\varphi} = T_{A_{\varphi}(a)}$ for $a \in L^{\infty}(\mathbb{T})$ in [8], where A_{φ} is the Aleksandrov operator.

The second important point is an analysis based on bases of Hilbert bimodules. In [4] and [5], a Toeplitz-composition C^* -algebra for a finite Blaschke product *R* is isomorphic to a certain Cuntz–Pimsner algebra of a Hilbert bimodule X_R , using a finite basis of X_R . Let *R* be a rational function of degree at least two. The C^* -algebra $\mathcal{O}_R(J_R)$ associated with a complex dynamical system is defined as a Cuntz–Pimsner algebra of a Hilbert bimodule *Y*. Unlike the cases of [4] and [5], the Hilbert bimodule *Y* does not always have a *finite* basis. Kajiwara [9], however, constructed a concrete *countable* basis of *Y*. Thanks to this basis, we can prove the desired theorem.

2. COVARIANT RELATIONS

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $\varphi : \Omega \to \Omega$ be a measurable transformation. Set $\varphi_*\mu(E) = \mu(\varphi^{-1}(E))$ for $E \in \mathcal{F}$. Then $\varphi_*\mu$ is a measure on Ω . The measurable transformation $\varphi : \Omega \to \Omega$ is said to be *non-singular* if $\varphi_*\mu(E) = 0$ whenever $\mu(E) = 0$ for $E \in \mathcal{F}$. If φ is non-singular, then $\varphi_*\mu$ is absolutely continuous with respect to μ . When μ is σ -finite, we denote by h_{φ} the Radon–Nikodym derivative $\frac{d\varphi_*\mu}{d\mu}$.

Let $1 \leq p \leq \infty$. We shall define the composition operator on $L^p(\Omega, \mathcal{F}, \mu)$. Every non-singular transformation $\varphi : \Omega \to \Omega$ induces a linear operator C_{φ} from $L^p(\Omega, \mathcal{F}, \mu)$ to the linear space of all measurable functions on $(\Omega, \mathcal{F}, \mu)$ defined as $C_{\varphi}f = f \circ \varphi$ for $f \in L^p(\Omega, \mathcal{F}, \mu)$. If $C_{\varphi} : L^p(\Omega, \mathcal{F}, \mu) \to L^p(\Omega, \mathcal{F}, \mu)$ is bounded, it is called the *composition operator* on $L^p(\Omega, \mathcal{F}, \mu)$ induced by φ . Let $(\Omega, \mathcal{F}, \mu)$ be σ -finite. For $1 \leq p < \infty$, C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ if and only if the Radon– Nikodym derivative h_{φ} is bounded (see for example Theorem 2.1.1 of [23]). If C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ for some $1 \leq p < \infty$, then C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ for any $1 \leq p < \infty$ since h_{φ} is independent of p. For $p = \infty$, C_{φ} is bounded on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ for any non-singular transformation.

DEFINITION 2.1. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space, let $\varphi : \Omega \to \Omega$ be a non-singular transformation and let $f \in L^1(\Omega, \mathcal{F}, \mu)$. We define $\nu_{\varphi, f}$ by

$$\nu_{\varphi,f}(E) = \int_{\varphi^{-1}(E)} f \mathrm{d}\mu$$

for $E \in \mathcal{F}$. Then $\nu_{\varphi,f}$ is an absolutely continuous measure with respect to μ . By the Radon–Nikodym theorem, there exists $\mathcal{L}_{\varphi}(f) \in L^{1}(\Omega, \mathcal{F}, \mu)$ such that

$$\int_{E} \mathcal{L}_{\varphi}(f) \mathrm{d}\mu = \int_{\varphi^{-1}(E)} f \mathrm{d}\mu$$

for $E \in \mathcal{F}$. We can regard \mathcal{L}_{φ} as a bounded operator on $L^1(\Omega, \mathcal{F}, \mu)$ (see for example Proposition 3.1.1 of [16]). We call \mathcal{L}_{φ} the *Frobenius–Perron operator*.

