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ABSTRACT. A classical theorem of von Neumann asserts that every unboun-
ded self-adjoint operator A in a separable Hilbert space is unitarily equivalent
to an operator B such that D(A) ∩ D(B) = {0}. Equivalently this can be
formulated as a property for nonclosed operator ranges. We will show that
von Neumann’s theorem does not directly extend to the nonseparable case.

In this paper we prove a characterisation of the property that an operator
rangeR in a general Hilbert space admits a unitary operator U such that UR∩
R = {0}. This allows us to study stability properties of operator ranges with
the aforementioned property.
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1. INTRODUCTION

In classical works like [23] or [28], Hilbert spaces were introduced as separa-
ble complete inner product spaces. The notion of “separability” is due to Fréchet
([12], p. 23), likely originating in the property that the rationals “separate” the
reals. Early works that generalise the Hilbert space theory to the nonseparable
case are [19] and [24].

While separability frequently allows for simplified proofs and an effective
approximation using a specific countable set of elements, for Hilbert spaces the
assumption of separability is often only made for convenience, and the results fre-
quently hold — with the appropriate changes — also in the nonseparable setting.
In the present paper we investigate von Neumann’s theorem about the domains
of unbounded self-adjoint operators:

THEOREM 1.1 ([22], Satz 18). Let H be a separable Hilbert space and A an un-
bounded self-adjoint operator in H. Then there exists a unitary operator U such that
D(U∗AU) ∩ D(A) = {0}.
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We show in Example 2.2 that a naive reformulation for the nonseparable
case is false, and provide an appropriate generalisation that works for general
Hilbert spaces in Theorem 4.6. For our arguments we employ Dixmier’s approach
on von Neumann’s theorem as presented in Section 3 of [11].

Related questions in the much more diverse Banach space setting, still with
the separability assumption, however, have been treated in [3]. Very recently,
sharper versions of von Neumann’s theorem related to Schmüdgen’s theorem
([25], Theorem 5.1) and involving the domains of fractional powers were pre-
sented in [1], again in the separable case. In [15] concrete examples of operators
were given with certain intersection properties of the fractional domains.

Since separable Hilbert spaces are frequently the most important case for
applications, often only the separable case is considered, which sometimes helps
to simplify the exposition. Of course there are also problems that are much eas-
ier in the nonseparable case, an example being the famous invariant subspace
problem.

There are numerous instances, where some result was only substantially
later extended to the nonseparable case. In these cases usually a suitable refor-
mulation of the problem was required. Examples include the extension of the
spectral theorem [19], [24], the characterisation of closed two-sided ideals [20],
the description of the distance of an operator to the set of unitary operators [8],
Gleason’s theorem [7], [27] and Section 3.5, for example of [6], the block diago-
nalisation of general operators [21] or a generalisation of semi-Fredholm opera-
tors [2].

Naturally there are plenty of cases, where results have been only established
in the separable case, for example the unitarily invariant classification of operator
ranges in [5] and [18]. In [5] the author writes about the general nonseparable
case:

Les cas général peut aussi se traiter, mais conduit à des classifi-
cations plus pénibles, les questions de dimension jouant souvent
un rôle essentiel.

But there are also open problems specifically for the nonseparable case, see for
example [10].

A short outline of this paper is as follows. In Section 2 we present a coun-
terexample showing that von Neumann’s theorem does not directly extend to
nonseparable Hilbert spaces. Then we gather required prerequisites about op-
erator ranges in Section 3. Our reformulation of von Neumann’s theorem for
general Hilbert spaces, which is the main result of this paper, is proved in Sec-
tion 4. Finaly, in Section 5 we apply our reformulation to obtain stability and
density properties, closing with a curious counterexample in Example 5.6.

We assume that the reader is familiar with several basic facts from set the-
ory and the arithmetic of cardinal numbers. For the required background we
refer to Section I.3, in particular (3.14) of [14]. In this paper dim H refers to the
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Hilbert space dimension of a Hilbert space H, i.e. to the cardinality of one/every
orthonormal basis of H. Given a Hilbert space H, the set of unitary operators on
H will be denoted by U . Throughout we will work in the theory ZFC. Moreover,
the Hilbert spaces considered here are assumed to be complex.

2. A COUNTEREXAMPLE

In this section we provide a counterexample to von Neumann’s theorem
in a nonseparable Hilbert space. We need the following lemma that allows to
compare the dimension of two Hilbert spaces.

LEMMA 2.1. Let H and K be Hilbert spaces and j ∈ L(H, K). Then dim rg j 6
dim H. If j is in addition injective, then dim H = dim rg j.

Proof. The first part is shown in Lemma 2.4 of [20].
Now suppose that j is injective. Consider the polar decomposition of j. So

j = UP, where P is a positive semi-definite operator on H and U is a partial
isometry with initial space H and final space rg j. The latter implies that dim H =
dim rg j.

Note that in Lemma 2.1 the continuity of j is essential, of course, as `2(N)
and `2(R) have the same vector space dimension [16].

The following example shows that Theorem 1.1 does not directly extend to
the nonseparable case.

EXAMPLE 2.2. Let

H := H1 ⊕ `2(N),

where H1 is a nonseparable Hilbert space. Then

(2.1) dim H1 > dim `2(N) = ℵ0.

Let T be the unbounded multiplication operator in `2(N) given by

D(T) =
{

a ∈ `2(N) :
∞

∑
n=1

4n|an|2 < ∞
}

and Ten = 2nen for all n ∈ N. Define the operator A in H by A = I ⊕ T, where I
is the identity operator on H1. Then A is an unbounded self-adjoint operator.

