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ABSTRACT. In a recent paper, Pardo and the first named author introduced
a class of C∗-algebras which are constructed from an action of a group on a
graph. This class was shown to include many C∗-algebras of interest, includ-
ing all Kirchberg algebras in the UCT class. In this paper, we study the condi-
tions under which these algebras can be realized as partial crossed products of
commutative C∗-algebras by groups. In addition, for any n > 2 we present a
large class of groups such that for any group H in this class, the Cuntz algebra
On is isomorphic to a partial crossed product of a commutative C∗-algebra
by H.
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1. INTRODUCTION

In this paper, we study C∗-algebras arising from self-similar graph actions. A
self-similar graph action consists of a group G, a directed graph E, a “cocycle”
ϕ : G× E1 → G, and a length-preserving action of G on E∗, the set of finite paths
through E. Furthermore, the action of G on E∗ should be “self-similar”, in the
sense that

g(eα) = (ge)(ϕ(g, e)α), g ∈ G, e ∈ E1, α ∈ E∗.
The C∗-algebra associated to (G, E, ϕ), denoted OG,E is then the universal C∗-
algebra generated by a Cuntz–Krieger family for E and a unitary representation
of G, subject to relations given by the action. The main question this work ad-
dresses is the following: when canOG,E be written as a partial crossed product of
a commutative C∗-algebra by a group?

Some of the most powerful tools to analyze the structure of a given C∗-
algebra become available when one is able to describe it as a crossed product.
Questions about representation theory, structure of ideals, simplicity, nuclearity,
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K-theory, KMS states, and many others may be answered, under suitable hypoth-
esis, when the algebra under analysis is given the structure of a crossed product.
Unfortunately, not many algebras of interest may be described as a crossed prod-
uct relative to a global group action, but if we resort to partial actions, the chances
of obtaining such a description improve manifold, at the same time that most of
the above mentioned tools are still available for partial crossed products.

The motivation for defining the algebras OG,E in [4] was to generalize two
interesting classes of C∗-algebras. The first class is the C∗-algebras that Nekra-
shevych associated to self-similar groups in [13] and [15]. In [4], it was shown
that these algebras arise from self-similar graph actions (G, E, ϕ) for which E is a
finite graph with only one vertex. In the work of Nekrashevych and in other work
on self-similar groups, the map ϕ takes the form of a restriction, (g, x) 7→ g|x.

The second class generalized in [4] are the C∗-algebras constructed by Kat-
sura [6] from pairs of integer matrices A and B, denoted OA,B. The pair (A, B)
gives rise to a self-similar graph action (Z, EA, ϕ), where EA is the graph whose
incidence matrix is A and the action of Z and the cocycle ϕ are determined by the
entries of A and B. It is shown in Example 3.4 of [4], thatOA,B ∼= OZ,EA . From [6],
it is a fact that every Kirchberg algebra in the UCT class arises as OA,B for some
A and B, so the algebras we consider here constitute a large class.

In [4], OG,E is realized as the C∗-algebra of the tight groupoid of a certain
inverse semigroup SG,E, using the theory of such algebras from [3]. This groupoid
is shown to be Hausdorff in the case where (G, E, ϕ) is pseudo-free. In Theorem 3.3,
we show that (G, E, ϕ) is pseudo-free if and only if the inverse semigroup SG,E is
strongly E∗-unitary. We then use the results of [12] to prove that when (G, E, ϕ)
is pseudo-free, OG,E is isomorphic to a partial crossed product of a commutative
C∗-algebra by the universal group U(SG,E) of SG,E.

In our final section, we use our results to realize the Cuntz algebra On as
partial crossed products C(Y)o H for Y homeomorphic to the Cantor set and H
the universal group of any SG,E satisfying certain conditions.

2. TERMINOLOGY, NOTATION, AND BACKGROUND

Let X be a finite set. We will denote by X∗ the set of all words x1x2 · · · xn
where n > 1 and x1, x2, . . . , xn ∈ X, together with the symbol ∅, which is called
the empty word. For α = α1α2 · · · αn ∈ X∗, we let |α| = n and call this the length
of α — we take |∅| = 0. We may concatenate two words in X∗: if α, β ∈ X∗ with
α = α1α2 · · · αn and β = β1β2 · · · βm then their concatenation is given by

αβ = α1α2 · · · αnβ1β2 · · · βm.

We also take, for any α ∈ X∗,

α∅ = ∅α = α.
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This operation gives X∗ the structure of a semigroup with identity (or monoid)
and is called the free monoid on X. We may also consider the space ΣX of infinite
words in X. For an element x ∈ ΣX and α ∈ X∗, the concatenation αx is again in
ΣX . For α ∈ X∗, let

αΣX = {αx ∈ ΣX : x ∈ ΣX}.
Sets of this type are called cylinder sets, and they generate the product topology
on ΣX . In this topology, cylinder sets are both open and closed and ΣX is home-
omorphic to the Cantor set.

A directed graph is a quadruple E = (E0, E1, r, d) where E0 and E1 are sets
and r, d are functions from E1 to E0. The set E0 is called the set of vertices of E
and E1 is called the set of edges of E. A vertex x ∈ E0 is said to be a source if
r−1(x) = ∅, and it is said to be a sink if d−1(x) = ∅. A directed graph E is called
finite if E0 and E1 are finite sets. For n > 2 we let

En = {x1x2 · · · xn : xi ∈ E1, d(xi) = r(xi+1) for 1 6 i 6 n− 1}

and take

E∗ =
∞⋃

n=0
En.

The set E∗ is called the set of finite paths in E. We may concatenate two paths α
and β and obtain αβ if r(β) = d(α), taking the convention that d(x) = r(x) = x
for all vertices x, and that r(α)α = α = αd(α). We will also consider the set of
infinite paths

ΣE = {e1e2 · · · : ei ∈ E1, d(ei) = r(ei+1) for all i > 1}

given the product topology. With an abuse of notation, for α ∈ E∗ we will let

αΣE = {αx : x ∈ ΣE, r(x) = d(α)}

and call these cylinder sets as well — sets of this type generate the topology on
ΣE. If E has one vertex, we may refer to paths in E as “words”.