LEMMA 2.2. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and let $\varphi : \Omega \to \Omega$ be a nonsingular transformation. Suppose that $C_{\varphi} : L^1(\Omega, \mathcal{F}, \mu) \to L^1(\Omega, \mathcal{F}, \mu)$ is bounded. Then the restriction $\mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$ is a bounded operator on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ and $C_{\varphi}^* = \mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$. *Proof.* Let $f \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. First we shall show $\mathcal{L}_{\varphi}(f) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. There exists M > 0 such that $|f| \leq M$. It follows from Proposition 3.1.1 of [16] that $|\mathcal{L}_{\varphi}(f)| \leq \mathcal{L}_{\varphi}(|f|) \leq M\mathcal{L}_{\varphi}(1)$. Since $\mathcal{L}_{\varphi}(1) = h_{\varphi}$ and C_{φ} is bounded on $L^{1}(\Omega, \mathcal{F}, \mu)$, we have $\mathcal{L}_{\varphi}(1) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. Hence $\mathcal{L}_{\varphi}(f) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$.

By the definition of \mathcal{L}_{φ} , we have

$$\int_{\Omega} \chi_E \mathcal{L}_{\varphi}(f) \mathrm{d}\mu = \int_{\Omega} \chi_{\varphi^{-1}(E)} f \mathrm{d}\mu = \int_{\Omega} (C_{\varphi} \chi_E) f \mathrm{d}\mu$$

for $E \in \mathcal{F}$, where χ_E and $\chi_{\varphi^{-1}(E)}$ are characteristic functions on E and $\varphi^{-1}(E)$ respectively. Since C_{φ} is bounded on $L^1(\Omega, \mathcal{F}, \mu)$ and the set of integrable simple functions is dense in $L^1(\Omega, \mathcal{F}, \mu)$, the restriction map $\mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$ is bounded on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ and $C_{\varphi}^* = \mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$.

Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and $\varphi : \Omega \to \Omega$ a non-singular transformation. We consider the restriction of \mathcal{L}_{φ} to $L^{\infty}(\Omega, \mathcal{F}, \mu)$. From now on, we use the same notation \mathcal{L}_{φ} if no confusion can arise.

For $a \in L^{\infty}(\Omega, \mathcal{F}, \mu)$, we define the multiplication operator M_a on the space $L^2(\Omega, \mathcal{F}, \mu)$ by $M_a f = af$ for $f \in L^2(\Omega, \mathcal{F}, \mu)$. We show the following covariant relation.

PROPOSITION 2.3. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and let $\varphi : \Omega \to \Omega$ be a non-singular transformation. If $C_{\varphi} : L^2(\Omega, \mathcal{F}, \mu) \to L^2(\Omega, \mathcal{F}, \mu)$ is bounded, then we have

$$C_{\varphi}^* M_a C_{\varphi} = M_{\mathcal{L}_{\varphi}(a)}$$

for $a \in L^{\infty}(\Omega, \mathcal{F}, \mu)$.

Proof. For $f, g \in L^2(\Omega, \mathcal{F}, \mu)$, we have

$$\langle C_{\varphi}^* M_a C_{\varphi} f, g \rangle = \langle M_a C_{\varphi} f, C_{\varphi} g \rangle = \int_{\Omega} a(f \circ \varphi) \overline{(g \circ \varphi)} d\mu$$
$$= \int_{\Omega} a C_{\varphi}(f\overline{g}) d\mu = \int_{\Omega} \mathcal{L}_{\varphi}(a) f\overline{g} d\mu = \langle M_{\mathcal{L}_{\varphi}(a)} f, g \rangle$$

by Lemma 2.2, where C_{φ} is also regarded as the composition operator on the space $L^1(\Omega, \mathcal{F}, \mu)$.