Let U be a unitary operator on H. By (2.1) and Lemma 2.1 the operator
P2U|H1 : H1 → `2(N) is not injective, where P2 is the projection onto the second
component in H = H1 ⊕ `2(N). So there exist x ∈ H1 \ {0} and y∈ H1 such that
U(x, 0)=(y, 0). Hence D(A)∩D(U∗AU) 6={0}. In particular, there does not exist
an operator B that is unitarily equivalent to A and satisfies D(A)∩D(B)={0}.
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3. OPERATOR RANGES

In this section we make use of Dixmier’s technique [4] as presented in [11].
We recall basic properties of operator ranges and consider an equivalent reformu-
lation of von Neumann’s theorem in terms of operator ranges. Moreover, we
compare the operator range of a bounded operator with that of its adjoint.

DEFINITION 3.1. Let H be a Hilbert space. The vector subspaces that are the
range of a bounded operator on H are called operator ranges in H.

As the following example shows, an operator range obviously does not
need to be closed. We shall see that the operator range in the example is in some
sense canonical.

EXAMPLE 3.2. Let H = `2(N). Define T ∈ L(H) by Ten = 2−nen for all
n ∈ N, where (en)n∈N is the usual orthonormal basis of `2(N). Then rg T is dense
in H, but not closed as (1, 1

2 , 1
4 , 1

8 , . . .) is not contained in rg T.

A straightforward reformulation of von Neumann’s theorem in terms of
operator ranges is as follows. We point out that the proof for this reformulation
in Theorem 3.6 of [11] based on Dixmier’s technique is completely different and
considerably less involved than von Neumann’s original proof ([22], Satz 18).

THEOREM 3.3. Let H be a separable Hilbert space. If R is a nonclosed operator
range in H, then there exists a unitary operator U such that UR∩R = {0}.

While the naive extension of Theorem 3.3 to the nonseparable case is false,
one can actually give useful characterisations of the operator rangesR for which
such a unitary operator U exists. To this end we need a better understanding of
operator ranges.

PROPOSITION 3.4. Let H be a Hilbert space.
(i) Every closed subspace of H is an operator range in H.

(ii) Every operator range in H is the range of a positive operator in L(H).
(iii) A vector subspace R of H is an operator range in H if and only if R can be

equipped with a complete inner product such that it is continuously embedded into H.
(iv) The vector sum of two operator ranges is an operator range. In fact, if T, S ∈
L(H), then rg T + rg S = rg(TT∗ + SS∗)1/2.

(v) The intersection of two operator ranges is an operator range.
(iv) IfR and S are operator ranges in H such thatR+ S = H, then there exist closed

subspaces M1, M2 of H with M1 ⊂ R, M2 ⊂ S , M1 ∩M2 = {0} and M1 + M2 = H.
(vii) IfR and S are operator ranges in H such thatR∩S = {0} andR+ S is closed,

then bothR and S are closed.

Proof. Statement (i) follows by using the corresponding orthogonal projec-
tion in H. To prove (ii), it suffices to note that rg T = rg(TT∗)1/2, which follows
from Douglas’ lemma ([11], Theorem 2.1). Statement (iii) is part of Theorem 1.1
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in [11], (iv) is given in Theorem 2.2 of [11] and (v) is a consequence of Corollary 2
after Theorem 2.2 in [11]. Finally, (vi) can be found in Theorem 2.4 of [11] and
(vii) follows from the proof of Theorem 2.3 in [11].

Hence the operator ranges in H are a lattice with respect to intersection
and sum. Note that the sum of two closed subspaces is not closed in general.
Moreover, not every vector subspace is an operator range.

EXAMPLE 3.5. The following are examples of vector subspaces that are not
operator ranges.

(i) The kernel of an unbounded linear functional ϕ : H → C is a dense, non-
closed vector subspace of H with codimension 1, but not an operator range in H.
In fact, there exists an x ∈ H \ {0} such that

H = ker ϕ + span{x} and ker ϕ ∩ span{x} = {0}.

So ker ϕ cannot be an operator range in H by Proposition 3.4 (vii).
(ii) The space Lp(0, 1) with p > 2 is a subspace of L2(0, 1), but not an operator

range in L2(0, 1); see the last paragraph on p. 257 of [11].
(iii) If A is a maximal accretive operator in H that is not m-accretive, then rg(I +

A) is not an operator range in H, see Theorem 5.4 and Proposition 5.12 of [9].

The description of operator ranges in the next lemma will be essential for
this paper.

LEMMA 3.6 ([11], Theorem 1.1 (5)). A vector subspace R of H is an operator
range in H if and only if there exists a sequence of closed pairwise orthogonal subspaces
(Hn) such that

R =
{ ∞

∑
n=1

xn : xn ∈ Hn for all n ∈ N and
∞

∑
n=1

4n‖xn‖2 < ∞
}

.

This follows from Proposition 3.4 (ii) and the spectral theorem.
Adopt the notation of Lemma 3.6. We say that the sequence (Hn) represents

the operator rangeR. Note thatHn = {0} for an n ∈ N is allowed. Moreover, the
sequence representingR is not unique in general. For example, replacingH1 and
H2 by {0} andH1 ⊕H2 (or vice versa) does not change the represented operator
rangeR.

LEMMA 3.7. Let H be a Hilbert space. Let R and S be operator ranges in H.
Suppose that the sequence (Hn) representsR and that (Kn) represents S .

(i) One has R =
∞⊕

k=1
Hk and H = R⊥ ⊕

∞⊕
k=1
Hk. In particular, R is dense in H if

and only if H =
∞⊕

k=1
Hk. Moreover,R⊥ ⊕

∞⊕
k=n+1

Hk =
( n⊕

k=1
Hk

)⊥
for all n ∈ N.

(ii) If dimR⊥ = dimS⊥ and dimHn = dimKn for all n ∈ N, then there exists a
unitary operator U such that UR = S .
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(iii) The operator range R is closed if and only if there exists an n0 ∈ N such that
Hn = {0} for all n > n0.

(iv) If Kn ⊂
n⊕

k=1
Hk for all n ∈ N, then S ⊂ R.

Proof. Statements (i), (ii) and (iii) are easy.

