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ABSTRACT. Let R be a rational function of degree at least two, let JR be the
Julia set of R and let µL be the Lyubich measure of R. We study the C∗-algebra
MCR generated by all multiplication operators by continuous functions in
C(JR) and the composition operator CR induced by R on L2(JR, µL). We show
that the C∗-algebra MCR is isomorphic to the C∗-algebra OR(JR) associated
with the complex dynamical system {R◦n}∞

n=1.
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1. INTRODUCTION

Let D be the open unit disk in the complex plane and H2(D) the Hardy space
of analytic functions whose power series have square-summable coefficients. For
an analytic self-map ϕ on the unit disk D, the composition operator Cϕ on the
Hardy space H2(D) is defined by Cϕg = g ◦ ϕ for g ∈ H2(D). Let T be the unit
circle in the complex plane and L2(T) the square integrable measurable func-
tions on T with respect to the normalized Lebesgue measure. The Hardy space
H2(D) can be identified as the closed subspace of L2(T) consisting of the func-
tions whose negative Fourier coefficients vanish. Let PH2 be the projection from
L2(T) onto the Hardy space H2(D). For a ∈ L∞(T), the Toeplitz operator Ta on
the Hardy space H2(D) is defined by Ta f = PH2 a f for f ∈ H2(D). Recently
several authors considered C∗-algebras generated by composition operators (and
Toeplitz operators). Most of their studies have focused on composition operators
induced by linear fractional maps ([6], [7], [13], [14], [15], [18], [20], [21], [22]).

There are some studies about C∗-algebras generated by composition opera-
tors and Toeplitz operators for finite Blaschke products. Finite Blaschke products
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are examples of rational functions. For an analytic self-map ϕ on the unit disk
D, we denote by T Cϕ the Toeplitz-composition C∗-algebra generated by both the
composition operator Cϕ and the Toeplitz operator Tz. Its quotient algebra by the
ideal K of the compact operators is denoted by OCϕ. Let R be a finite Blaschke
product of degree at least two with R(0) = 0. Watatani and the author [5] proved
that the quotient algebra OCR is isomorphic to the C∗-algebra OR(JR) associated
with the complex dynamical system introduced in [11]. In [4] we extend this re-
sult for general finite Blaschke products. Let R be a finite Blaschke product R
of degree at least two. We showed that the quotient algebra OCR is isomorphic
to a certain Cuntz–Pimsner algebra and there is a relation between the quotient
algebra OCR and the C∗-algebra OR(JR). In general, two C∗-algebras OCR and
OR(JR) are slightly different.

In this paper we give a relation between a C∗-algebra containing a compo-
sition operator and the C∗-algebra OR(JR) for a general rational function R of
degree at least two. In the above studies we deal with composition operators on
the Hardy space H2(D), while we consider composition operators on L2 spaces
in this case. Composition operators on L2 spaces has been studied by many au-
thors (see for example [23]). Let (Ω,F , µ) be a measure space and let ϕ a non-
singular transformation on Ω. We define a measurable function by Cϕ f = f ◦ ϕ

for f ∈ L2(Ω,F , µ). If Cϕ is bounded operator on L2(Ω,F , µ), we call Cϕ the
composition operator with ϕ.

Let R be a rational function of degree at least two. We consider the Julia
set JR of R, the Borel σ-algebra B(JR) on JR and the Lyubich measure µL of R.
Let us denote byMCR the C∗-algebra generated by multiplication operators Ma
for a ∈ C(JR) and the composition operator CR on L2(JR,B(JR), µL). We regard
the C∗-algebra MCR and multiplication operators as replacements of Toeplitz-
composition C∗-algbras and Toeplitz operators, respectively. We prove that the
C∗-algebraMCR is isomorphic to the C∗-algebraOR(JR) associated with the com-
plex dynamical system.