3. C*-ALGEBRAS ASSOCIATED WITH COMPLEX DYNAMICAL SYSTEMS

We recall the construction of Cuntz–Pimsner algebras [19] (see also [12]). Let *A* be a *C**-algebra and let *X* be a right Hilbert *A*-module. A sequence $\{u_i\}_{i=1}^{\infty}$ of *X* is called a *countable basis* of *X* if $\xi = \sum_{i=1}^{\infty} u_i \langle u_i, \xi \rangle_A$ for $\xi \in X$, where the right hand side converges in norm. We denote by $\mathcal{L}(X)$ the *C**-algebra of the adjointable bounded operators on *X*. For $\xi, \eta \in X$, the operator $\theta_{\xi,\eta}$ is defined by $\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_A$ for $\zeta \in X$. The closure of the linear span of these operators is denoted by $\mathcal{K}(X)$. We say that *X* is a *Hilbert bimodule* (or *C**-*correspondence*) over *A* if *X* is a right Hilbert *A*-module with a *-homomorphism $\phi : A \to \mathcal{L}(X)$. We always assume that ϕ is injective.

A *representation* of the Hilbert bimodule *X* over *A* on a *C**-algebra *D* is a pair (ρ, V) constituted by a *-homomorphism $\rho : A \to D$ and a linear map $V : X \to D$ satisfying

$$\rho(a)V_{\xi} = V_{\phi(a)\xi}, \quad V_{\xi}\rho(a) = V_{\xi a},$$

and

$$V_{\xi}^* V_{\eta} = \rho(\langle \xi, \eta \rangle_A)$$

for $a \in A$ and $\xi, \eta \in X$. We define a *-homomorphism $\psi_V : \mathcal{K}(X) \to D$ by $\psi_V(\theta_{\xi,\eta}) = V_{\xi}V_{\eta}^*$ for $\xi, \eta \in X$ (see for example Lemma 2.2 of [10]). A representation (ρ, V) is said to be *covariant* if $\rho(a) = \psi_V(\phi(a))$ for all $a \in J(X) := \phi^{-1}(\mathcal{K}(X))$. Suppose the Hilbert bimodule *X* has a countable basis $\{u_i\}_{i=1}^{\infty}$ and (ρ, V) is a representation of *X*. Then (ρ, V) is covariant if and only if $\left\|\sum_{i=1}^n \rho(a) V_{u_i} V_{u_i}^* - \rho(a)\right\| \to 0$ as $n \to \infty$ for $a \in J(X)$, since $\left\{\sum_{i=1}^n \theta_{u_i,u_i}\right\}_{n=1}^{\infty}$ is an approximate unit for $\mathcal{K}(X)$.

Let (i, S) be the representation of X which is universal for all covariant representations. The *Cuntz–Pimsner algebra* \mathcal{O}_X is the *C*^{*}-algebra generated by i(a) with $a \in A$ and S_{ξ} with $\xi \in X$. We note that i is known to be injective [19] (see also Proposition 4.11 of [12]). We usually identify i(a) with a in A.

Let *R* be a rational function of degree at least two. We recall the definition of the *C**-algebra $\mathcal{O}_R(J_R)$. Since the Julia set J_R is completely invariant under *R*, that is, $R(J_R) = J_R = R^{-1}(J_R)$, we can consider the restriction $R|_{J_R} : J_R \to J_R$. Let $A = C(J_R)$ and $Y = C(\text{graph } R|_{J_R})$, where graph $R|_{J_R} = \{(z, w) \in J_R \times J_R : w = R(z)\}$ is the graph of $R|_{J_R}$. We denote by $e_R(z)$ the branch index of *R* at *z*. Then *Y* is an *A*-*A* bimodule over *A* by

$$(a \cdot f \cdot b)(z, w) = a(z)f(z, w)b(w), \quad a, b \in A, f \in Y.$$

We define an *A*-valued inner product $\langle \cdot, \cdot \rangle_A$ on *Y* by

$$\langle f,g \rangle_A(w) = \sum_{z \in R^{-1}(w)} e_R(z) \overline{f(z,w)} g(z,w), \quad f,g \in Y, w \in J_R.$$

Then *Y* is a Hilbert bimodule over *A*. The *C**-algebra $\mathcal{O}_R(J_R)$ is defined as the Cuntz–Pimsner algebra of the Hilbert bimodule $Y = C(\operatorname{graph} R|_{J_R})$ over $A = C(J_R)$.