(iv) Let x ∈ S . By Lemma 3.6 one can write x =
∞
∑

n=1
xn, where xn ∈ Kn for

all n ∈ N and
∞
∑

n=1
4n‖xn‖2 < ∞. By the assumption it follows that for all n ∈ N

one can uniquely write

xn = x(n)1 + · · ·+ x(n)n

with x(n)k ∈ Hk for all k ∈ {1, . . . , n}. Then

(3.1)
∞

∑
k=1

4k
∞

∑
n=k

∥∥x(n)k

∥∥2
=

∞

∑
n=1

n

∑
k=1

4k∥∥x(n)k

∥∥2
6

∞

∑
n=1

4n‖xn‖2 < ∞.

For all k ∈ N define yk :=
∞
∑

n=k
x(n)k , which converges due to (3.1). Moreover,

yk ∈ Hk for all k ∈ N and
∞

∑
k=1

yk =
∞

∑
k=1

∞

∑
n=k

x(n)k =
∞

∑
n=1

n

∑
k=1

x(n)k = x.

Furthermore, by (3.1) one has
∞

∑
k=1

4k‖yk‖2 6
∞

∑
n=1

4n‖xn‖2 < ∞.

Therefore x ∈ R by Lemma 3.6.

REMARK 3.8. Putting parts ofHn into later spacesHk with k > n potentially
makes the represented operator range smaller. Conversely, putting parts of Hn
into earlier spacesHk with k 6 n for infinitely many n ∈ N potentially makes the
represented operator range larger. Both of these statements formally follow from
Lemma 3.7 (iv).

The next lemma compares the ranges of an operator and its adjoint. The
following example highlights the main difficulty.

EXAMPLE 3.9. Let H = `2(N) and let (ek) be the usual orthonormal basis.
Let A ∈ L(H) be given by Aek = e2k for all k ∈ N. Note that A is a partial
isometry with initial space H and final space span{e2k : k ∈ N}. It is obvious
that there exists a unitary operator U such that U rg A ∩ rg A = {0}, but such an
operator does not exist for rg A∗ = H.

LEMMA 3.10. Let A ∈ L(H) and suppose (Hn) represents rg A. Then there
exists an orthogonal sequence (Kn) representing rg A∗ such that dimKn = dimHn for
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all n ∈ N. Moreover, there exists a unitary operator U such that U rg A = rg A∗ if and
only if dim ker A = dim ker A∗.

Proof. Let A = VP be the polar decomposition of A; i.e. P is a positive
operator and V is a partial isometry on H with initial space (ker A)⊥ and final
space (ker A∗)⊥. Next, using the formulas after Theorem 7.2 on p. 138 of [26]
one has rg A∗ = V∗ rg A. In particular, V∗|(ker A∗)⊥ : (ker A∗)⊥ → (ker A)⊥ is a
unitary map that maps rg A onto rg A∗.

For all n ∈ N define Kn := V∗Hn. Since Hn ⊂ rg A ⊂ (ker A∗)⊥, it fol-
lows that V∗|Hn is an isometry and hence dimKn = dimHn for all n ∈ N. The
sequence (Kn) represents an operator range, which is the image under V∗ of the
operator range represented by (Hn), i.e. rg A∗.

Now we prove the second statement. First suppose that U rg A = rg A∗ for
a unitary operator U. Then

ker A∗ = (rg A)⊥ = (rg(U∗A∗))⊥ = ker(AU) = U∗ ker A.

Hence dim ker A∗ = dim ker A.
Conversely, suppose that dim ker A = dim ker A∗. Using this and the first

statement of the lemma, it follows from Lemma 3.7 (ii) that there exists a unitary
operator U as claimed.

The following is now a straightforward consequence.

PROPOSITION 3.11. Let H be a Hilbert space and A a densely defined closed op-
erator in H. Suppose that ρ(A) 6= ∅. Then there exists a unitary operator U such that
D(U∗AU) ∩ D(A) = {0} if and only if there exists a unitary operator V such that
D(V∗A∗V) ∩ D(A∗) = {0}.

Proof. Suppose that λ ∈ ρ(A) and define B := (λI − A)−1 ∈ L(H). Then
rg B = D(A), B∗ = (λI − A∗)−1 and rg B∗ = D(A∗). Moreover ker B = ker B∗ =
{0}. By Lemma 3.10 there exists a unitary operator W such that W rg B = rg B∗.
Now suppose that U is a unitary operator such that D(U∗AU) ∩ D(A) = {0}.
As D(U∗AU) = U∗D(A) = U∗ rg B, one has U∗ rg B ∩ rg B = {0}. Then V :=
WUW∗ is a unitary operator and

V∗ rg B∗ ∩ rg B∗ = WU∗ rg B ∩W rg B = W(U∗ rg B ∩ rg B) = {0}.

As V∗ rg B∗ = V∗D(A∗) = D(V∗A∗V), the operator V has the asserted property.
The converse direction follows from swapping the roles of B and B∗.

4. VON NEUMANN’S THEOREM FOR GENERAL HILBERT SPACES

To be self-contained later on, we start this section by presenting a proof
along the lines of Theorem and Corollary on p. 520 in [13] for the following vari-
ant of Theorem 3.3. Note that we do not assume that H is separable, but as in [13]
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we make the strong assumption that the operator range is the range of a compact
operator.

PROPOSITION 4.1. Let H be an infinite-dimensional Hilbert space and T ∈ L(H)
be a compact operator. Then the set

G := {U ∈ U : U rg T ∩ rg T = {0}}

is a dense Gδ set in U with respect to the uniform, strong and weak operator topology. In
particular, G is not empty.

Proof. It suffices to prove that G is a Gδ set with respect to the strong opera-
tor topology and dense in U with respect to the uniform operator topology. It is
easily seen that the weak operator topology on U agrees with the strong operator
topology, see also Remark 4.10 of [29].