A semigroup S is called an inverse semigroup if for each s ∈ S there exists
a unique element s∗ ∈ S such that s∗ss∗ = s∗ and ss∗s = s. An element e ∈ S
is called an idempotent if e2 = e — the set of all such elements will be denoted
E(S). It is true that, for all s, t ∈ S and e, f ∈ E(S) we have that (st)∗ = t∗s∗,
(s∗)∗ = s, e∗ = e, e f = f e and e f ∈ E(S). For all s ∈ S , the elements ss∗ and s∗s
are idempotents.

Recall that a groupoid is a set G together with a subset G(2) ⊂ G × G, called
the set of composable pairs, a product map G(2) → G with (γ, η) 7→ γη, and an
inverse map from G to G with γ 7→ γ−1 such that:

(i) (γ−1)−1 = γ for all γ ∈ G;
(ii) if (γ, η), (η, ν) ∈ G(2), then (γη, ν), (γ, ην) ∈ G(2) and (γη)ν = γ(ην);

(iii) (γ, γ−1), (γ−1, γ) ∈ G(2), and γ−1γη = η, ξγγ−1 = ξ for all η, ξ with
(γ, η), (η, ξ) ∈ G(2).
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Elements of the form γγ−1 are called units, and the set of all such elements
is denoted G(0) and is called the unit space of G. The maps r : G → G(0) and
d : G → G(0) defined by

r(γ) = γγ−1, d(γ) = γ−1γ

are called the range and source maps respectively. We note that (γ, η) ∈ G(2) if
and only if r(η) = d(γ). A topological groupoid is a groupoid which is a topolog-
ical space for which the inverse and product maps are continuous (where G(2) is
given the product topology inherited from G × G). An isomorphism of topologi-
cal groupoids is a homeomorphism which preserves the groupoid operations. A
topological groupoid G is called étale if it is locally compact, second countable,
and the maps r and d are local homeomorphisms. We note that these imply that
G(0) is open in G and that for all x ∈ G(0) the spaces

Gx := r−1(x), Gx := d−1(x)

are discrete.
An open set S ⊂ G of a topological groupoid is called a slice if the restrictions

of r and d to S are both injective. In an étale groupoid G, the collection of slices
forms a basis for the topology of G, cf. Proposition 3.5 of [3].

Étale groupoids can be constructed from actions on topological spaces. Re-
call that an action of an inverse semigroup S on a space X is a pair

({De}e∈E(S), {θs}s∈S )

such that each De ⊂ X is an open set, the union of the De coincides with X, and
the maps

θs : Ds∗s → Dss∗

are continuous bijections which satisfy θs ◦ θt = θst, where the composition is on
the largest domain possible. Given an action θ of an inverse semigroup S on a
space X, one may form an étale groupoid G(S , X, θ), called the groupoid of germs.
As a set,

G(S , X, θ) = {[s, x] : x ∈ Ds∗s}
where [s, x] are equivalence classes of elements of S × X such that [s, x] = [t, y] if
and only if x = y and there exists some idempotent e ∈ E(S) such that x ∈ De
and se = te. One may always assume that s∗se = e and t∗te = e, and we note that
this implies that θs and θt agree on the neighborhood De of x. The unit space of
G(S , X, θ) is identified with X, and

[s, x]−1 = [s∗, θs(x)], r([s, x]) = θs(x), d([s, x]) = x, [t, θs(x)][s, x] = [ts, x].

A related construction arises from a group G acting on a topological space
by partial homeomorphisms. Let X be a set and let G be a group. Recall that a
partial action of G on X is a pair

({Dg}g∈G, {θg}g∈G)
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consisting of a collection {Dg}g∈G of subsets of X, and a collection {θg}g∈G of
functions

θg : Dg−1 → Dg,

such that D1 = X, θ1 is the identity map, and θg ◦ θh ⊂ θgh. Here, θg ◦ θh may be
ambiguous, because the range of θh may not be contained in the domain θg. This
function is then defined on the largest domain possible, that is, θ−1

h (Dh ∩ Dg−1).
On this domain it is defined to be θg ◦ θh. The notation θg ◦ θh ⊂ θgh means that
the function θgh extends the function θg ◦ θh. With the above, one can show that
each θg is a bijection on its domain and that θ−1

g = θg−1 .
A partial topological dynamical system is a quadruple

(X, G, {Dg}g∈G, {θg}g∈G)

such that X is a topological space, G is a group, ({Dg}g∈G, {θg}g∈G) is a partial
action of G on the set X such that each Dg is an open subset of X and each θg is a
homeomorphism.

Given a partial topological dynamical system θ = (X, G, {Dg}g∈G, {θg}g∈G)
with X a locally compact Hausdorff space and G discrete, using a construction of
Abadie [1] we may form the étale groupoid

(2.1) G nθ X := {(g, x) ∈ G× X : x ∈ Dg−1}

with (G nθ X)(2) = {((g, x), (h, y)) : θh(y) = x}, r(g, x) = θg(x), d(g, x) = x and
(g, x)−1 = (g−1, θg(x)). If x = θh(y), then we have (g, x)(h, y) = (gh, y).

There is a procedure for producing a C∗-algebra from an étale groupoid G,
given by Renault in [17]. One considers the linear space Cc(G) of compactly sup-
ported complex functions on G equipped with product and involution given by

( f g)(γ) = ∑
r(η)=d(γ)

f (γη)g(η−1), f ∗(γ) = f (γ−1).

These give Cc(G) the structure of a complex ∗-algebra. The C∗-algebra of G is then
defined to be the completion of this ∗-algebra in a certain norm, and is denoted
C∗(G). It is a fact that if G and H are isomorphic étale groupoids, then their
C∗-algebras are isomorphic.