4. MAIN THEOREM

Let *R* be a rational function. We define the backward orbit $O^-(w)$ of $w \in \widehat{\mathbb{C}}$ by

 $O^{-}(w) = \{z \in \widehat{\mathbb{C}} : R^{\circ m}(z) = w \text{ for some non-negative integer } m\}.$

A point *w* in $\widehat{\mathbb{C}}$ is an *exceptional point* for *R* if the backward orbit $O^-(w)$ of *w* is finite. We denote by E_R the set of exceptional points.

DEFINITION 4.1 (Freire–Lopes–Mañé [3], Lyubich [17]). Let *R* be a rational function and $n = \deg R$. Let δ_z be the Dirac measure at $z \in \widehat{\mathbb{C}}$. For $w \in \widehat{\mathbb{C}} \setminus E_R$ and $m \in \mathbb{N}$, we define a probability measure μ_m^w on $\widehat{\mathbb{C}}$ by

$$\mu_m^w = \frac{1}{n^m} \sum_{z \in (R^{\circ m})^{-1}(w)} e_{R^{\circ m}}(z) \delta_z.$$

The sequence $\{\mu_m^w\}_{m=1}^\infty$ converges weakly to a probability measure μ^L , which is called the *Lyubich measure* of *R*. The measure μ^L is independent of the choice of $w \in \mathbb{C} \setminus E_R$.

Let *R* be a rational function of degree at least two. We will denote by $\mathcal{B}(J_R)$ the Borel σ -algebra on the Julia set J_R . In this section we consider the finite measure space $(J_R, \mathcal{B}(J_R), \mu^L)$. It is known that the support of the Lyubich measure μ^L is the Julia set J_R . Moreover the Lyubich measure μ^L is regular on the Julia set J_R and a invariant measure with respect to *R*, that is, $\mu^L(E) = \mu^L(R^{-1}(E))$ for $E \in \mathcal{B}(J_R)$. Thus the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$ is an isometry.

DEFINITION 4.2. For a rational function *R* of degree at least two, we denote by \mathcal{MC}_R the *C*^{*}-algebra generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$.

Let *R* be a rational function of degree at least two. In this section we shall show that the *C*^{*}-algebra \mathcal{MC}_R is isomorphic to the *C*^{*}-algebra $\mathcal{O}_R(J_R)$. First we give a concrete expression of the restriction of \mathcal{L}_R to $C(J_R)$. This result immediately follows from [17] and Lemma 2.2.

PROPOSITION 4.3 (Lyubich ([17], Lemma, p. 366)). Let *R* be a rational function of degree *n* at least two. Then $\mathcal{L}_R : C(J_R) \to C(J_R)$ and

$$(\mathcal{L}_R(a))(w) = rac{1}{n} \sum_{z \in R^{-1}(w)} e_R(z)a(z), \quad w \in J_R$$

for $a \in C(J_R)$.

Let $A = C(J_R)$, $X = C(J_R)$ and $n = \deg R$. Then X is an A-A bimodule over A by

$$(a \cdot \xi \cdot b)(z) = a(z)\xi(z)b(R(z))$$
 $a, b \in A, \xi \in X.$

We define an *A*-valued inner product $\langle \cdot, \cdot \rangle_A$ on *X* by

$$\langle \xi, \eta \rangle_A(w) = \frac{1}{n} \sum_{z \in R^{-1}(w)} e_R(z) \overline{\xi(z)} \eta(z) \ (= (\mathcal{L}_R(\overline{\xi}\eta))(w)), \quad \xi, \eta \in X.$$

Then *X* is a Hilbert bimodule over *A*. Put $\|\xi\|_2 = \|\langle \xi, \xi \rangle_A\|_{\infty}^{1/2}$ for $\xi \in X$, where $\|\cdot\|_{\infty}$ is the sup norm on J_R . It is easy to see that *X* is isomorphic to *Y* as Hilbert bimodules over *A*. Hence the *C*^{*}-algebra $\mathcal{O}_R(J_R)$ is isomorphic to the Cuntz–Pimsner algebra \mathcal{O}_X constructed from *X*.