Define Kk := TB(0, k) \ B(0, 1/k) and Gk := {U ∈ U : UKk ∩ Kk = ∅} for
all k ∈ N. Then Kk is a compact set for all k ∈ N since T is compact. One has⋃
k∈N

Kk = rg T \ {0}. In fact, the inclusion rg T \ {0} ⊂ ⋃
k∈N

Kk is obvious. For the

other direction, fix a k ∈ N and suppose that (yn) is a sequence in TB(0, k) such
that yn → y for a y ∈ H \ B(0, 1/k). Then y 6= 0 and there exists a sequence
(xn) in B(0, k) such that Txn = yn for all n ∈ N. After passing to a subsequence,
we may assume that there exists an x ∈ H such that xn ⇀ x. As T is compact,
it follows that y = lim

n→∞
yn = lim

n→∞
Txn = Tx. So y ∈ rg T \ {0}. The identity⋃

k∈N
Kk = rg T \ {0} and the monotonicity K1 ⊂ K2 ⊂ · · · imply that

⋂
k∈N
Gk = G.

Fix a k ∈ N.
Claim 1. The set Gk is open in U with respect to the strong operator topology.
To this end, let U ∈ Gk. Since Kk is compact, there exists an ε > 0 such that

d(UKk, Kk) > ε. Let A :=
{

V ∈ U : sup
x∈Kk

‖(V −U)x‖ < ε
}

. Note that A is an

open neighbourhood of U in the compact–open topology on U . If V ∈ A, then

‖Vx− y‖ > ‖Ux− y‖ − ‖(V −U)x‖ > d(UKk, Kk)− ε > 0

for all x, y ∈ Kk. Therefore V ∈ Gk. So A ⊂ Gk. It is readily verified that the
compact–open topology agrees with the strong operator topology on U ([30], The-
orem 43.14). So we have proved the first claim.

Claim 2. The set Gk is dense in U with respect to the uniform operator topol-
ogy.

Let V ∈ U and ε ∈ (0, 1]. Set δ := 1
3k sin ε > 0. Cover the compact set

VKk ∪ Kk by balls Bδ(x1), . . . , Bδ(xN) with xj ∈ VKk ∪ Kk for all j ∈ {1, . . . , N}.
Let p1, . . . , pn be an orthonormal basis of L := span{x1, . . . , xN}. Let q1, . . . , qn
be an orthonormal system in L⊥ and set M := span{q1, . . . , qn}. Define Wε ∈ U
such that Wε is the identity on (L⊕M)⊥ and Wε is the rotation of pj towards qj
by the angle ε in the two-dimensional space span{pj, qj} for all j ∈ {1, . . . , n}.
Then ‖Wεxl − xj‖ > d(Wεxl , L) > ‖xl‖ sin ε > 1

k sin ε = 3δ for all j, l ∈ {1, . . . , N}.
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Therefore d(WεVKk, Kk) > δ and WεV ∈ Gk. Moreover, ‖WεV−V‖ = ‖Wε− I‖ 6
ε. We have established the density of Gk.

As U is a Baire space for the uniform operator topology, by the above and
the Baire category theorem G =

⋂
k∈N
Gk is dense in U in the uniform operator

topology. Based on the initial remarks we conclude that G is a dense Gδ set in U
with respect to the uniform, strong and weak operator topology.

Now we give a technical characterisation of when Theorem 3.3 extends to
general Hilbert spaces. Note that the space occurring in the right hand side of
(4.1) can be rewritten using the last identity in Lemma 3.7 (i).

PROPOSITION 4.2. LetR be an operator range in H. The following conditions are
equivalent:

(i) There exists a unitary operator U such that UR∩R = {0}.
(ii) IfR is represented by (Hn), then

(4.1) dim
n⊕

k=1

Hk 6 dim
(
R⊥ ⊕

∞⊕
k=n+1

Hk

)
for all n ∈ N.

(iii) There exists a sequence (Hn) that representsR such that (4.1) holds.

Proof. (i)⇒(ii) We give a proof by contraposition that uses the same argu-
ment as in Example 2.2. So suppose that (4.1) is violated for an n ∈ N. Replacing
H1 byH1⊕ · · · ⊕Hn andHk by {0} for all k ∈ {2, . . . , n}, which does not change
the represented operator range, we may assume without loss of generality that

(4.2) dimH1 > dim
(
R⊥ ⊕

∞⊕
k=2

Hk

)
.

Let U be a unitary operator and set K := R⊥ ⊕
∞⊕

k=2
Hk. Note that K = H⊥1 . By

(4.2) and Lemma 2.1 the operator PKU|H1 : H1 → K is not injective, where PK is
the orthogonal projection from H onto K. So there exists an x ∈ H1 \ {0} such
that Ux ∈ K⊥ = H1. In particular, Ux ∈ UR∩R and therefore UR∩R 6= {0}.
Since this holds for every unitary operator U, condition (i) cannot hold.

(ii)⇒(iii) Trivial.
(iii)⇒(i) Suppose that R is represented by the sequence (Hn) that satisfies

(4.1). We distinguish two cases.
Case 1. Suppose that dim H < ℵ0.
Then there exists an n0 ∈ N such that dimHn = 0 for all n > n0. Moreover,

R is closed and

dimR = dim
n0⊕

k=1

Hk 6 dimR⊥.

It follows easily (see also the proof of Corollary 4.9) that (i) is satisfied.
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Case 2. Suppose that dim H > ℵ0.
Before we can proceed with the proof, we need a lemma.

LEMMA 4.3. Suppose dim H > ℵ0. Let R be an operator range in H. Suppose
there exists a sequence (Hn) that represents R such that (4.1) holds. Then there exists a
dense operator range R′ that is represented by a sequence (H′n) such that R ⊂ R′ and
dimH′n = dim H for all n ∈ N.

Proof. We first show that there exists a dense operator range R′ that is rep-
resented by (H′n) such thatR ⊂ R′, dimH′n > ℵ0 and

dim
n⊕

k=1

H′k 6 dim
∞⊕

k=n+1

H′k

for all n ∈ N. Since H is infinite-dimensional, it follows from (4.1) that dim(R⊥⊕
∞⊕

k=n
Hk) > ℵ0 for all n ∈ N. Hence dimR⊥ > ℵ0 or {k ∈ N : Hk 6= {0}} is

infinite. We consider these two cases separately.
Case 1. Suppose that dimR⊥ > ℵ0.

