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ABSTRACT. The problem of decomposition of bilinear forms which satisfy a
certain condition has been studied by many authors, by example in [4]: Let
H and K be Hilbert spaces and let A, C ∈ B(H), B, D ∈ B(K). Assume that
u : H×K → C a bilinear form satisfies |u(x, y)| 6 ‖Ax‖‖By‖+ ‖Cx‖‖Dy‖ for
all x ∈ H and y ∈ K. Then u can be decomposed as a sum of two bilinear forms
u = u1 + u2 where |u1(x, y)| 6 ‖Ax‖‖By‖, |u2(x, y)| 6 ‖Cx‖‖Dy‖, ∀x ∈
H, y ∈ K. U. Haagerup conjectured that an analogous decomposition as a sum
of bounded bilinear forms is not always possible for more than two terms. In
this paper we give a necessary and sufficient condition for such a decomposi-
tion to exist and use this criterion to show that indeed it is not always possible
for more than two terms.
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INTRODUCTION

A bilinear form on a vector space V is a bilinear mapping V×V → F, where
F is the field of scalars. That is, a bilinear form is a function B : V ×V → F which
is linear in each argument separately. When F is the field of complex numbers C,
one is often more interested in sesquilinear forms, which are similar to bilinear
forms but are conjugate linear in one argument. We focus here on the bounded
ones. A bilinear form on a normed vector space is bounded if there is a constant
C such that for all u, v ∈ V

|B(u, v)| 6 C‖u‖‖v‖.
Let E and F be real or complex vector spaces. In several places in the literature one
meets the following situation. One is given a bilinear form u : E× F → C which
can be majorized by the sum of the absolute values of two bounded forms b1 and
b2. One then wants to show that u can be decomposed as a sum u = u1 + u2 with
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|u1| 6 |b1| and |u2| 6 |b2|. Pisier and Shlyakhtenko [6] proved such a result for
completely bounded forms on exact operator spaces E ⊆ A and F ⊆ B sitting in
C∗-algebras A and B. Let f1, f2 be states on A and g1, g2 be states on B such that
for all a ∈ E and b ∈ F,

|u(a, b)| 6 ‖u‖ER( f1(aa∗)1/2g1(b∗b)1/2 + f2(a∗a)1/2g2(bb∗)1/2).

Then u can be decomposed as

u = u1 + u2,

where u1 and u2 are bilinear forms satisfying the following inequalities, for all
a ∈ A and b ∈ B:

|u1(a, b)| 6 ‖u‖ER f1(aa∗)1/2g1(b∗b)1/2,(0.1)

|u2(a, b)| 6 ‖u‖ER f2(a∗a)1/2g2(bb∗)1/2.(0.2)

In particular,
‖u1‖cb 6 ‖u‖ER and ‖ut

2‖cb 6 ‖u‖ER,

where ut
2(b, a) := u2(a, b), for all a ∈ E and b ∈ F. Using a similar argument

a strengthened version of this result was proved by Xu [8] for ordinary bilinear
forms. Let H and K be Hilbert spaces and let A, C ∈ B(H), B, D ∈ B(K). Assume
that u : H × K → C is a bilinear form that satisfies

|u(x, y)| 6 ‖Ax‖‖By‖+ ‖Cx‖‖Dy‖
for all x ∈ H and y ∈ K. Then u can be decomposed as a sum of two bilinear
forms

u = u1 + u2

where

|u1(x, y)| 6 ‖Ax‖‖By‖, |u2(x, y)| 6 ‖Cx‖‖Dy‖, ∀x ∈ H, y ∈ K.

The proof there was merely sketched. Later Haagerup–Musat needed the stronger
version for bounded bilinear forms on operator spaces [4]. U. Haagerup conjec-
tured that an analogous decomposition as a sum of bounded bilinear forms is not
always possible for more than two terms. It is the aim of the present paper to
analyze this problem.

The article is organized as follows. In Section 1, we come to the main subject
of this paper. We study the problem of decomposition of bounded bilinear forms
as in Xu’s result. The proof for such a decomposition that we give (following
Haagerup) depends on the isomorphism between the projective tensor product
H⊗̂πK where H and K are Hilbert spaces, and the space of trace class operators
from the conjugate Hilbert space H into K [2]. We give in this section a complete
proof of Xu’s result.