A partial C∗-dynamical system is a quadruple

(A, G, {Dg}g∈G, {θg}g∈G)

such that A is a C∗-algebra, G is a group, ({Dg}g∈G, {θg}g∈G) is a partial action
of G on the set A such that each Dg is a closed two-sided ideal of A and each θg
is a ∗-isomorphism. If we are given a partial C∗-dynamical system as above such
that G is a discrete group, then we can form the partial crossed product by first
considering the ∗-algebra of formal finite linear combinations

∑
g∈G

agδg
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such that ag ∈ Dg for each g ∈ G. Here the symbols δg have no meaning other
than placeholders. (One may consider instead the linear space of finitely sup-
ported functions f from G into A such that f (g) ∈ Dg, and in this case, the
element aδg is identified with the function which takes the value a on g and 0
elsewhere.) Addition and scalar multiplication are defined in the obvious way,
and multiplication is determined by the rule

(aδg)(bδh) = θg(θg−1(a)b)δgh

while the ∗ is determined by

(aδg)
∗ = θg−1(a∗)δg−1 .

This multiplication is not always associative, but for the cases we consider here
it is.

A partial topological dynamical system (X, G, {Dg}g∈G, {θg}g∈G) with X lo-
cally compact and Hausdorff gives rise to a partial C∗-dynamical system
(C0(X), G, {C0(Dg)}g∈G, {θ̃g}g∈G) with

θ̃g : C0(Dg−1)→ C0(Dg), θ̃g( f )
∣∣∣
x
= f (θ−1

g (x))

and C0(Dg) is understood to denote all the functions f ∈ C0(X) which vanish
outside of Dg. It is a fact that in this situation the resulting partial action crossed
product is isomorphic to the C∗-algebra of the groupoid G nθ X. An important
special case is the situation where X and each Dg is compact — in this case C0(X)
becomes C(X) and each C0(Dg) becomes C(Dg).

3. INVERSE SEMIGROUPS FROM GRAPH ACTIONS

Let E = (E0, E1, r, d) be a finite directed graph. An automorphism of E is a
bijective map

h : E0 ∪ E1 → E0 ∪ E1

such that h(Ei) ⊂ Ei for i = 0, 1 and also such that h ◦ d = d ◦ h and h ◦ r = r ◦ h.
An action of a group G on a graph E is a group homomorphism from G to the
group of automorphisms of E.

Suppose that G acts on a set X. A one-cocycle for the action of G on X is a
map

ϕ : G× X → G
such that

ϕ(gh, x) = ϕ(g, hx)ϕ(h, x)
for all g, h ∈ G and x ∈ X. Setting g = h = 1 into the above we get that ϕ(1, x) = 1
for each x.

We now assume that E is a finite directed graph with no sources or sinks, G
is a countable discrete group, and that we have a homomorphism from G to the
group of automorphisms of E. We denote the image of a group element g under
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this homomorphism simply as g. We also assume that we have a one-cocycle
ϕ : G× E1 → G for the restriction of our action to E1, which also satisfies

ϕ(g, e)x = gx, for all g ∈ G, e ∈ E1, x ∈ E0.

In [4], they show that the action of G and the cocycle ϕ extend to E∗ in a natural
way. This induced action preserves lengths. Furthermore, for every g, h ∈ G,
for every x ∈ E0 and for every α and β in E∗ such that d(α) = r(β) we have:

(E1) (gh)α = g(hα),
(E2) ϕ(gh, α) = ϕ(g, hα)ϕ(h, α),
(E3) ϕ(g, x) = g,
(E4) r(gα) = gr(α),

(E5) d(gα) = gd(α),
(E6) ϕ(g, α)x = gx,
(E7) g(αβ) = (gα)ϕ(g, α)β,
(E8) ϕ(g, αβ) = ϕ(ϕ(g, α), β).

The triple (G, E, ϕ) is called a self-similar graph action.
Given a self-similar graph action (G, E, ϕ), we construct an action of G and

a cocycle on the graph obtained from E by collapsing all the vertices to a single
vertex. To be more precise, consider the directed graph Ẽ := ({∅}, E1, r, d), that
is, the directed graph with one vertex whose edge set is equal to the edge set of
E. Then the set of paths Ẽ∗ is just the free monoid on E1, with identity equal to
the empty word ∅ = r(e) = d(e) for all e ∈ E1.

It is clear that our given action of G on E induces an action of G on Ẽ, and
that here we have g∅ = ∅ for all g ∈ G. Furthermore, the cocycle ϕ is defined on
G× E1, so it is also a cocycle for the induced action on Ẽ. For clarity, we denote
the induced cocycle on G× Ẽ∗ by ϕ̃. By the above list, we have for every w, v ∈ Ẽ∗

and g, h ∈ G:

(SS1) 1w = w,
(SS2) (gh)w = g(hw),
(SS3) g∅ = ∅,
(SS4) g(vw) = (gv)ϕ̃(g, v)w,

(SS5) ϕ̃(g,∅) = g,
(SS6) ϕ̃(g, vw) = ϕ̃(ϕ̃(g, v), w),
(SS7) ϕ̃(1, w) = 1,
(SS8) ϕ̃(gh, w) = ϕ̃(g, hw)ϕ̃(h, w).

These properties mean that the pair (G, Ẽ1) is a self-similar action in the sense of
Lawson ([10], Section 3), which he proves is equivalent to (G, Ẽ1) being a self-
similar group in the sense of Nekrashevych [14] (except that the action on E1∗

may not be faithful). For this reason, we call (G, Ẽ, ϕ̃) the induced self-similar group
of (G, E, ϕ). We note that any self-similar graph action (G, E, ϕ) such that E is
finite and has only one vertex will satisfy (SS1)–(SS8), and so from now on we
will call any such triple a self-similar group.

We say that (G, E, ϕ) is pseudo-free (this was originally termed residually free
in a preprint of [4]) if whenever we have g ∈ G and e ∈ E1 such that ge = e and
ϕ(g, e) = 1 then we have that g = 1. This is equivalent to saying that whenever
we have g ∈ G and w ∈ E∗ such that gw = w and ϕ(g, w) = 1 then we have
that g = 1 ([4], Proposition 5.2). Because this property is phrased in terms of the
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action and cocycle on the edge set, it is clear that pseudo-freeness of (G, E, ϕ) is
equivalent to pseudo-freeness of (G, Ẽ, ϕ̃).