We can decompose R⊥ =
∞⊕

k=1
Kk such that dimKn = dimR⊥ for all n ∈

N. Then the sequence (Hn ⊕ Kn) of subspaces is orthogonal and represents an
operator range R′. By Lemma 3.7 (iv) one has R ⊂ R′. Moreover, R′ is dense in
H and dim(Hn ⊕Kn) > ℵ0 for all n ∈ N. Clearly

dim
n⊕

k=1

(Hk ⊕Kk) 6 dim
∞⊕

k=n+1

(Hk ⊕Kk)

for all n ∈ N.
Case 2. Suppose that M := {k ∈ N : Hk 6= {0}} is infinite and dimR⊥ < ℵ0.
By replacingH1 withH1 ⊕R⊥ we may assume thatR is dense in H and

(4.3) dim
n⊕

k=1

Hk 6 dim
∞⊕

k=n+1

Hk

for all n ∈ N. Write M as the countable disjoint union of sets (Mn)n∈N such that
card Mn = card M = ℵ0 for all n ∈ N. Set M′n := Mn \ {1, . . . , n − 1} for all
n ∈ N. Then card M′n = ℵ0. Set M′ :=

⋃
n∈N

M′n. For all n ∈ M′ let Kn be a

fixed one-dimensional subspace of Hn. Set K′n :=
⊕

k∈M′n
Kk for all n ∈ N. Then

dimK′n = ℵ0. For all n ∈ N define

H′n :=

{
(Hn 	Kn)⊕K′n if n ∈ M′,
Hn ⊕K′n if n ∈ N \M′.
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Then dimH′n = dimHn + ℵ0 for all n ∈ N. Clearly Hn ⊂ H′n ⊂
n⊕

k=1
H′k if

n ∈ N \M′. On the other hand, if n ∈ M′, then there exists a (unique) m ∈ N such
that n ∈ M′m. Then n /∈ {1, . . . , m− 1}, and hence n > m. Therefore Kn ⊂ K′m ⊂
H′m ⊂

n⊕
k=1
H′k. Thus also in this case Hn ⊂

n⊕
k=1
H′k. The sequence of subspaces

(H′n) is orthogonal since the subspaces

Hn 	Kn with n ∈ M′,

Hn with n ∈ N \M′, and

Kn with n ∈ M′,

are orthogonal, together with the disjointness of the M′n. It follows that the oper-
ator rangeR′ represented by (H′n) containsR by Lemma 3.7 (iv). Moreover,

dim
n⊕

k=1

H′k =ℵ0+dim
n⊕

k=1

Hk6ℵ0+dim
∞⊕

k=n+1

Hk =dim
∞⊕

k=n+1

H′k

for all n ∈ N by (4.3).
Thus we may assume that R is a dense operator range with dimHn > ℵ0

for all n ∈ N after enlarging R appropriately. We now continue the argument

under this assumption. Decompose Hn =
n⊕

k=1
K(n)

k such that dimK(n)
k = dimHn

for all n ∈ N and k ∈ {1, . . . , n}. SetH′k :=
∞⊕

m=k
K(m)

k for all k ∈ N. Then

Hn =
n⊕

k=1

K(n)
k ⊂

∞⊕
m=1

min{n,m}⊕
k=1

K(m)
k =

n⊕
k=1

∞⊕
m=k

K(m)
k =

n⊕
k=1

H′k.

So (H′n) represents an operator rangeR′ that containsR by Lemma 3.7 (iv). Fur-
thermore,

dim H = dim
∞⊕

n=1

Hn = dim
∞⊕

n=k

Hn = dim
∞⊕

n=k

K(n)
k = dimH′k

for all k ∈ N, where we used (4.1) in the second step.

We complete the proof of Proposition 4.2.
End of the proof of Proposition 4.2. By Lemma 4.3 it suffices to find a unitary

operator U for an operator range R that is represented by (Hn) such that κ :=
dim H = dimHn for all n ∈ N. Let S be the Hilbert space direct sum of κ disjoint
copies of the operator T from Example 3.2. By Lemma 3.7 (ii) there exists a unitary
operator W such that W rg S = R. Moreover, since Proposition 4.1 applies to T,
there exists a unitary operator V such that V rg S∩ rg S = {0}. Then U = WVW∗

satisfies

UR∩R = WVW∗W rg S ∩W rg S = W(V rg S ∩ rg S) = {0}.
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The proof of Proposition 4.2 is complete.

The following corollary gives a sufficient condition for when two operator
rangesR and S admit a unitary operator W such that WR∩ S = {0}.

COROLLARY 4.4. Let H be an infinite-dimensional Hilbert space. Suppose thatR
and S are operator ranges such that there exist unitary operators U and V with UR∩
R = {0} and VS ∩ S = {0}. Then there exists a unitary operator W such that
WR∩ S = {0}.

Proof. By Proposition 4.2 and Lemma 4.3 we may suppose without loss of
generality, possibly enlarging R and S , that both R and S are dense, R is rep-
resented by (Hn), the operator range S is represented by (Kn) and dimHn =
dimKn = dim H for all n ∈ N. Then by Lemma 3.7 (ii) there exists a unitary
operator Z such that ZR = S . So the unitary operator W := VZ has the desired
property.

The following is inspired by the proof of von Neumann’s theorem as pre-
sented in Theorem 3.6 of [11]. Note that the next proposition is also applicable to
the counterexample in Example 2.2.

PROPOSITION 4.5. Let H be an infinite-dimensional Hilbert space. Suppose that
R is a dense operator range in H. Then there exists an operator range S ⊂ R and a
unitary operator U such that S is dense in H and US ∩ S = {0}.

Proof. Case 1. Suppose that R is represented by (Hn) satisfying dimHn <
ℵ0 for all n ∈ N.