Section 2 takes a systematic look at the question of decomposing into n
bounded terms. Restricting to the finite dimensional case, we give a necessary
and sufficient criterion for such a decomposition. The criterion and its proof uses
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the correspondence between bounded operators on a Hilbert space and sesquilin-
ear forms as well as the trace duality theorem. The proof also uses the Hahn–
Banach theorem applied to convex hulls of certain sets of finite rank operators
(the Hahn–Banach theorem had also been used in the proof of Theorem 2.1, the
main theorem of this section). Section 3 is the last section of this paper. Here we
use the criterion established in Section 2 to give a counterexample to the decom-
posability into three terms. First we give a useful lemma concerning a positive
finite rank operator on a finite dimensional Hilbert space. We are then in a posi-
tion to construct an example of a sesquilinear form u, even on a two-dimensional
Hilbert space, which is majorized by the sum of the moduli of three bounded
forms b1, b2 and b3, but cannot be decomposed as a sum of three sesquilinear
forms ui, where each ui is majorized by the corresponding |bi|. The counterexam-
ple depends on a suitable choice of operators without common eigenvectors.

1. DECOMPOSITION OF BILINEAR FORMS INTO TWO TERMS

In this section, we show how to decompose a bilinear form into two terms
by using the isomorphism between the projective tensor product H⊗̂πK and the
space B1(H, K) of trace-class operators from H into K, see for instance [2]. We ex-
plain how to decompose a bilinear form which satisfies the condition (1.1) below
into a sum of two bilinear forms satisfying certain boundedness conditions. We
will start with the following theorem which gives the isometric isomorphism be-
tween the projective tensor product and the space of trace class operators, see [2].

THEOREM 1.1. The map

J : H′ ⊗π H → B1(H)

x′ ⊗ y→ x′⊗y

gives an isometric isomorphism, where x′⊗y denotes a rank one operator.

Now we present the main theorem in this section.

THEOREM 1.2. Let H and K be Hilbert spaces and let A, C ∈ B(H), B, D ∈
B(K). Assume that a bilinear form u : H × K → C satisfies

(1.1) |u(x, y)| 6 ‖Ax‖‖By‖+ ‖Cx‖‖Dy‖

for all x ∈ H and y ∈ K. Then u can be decomposed as a sum of two bilinear forms

u = u1 + u2

where

|u1(x, y)| 6 ‖Ax‖‖By‖, |u2(x, y)| 6 ‖Cx‖‖Dy‖, x ∈ H, y ∈ K.

Proof. We consider three cases to prove the claim.
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Case 1. We suppose that A = B = I and C, D are invertible operators. We
will prove this case below.

Case 2. We suppose that all the operators A, B, C and D are invertible. We set

v(x, y) := u(A−1x, B−1y).

We can now apply Case 1 to the bilinear form v. We have

|v(x, y)| 6 ‖x‖‖y‖+ ‖CA−1x‖‖DB−1y‖.

Thus by Case 1
v = v1 + v2,

where
|v1(x, y)| 6 ‖x‖‖y‖, |v2(x, y)| 6 ‖CA−1x‖‖DB−1y‖.

Setting
ui(x, y) := vi(Ax, By),

Case 2 can be reduced to Case 1.
Case 3. We consider the general case that A is any linear operator in B(H);

then A∗A is positive i.e. A∗A > 0. If ε > 0 is any positive number, then εI > 0
and K = A∗A + εI > 0. Clearly K > εI. Therefore K is invertible. In fact,
sp(K) ⊆ [ε, ∞). This means 0 /∈ sp(K) which is equivalent to K being invertible.
Thus A∗A + εI is invertible for ε > 0. So

A(ε) := (A∗A + εI)1/2

is invertible. Set

A(ε) := (A∗A + ε1)1/2, B(ε) := (B∗B + ε1)1/2,

C(ε) := (C∗C + ε1)1/2, D(ε) := (D∗D + ε1)1/2.

Now from the polar decomposition, we can represent any operator A ∈ B(H) by
A = u|A| where u is a partial isometry on H, so

‖Ax‖ = ‖u|A|x‖ 6 ‖|A|x‖, x ∈ H.

Since
0 6 |A| = (A∗A)1/2 6 (A∗A + εI)1/2,

it follows that
‖|A|x|| 6 ‖A(ε)x‖, x ∈ H.

Hence, we have

|u(x, y)| 6 ‖A(ε)x‖‖B(ε)y‖+ ‖C(ε)x‖‖D(ε)y‖.

Then, from Case 2

(1.2) u = uε
1 + uε

2,
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such that

|uε
1(x, y)| 6 ‖A(ε)x‖‖B(ε)y‖,(1.3)

|uε
2(x, y)| 6 ‖C(ε)x‖‖D(ε)y‖.(1.4)

Take 0 < ε < 1, then A(ε) 6 A(1). Therefore,

‖A(ε)‖ 6 ‖A(1)‖.
In fact, the norms of ‖A(ε)‖ are uniformly bounded for all 0 < ε < 1. So

from the estimations in (1.3) and (1.4)

‖uε
1‖ 6 N1 := ‖A(1)‖‖B(1)‖,(1.5)

‖uε
2‖ 6 N2 := ‖C(1)‖‖D(1)‖.(1.6)

We know from the universal property of projective tensor product (see Proposi-
tion 1.4 from [7]) that,

Bil(H, K) = (H ⊗π K)
′
,

so, there is w ∈ (H ⊗π K)′ such that

u(x, y) = w(x⊗ y), x ∈ H and y ∈ K.