Given (G, E, ϕ), we let (as in [4]),

SG,E = {(α, g, β) ∈ E∗ × G× E∗ : d(α) = gd(β)} ∪ {0}.

This set becomes an inverse semigroup when given the operation

(α, g, β)(γ, h, ν) =


(αgγ′, ϕ(g, γ′)h, ν) if γ = βγ′,
(α, gϕ(h−1, β′)−1, νh−1β′) if β = γβ′,
0 otherwise,

with

(α, g, β)∗ = (β, g−1, α),

and with 0s = s0 = 0 for all s ∈ SG,E. Recall that an inverse semigroup with zero
S is called E∗-unitary if whenever one has s ∈ S and e ∈ E(S), then se ∈ E(S) \
{0} implies that s ∈ E(S). In Proposition 5.4 of [4] it is shown that SG,E is E∗-
unitary if and only if (G, E, ϕ) is pseudo-free. In the remainder of this section, we
show that pseudo-freeness is in fact equivalent to a stronger condition on SG,E.

A prehomomorphism from an inverse semigroup with zero S to a group H is
a function

θ : S \ {0} → H

such that whenever we have s, t ∈ S \ {0} such that st 6= 0, then θ(st) = θ(s)θ(t).
A prehomomorphism θ defined on S is called idempotent pure if θ−1(1) = E(S).
Every inverse semigroup S admits a prehomomorphism into a group U(S) called
the universal group of S . The group U(S) is generated by the set S \ {0} subject
to the relations s · t = st if st 6= 0. An inverse semigroup S is called strongly E∗-
unitary if there exists an idempotent pure prehomomorphism from S to a group
H. This is equivalent to saying that the natural map σ from S \ {0} to U(S)
(which is a prehomomorphism) is idempotent pure. It is clear that if S is strongly
E∗-unitary then it is E∗-unitary, because if se is a nonzero idempotent then 1 =
σ(se) = σ(s).

In the special case of a self-similar group (G, E, ϕ), SG,E has extra structure.
In this case, the set of elements of the form (α, g,∅) ∈ SG,E form a subsemigroup
of SG,E. This semigroup is isomorphic to what is called the Zappa–Szép product of
the free semigroup E∗ by the group G, denoted E∗ ./ G. See Section 3 of [10], for
a discussion of the construction of this semigroup. As a set, E∗ ./ G is E∗×G and
the semigroup operation is

(α, g)(β, h) = (αgβ, ϕ(g, β)h).

One sees that this agrees with the operation from SG,E restricted to elements of
the form (α, g,∅).
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LEMMA 3.1 (Lawson–Wallis). Let (G, E, ϕ) be a self-similar group. Then the
inverse semigroup with zero SG,E is strongly E∗-unitary if and only if E∗ ./ G is can-
cellative.

Proof. By [10], E∗ ./ G is a left Rees monoid. By Theorem 5.5 of [11], a left
Rees monoid can be embedded into a group if and only if it is cancellative. By
Theorem 8 of [9], E∗ ./ G can be embedded into a group if and only if SG,E is
strongly E∗-unitary. The result follows.

LEMMA 3.2. Let (G, E, ϕ) be a self-similar group. Then the semigroup E∗ ./ G is
cancellative if and only if (G, E, ϕ) is pseudo-free.

Proof. We first prove the “only if” part. Suppose that E∗ ./ G is cancellative,
and suppose that we have g ∈ G and e ∈ E1 such that ge = e and ϕ(g, e) = 1.
Then we calculate

(∅, g)(e, 1) = (∅ge, ϕ(g, e)1) = (e, 1), (∅, e)(e, 1) = (e, 1).

Since we assume cancellation, this implies that (∅, g) = (∅, 1), and so g = 1.
Hence (G, E, ϕ) is pseudo-free.

We now prove the “if” part. Suppose that (G, E, ϕ) is pseudo-free. It is
straightforward to show that E∗ ./ G is always left cancellative. Suppose then
that we have v, v′, w ∈ X∗ and g, g′, h ∈ G such that

(v, h)(w, g) = (v′, h′)(w, g).

This implies

(v(hw), ϕ(h, w)g) = (v′(h′w), ϕ(h′, w)g).

Equating the second coordinates gives us that ϕ(h, w) = ϕ(h′, w). Also, since the
action of G preserves length, equating the first coordinates implies that v = v′

and hw = h′w. By properties of ϕ we have

ϕ(h−1h′, w)= ϕ(h−1, h′w)ϕ(h′, w)= ϕ(h−1, hw)ϕ(h, w)=(ϕ(h, w))−1 ϕ(h, w)=1.

Also, by the above we have h−1h′w = w. Since (G, E, ϕ) is pseudo-free, this
implies that h = h′. Thus we have proven that (v, h) = (v′, h′) and so E∗ ./ G is
cancellative.

We now prove the main result of this section, which addresses when SG,E is
strongly E∗-unitary for an arbitrary self-similar graph action (G, E, ϕ) using the
two previous lemmas and the induced self-similar group (G, Ẽ, ϕ̃).

THEOREM 3.3. Let (G, E, ϕ) be a self-similar graph action. Then the inverse semi-
group SG,E is strongly E∗-unitary if and only if (G, E, ϕ) is pseudo-free.

Proof. We prove the “if” part first. Suppose that (G, E, ϕ) is pseudo-free
(and therefore so is (G, Ẽ, ϕ̃)). Hence by Lemmas 3.1 and 3.2, SG,Ẽ is strongly
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E∗-unitary. Define Q : E∗ → Ẽ∗ by

(3.1) Q(α) =

{
α if α /∈ E0,
∅ if α ∈ E0,

and define a function ι : SG,E → SG,Ẽ by

ι(α, g, β) = (Q(α), g, Q(β)).