Then Proposition 4.2 directly applies toR.
Case 2. Suppose thatR is represented by (Hn) and that there exists an n0 ∈

N such that dimHn0 > ℵ0.
Clearly R is equal to the operator range represented by the orthogonal de-

composition
( n0⊕

k=1
Hk,Hn0+1,Hn0+2, . . .

)
. Hence we may assume that dimH1 >

ℵ0. Let (Kn) be an orthogonal decomposition of H1 such that dimKn = dimH1
for all n ∈ N. Then the operator range R′ represented by the orthogonal de-
composition (K1,H2 ⊕ K2,H3 ⊕ K3, . . .) is dense in H and satisfies R′ ⊂ R by
Lemma 3.7 (i) and (iv). Therefore we may assume that the orthogonal sequence
(Hn) representingR satisfies dimHn > ℵ0 for all n ∈ N.

For all n ∈ N we can decomposeHn into a countable orthogonal direct sum

of (H(n)
k )k∈N such that dimH(n)

k = dimHn for all k ∈ N. DefineKn :=
n⊕

k=1
H(k)

n−k+1

for all n ∈ N. Then the operator range S represented by (Kn) is dense by Lem-
ma 3.7 (i) and satisfies S ⊂ R by Lemma 3.7 (iv). Moreover, dimKn 6 dimKn+1
for all n ∈ N. So there exists a unitary operator U such that US ∩ S = {0} by
Proposition 4.2 (iii)⇒(ii).
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While the more technical Proposition 4.2 is already useful by itself, we use
it to provide the following reformulation of von Neumann’s theorem that holds
for general Hilbert spaces.

THEOREM 4.6. LetR be an operator range in H. The following are equivalent:
(i) There exists a unitary operator U such that UR∩R = {0}.

(ii) For every closed subspace K ⊂ R one has

dim K 6 dim K⊥.

Proof. Suppose that there exists a unitary operator U such that UR∩R =
{0}. Let K ⊂ R be a closed subspace. Note that R = K ⊕ (R ∩ K⊥) and that
R∩ K⊥ is an operator range by Proposition 3.4 (v). Suppose that (Kn) represents
R∩ K⊥. DefineH1 := K, H2 := K1 ⊕K2 andHn := Kn for all n > 3. It is readily
verified that (Hn) represents R. Then by Proposition 4.2 (i)⇒(ii) with n = 1 and
Lemma 3.7 (i) one obtains dim K 6 dim K⊥.

For the converse direction, we give a proof by contraposition. Let (Hn)
representR and suppose that there does not exist a unitary operator U such that
UR∩R = {0}. By Proposition 4.2 there exists an n0 ∈ N such that

dim
n0⊕

k=1

Hk > dim
(
R⊥ ⊕

∞⊕
k=n0+1

Hk

)
.

Set K :=
n0⊕

k=1
Hk. Then K is closed, K ⊂ R and dim K > dim K⊥.

REMARK 4.7. If H is infinite-dimensional, then condition (ii) in Theorem 4.6
is equivalent to requiring dim K⊥ = dim H for every closed subspace K ⊂ R.

Theorem 4.6 extends the separable case covered in Theorem 3.3. In fact,
suppose that dim H = ℵ0 and K ⊂ R is closed with dim K⊥ < ℵ0. Then R∩ K⊥

is closed and thereforeR = K⊕ (R∩K⊥) is closed. Consequently condition (ii) is
clearly satisfied for a nonclosed operator range in the separable Hilbert space H.

We point out that it is allowed in Theorem 4.6 that H is finite-dimensional,
thatR is closed and thatR is not dense.

The following is a straightforward reformulation for domains of closed op-
erators.

COROLLARY 4.8. Let H be a Hilbert space and A be a densely defined closed
operator in H. Suppose that dim K 6 dim K⊥ for every closed subspace K ⊂ D(A).
Then there exists a unitary operator U such that D(U∗AU) ∩ D(A) = {0}.

Analogously to Corollary 1 of Theorem 3.6 of [11], we are able to obtain the
following corollary by inspection of the proof of Proposition 4.2.

COROLLARY 4.9. Let R be an operator range in H. Suppose that there exists a
unitary operator U such that UR∩R = {0}. Then there exists a uniformly continuous
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unitary group (Ut)t∈R and an uncountable interval I ⊂ R such that UtR∩UsR = {0}
for all t, s ∈ I with t 6= s.

Proof. As in the proof of Proposition 4.2 (iii)⇒(i) we distinguish two cases.
Case 1. Suppose that H is infinite-dimensional.
If T is the operator as in Example 3.2, then one can argue as in Corollary 1

of Theorem 3.6 of [11]. So there exists a uniformly continuous group (Vt)t∈R such
that Vt rg T ∩Vs rg T = {0} for all t, s ∈ R with t 6= s. Then the claim for the first
case follows by taking a direct sum of the appropriate cardinality as in the last
part of the proof of Proposition 4.2.

Case 2. Suppose that H is finite-dimensional.
Then R is closed and dimR 6 dimR⊥. Let p1, . . . , pn be an orthonormal

basis of R and q1, . . . , qn an orthonormal system in R⊥. Define Ut ∈ U such
that Ut is the identity on span{p1, . . . , pn, q1, . . . , qn}⊥ and Ut is the rotation of
pj towards qj by the angle t in the two-dimensional space span{pj, qj} for all
j ∈ {1, . . . , n}. Then (Ut)t∈R defines a uniformly continuous group of unitary
operators on H. Moreover, the claim is satisfied with I = [0, π).

REMARK 4.10. It follows from the proof of Corollary 4.9 that one can actu-
ally choose I = R if H is infinite-dimensional. In general this is not possible in the
finite-dimensional case. In fact, suppose H = C2 and let (Ut)t∈R be a uniformly
continuous unitary group. By Stone’s theorem and after a unitary transformation
we may assume that there exist λ1, λ2 ∈ R such that

Ut =

(
eitλ1 0

0 eitλ2

)
for all t ∈ R. Let t ∈ R \ {0} be such that t(λ1 − λ2) ∈ 2πZ. Then Ut = eitλ2U0.