Set
M := N1 + N2,

and let
S = {w ∈ (H ⊗π K)′ : ‖w‖ 6 M}.

By Banach–Alaoglu theorem, S is weak∗-compact. Choose two sequences {w(n)
1 }

and {w(n)
2 } in (H ⊗π K)′ such that

w(n)
1 (x⊗ y) = u(1/n)

1 (x, y) n ∈ N,

w(n)
2 (x⊗ y) = u(1/n)

2 (x, y) n ∈ N.

So from the definition of S and (1.5), (1.6), theses sequences {w(n)
1 } and

{w(n)
2 } are in S. Hence, they have convergent subsequences {w(nk)

1 } and {w(nk)
2 }

respectively. Thus, when k→ ∞,

w(nk)
1

w∗
⇀ w1, w(nk)

2
w∗
⇀ w2.

Also, ε→ 0 when k→ ∞. So from the inequalities in (1.3) and (1.4) we get:

|w1(x⊗ y)| =
∣∣∣ lim

k→∞
w(nk)

1 (x⊗ y)
∣∣∣ = lim

k→∞
|w(nk)

1 (x⊗ y)| 6 lim
ε→0
‖A(ε)x‖‖B(ε)y‖

= ‖|A|x‖‖|B|y‖ = ‖Ax‖‖By‖.

Therefore, w1 ∈ (H ⊗π K)′. Similary for w2, we have

|w2(x⊗ y)| =
∣∣∣ lim

k→∞
w(nk)

2 (x⊗ y)
∣∣∣ = lim

k→∞
|w(nk)

2 (x⊗ y)| 6 lim
ε→0
‖C(ε)x‖‖D(ε)y‖

= ‖|C|x‖‖|D|y‖ = ‖Cx‖‖Dy‖.
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Also, w2 ∈ (H ⊗π K)′. Set

w1(x⊗ y) = u1(x, y), w2(x⊗ y) = u2(x, y).

From (1.2)
u(x, y) = w(nk)

1 (x⊗ y) + w(nk)
2 (x⊗ y).

Now, take the limit point when k→ ∞, we get

u(x, y) = w1(x⊗ y) + w2(x⊗ y).

By construction,
u(x, y) = u1(x, y) + u2(x, y)

such that
|u1(x, y)| 6 ‖Ax‖‖By‖, |u2(x, y)| 6 ‖Cx‖‖Dy‖.

and
|u(x, y)| = |u1(x, y) + u2(x, y)| 6 ‖Ax‖‖By‖+ ‖Cx‖‖Dy‖.

Hence Case 3 follows from Case 2. So

Case 1⇒ Case 2⇒ Case 3

therefore if we prove Case 1, we are done. Case 1 will follow from the next lemma,
ending the proof of the theorem.

LEMMA 1.3. Let H and K be Hilbert spaces and let C ∈ B(H) and D ∈ B(K) be
invertible. Assume that a bilinear form u : H × K → C satisfies

(1.7) |u(x, y)| 6 ‖x‖‖y‖+ ‖Cx‖‖Dy‖
for all x ∈ H and y ∈ K. Then there are bilinear forms u1, u2 : H × K −→ C such that

u = u1 + u2

and
|u1(x, y)| 6 ‖x‖‖y‖, |u2(x, y)| 6 ‖Cx‖‖Dy‖

for all x ∈ H and y ∈ K

Proof. Let H⊗̂πK be the projective tensor product of H and K. This space
is isometrically isomorphic to the space B1(H, K) of trace-class operators from H
into K [2] . Here, H denotes the conjugate Hilbert space of H. Let

w =
m

∑
i=1

xi ⊗ yi

be a linear combination of elementary tensors in H⊗̂πK. As in Xu’s paper, then
the corresponding linear map Tw : H → K given by

Twζ =
m

∑
i=1
〈xi|ζ〉yi, ζ ∈ H

is a finite rank operator and the projective norm π of w is given by

‖w‖π = ‖Tw‖1 = Tr((T∗wTw)
1/2).
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Therefore, by Theorem 18.13 of [1], we can find orthogonal vectors {ξ1, . . . , ξn} ∈
H and {η1, . . . , ηn} ∈ K such that

w =
n

∑
i=1

ξi ⊗ ηi and ‖w‖π = ∑ ‖ξi‖2 = ∑ ‖ηi‖2,

where n is the rank of (Tw).
In the same way

(C⊗ D)w =
n

∑
i=1

Cξi ⊗ Dηi

can be written as

(C⊗ D)w =
n′

∑
i=1

ρi ⊗ σi.