There are two important points to prove this theorem. The first one is to an-
alyze operators of the form C∗R MaCR for a ∈ C(JR). We now consider a more gen-
eral case. Let (Ω,F , µ) be a finite measure space and ϕ is a non-singular transfor-
mation. If Cϕ is bounded, then we have C∗ϕ MaCϕ = MLϕ(a) for a ∈ L∞(Ω,F , µ),
where Lϕ is the Frobenius–Perron operator for ϕ. This is an extension of covari-
ant relations considered by Exel and Vershik [2]. Moreover similar relations have
been studied on the Hardy space H2(D). Let ϕ be an inner function on D. Jury
showed a covariant relation C∗ϕTaCϕ = TAϕ(a) for a ∈ L∞(T) in [8], where Aϕ is
the Aleksandrov operator.

The second important point is an anaysis based on bases of Hilbert bimod-
ules. In [4] and [5], a Toeplitz-composition C∗-algebra for a finite Blaschke prod-
uct R is isomorphic to a certain Cuntz–Pimsner algebra of a Hilbert bimodule XR,
using a finite basis of XR. Let R be a rational function of degree at least two. The
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C∗-algebra OR(JR) associated with a complex dynamical system is defined as a
Cuntz–Pimsner algebra of a Hilbert bimodule Y. Unlike the cases of [4] and [5],
the Hilbert bimodule Y does not always have a finite basis. Kajiwara [9], however,
constructed a concrete countable basis of Y. Thanks to this basis, we can prove the
desired theorem.

2. COVARIANT RELATIONS

Let (Ω,F , µ) be a measure space and let ϕ : Ω→ Ω be a measurable trans-
formation. Set ϕ∗µ(E) = µ(ϕ−1(E)) for E ∈ F . Then ϕ∗µ is a measure on Ω. The
measurable transformation ϕ : Ω → Ω is said to be non-singular if ϕ∗µ(E) = 0
whenever µ(E) = 0 for E ∈ F . If ϕ is non-singular, then ϕ∗µ is absolutely contin-
uous with respect to µ. When µ is σ-finite, we denote by hϕ the Radon–Nikodym

derivative dϕ∗µ
dµ .

Let 1 6 p 6 ∞. We shall define the composition operator on Lp(Ω,F , µ).
Every non-singular transformation ϕ : Ω→ Ω induces a linear operator Cϕ from
Lp(Ω,F , µ) to the linear space of all measurable functions on (Ω,F , µ) defined as
Cϕ f = f ◦ ϕ for f ∈ Lp(Ω,F , µ). If Cϕ : Lp(Ω,F , µ) → Lp(Ω,F , µ) is bounded,
it is called the composition operator on Lp(Ω,F , µ) induced by ϕ. Let (Ω,F , µ) be
σ-finite. For 1 6 p < ∞, Cϕ is bounded on Lp(Ω,F , µ) if and only if the Radon–
Nikodym derivative hϕ is bounded (see for example Theorem 2.1.1 of [23]). If
Cϕ is bounded on Lp(Ω,F , µ) for some 1 6 p < ∞, then Cϕ is bounded on
Lp(Ω,F , µ) for any 1 6 p < ∞ since hϕ is independent of p. For p = ∞, Cϕ is
bounded on L∞(Ω,F , µ) for any non-singular transformation.

DEFINITION 2.1. Let (Ω,F , µ) be a σ-finite measure space, let ϕ : Ω → Ω

be a non-singular transformation and let f ∈ L1(Ω,F , µ). We define νϕ, f by

νϕ, f (E) =
∫

ϕ−1(E)

f dµ

for E ∈ F . Then νϕ, f is an absolutely continuous measure with respect to µ. By
the Radon–Nikodym theorem, there exists Lϕ( f ) ∈ L1(Ω,F , µ) such that∫

E

Lϕ( f )dµ =
∫

ϕ−1(E)

f dµ

for E ∈ F . We can regard Lϕ as a bounded operator on L1(Ω,F , µ) (see for
example Proposition 3.1.1 of [16]). We call Lϕ the Frobenius–Perron operator.