We point out, however, that in the finite-dimensional case we can find a
continuous family of unitary and self-adjoint operators (Ut)t∈I such that UtR ∩
UsR = {0} for all t, s ∈ I with t 6= s. In fact, it suffices to consider the case
H = C2 andR = span{e1}. Then the unitary operators

Ut :=
(

cos t − sin t
sin t cos t

)(
1 0
0 −1

)(
cos t sin t
− sin t cos t

)
for all t ∈ I := [0, π

2 ) have the desired properties.

5. STABILITY AND DENSITY

We use Theorem 4.6 to prove the following stability result.

THEOREM 5.1. Let H be a Hilbert space. Then the set of operators T ∈ L(H) that
admit a unitary operator U such that U rg T ∩ rg T = {0} is closed with respect to the
uniform operator norm.
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Proof. We prove that the complement of the above set of operators is open
with respect to the uniform operator norm. To this end, we argue along the lines
of the proof for the openness of the set of Fredholm operators in Theorem XVII.2.3
of [17].

Suppose that T ∈ L(H) does not admit a unitary operator U such that
U rg T ∩ rg T = {0}. By Theorem 4.6 there exists a closed subspace K of rg T
such that dim K > dim K⊥. Define W := (T|(ker T)⊥)

−1(K). Then W is a closed
subspace of (ker T)⊥ and K = TW.

For all S ∈ L(H) define Ŝ : W × K⊥ → H by Ŝ(x, h) = Sx + h. Obviously Ŝ
is a bounded operator. Moreover, note that

(5.1) ‖Ŝ1 − Ŝ2‖L(W×K⊥ ;H) = sup
‖x‖2+‖h‖261

‖S1x + h− S2x− h‖ 6 ‖S1 − S2‖L(H)

for all S1, S2 ∈ L(H). We claim that T̂ is an isomorphism. Obviously rg T̂ = H,
so T̂ is surjective. Suppose that T̂(x, h) = 0 for an x ∈ W and an h ∈ K⊥. Then
Tx = −h with Tx ∈ K and −h ∈ K⊥. So h = Tx = 0. As x ∈ W ⊂ (ker T)⊥, one
obtains (x, h) = 0. Hence T̂ is injective.

As the set of isomorphisms between W × K⊥ and H is open with respect
to the uniform operator norm, by (5.1) there exists an ε > 0 such that for all
S ∈ L(H) with ‖T − S‖L(H) < ε the operator Ŝ is an isomorphism. Let S ∈
L(H) with ‖T − S‖L(H) < ε. It remains to show that S does not admit a unitary
operator U such that U rg S ∩ rg S = {0}. By Theorem 4.6 it suffices to show
that SW is a closed subspace of rg S with dim SW > dim(SW)⊥. First observe
that SW = Ŝ(W × {0}) is closed in H. Moreover, as SW + K⊥ = H, it follows
that (SW)⊥ = P(K⊥), where P is the orthogonal projection from H onto (SW)⊥.
Hence dim(SW)⊥ 6 dim K⊥ by Lemma 2.1. Using Lemma 2.1 again one deduces
that

dim(SW)⊥ 6 dim K⊥ < dim K = dim T̂(W × {0})

= dim W = dim Ŝ(W × {0}) = dim SW.

The proof is complete.

By Proposition 4.1 every compact operator T on an infinite-dimensional sep-
arable Hilbert space admits a unitary operator U such that U rg T ∩ rg T = {0}.
Using the previous theorems and the results in [20], we shall prove that, in the set-
ting of an arbitrary infinite-dimensional Hilbert space, the same holds for every
operator in any closed two-sided ideal of L(H) that is different from L(H).

To this end, for every cardinal κ one defines

Fκ(H) := {T ∈ L(H) : dim rg T < κ}

and Cκ(H) := Fκ(H), where the closure is taken in L(H) with respect to the
uniform operator norm. Then Cκ(H) is a closed two-sided ∗-ideal of L(H) by
Corollary 5.2 of [20].
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COROLLARY 5.2. Let H be an infinite-dimensional Hilbert space. Then for all
T ∈ Cdim H(H) there exists a unitary operator U such that U rg T ∩ rg T = {0}.

Proof. By Theorem 4.6 for all T ∈ Fdim H(H) there exists a unitary operator
U such that U rg T ∩ rg T = {0}. Now the claim follows from Theorem 5.1.

We show that if S is an operator range in an infinite-dimensional Hilbert
space that admits a unitary operator U with US ∩ S = {0}, then any “compact
perturbation” of S has the same property.

THEOREM 5.3. Let H be an infinite-dimensional Hilbert space, R the range of an
operator in Cdim H(H) and S an operator range in H such that there exists a unitary
operator U with US ∩ S = {0}. Then there exists a unitary operator W such that
W(R+ S) ∩ (R+ S) = {0}.

Proof. We give a proof by contraposition. So suppose that K ⊂ R+ S is a
closed subspace with K⊥ < dim H. By Theorem 4.6 it suffices to prove that there
exists a closed subspace M2 ⊂ S such that dim M⊥2 < dim H.

Clearly (R + K⊥) + S = H, where also R + K⊥ is an operator range by
Proposition 3.4 (iv). So it follows from Proposition 3.4 (v) that there exist closed
subspaces M1, M2 of H such that M1 ⊂ R + K⊥, M2 ⊂ S , M1 ∩ M2 = {0}
and M1 + M2 = H. Let T ∈ Cdim H(H) be such that R = rg T. Then R =
rg(TT∗)1/2 by Douglas’ lemma. It follows from the ideal property of Cdim H(H)
and uniform approximation of the square root that also (TT∗)1/2 ∈ Cdim H(H).
So we may assume that R = rg T with T ∈ Cdim H(H) positive. By Propo-
sition 3.4 (iv) the operator A := (T2 + PK⊥)

1/2 has range R + K⊥, where PK⊥

is the orthogonal projection onto K⊥. As before we obtain A ∈ Cdim H(H). It fol-
lows from Theorem 5.1 of [20] that dim M1 < dim H as M1 is a closed subset of
rg A = (R+ K⊥). Moreover, M⊥2 = PM⊥2

(M1 + M2) = PM⊥2
M1, where PM⊥2

is the

orthogonal projection onto M⊥2 . Therefore

dim M⊥2 = dim(PM⊥2
M1) 6 dim M1 < dim H,

where we used Lemma 2.1 for the first inequality. This concludes the proof.