By the invertibility of C and D,

n′ = rank(T(C⊗D)w) = rank(Tw) = n

and

‖(C⊗ D)w‖π =
( n

∑
i=1
‖ρi‖2

)
=
( n

∑
i=1
‖σi‖2

)
,

for orthogonal vectors {ρ1, . . . , ρn} ∈ H and {σ1, . . . , σn} ∈ K.
Since

n

∑
i=1

Cξi ⊗ Dηi =
n

∑
i=1

ρi ⊗ σi,

we have by the linear independence of each of the sets (Cξi)
n
i=1, (Dηi)

n
i=1, (ρi)

n
i=1

and (σi)
n
i=1 that

Cξi =
n

∑
j=1

αijρj and Dηi =
n

∑
j=1

βijσj

for unique αij, βij ∈ C. Moreover, since

n

∑
i=1

ρi ⊗ σi =
n

∑
i=1

Cξi ⊗ Dηi =
n

∑
i,j,k=1

αijβikρj ⊗ σk

and from linear independence, we must have
n

∑
j=1

αjiβ jk = δik.

Hence the matrices

α = (αij) where i, j = {1, . . . , n}, and β = (βi,j) where i, j = {1, . . . , n},

are invertible and β−1 = (αt) where αt is the transpose of α. Write now

α = UdV
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where U, V ∈ U(n) and d = diag(d1, . . . , dn) is a diagonal matrix with strictly
positive entries d1, . . . , dn, see [8]. Set

ξ̂i =
n

∑
j=1

u∗ijξ j =
n

∑
j=1

ujiξ j and ρ̂i =
n

∑
i=1

vijρj;

then we obtain

Cξi =
n

∑
j=1

uijdjρ̂j.

Now
β = (αt)−1 = (vtdut)−1 = ud−1v.

Then setting

η̂i =
n

∑
j=1

u∗ijηj =
n

∑
j=1

ujiηj and σ̂i =
n

∑
i=1

vijσj,

we obtain similarly

Dηi =
n

∑
j=1

uijd−1
j σ̂j.

Thus

C(ξ̂i) =
n

∑
j=1

ujiC(ξ j) =
n

∑
j,k=1

ujiujkdk ρ̂k =
n

∑
k=1

δikdk ρ̂k = di ρ̂i,

and we obtain similarly,

D(η̂i) =
n

∑
j=1

ujiD(ηj) =
n

∑
j,k=1

ujiujkd−1
k σ̂k =

n

∑
k=1

δikd−1
k σ̂k = d−1

i σ̂i.

Since
n

∑
i=1

ξ̂i ⊗ η̂i =
n

∑
i,j,k=1

ujiξ j ⊗ ukiηk =
n

∑
j,k=1

δjkξ j ⊗ ηk =
n

∑
j=1

ξ j ⊗ ηj = w,

this implies

(C⊗ D)w =
n

∑
j=1

djρ̂j ⊗ d−j 1σ̂j =
n

∑
j=1

ρ̂j ⊗ σ̂j.

Now
n

∑
i=1
‖ξ̂ j‖2 =

n

∑
i=1

∥∥∥ n

∑
j=1

ujiξ j

∥∥∥ =
n

∑
i=1

n

∑
j=1
|uij|2‖ξi‖2 =

n

∑
i=1
‖ξi‖2,

and similarly,
n

∑
i=1
‖η̂j‖2 =

n

∑
i=1

∥∥∥ n

∑
j=1

ujiηj

∥∥∥2
=

n

∑
i=1

n

∑
j=1
|uji|2‖ηj‖2 =

n

∑
i=1
‖ηi‖2.

Also
n

∑
i=1
‖ρ̂i‖2 =

n

∑
i=1

∥∥∥ n

∑
j=1

vijρj

∥∥∥2
=

n

∑
i=1

n

∑
j=1
|vij|2‖ρj‖2 =

n

∑
i=1
‖ρi‖2
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and similarly,

n

∑
i=1
‖σ̂i‖2 =

n

∑
i=1

∥∥∥ n

∑
j=1

vijσj

∥∥∥2
=

n

∑
i=1

n

∑
j=1
|vij|2‖σj‖2 =

n

∑
i=1
‖σi‖2.

Therefore

‖w‖π =
n

∑
j=1
‖ξ̂ j‖2 =

n

∑
j=1
‖η̂j‖2, ‖(C⊗ D)w‖π =

n

∑
j=1
‖ρ̂j‖2 =

n

∑
j=1
‖σ̂j‖2.