We need some analyses based on bases of the Hilbert bimodule X to show an equation containing the composition operator C_R and multiplication operators.

LEMMA 4.4. Let $u_1, \ldots, u_N \in X$. Then

$$\sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* a = \sum_{i=1}^{N} u_i \cdot \langle u_i, a \rangle_A$$

for $a \in A$.

Proof. Since $a = M_a C_R 1$, we have

$$\sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* a = \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* M_a C_R 1 = \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{\overline{u}_i a} C_R 1$$

= $\sum_{i=1}^{N} M_{u_i} C_R M_{\mathcal{L}_R(\overline{u}_i a)} 1$ (by Proposition 2.3)
= $\sum_{i=1}^{N} M_{u_i} M_{\mathcal{L}_R(\overline{u}_i a) \circ R} C_R 1 = \sum_{i=1}^{N} u_i \mathcal{L}_R(\overline{u}_i a) \circ R = \sum_{i=1}^{N} u_i \cdot \langle u_i, a \rangle_A$

which completes the proof.

LEMMA 4.5. Let $\{u_i\}_{i=1}^{\infty}$ be a countable basis of X. Then

$$0 \leqslant \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* \leqslant I.$$

Proof. Set $T_N = \sum_{i=1}^N M_{u_i} C_R C_R^* M_{u_i}^*$. It is clear that T_N is a positive operator. We shall show $T_N \leq I$. By Lemma 4.4,

$$\langle T_N f, f \rangle = \int_{J_R} (T_N f)(z) \overline{f(z)} d\mu^{\mathrm{L}}(z) = \int_{J_R} \Big(\sum_{i=1}^N u_i \cdot \langle u_i, f \rangle_A \Big)(z) \overline{f(z)} d\mu^{\mathrm{L}}(z)$$

for $f \in C(J_R)$. Since $\{u_i\}_{i=1}^{\infty}$ is a countable basis of *X*, for $f \in C(J_R)$, we have $\sum_{i=1}^{N} u_i \cdot \langle u_i, f \rangle_A \to f$ with respect to $\|\cdot\|_2$ as $N \to \infty$. Since the two norms $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent (see the proof of Proposition 2.2 in [11]), $\sum_{i=1}^{N} u_i \cdot \langle u_i, f \rangle_A$ converges to f with respect to $\|\cdot\|_{\infty}$. Thus

$$\langle T_N f, f \rangle \to \int_{J_R} f(z) \overline{f(z)} \mathrm{d}\mu^{\mathrm{L}}(z) = \langle f, f \rangle \quad \text{as } N \to \infty$$

for $f \in C(J_R)$. Therefore $\langle T_N f, f \rangle \leq \langle f, f \rangle$ for $f \in C(J_R)$. Since the Lyubich measure μ^{L} on the Julia set J_R is regular, $C(J_R)$ is dense in $L^2(J_R, \mathcal{B}(J_R), \mu^{L})$. Hence we have $T_N \leq I$. This completes the proof.

Let $\mathcal{B}(R)$ be the set of branched points of a rational function *R*. We now recall a description of the ideal J(X) of *A*. By Proposition 2.5 of [11], we can write $J(X) = \{a \in A : a \text{ vanishes on } \mathcal{B}(R)\}$. We define a subset $J(X)^0$ of J(X) by $J(X)^0 = \{a \in A : a \text{ vanishes on } \mathcal{B}(R) \text{ and has compact support on } J_R \setminus \mathcal{B}(R)\}$. Since $\mathcal{B}(R)$ is a finite set ([1], Corollary 2.7.2), $J(X)^0$ is dense in J(X).

LEMMA 4.6. There exists a countable basis $\{u_i\}_{i=1}^{\infty}$ of X such that

$$\sum_{i=1}^{\infty} M_a M_{u_i} C_R C_R^* M_{u_i}^* = M_a$$

for $a \in J(X)$.