LEMMA 2.2. Let (Ω,F , µ) be a finite measure space and let ϕ : Ω→ Ω be a non-
singular transformation. Suppose that Cϕ : L1(Ω,F , µ) → L1(Ω,F , µ) is bounded.
Then the restriction Lϕ|L∞(Ω,F ,µ) is a bounded operator on L∞(Ω,F , µ) and C∗ϕ =

Lϕ|L∞(Ω,F ,µ).
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Proof. Let f ∈ L∞(Ω,F , µ). First we shall show Lϕ( f ) ∈ L∞(Ω,F , µ).
There exists M > 0 such that | f | 6 M. It follows from Proposition 3.1.1 of [16]
that |Lϕ( f )| 6 Lϕ(| f |) 6 MLϕ(1). Since Lϕ(1) = hϕ and Cϕ is bounded on
L1(Ω,F , µ), we have Lϕ(1) ∈ L∞(Ω,F , µ). Hence Lϕ( f ) ∈ L∞(Ω,F , µ).

By the definition of Lϕ, we have∫
Ω

χELϕ( f )dµ =
∫
Ω

χϕ−1(E) f dµ =
∫
Ω

(CϕχE) f dµ

for E ∈ F , where χE and χϕ−1(E) are characteristic functions on E and ϕ−1(E)
respectively. Since Cϕ is bounded on L1(Ω,F , µ) and the set of integrable simple
functions is dense in L1(Ω,F , µ), the restriction map Lϕ|L∞(Ω,F ,µ) is bounded on
L∞(Ω,F , µ) and C∗ϕ = Lϕ|L∞(Ω,F ,µ).

Let (Ω,F , µ) be a finite measure space and ϕ : Ω → Ω a non-singular
transformation. We consider the restriction of Lϕ to L∞(Ω,F , µ). From now on,
we use the same notation Lϕ if no confusion can arise.

For a ∈ L∞(Ω,F , µ), we define the multiplication operator Ma on the space
L2(Ω,F , µ) by Ma f = a f for f ∈ L2(Ω,F , µ). We show the following covariant
relation.

PROPOSITION 2.3. Let (Ω,F , µ) be a finite measure space and let ϕ : Ω → Ω
be a non-singular transformation. If Cϕ : L2(Ω,F , µ)→ L2(Ω,F , µ) is bounded, then
we have

C∗ϕ MaCϕ = MLϕ(a)

for a ∈ L∞(Ω,F , µ).

Proof. For f , g ∈ L2(Ω,F , µ), we have

〈C∗ϕ MaCϕ f , g〉 = 〈MaCϕ f , Cϕg〉 =
∫
Ω

a( f ◦ ϕ)(g ◦ ϕ)dµ

=
∫
Ω

aCϕ( f g)dµ =
∫
Ω

Lϕ(a) f gdµ = 〈MLϕ(a) f , g〉

by Lemma 2.2, where Cϕ is also regarded as the composition operator on the
space L1(Ω,F , µ).

3. C∗-ALGEBRAS ASSOCIATED WITH COMPLEX DYNAMICAL SYSTEMS

We recall the construction of Cuntz–Pimsner algebras [19] (see also [12]).
Let A be a C∗-algebra and let X be a right Hilbert A-module. A sequence {ui}∞

i=1

of X is called a countable basis of X if ξ =
∞
∑

i=1
ui〈ui, ξ〉A for ξ ∈ X, where the

right hand side converges in norm. We denote by L(X) the C∗-algebra of the
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adjointable bounded operators on X. For ξ, η ∈ X, the operator θξ,η is defined by
θξ,η(ζ) = ξ〈η, ζ〉A for ζ ∈ X. The closure of the linear span of these operators is
denoted by K(X). We say that X is a Hilbert bimodule (or C∗-correspondence) over
A if X is a right Hilbert A-module with a ∗-homomorphism φ : A → L(X). We
always assume that φ is injective.