Hence∣∣∣ n

∑
i=1

u(xi, yi)
∣∣∣ = ∣∣∣ n

∑
i=1

u(ξ̂i, η̂i)
∣∣∣ 6 n

∑
i=1
‖ξ̂i‖‖η̂i‖+

n

∑
i=1
‖Cξ̂i‖‖Dη̂i‖

=
n

∑
i=1
‖ξ̂i‖‖η̂i‖+

n

∑
i=1
‖ρ̂i‖‖σ̂i‖

6
( n

∑
i=1

(‖ξ̂i‖)2
)1/2( n

∑
i=1
‖ηi‖2

)1/2
+
( n

∑
i=1

(‖ρ̂i‖)2
)1/2( n

∑
i=1
‖σi‖2

)1/2

=
∥∥∥∑ xi ⊗ yi

∥∥∥
π
+
∥∥∥∑ Cxi ⊗ Dyi

∥∥∥
π

.(1.8)

If V and W are Banach spaces we denote by V ⊕1 W the direct sum of V and W
endowed with the norm

‖(v, w)‖ = ‖v‖+ ‖w‖.

Let E be the linear span of all vectors (x⊗ y, C(x)⊗D(y)) in (H⊗̂πK)⊕1 (H⊗̂πK)
where x ∈ H and y ∈ K. According to the above estimate in (1.8) we find a
bounded linear functional w ∈ E∗ with ‖w‖ 6 1 such that

u(x, y) = w((x⊗ y, C(x)⊗ D(y)))

for all x ∈ H and y ∈ K. By the Hahn–Banach theorem there exists a bounded
linear functional w̃ on (H⊗̂πK)⊕1 (H⊗̂πK) with ‖w̃‖ = ‖w‖ 6 1 extending w.
We set

u1(x, y) = w̃((x⊗ y, 0)), u2(x, y) = w̃(0, C(x)⊗ D(y)).

By construction we have

u = u1 + u2.

Moreover

|u1(x, y)| 6 ‖w̃‖‖x‖‖y‖ 6 ‖x‖‖y‖ and

|u2(x, y)| 6 ‖w̃‖‖C(x)‖‖D(y)‖ 6 ‖C(x)‖‖D(y)‖.

This yields the claim.



328 MOHAMED ELMURSI

2. DECOMPOSITION OF BILINEAR FORMS INTO n TERMS

In this section, we discuss the problem of decomposing into n bounded
terms. Turning to the finite dimensional case, we find a criterion to make the de-
composition possible for n terms. We will work with sesquilinear forms instead
of bilinear ones. We begin with a lemma which provides a bijective correspon-
dence between bounded operators on H and bounded sesquilinear forms. This is
well known, see [5].

LEMMA 2.1 ([5]). There is a bijective correspondence A 7→ bA between bounded
operators on H and bounded sesquilinear forms given by

bA(x, y) = 〈Ax|y〉 x, y ∈ H.

One has
‖A‖ = sup{|bA(x|y)| : ‖x‖, ‖y‖ 6 1}.

Now we come to the main theorem in this section.

THEOREM 2.2. Let H be a finite-dimensional Hilbert space and let A2, . . . , An
and B2, . . . , Bn be invertible operators in B(H). Assume that U ∈ B(H) is a bounded
operator which satisfies

|〈Ux|y〉| 6 ‖x‖‖y‖+ ‖A2x‖‖B2y‖+ · · ·+ ‖Anx‖‖Bny‖
for all x, y ∈ H.

Then the following two conditions are equivalent:
(i) U can be split into a sum of n-terms

U = U1 + U2 + · · ·+ Un, Ui ∈ B(H),

such that

|〈U1x|y〉| 6 ‖x‖‖y‖,
|〈U2x|y〉| 6 ‖A2x‖‖B2y‖,

...

|〈Unx|y〉| 6 ‖Anx‖‖Bny‖,
for all x, y ∈ H.

(ii) If we set

K = {x⊗y : ‖x‖‖y‖+ ‖A2x‖‖B2y‖+ · · ·+ ‖Anx‖‖Bny‖ 6 1}
(where x⊗y denotes a rank one operator) and

∆ = {T ∈ B(H) : ‖T‖1 + ‖A2TB∗2‖1 + · · ·+ ‖AnTB∗n‖1 6 1},
(where ‖S‖1 = tr|S| denotes the trace class norm of S), then

conv(K) = ∆

(conv denotes the convex hull).
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Proof. (ii)⇒(i) For any bounded operator U ∈ B(H), by trace duality (see
[3]) we can associate a linear functional φ on B(H) such that,

φ(T) = tr(UT), T ∈ B(H).