Proof. By Subsection 3.1 of [9], there exists a countable basis $\{u_i\}_{i=1}^{\infty}$ of X satisfying the following property. For any $b \in J(X)^0$, there exists M > 0 such that supp $b \cap \text{supp } u_m = \emptyset$ for $m \ge M$. Since $J(X)^0$ is dense in J(X), for any $a \in A$ and any $\varepsilon > 0$, there exists $b \in J(X)^0$ such that $||a - b|| < \frac{\varepsilon}{2}$. Let $m \ge M$. Then by Lemma 4.4 and $bu_i = 0$ for $i \ge m$, it follows that

$$\sum_{i=1}^{m} M_b M_{u_i} C_R C_R^* M_{u_i}^* f = \sum_{i=1}^{m} b u_i \cdot \langle u_i, f \rangle_A = \sum_{i=1}^{\infty} b u_i \cdot \langle u_i, f \rangle_A = b f = M_b f$$

for $f \in C(J_R)$. Since $C(J_R)$ is dense in $L^2(J_R, \mathcal{B}(J_R), \mu^L)$, we have

$$\sum_{i=1}^{m} M_b M_{u_i} C_R C_R^* M_{u_i}^* = M_b.$$

From Lemma 4.5 it follows that

$$\begin{split} \left\| \sum_{i=1}^{m} M_{a} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - M_{a} \right\| &\leq \left\| \sum_{i=1}^{m} M_{a} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - \sum_{i=1}^{m} M_{b} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} \right\| \\ &+ \left\| \sum_{i=1}^{m} M_{b} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - M_{b} \right\| + \| M_{b} - M_{a} \| \\ &\leq \| M_{a} - M_{b} \| \left\| \sum_{i=1}^{m} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} \right\| + \| M_{a} - M_{b} \| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

which completes the proof.

The following theorem is the main result of the paper.

THEOREM 4.7. Let R be a rational function of degree at least two. Then \mathcal{MC}_R is isomorphic to $\mathcal{O}_R(J_R)$.

Proof. Put
$$\rho(a) = M_a$$
 and $V_{\xi} = M_{\xi}C_R$ for $a \in A$ and $\xi \in X$. Then we have $\rho(a)V_{\xi} = M_aM_{\xi}C_R = M_{a\cdot\xi}C_R = V_{a\cdot\xi}$,

$$V_{\xi}
ho(a) = M_{\xi}C_RM_a = M_{\xi}M_{a\circ R}C_R = M_{\xi(a\circ R)}C_R = M_{\xi\cdot a}C_R = V_{\xi\cdot a}$$

and

$$V_{\xi}^* V_{\eta} = C_R^* M_{\xi}^* M_{\eta} C_R = C_R^* M_{\overline{\xi}\eta} C_R = M_{\mathcal{L}_R(\overline{\xi}\eta)} = \rho(\mathcal{L}_R(\overline{\xi}\eta)) = \rho(\langle \xi, \eta \rangle_A),$$

for $a \in A$ and $\xi, \eta \in X$ by Proposition 2.3. Let $\{u_i\}_{i=1}^{\infty}$ be a countable basis of *X*. Then, applying Lemma 4.6,

$$\sum_{i=1}^{\infty} \rho(a) V_{u_i} V_{u_i}^* = \sum_{i=1}^{\infty} M_a M_{u_i} C_R C_R^* M_{u_i}^* = M_a = \rho(a)$$

for $a \in J(X)$. Since the support of the Lyubich measure μ^{L} is the Julia set J_{R} , the *-homomorphism ρ is injective. By the universality and the simplicity of $\mathcal{O}_{R}(J_{R})$ ([11], Theorem 3.8), the *C**-algebra \mathcal{MC}_{R} is isomorphic to $\mathcal{O}_{R}(J_{R})$.

Acknowledgements. The author wishes to express his thanks to Professor Hiroyuki Takagi for several helpful comments concerning to composition operators.