A representation of the Hilbert bimodule X over A on a C∗-algebra D is a pair
(ρ, V) constituted by a ∗-homomorphism ρ : A→ D and a linear map V : X → D
satisfying

ρ(a)Vξ = Vφ(a)ξ , Vξ ρ(a) = Vξa,

and

V∗ξ Vη = ρ(〈ξ, η〉A)

for a ∈ A and ξ, η ∈ X. We define a ∗-homomorphism ψV : K(X) → D by
ψV(θξ,η) = VξV∗η for ξ, η ∈ X (see for example Lemma 2.2 of [10]). A repre-
sentation (ρ, V) is said to be covariant if ρ(a) = ψV(φ(a)) for all a ∈ J(X) :=
φ−1(K(X)). Suppose the Hilbert bimodule X has a countable basis {ui}∞

i=1 and

(ρ, V) is a representation of X. Then (ρ, V) is covariant if and only if
∥∥∥ n

∑
i=1

ρ(a)VuiV
∗
ui

−ρ(a)
∥∥∥ → 0 as n → ∞ for a ∈ J(X), since

{ n
∑

i=1
θui ,ui

}∞

n=1
is an approximate unit

for K(X).
Let (i, S) be the representation of X which is universal for all covariant rep-

resentations. The Cuntz–Pimsner algebra OX is the C∗-algebra generated by i(a)
with a ∈ A and Sξ with ξ ∈ X. We note that i is known to be injective [19] (see
also Proposition 4.11 of [12]). We usually identify i(a) with a in A.

Let R be a rational function of degree at least two. We recall the definition
of the C∗-algebra OR(JR). Since the Julia set JR is completely invariant under R,
that is, R(JR) = JR = R−1(JR), we can consider the restriction R|JR : JR → JR. Let
A = C(JR) and Y = C(graph R|JR), where graph R|JR = {(z, w) ∈ JR × JR : w =
R(z)} is the graph of R|JR . We denote by eR(z) the branch index of R at z. Then Y
is an A-A bimodule over A by

(a · f · b)(z, w) = a(z) f (z, w)b(w), a, b ∈ A, f ∈ Y.

We define an A-valued inner product 〈·, ·〉A on Y by

〈 f , g〉A(w) = ∑
z∈R−1(w)

eR(z) f (z, w)g(z, w), f , g ∈ Y, w ∈ JR.

Then Y is a Hilbert bimodule over A. The C∗-algebra OR(JR) is defined as the
Cuntz–Pimsner algebra of the Hilbert bimodule Y = C(graph R|JR) over A =
C(JR).
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4. MAIN THEOREM

Let R be a rational function. We define the backward orbit O−(w) of w ∈
Ĉ by

O−(w) = {z ∈ Ĉ : R◦m(z) = w for some non-negative integer m}.

A point w in Ĉ is an exceptional point for R if the backward orbit O−(w) of w is
finite. We denote by ER the set of exceptional points.

DEFINITION 4.1 (Freire–Lopes–Mañé [3], Lyubich [17]). Let R be a rational
function and n = degR. Let δz be the Dirac measure at z ∈ Ĉ. For w ∈ Ĉ \ ER and
m ∈ N, we define a probability measure µw

m on Ĉ by

µw
m =

1
nm ∑

z∈(R◦m)−1(w)

eR◦m(z)δz.

The sequence {µw
m}∞

m=1 converges weakly to a probability measure µL, which is
called the Lyubich measure of R. The measure µL is independent of the choice of
w ∈ Ĉ \ ER.

Let R be a rational function of degree at least two. We will denote by B(JR)
the Borel σ-algebra on the Julia set JR. In this section we consider the finite mea-
sure space (JR,B(JR), µL). It is known that the support of the Lyubich measure
µL is the Julia set JR. Moreover the Lyubich measure µL is regular on the Julia
set JR and a invariant measure with respect to R, that is, µL(E) = µL(R−1(E)) for
E ∈ B(JR). Thus the composition operator CR on L2(JR,B(JR), µL) is an isometry.