Hence,

φ(x⊗y) = tr(Ux⊗y) = 〈Ux|y〉,

and therefore,

|〈Ux|y〉| = |φ(x⊗y)| 6 ‖x⊗y‖1 + ‖A2x⊗B2y‖1 + · · ·+ ‖Anx⊗Bny‖1 6 1

for all x⊗y ∈ K. By assumption,

conv(K) = ∆.

So any T ∈ ∆ has the form T =
n
∑

i=1
λixi⊗yi, where

n

∑
i=1

λi = 1 and xi⊗yi ∈ K.

Therefore,∣∣∣ n

∑
i=1
〈Uxi|yi〉

∣∣∣ = ∣∣∣φ( n

∑
i=1

xi⊗yi

)∣∣∣ = ∣∣∣φ( n

∑
i=1

λixi⊗yi

)∣∣∣
=
∣∣∣ n

∑
i=1

λi〈Uxi|yi〉
∣∣∣ 6 n

∑
i=1

λi|〈Uxi|yi〉|

6
n

∑
i=1

λi[‖xi⊗yi‖1 + ‖A2xi⊗B2yi‖1 + · · ·+ ‖Anxi⊗Bnyi‖1]

6
n

∑
i=1

λi = 1.(2.1)

Let E = span{(x⊗ y, A2x⊗ B2y, . . . , Anx⊗ Bny) : x, y ∈ H} ⊆ H⊗H⊕H⊗H⊕
· · · ⊕ H ⊗ H.

By (2.1), we can find a bounded linear functional φ on E with

‖φ‖ = sup
{ |φ(t)|
‖t‖ : t ∈ E, t 6= 0

}
= sup{|φ(t)| : t ∈ E, ‖t‖ 6 1} 6 1,

such that,

〈Ux|y〉 = φ((x⊗ y, A2x⊗ B2y, . . . , Anx⊗ Bny)), x, y ∈ H.
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Hence by the Hahn–Banach theorem there is an extension φ̃ of φ to all H ⊗ H ⊕
H ⊗ H ⊕ · · · ⊕ H ⊗ H with ‖φ̃‖ = ‖φ‖ 6 1. If we set

〈U1x|y〉 = φ̃((x⊗ y, 0, . . . , 0)),

〈U2x|y〉 = φ̃(0, A2(x)⊗ B2(y), . . . , 0),

...

〈Unx|y〉 = φ̃(0, 0, . . . , An(x)⊗ Bn(y)),

then by construction we have

U = U1 + U2 + · · ·+ Un

and

|〈U1x|y〉| 6 ‖φ̃‖‖x‖‖y‖ 6 ‖x‖‖y‖,
|〈U2x|y〉| 6 ‖φ̃‖‖A2x‖‖B2y‖ 6 ‖A2x‖‖B2y‖,

...

|〈Unx|y〉| 6 ‖φ̃‖‖Anx‖‖Bny‖ 6 ‖Anx‖‖Bny‖.

(i)⇒(ii) Assume (i). If (ii) does not hold, we can choose T0 ∈ ∆ \ conv(K).
Since conv(K) is closed, there exists by the Hahn–Banach theorem a functional φ
on B1(H) = B(H)∗, such that

sup{Reφ(T) : T ∈ conv(K)} < Reφ(T0).

Since T ∈ K ⇒ γT ∈ K for all γ ∈ C with |γ| = 1, we have

sup{(Reφ(T)) : T ∈ conv(K)} = sup{|φ(T)| : T ∈ conv(K)} > 0.

Moreover,
Reφ(T0) 6 |φ(T0)|.

Hence,
sup{|φ(T)| : T ∈ conv(K)} < |φ(T0)|.

By replacing φ by a positive multiple of φ we can without loss of generality, as-
sume that

(2.2) sup{|φ(T)| : T ∈ conv(K)} 6 1 < |φ(T0)|.
Using the standard duality B1(H)∗ = B(H) there is a unique U ∈ B(H), such
that

φ(T) = Tr(UT), ∀T ∈ B1(H).

By (2.2), we have for x, y ∈ H satisfying

(2.3) ‖x‖‖y‖+ ‖A2x‖‖B2y‖+ · · ·+ ‖Anx‖‖Bny‖ = 1,

that T = x⊗y ∈ K and thus

(2.4) |〈Ux|y〉| = |Tr(U(x⊗y))| = |φ(x⊗ y)| 6 1,
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and since (2.3)⇒ (2.4) we have by linearity in x, that

|〈Ux|y〉| 6 ‖x‖‖y‖+ ‖A2x‖‖B2x‖+ · · ·+ ‖Any‖‖Bny‖, ∀x, y ∈ H.