REFERENCES

- A.F. BEARDON, Iteration of Rational Functions. Complex Analytic Dynamical Systems, Grad. Texts in Math., vol. 132, Springer-Verlag, New York 1991.
- [2] R. EXEL, A. VERSHIK, C*-algebras of irreversible dynamical systems, *Canad. J. Math.* 58(2006), 39–63.
- [3] A. FREIRE, A. LOPES, R. MAÑÉ, An invariant measure for rational maps, *Bol. Soc. Brasil. Mat.* 14(1983), 45–62.
- [4] H. HAMADA, Quotient algebras of Toeplitz-composition C*-algebras for finite Blaschke products, Complex Anal. Oper. Theory 8(2014), 843–862.
- [5] H. HAMADA, Y. WATATANI, Toeplitz-composition C*-algebras for certain finite Blaschke products, *Proc. Amer. Math. Soc.* 138(2010), 2113–2123.
- [6] M.T. JURY, C*-algebras generated by groups of composition operators, *Indiana Univ. Math. J.* 56(2007), 3171–3192.
- [7] M.T. JURY, The Fredholm index for elements of Toeplitz-composition C*-algebras, Integral Equations Operator Theory 58(2007), 341–362.
- [8] M.T. JURY, Completely positive maps induced by composition operators, preprint.

- [9] T, KAJIWARA, Countable bases for Hilbert C*-modules and classification of KMS states, in *Operator Structures and Dynamical Systems*, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI 2009, pp. 73–91.
- [10] T. KAJIWARA, C. PINZARI, Y. WATATANI, Ideal structure and simplicity of the C*algebras generated by Hilbert bimodules, J. Funct. Anal. 159(1998), 295–322.
- [11] T. KAJIWARA, Y. WATATANI, C*-algebras associated with complex dynamical systems, *Indiana Math. J.* 54(2005), 755–778.
- [12] T. KATSURA, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217(2004), 366–401.
- [13] T.L. KRIETE, B.D. MACCLUER, J.L. MOORHOUSE, Toeplitz-composition C*-algebras, J. Operator Theory 58(2007), 135–156.
- [14] T.L. KRIETE, B.D. MACCLUER, J.L. MOORHOUSE, Spectral theory for algebraic combinations of Toeplitz and composition operator, J. Funct. Anal. 257(2009), 2378–2409.
- [15] T.L. KRIETE, B.D. MACCLUER, J.L. MOORHOUSE, Composition operators within singly generated composition *C**-algebras, *Israel J. Math.* **179**(2010), 449–477.
- [16] A. LASOTA, M.C. MACKEY, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Second edition, Appl. Math. Sci., vol. 97, Springer-Verlag, New York 1994.
- [17] M.J. LYUBICH, Entropy properties of rational endomorphisms of the Riemann sphere, *Ergodic Theory Dynam. Systems* **3**(1983), 351–385.
- [18] E. PARK, Toeplitz algebras and extensions of irrational rotation algebras, *Canad. Math. Bull.* 48(2005), 607–613.
- [19] M.V. PIMSNER, A class of C*-algebras generating both Cuntz–Krieger algebras and crossed product by ℤ, in *Free Probability Theory (Waterloo, ON, 1995)*, Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI 1997, pp. 189–212.
- [20] K.S. QUERTERMOUS, A semigroup composition C*-algebra, J. Operator Theory 67(2012), 581–604.
- [21] K.S. QUERTERMOUS, Fixed point composition and Toeplitz-composition C*-algebras, *J. Funct. Anal.* **265**(2013), 743–764.
- [22] M.K. SARVESTANI, M. AMINI, The C*-algebra generated by irreducible Toeplitz and composition operators, arXiv:1408.1057[math.OA].
- [23] R.K. SINGH, J.S. MANHAS, Composition Operators on Function Spaces, North-Holland Math. Stud., vol. 179, North-Holland Publ. Co., Amsterdam 1993.

HIROYASU HAMADA, NATIONAL INSTITUTE OF TECHNOLOGY, SASEBO COL-LEGE, OKISHIN, SASEBO, NAGASAKI, 857-1193, JAPAN *E-mail address*: h-hamada@sasebo.ac.jp

Received March 3, 2015.