DEFINITION 4.2. For a rational function R of degree at least two, we denote
byMCR the C∗-algebra generated by all multiplication operators by continuous
functions in C(JR) and the composition operator CR on L2(JR,B(JR), µL).

Let R be a rational function of degree at least two. In this section we shall
show that the C∗-algebraMCR is isomorphic to the C∗-algebra OR(JR). First we
give a concrete expression of the restriction of LR to C(JR). This result immedi-
ately follows from [17] and Lemma 2.2.

PROPOSITION 4.3 (Lyubich ([17], Lemma, p. 366)). Let R be a rational function
of degree n at least two. Then LR : C(JR)→ C(JR) and

(LR(a))(w) =
1
n ∑

z∈R−1(w)

eR(z)a(z), w ∈ JR

for a ∈ C(JR).

Let A = C(JR), X = C(JR) and n = deg R. Then X is an A-A bimodule over
A by

(a · ξ · b)(z) = a(z)ξ(z)b(R(z)) a, b ∈ A, ξ ∈ X.
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We define an A-valued inner product 〈·, ·〉A on X by

〈ξ, η〉A(w) =
1
n ∑

z∈R−1(w)

eR(z)ξ(z)η(z) ( = (LR(ξη))(w) ), ξ, η ∈ X.

Then X is a Hilbert bimodule over A. Put ‖ξ‖2 = ‖〈ξ, ξ〉A‖1/2
∞ for ξ ∈ X, where

‖ · ‖∞ is the sup norm on JR. It is easy to see that X is isomorphic to Y as Hilbert
bimodules over A. Hence the C∗-algebra OR(JR) is isomorphic to the Cuntz–
Pimsner algebra OX constructed from X.

We need some analyses based on bases of the Hilbert bimodule X to show
an equation containing the composition operator CR and multiplication opera-
tors.

LEMMA 4.4. Let u1, . . . , uN ∈ X. Then

N

∑
i=1

Mui CRC∗R M∗ui
a =

N

∑
i=1

ui · 〈ui, a〉A

for a ∈ A.

Proof. Since a = MaCR1, we have

N

∑
i=1

Mui CRC∗R M∗ui
a =

N

∑
i=1

Mui CRC∗R M∗ui
MaCR1 =

N

∑
i=1

Mui CRC∗R MuiaCR1

=
N

∑
i=1

Mui CR MLR(uia)1 (by Proposition 2.3)

=
N

∑
i=1

Mui MLR(uia)◦RCR1 =
N

∑
i=1

uiLR(uia) ◦ R =
N

∑
i=1

ui · 〈ui, a〉A,

which completes the proof.

LEMMA 4.5. Let {ui}∞
i=1 be a countable basis of X. Then

0 6
N

∑
i=1

Mui CRC∗R M∗ui
6 I.

Proof. Set TN =
N
∑

i=1
Mui CRC∗R M∗ui

. It is clear that TN is a positive operator.

We shall show TN 6 I. By Lemma 4.4,

〈TN f , f 〉 =
∫
JR

(TN f )(z) f (z)dµL(z) =
∫
JR

( N

∑
i=1

ui · 〈ui, f 〉A
)
(z) f (z)dµL(z)

for f ∈ C(JR). Since {ui}∞
i=1 is a countable basis of X, for f ∈ C(JR), we have

N
∑

i=1
ui · 〈ui, f 〉A → f with respect to ‖ · ‖2 as N → ∞. Since the two norms ‖ · ‖2
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and ‖ · ‖∞ are equivalent (see the proof of Proposition 2.2 in [11]),
N
∑

i=1
ui · 〈ui, f 〉A

converges to f with respect to ‖ · ‖∞. Thus

〈TN f , f 〉 →
∫
JR

f (z) f (z)dµL(z) = 〈 f , f 〉 as N → ∞

for f ∈ C(JR). Therefore 〈TN f , f 〉 6 〈 f , f 〉 for f ∈ C(JR). Since the Lyubich mea-
sure µL on the Julia set JR is regular, C(JR) is dense in L2(JR,B(JR), µL). Hence
we have TN 6 I. This completes the proof.