However,

(2.5) |Tr(UT0)| = |φ(T0)| > 1.

Now by (i), U has a decomposition:

U = U1 + U2 + · · ·+ Un.

Therefore

(2.6) |Tr(UT0)| 6 |Tr(U1T0)|+ |Tr(U2T0)|+ · · ·+ |Tr(UnT0)|
also from (i):

|〈U1x|y〉| 6 ‖x‖‖y‖
for all x, y in H.

Hence
‖U1‖ = sup{|〈U1x|y〉| : ‖x‖ 6 1, ‖y‖ 6 1} 6 1.

Now by using Theorem 1.51(e) from [1], we get

(2.7) |Tr(U1T0)| 6 ‖U1‖‖T0‖1 6 ‖T0‖1

where U1 ∈ B(H) and T0 ∈ L1(H).
For the second term i.e. |Tr(U2T0)| in (2.6), if we define a new sesquilinear

form v as
v(x, y) := u2(A−1

2 x, B−1
2 y),

then from Lemma 2.1 there is V ∈ B(H) such that

v(x, y) = u2(A−1
2 x, B−1

2 y) = 〈Vx|y〉
for all x, y ∈ H.

Therefore also by Lemma 2.1, there is U2 ∈ B(H) satisfying

u2(x, y) = 〈U2x|y〉 = v(A2x, B2y) = 〈VA2x|B2y〉
for all x, y ∈ H.

Hence,

Tr(U2T0) = Tr
(

∑ U2xj⊗yj

)
=
(

∑〈U2xj|yj〉
)
= ∑〈VA2xj|B2yj〉

= Tr
(

∑ VA2xj⊗B2yj

)
= Tr

(
V
[
∑ A2xj⊗B2yj

])
= Tr(VA2T0B∗2 ).

Therefore,
|Tr(U2T0)| = |Tr(VA2T0B∗2 )| 6 ‖V‖‖A2T0B∗2‖1.

From the definition of v, we can easily get that

‖V‖ = sup{|〈VA2x|B2y〉| : ‖A2x‖ 6 1, ‖B2y‖ 6 1}
= sup{|〈U2x|y〉| : ‖A2x‖ 6 1, ‖B2y‖ 6 1} 6 1

(where we use |〈U2x|y〉| 6 ‖A2x‖‖B2y‖, from (i)).
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Thus,

(2.8) |Tr(U2T0)| 6 ‖A2T0B∗2‖1.

Similarly for the rest of the terms (for n > 3) in the above inequality (2.6).
We can define a new sesquilinear form w by,

w(x, y) := un(A−1
n x, B−1

n y).

Also, from Lemma 2.1 there is W ∈ B(H) such that,

w(x, y) = un(A−n 1x, B−n 1y) = 〈Wx|y〉
for all x, y ∈ H.

So, also by Lemma 2.1 there is Un ∈ B(H) such that

〈Unx|y〉 = un(x, y) = w(Anx, Bny) = 〈WAnx|Bny〉.
Hence,

Tr(UnT0) = Tr
(

∑ Unxj⊗yj

)
=
(

∑〈Unxj|yj〉
)
= ∑〈WAnxj|Bnyj〉

= Tr
(

∑ WAnxj⊗Bnyj

)
= Tr

(
W
[
∑ Anxj⊗Bnyj

])
= Tr(WAnT0B∗n).

Therefore,
|Tr(UnT0)| = |Tr(WAnT0B∗n)| 6 ‖W‖‖AnT0B∗n‖1.

Also from the definition of w, we can easily see that

‖W‖ = sup{|〈WAnx|Bny〉| : ‖Anx‖ 6 1, ‖Bny‖ 6 1}
= sup{|〈Unx|y〉| : ‖Anx‖ 6 1, ‖Bny‖ 6 1} 6 1,

(where we use |〈Unx|y〉| 6 ‖Anx‖‖Bny‖, from (i)).
Thus,

(2.9) |Tr(UnT0)| 6 ‖AnT0B∗n‖1.

Finally from inequality (2.6),

|Tr(UT0)| 6 |Tr(U1T0)|+ |Tr(U2T0)|+ · · ·+ |Tr(UnT0)|
6 ‖T0‖1 + ‖A2T0B∗2‖1 + · · ·+ ‖AnT0B∗n‖1 6 1.

But this contradicts (2.5). Thus (i) does not hold and we have proved that
(i)⇒(ii).