Then ι(st) = ι(s)ι(t) as long as st 6= 0. Then if σ : SG,Ẽ → U(SG,Ẽ) is the standard
map from SG,Ẽ to its universal group, the map

σ ◦ ι : SG,E → U(SG,Ẽ)

is a prehomomorphism. Since SG,Ẽ is strongly E∗-unitary, σ is idempotent pure.
Take (α, g, β) ∈ SG,E. If σ ◦ ι(α, g, β) = 1, then this implies that (Q(α), g, Q(β)) is
a nonzero idempotent, that is, Q(α) = Q(β) and g = 1. Hence either α = β or
both α and β are paths of length zero (i.e. vertices). It is not possible for α and β
to be different paths of length zero, because (α, g, β) ∈ SG,E and g = 1 implies
that d(α) = d(β). Hence σ ◦ ι is an idempotent pure prehomomorphism and thus
SG,E is strongly E∗-unitary.

Now we prove the “only if” part. Suppose that SG,E is strongly E∗-unitary.
Then, in particular, it is E∗-unitary. By Proposition 5.4 of [4], this implies that
(G, E, ϕ) is pseudo-free.

EXAMPLE 3.4 (The odometer). Take a natural number n > 2 and consider
the graph with n edges and one vertex Rn. That is, R1

n = {0, 1, 2, . . . , n− 1}, and
R1

n = {∅}. We write the group Z of integers multiplicatively, with generator z,
so that Z = {zm : m ∈ Z}. For x ∈ R1

n, let

zx =

{
x + 1 if x 6= n− 1,
0 if x = n− 1.

This formula defines a self-similar group (Z, Rn, ϕ) with cocycle

ϕ(z, x) =

{
e if x 6= n− 1,
z if x = n− 1.

We claim that (Z, Rn, ϕ) is pseudo-free. Suppose that ν ∈ R∗n, zm ∈ Z, zmν = ν
and ϕ(zm, ν) = 1. We suppose that m > 0. Since ϕ(zm, ν) = 1, we must have that
|ν| > logn(m). Furthermore, since zmν = ν, we must have that |ν| is a multiple of
logn(m), which is impossible. The case of m < 0 is similar. Hence, we must have
that m = 0, and so (Z, Rn, ϕ) is pseudo-free.

By Theorem 3.3, SZ,Rn is strongly E∗-unitary, and so the identity map σ :
SZ,Rn \ {0} → U(SZ,Rn) is idempotent pure. We describe the universal group
U(SZ,Rn). One can always assume that the universal group is generated by the
image of σ. Recall that

SZ,Rn = {(α, zn, β) : n ∈ Z, α, β ∈ R∗n}.
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Let
ai := σ((i, z0,∅)), i ∈ R1

n, Z := σ((∅, z1,∅)).

Then, using the relations in SZ,Rn we find quickly that

U(SZ,Rn) = 〈a0, a1, . . . , an−1, Z : Zai = ai+1 for 0 6 i < n− 1, Zan−1 = a0Z〉.

We can use the relations to reduce this to

U(SZ,Rn) = 〈a0, Z : Z = a−1
0 Zna0〉

obtaining that U(SZ,Rn) is isomorphic to the Baumslag–Solitar group BS(1, n).
We note that the relationship between this self-similar action and these groups
has been noted in Example 3.5 of [2]. There it is seen directly that the Zappa–
Szép product R∗n ./ Z embeds as a suitable positive cone in BS(1, n).

4. THE C∗-ALGEBRA OF (G, E, ϕ) AS A PARTIAL CROSSED PRODUCT

To a self-similar graph action (G, E, ϕ) one associates a C∗-algebra, denoted
in [4] as OG,E.

DEFINITION 4.1. Let (G, E, ϕ) be a self-similar graph action. Then OG,E is
the universal C∗-algebra for the set

{px : x ∈ E0} ∪ {se : e ∈ E1} ∪ {ug : g ∈ G}

subject to the following:

(CK1) {px : x ∈ E0} is a set of mutually orthogonal projections,
(CK2) {se : e ∈ E1} is a set of partial isometries,
(CK3) s∗e se = pd(e) for each e ∈ E1,
(CK4) px = ∑

e∈r−1(x)

ses∗e for each x ∈ E0 with 0 < |r−1(x)| < ∞,

(EP1) g 7→ ug is a unitary representation of G,
(EP2) ugse = sgeuϕ(g,e) for all g ∈ G and e ∈ E1,
(EP3) ug px = pgxug for all g ∈ G and x ∈ E0.

The first four relations are the Cuntz–Krieger relations for the graph E. Our
main theorem describes when this C∗-algebra is isomorphic to a partial crossed
product, and is a combination of Theorem 3.3 with the following previously
known results.

THEOREM 4.2 ([4], Theorem 9.5). Let (G, E, ϕ) be a self-similar graph action
such that E is a finite graph with no sources, and suppose that (G, E, ϕ) is pseudo-free.
Then OG,E is isomorphic to the C∗-algebra of the groupoid Gtight(SG,E).

THEOREM 4.3 ([12], Theorem 5.3). Let S be a countable E∗-unitary inverse
semigroup with universal group U(S) and tight spectrum Êtight. Then there is a natural
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partial action of U(S) on Êtight such that the groupoids Gtight(S) and U(S)n Êtight are
isomorphic.

We now define what is meant by “Êtight” and “Gtight(S)” in the above, and
then describe the situation in our case.