Let B(R) be the set of branched points of a rational function R. We now
recall a description of the ideal J(X) of A. By Proposition 2.5 of [11], we can write
J(X) = {a ∈ A : a vanishes on B(R)}. We define a subset J(X)0 of J(X) by
J(X)0 = {a ∈ A : a vanishes on B(R) and has compact support on JR \ B(R)}.
Since B(R) is a finite set ([1], Corollary 2.7.2), J(X)0 is dense in J(X).

LEMMA 4.6. There exists a countable basis {ui}∞
i=1 of X such that

∞

∑
i=1

Ma Mui CRC∗R M∗ui
= Ma

for a ∈ J(X).

Proof. By Subsection 3.1 of [9], there exists a countable basis {ui}∞
i=1 of X

satisfying the following property. For any b ∈ J(X)0, there exists M > 0 such that
supp b ∩ supp um = ∅ for m > M. Since J(X)0 is dense in J(X), for any a ∈ A
and any ε > 0, there exists b ∈ J(X)0 such that ‖a− b‖ < ε

2 . Let m > M. Then by
Lemma 4.4 and bui = 0 for i > m, it follows that

m

∑
i=1

Mb Mui CRC∗R M∗ui
f =

m

∑
i=1

bui · 〈ui, f 〉A =
∞

∑
i=1

bui · 〈ui, f 〉A = b f = Mb f

for f ∈ C(JR). Since C(JR) is dense in L2(JR,B(JR), µL), we have
m

∑
i=1

Mb Mui CRC∗R M∗ui
= Mb.

From Lemma 4.5 it follows that∥∥∥ m

∑
i=1

Ma Mui CRC∗R M∗ui
−Ma

∥∥∥ 6 ∥∥∥ m

∑
i=1

Ma Mui CRC∗R M∗ui
−

m

∑
i=1

Mb Mui CRC∗R M∗ui

∥∥∥
+
∥∥∥ m

∑
i=1

Mb Mui CRC∗R M∗ui
−Mb

∥∥∥+ ‖Mb −Ma‖

6 ‖Ma −Mb‖
∥∥∥ m

∑
i=1

Mui CRC∗R M∗ui

∥∥∥+ ‖Ma −Mb‖

<
ε

2
+

ε

2
= ε,
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which completes the proof.

The following theorem is the main result of the paper.

THEOREM 4.7. Let R be a rational function of degree at least two. ThenMCR is
isomorphic to OR(JR).

Proof. Put ρ(a) = Ma and Vξ = MξCR for a ∈ A and ξ ∈ X. Then we have

ρ(a)Vξ = Ma MξCR = Ma·ξCR = Va·ξ ,

Vξρ(a) = MξCR Ma = Mξ Ma◦RCR = Mξ(a◦R)CR = Mξ·aCR = Vξ·a,

and

V∗ξ Vη = C∗R M∗ξ MηCR = C∗R MξηCR = MLR(ξη) = ρ(LR(ξη)) = ρ(〈ξ, η〉A),

for a ∈ A and ξ, η ∈ X by Proposition 2.3. Let {ui}∞
i=1 be a countable basis of X.

Then, applying Lemma 4.6,
∞

∑
i=1

ρ(a)Vui V
∗
ui
=

∞

∑
i=1

Ma Mui CRC∗R M∗ui
= Ma = ρ(a)

for a ∈ J(X). Since the support of the Lyubich measure µL is the Julia set JR, the
∗-homomorphism ρ is injective. By the universality and the simplicity of OR(JR)
([11], Theorem 3.8), the C∗-algebraMCR is isomorphic to OR(JR).

Acknowledgements. The author wishes to express his thanks to Professor Hiroyuki
Takagi for several helpful comments concerning to composition operators.
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