3. A COUNTEREXAMPLE TO DECOMPOSING BILINEAR FORMS
INTO THREE BILINEAR FORMS

In this section, we will use the criterion established in the previous section
to give a counterexample which will show that the decomposition of a bilinear
form into three bounded terms is not always possible. We will start with a useful
lemma.
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LEMMA 3.1. Let H be a finite dimensional Hilbert space. If S is in B1(H)+ =
B(H)+ and

S =
m

∑
j=1

xj⊗yj,

such that

(3.1) ‖S‖1 =
m

∑
j=1
‖xj‖‖yj‖

then each yj is a positive multiple of xj.

3.1. A COUNTEREXAMPLE. We use Theorem 2.2 to build the counterexample. We
prove that the condition

conv(K) = ∆

with
K = {x⊗y : ‖x‖‖y‖+ ‖Ax‖‖By‖+ ‖Cx‖‖Dy‖ 6 1}

and
∆ = {T ∈ B(H) : ‖T‖1 + ‖ATB∗‖1 + ‖CTD∗‖1 6 1}

is not always true. Therefore the decomposition into three terms fails. Consider
the Hilbert space H = C2. Consider the operators B = D = I and A, C positive
invertible and not commuting. In particular A and C do not have any common
eigenvectors.

Put c := (‖1‖1 + ‖A‖1 + ‖C‖1)
−1 and take T = c1. Now we will show that

T ∈ ∆ but T /∈ convK. From the definition of ∆,

∆ = {T ∈ B(H) : ‖T‖1 + ‖ATB∗‖1 + ‖CTD∗‖1 6 1}.

For T = c1, we find

‖T‖1+‖ATB∗‖1+‖CTD∗‖1 = c‖1‖1 + c‖A · 1‖1 + c‖C · 1‖1

= c(‖1‖1 + ‖A‖1 + ‖C‖1)

= (‖1‖1+‖A‖1+‖C‖1)
−1(‖1‖1+‖A‖1+‖C‖1)=1.

Therefore,
T ∈ ∆.

It is not difficult to see that the operators T, AT and CT are positive. In fact

T = |T| = cI

and
AT = A(cI) = cA and CT = C(cI) = cC.

Now suppose that,

T =
n

∑
j=1

λjxj⊗yj ∈ conv(K),
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i.e.
n

∑
j=1

λj = 1 and xj⊗yj ∈ K for all 1 6 j 6 n.

We know T ∈ ∆, in fact

‖T‖1 + ‖AT‖1 + ‖CT‖1 = 1.

Moreover,

‖T‖1 6
n

∑
j=1

λj‖xj‖‖yj‖ := M1,(3.2)

‖AT‖1 6
n

∑
j=1

λj‖Axj‖‖yj‖ := M2,(3.3)

‖CT‖1 6
n

∑
j=1

λj‖Cxj‖‖yj‖ := M3.(3.4)

Also,
xj⊗yj ∈ K,

whence
‖xj‖‖yj‖+ ‖Axj‖‖yj‖+ ‖Cxj‖‖yj‖ 6 1.

Therefore,

λj‖xj‖‖yj‖+ λj‖Axj‖‖yj‖+ λj‖Cxj‖‖yj‖ 6 λj =⇒
n

∑
j=1

λj‖xj‖‖yj‖+
n

∑
j=1

λj‖Axj‖‖yj‖+
n

∑
j=1

λj‖Cxj‖‖yj‖ 6
n

∑
j=1

λj = 1.

Hence
n

∑
j=1

λj‖xj‖‖yj‖+
n

∑
j=1

λj‖Axj‖‖yj‖+
n

∑
j=1

λj‖Cxj‖‖yj‖ = 1.

All the above inequalities (3.2), (3.3) and (3.4) are equalities since the system,

(M1 − N1) + (M2 − N2) + (M3 − N3) = 0,

and
N1 6 M1, N2 6 M2, N3 6 M3,

has only the trivial solution,

M1 = N1, M2 = N2, M3 = N3,

i.e.

‖T‖1 =
n

∑
j=1

λj‖xj‖‖yj‖, ‖AT‖1 =
n

∑
j=1

λj‖Axj‖‖yj‖, ‖CT‖1 =
n

∑
j=1

λj‖Cxj‖‖yj‖.

Applying Lemma 3.1 to the positive operator T, we find

(3.5) yj = αj(λjxj)
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where αj is a positive scalar. We can also apply Lemma 3.1 to the positive opera-
tors AT and CT to get

(3.6) yj = β j(λj Axj)

where β j is also a positive scalar, and

(3.7) yj = γj(λjBxj)

for another positive scalar γj.
Now from (3.5), (3.6) and (3.7), we have

yj = λjαjxj = λjβ j Axj = λjγjCxj.

Hence
Axj =

( αj

β j

)
xj and Cxj =

( αj

γj

)
xj.

Therefore xj is a common eigenvector for operators A and C but this contra-
dicts our assumption on A, C.

Thus
T /∈ conv(K).
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