Each inverse semigroup S possesses a natural order structure. Two ele-
ments s and t satisfy s 6 t if and only if s = ss∗t. This is equivalent to saying that
s = te for some idempotent e, and also to saying that s = f t for some idempotent
f ([8], Lemma 1.4.6). If e and f are idempotents, then e 6 f if and only if e f = e.
Recall that a filter F in a partially ordered set X is a proper subset that is downward
directed (that is, for each x, y ∈ F there is an element z ∈ F such that z 6 x, y) and
upwards closed (that is, if x ∈ F and x 6 y then y ∈ F). If F is a proper subset
which is downward directed, then it is called a filter base and

F = {x ∈ X : f 6 x for some f ∈ F}

is a filter. Also recall that an ultrafilter is a filter which is not properly contained
in another filter. Filters in E(S) are closed under multiplication and, if S has a
zero element, then filters in E(S) do not contain the zero element. If ξ ⊂ E(S) is
a filter and e ∈ ξ, then it is straightforward that both eξ and ξe are filter bases and
ξ = eξ = ξe.

Suppose that S is countable and consider {0, 1}E(S), the power set of E(S).
This is a compact Hausdorff space homeomorphic to the Cantor set when given
the product topology. Let Ê0 denote the closed subspace of filters in E(S) — this
is called the spectrum of S . Let Ê∞ denote the space of ultrafilters, and let Êtight

denote the closure of Ê∞ in Ê0 — this is called the tight spectrum of S .
Any inverse semigroup acts naturally on its spectra. Fix an inverse semi-

group S with set of idempotents E. For each e ∈ E, let De = {ξ ∈ Êtight : e ∈ ξ}.
Then define θs : Ds∗s → Dss∗ by

θs(ξ) = sξs∗.

These sets and maps define an action of S on Êtight. The groupoid of germs asso-
ciated to this action is called the tight groupoid of S and is denoted Gtight(S). For
details, see [3].

We now turn to constructing a partial action of U(S) on the tight spectrum
of S from the canonical action of S . Let σ : S \ {0} → U(S) be the standard
identity map from S \ {0} to U(S). The basic idea from [12] is that for a given
group element g ∈ U(S) one “bundles together” the partial homeomoprhisms
corresponding to all its preimages under σ. It turns out that to guarantee that
such functions agree on their domains, one needs that S is strongly E∗-unitary.

To be more precise, let ({De}e∈E(S), {θs}s∈S ) be the canonical action of S
on Êtight. Define a partial action ({Fg}g∈U(S), {θ̃g}g∈U(S)}) of the group U(S) on
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Êtight, by setting

(4.1) Fg =
⋃

s∈σ−1(g)

Dss∗

such that, for all ξ in some Ds∗s ⊂ Fg−1 , we have θ̃g(ξ) = θs(ξ). To see why this
is well-defined, suppose that we have s, t ∈ σ−1(g) for some g ∈ U(S), and that
we have a filter ξ ∈ Ds∗s ∩ Dt∗t — this means that s∗s, t∗t ∈ ξ, and so s∗st∗t 6= 0.
Hence st∗ 6= 0. A short calculation gives

σ(st∗) = σ(s)σ(t)−1 = gg−1 = 1,

and so st∗ = ts∗ is an idempotent.
Since t∗t ∈ ξ and sξs∗ is a filter, we must have that st∗ts∗ 6= 0. This means

that st∗st∗ 6= 0, and so similar to the above t∗s 6= 0 and is an idempotent. Further-
more, s∗t = s∗ts∗t = s∗st∗t ∈ ξ. Now, suppose that e ∈ sξs∗. Then there exists
f ∈ ξ such that s f s∗ 6 e, which is to say that es f s∗ = s f s∗. Now we have

e(ts∗s f s∗st∗) = ts∗(es f s∗)st∗ = ts∗s f s∗st∗ ∈ tξt∗

and so e is greater than an element of tξt∗, whence e ∈ tξt∗. This argument is
symmetric in s and t, so we must have that sξs∗ = tξt∗, and thus the functions θs

and θt agree on Fg−1 from (4.1), and so θ̃g is well-defined. We note that by (4.1),
the only g ∈ U(S) for which Fg is nonempty will be those in the image of σ.

It is straightforward to show that the map from G(S , Êtight, θ) to U(S)n
θ̃

Êtight given by
[s, ξ] 7→ (σ(s), ξ)

is a well-defined isomorphism of topological groupoids.
Now, let (G, E, ϕ) be a self-similar graph action such that E is a finite graph

with no sinks or sources. Then the tight spectrum of SG,E is homeomorphic to the
space of infinite paths, see Section 8 of [4]. The action of G on E∗ extends to an
action on ΣE by homeomorphisms determined by the following: for each g ∈ G
and x ∈ ΣE we have

(gx)i = ϕ(g, x1x2 · · · xi−1)xi.

As above, each (α, g, β) ∈ SG,E acts via a partial homeomorphism on its tight
spectrum ΣE given by

(α, g, β) : βΣE → αΣE, βx 7→ α(gx).

The above together with Theorem 3.3 and previously known Theorems 4.2
and 4.3 directly imply the following.

THEOREM 4.4. Let (G, E, ϕ) be a self-similar graph action such that E is a finite
graph with no sinks or sources. Suppose further that (G, E, ϕ) is pseudo-free. ThenOG,E
is isomorphic to a partial crossed product C(ΣE)oθ̃

U(SG,E). The action θ̃ is the action
on C(ΣE) derived from the action θ described above.
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EXAMPLE 4.5 (The 2-odometer). We consider the self-similar group
(Z, R2, ϕ), that is, Example 3.4 with n = 2. Recall that

SZ,R2 = {(α, zn, β) : n ∈ Z, α, β ∈ R∗2}.
For convenience and clarity of computations, we will make the identifications
Sα := (α, z0,∅) and U := (∅, 1,∅), so that

SZ,R2 = {SαUnS∗β : n ∈ Z, α, β ∈ {0, 1}∗}.

The universal group of SZ,R2 is the Baumslag–Solitar group BS(1, 2). We give a
different presentation than in Example 3.4 by setting

σ(S0) = a, σ(S1) = b.

Doing this, we obtain

H := U(SZ,R2) = 〈a, b : aba−1b−1 = ba−1〉

with σ(U) = ba−1.
Because this action is pseudo-free, σ is idempotent-pure and Theorem 4.3

applies. Hence the C∗-algebra of the tight groupoid of SZ,R2 is isomorphic to the
partial crossed product of the tight spectrum of SZ,R2 by H. We will describe this
partial action ({Dg}g∈H , {θg}g∈H).

We begin by looking closer at the group H. For a word α in a and b, let α̃ be
the word in 0 and 1 obtained from α by replacing a with 0 and b with 1; that is,
α = σ(Sα̃). Suppose that α and β are words in a and b and that |α| = |β|. Then
we claim that the group element αβ−1 is equal to σ(Uk) for some k ∈ Z. One
may view α̃ and β̃ as binary numbers (with the powers of 2 increasing from left
to right rather than right to left). For a word ν in a and b, let nν denote the integer
corresponding to the binary number determined by ν̃. Now, notice that

Unβ−nα Sα̃S∗
β̃
= Unβ U−nα Sα̃S∗

β̃
= Unβ S0|α|S

∗
β̃
= S

β̃
S∗

β̃
∈ E(SZ,R2)

where, in the above, 0|α| denotes the word consisting of |α| 0’s. Thus, we have
σ(Unβ−nα Sα̃S∗

β̃
) = 1, and so αβ−1 = σ(Unα−nβ) as desired. In fact, from this it is

easy to see that σ(Uk) ∈ H can always be written in the form αβ−1 for words α, β
in a and b with |α| = |β|. Hence, the image of σ consists only of group elements
in H which can be written in the form αβ−1 for words α and β (not necessarily
of the same length). Since Dg is only nonempty if g is in the image of σ, the only
group elements for which Dg will be nonempty are those which can be written in
the form αβ−1.

Next we further clarify the different forms that group elements can take
in H.

Claim. If αβ−1 = νω−1 in H, then |α| − |β| = |ν| − |ω|. If |α| − |β| > 0,
then the initial segment of α of length |α| − |β| is equal to the initial segment of
ν. Similarly, if |α| − |β| < 0, the initial segment of β of length |β| − |α| is equal to
the initial segment of ω.
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Proof. First suppose that |α| = |β|. Then by the discussion above, αβ−1 =
σ(Un) for some n. Hence we must have that

σ(UnSω̃S∗ν̃) = αβ−1ων−1 = 1.

Since σ is idempotent pure, UnSω̃S∗ν̃ must be an idempotent, and so |ω| = |ν|.
Now suppose that |α| > |β|, Then αβ−1 = α0α1β−1 with |α0| = |β|. Again,

by the discussion above, α1β−1 = σ(Un) for some n. Hence

σ(Sα̃0UnSω̃S∗ν̃) = α0α1β−1ων−1 = 1

and again Sα̃0UnSω̃S∗ν̃ is an idempotent. This can only happen if α0 is an initial
segment of ν and |α0| + |ω| = |ν|. Hence |α| − |β| = |ν| − |ω|. The case of
|β| > |α| is similar.

As above, the tight spectrum of SZ,{0,1} is homeomorphic to Σ{0,1}, the space
of infinite words in 0 and 1. There is a homeomorphism λ : Σ{0,1} → Σ{0,1}
which takes an infinite sequence x, looks for the first entry which is not equal to
1, switches it to 1, switches the previous entries to 0, and leaves the rest of the
entries unchanged. If all entries are equal to 1, λ switches them all to 0. One sees
that this is the extension of the action of Z in Example 3.4 to infinite sequences.
Our maps θg will involve this homeomorphism.

We can now describe the partial action ({Dg}g∈H , {θg}g∈H). If g is not of
the form αβ−1 for some words α, β in a and b, then Dg = ∅. Otherwise, we have
three cases:

(i) If g = αβ−1 with |α| = |β|, then Dg = Dg−1 = Σ{0,1}, and

θg(x) = λnα−nβ(x).

(ii) If g = αβ−1 with |α| > |β|, then αβ−1 = αgα0β−1 with |α0| = |β|. Further,
the word αg does not depend on the particular representation of αβ−1 by the
above claim. In this case we have Dg−1 = Σ{0,1} and Dg = αgΣ{0,1}. The map θg
is given by

θg(x) = αgλnα0−nβ(x)

where above we are concatenating the infinite sequence λnα0−nβ(x) with αg.
(iii) The third case, where g = αβ−1 with |α| > |β|, is completely determined

by the second case above. Here αβ−1 = αβ−1
0 β−1

g with |α| = |β0|, θg : βgΣ{0,1} →
Σ{0,1}, and

θg(βgx) = λnα−nβ0 (x).

The partial action θ induces a partial action θ̃ on C(ΣE). By Theorem 4.4 and
Example 3.4, we have that

OZ,R2
∼= C(ΣR2)oθ̃

BS(1, 2)

and, more generally
OZ,Rn

∼= C(ΣRn)oθ̃
BS(1, n).
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We finish this example by pointing out that this gives a realization of the C∗-
algebra Q2 associated in [7] to the 2-adic integers as a partial crossed product,
because Q2 ∼= OZ,R2 . See Example 6.5 of [2] for more details.

5. INDUCED ACTIONS AND On

Suppose that θ = (A, G, {Dg}g∈G, {θg}g∈G) is a partial C∗-dynamical sys-
tem and that G is a subgroup of H. Then one can extend this partial C∗-dynamical
system to H, creating θ̂ = (A, H, {D̂g}h∈H , {θ̂g}h∈H) by setting D̂h = Dh and
θ̂h = θh if h ∈ G and D̂h and θ̂h to be the zero ideal and zero map if h /∈ G. In
this situation, A oθ G ∼= A o

θ̂
H. In this way we see that a result of the form “B

is isomorphic to a partial crossed product by H” does not contain as much infor-
mation as one would like, because perhaps a subgroup of H would suffice. In
our cases so far, we have shown that theOG,E are isomorphic to crossed products
by certain groups, and that these groups are actually generated by the elements
whose corresponding ideals are nonempty.

It is well-known that the Cuntz algebra On can be realized as a partial
crossed product. The first such construction appears in [16], where it is shown
thatOn is isomorphic to a partial crossed product of the Cantor set by Fn, the free
group on n elements. We reproduce this construction below in Example 5.1. In
[5], On is realized as a partial crossed product of the Cantor set by the Baumslag–
Solitar group BS(1, n) ∼= Z[ 1

n ]o Z, an amenable group. In both of these situa-
tions, the elements g for which the ideal Dg is nonzero generate the group. In
this section, we show that if (G, E, ϕ) is a pseudo-free self-similar graph action
such that E has only one vertex and which satisfies a condition we call exhaust-
ing (Definition 5.3), then O|E1| is isomorphic to a partial crossed product by the
group U(SG,E) and the group elements g such that the ideal corresponding to g
is nonzero generate U(SG,E).

EXAMPLE 5.1 (The Cuntz algebra). This is a construction seen in [16]. Let A
be a finite alphabet and consider the space ΣA of right-infinite words in elements
of A. Given the product topology, ΣA is homeomorphic to the Cantor set. Let
FA denote the free group generated by A. We will describe a partial action of FA
on ΣA. If g ∈ FA is not of the form αβ−1 for words α, β ∈ A∗, then Dg = ∅.
Otherwise, for all α, β ∈ A∗ we have

Dαβ−1 = αΣA = {αx : x ∈ ΣA}

and the map θαβ−1 : βΣA → αΣA is defined by

θαβ−1(βx) = αx.

Here, ΣA is compact and each Dg is clopen. One can show that the C∗-algebra of
the groupoid FA nθ ΣA is isomorphic to O|A|.
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DEFINITION 5.2. Suppose that we have a partial action of a group G on a
set X, say ({Dg}g∈G, {θg}g∈G) and suppose that ϕ : G → H is an onto homomor-
phism of groups. Suppose further that whenever h ∈ H, g1, g2 ∈ ϕ−1(h), and
x ∈ Dg−1

1
∩ Dg−1

2
, then θg1(x) = θg2(x). Then the induced partial action of H on X

is the pair

({Eh}h∈H , {θh}h∈H)

where

Eh =
⋃

g∈ϕ−1(h)

Dg

and, with slight abuse of notation, the θh are as before.

This is well-defined because these functions agree on any possible intersec-
tions of the sets above. We will need the following condition.

DEFINITION 5.3. A self-similar graph action (G, E, ϕ) is called exhausting if
for all g ∈ G there exists α ∈ E∗ such that ϕ(g, α) = 1G.

There is a natural homomorphism φ : FE1 → U(SG,E) determined by φ(e) =
σ(Se) for all e ∈ E1. In the case that (G, E, ϕ) is exhausting, we have the following.

LEMMA 5.4. Let (G, E, ϕ) be a self-similar graph action such that E is a finite
graph with no sinks or sources. If (G, E, ϕ) is exhausting, then the natural group homo-
morphism φ : FE1 → U(SG,E) is surjective.

Proof. Let g ∈ G and find α ∈ E∗ such that ϕ(g, α) = 1G. Let σ : SG,E \
{0} → U(SG,E) be the natural map. Then UgSαS∗gα = SgαS∗gα, and so σ(UgSαS∗gα)

= 1. Since σ is multiplicative on nonzero products, we have that σ(Ug) =
σ(SgαS∗g). We know that U(SG,E) is generated by the image of SG,E, so this im-
plies that U(SG,E) is generated by {σ(Sx)}x∈E1 , and the result follows.

In the following, we refer to the action in Example 5.1 as the Quigg–Raeburn
action.

THEOREM 5.5. Suppose that (G, E, ϕ) is a self-similar group. Suppose also that
(G, E, ϕ) is pseudo-free and exhausting. Then the partial crossed product associated to
the action θ of U(SG,E) on ΣE induced by the Quigg–Raeburn action is isomorphic to
O|E1|, and the elements g ∈ U(SG,E) with corresponding ideals not equal to 0 generate
U(SG,E).

Proof. We first show that the induced action is well-defined. Let φ : FE1 →
U(SG,E) denote the surjective group homomorphism from Lemma 5.4, given on
generators by φ(x) = σ(Sx). If we take the Dαβ−1 as in Example 5.1, then for
g ∈ U(SG,E) we have

Eh =
⋃

αβ−1∈φ−1(h)

Dαβ−1 =
⋃

αβ−1∈ϕ−1(h)

αΣE.
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In general, given two cylinder sets αΣE and ηΣE, either they are disjoint, or one is
contained in the other. In the latter case, α = ηα′ (without loss of generality). So,
suppose that h ∈ U(SG,E) and αβ−1, ηγ−1 ∈ φ−1(h) such that βΣE ∩ γΣE 6= ∅.
Without loss of generality, we will assume that βΣE ∩ γΣE = βΣE, and so β =
γβ′. This implies that

1 = σ(SαS∗βSγS∗η) = σ(SαS∗β′S
∗
η) = σ(SαS∗ηβ′)

and since σ is idempotent pure, we must have that α = ηβ′. Hence

αβ−1 = ηβ′(γβ′)−1 = ηγ−1,

and so θαβ−1 and θηγ−1 agree on the intersection of their domains (because if their
domains intersect, they must in fact be equal group elements).

Now we have that the induced action is well-defined. The map

Φ : FE1 nθ ΣE → U(SG,E)nθ ΣE

Φ(αβ−1, βx) = (φ(αβ−1), βx)

is easily shown to be an isomorphism of topological groupoids. We omit the
details.

EXAMPLE 5.6. If (Z, Rn, ϕ) is the odometer from Examples 3.4 and 4.5, by
Theorem 5.5 we obtain that that On ∼= C(ΣRn)o BS(1, n), reproducing the result
from [5].

We also note that while the groups and algebra in this example are the same
as in Example 4.5, we obtain nonisomorphic crossed products because the do-
mains of group elements can be different. For example, in the action in Example
4.5 we have that Dba−1 = ΣR2 , while in the induced action described above,

Dba−1 =
⋃

n>0
bnaΣR2 = ΣR2 \ {bbb · · · }.
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