The following is an immediate consequence of Theorem 5.3 and strengthens
the density result in Proposition 4.1.

COROLLARY 5.4. Let H be an infinite-dimensional Hilbert space, R the range of
an operator in Cdim H(H) and S an operator range in H such that there exists a unitary
operator V with VS ∩ S = {0}. Then the following set is dense in U with respect to the
uniform operator norm.

G := {U ∈ U : UR∩ S = {0}}.
Proof. Let ε > 0 and V ∈ U . By Theorem 5.3 there exists a unitary operator

W such that W(R+ V∗S) ∩ (R+ V∗S) = {0}. It follows from Corollary 4.9 that
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we can ensure ‖I −W‖ < ε. Alternatively, the latter also follows in a more self-
contained way from Proposition 4.1 and the construction at the end of the proof
of Proposition 4.2. Hence WR∩V∗S = {0}, or equivalently with U := VW, one
has UR∩ S = {0}. As ‖V −U‖ = ‖I −W‖ < ε, the claim follows.

At the bottom of p. 229 in [22] von Neumann gives the following interpre-
tation of his findings related to Theorem 1.1:

Noch eher sind diejenigen unitären Matrizen als pathologisch
zu bezeichnen die unsere paradoxen [. . . ] Äquivalenzen ver-
mitteln, trotzdem gerade diese beschränkt sind!

So he attributes the “pathological” phenomenon in Theorem 1.1 to the richness of
the unitary operators. Looking at Corollary 5.4 or Israel’s result in Proposition 4.1,
one might — in this line of thought — expect that if R is an operator range that
admits a unitary operator U such that UR∩R = {0} one automatically has that
the set

(5.2) G = {U ∈ U : UR∩R = {0}}

is dense in the unitary operators with respect to the uniform operator norm.
Somewhat surprisingly, we shall prove that this expectation is unfounded.

We need the following lemma, which is inspired by Theorem 2.4 of [11].

LEMMA 5.5. Let H be an infinite-dimensional Hilbert space, R a dense operator
range and V a unitary operator such that R+ VR = H. Then there exists an ε > 0
such that for all unitary operators W with ‖I −W‖ < ε one hasR+ WVR = H.

Proof. Let T ∈ L(H) be a positive operator such that rg T = R. By the
assumption and Proposition 3.4 (iv) the positive operator (T2 + VT2V∗)1/2 has
range H and therefore is invertible. So there exists a δ > 0 such that

(5.3) δ2‖x‖2 6 ((T2 + VT2V∗)x | x) = ‖Tx‖2 + ‖TV∗x‖2

for all x ∈ H. Set ε := δ
2‖TV∗‖ > 0. Let W be a unitary operator such that

‖I −W‖ < ε. Then

‖TV∗x‖ 6 ‖TV∗W∗x‖+ ‖TV∗(I −W∗)x‖

6 ‖TV∗W∗x‖+ ‖TV∗‖‖I −W‖‖x‖ 6 ‖TV∗W∗x‖+ δ

2
‖x‖.

By plugging the above into (5.3) we obtain δ2‖x‖2 6 ‖Tx‖2 + 2‖TV∗W∗x‖2 +

2 δ2

4 ‖x‖
2 and therefore

(5.4)
δ2

4
‖x‖2 6 ‖Tx‖2 + ‖WVTV∗W∗x‖2 = ((T2 + WVT2V∗W∗)x | x)

for all x ∈ H. As rg(T2 + WVT2V∗W∗)1/2 = R+ WVR by Proposition 3.4 (iv),
it follows from (5.4) that R + WVR is closed. Since R is dense, one has R +
WVR = H.
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The following example shows that in general density of G in (5.2) cannot
even be expected in the separable case.

EXAMPLE 5.6. Suppose that H is an infinite-dimensional Hilbert space such
that

H =
∞⊕

k=2

Kk ⊕
∞⊕

k=2

Hk

with dimKk = dimHk = dim H for all k ∈ N \ {1}. Set H1 :=
∞⊕

k=2
Kk and

K1 :=
∞⊕

k=2
Hk. Clearly one can choose H to be separable.

Let R be the operator range represented by (Hn) and S be the operator
range represented by (Kn). By Lemma 3.7 (ii) there exists a unitary operator V
such that VR = S . Moreover, by Proposition 4.2 there exists a unitary operator
U such that UR∩R = {0}.

Observe that R + VR = R + S = H. It follows from Lemma 5.5 that
there exists an ε > 0 such that R+ WVR = H for all unitary operators W with
‖I −W‖ < ε. But if W is a unitary operator such that R + WVR = H, then it
is not possible that R ∩WVR = {0} by Lemma 3.4 (vii) and because R is not
closed. We have proved that V is not in the closure of the set G in (5.2) with
respect to the uniform operator norm.

REMARK 5.7. Several recent results on operator ranges in [1] can immedi-
ately be extended to the nonseparable case provided the corresponding operator
range satisfies condition (ii) in Theorem 4.6. In particular, this applies for ex-
ample to Theorems 3.7, 3.12 and 3.19 of [1]. As a consequence of these results,
if R is an operator range in H such that there exists a unitary operator U with
UR ∩ R = {0}, then there exist uncountably many such operators U that are
both unitary and self-adjoint. For the finite-dimensional case, we pointed this out
in the last part of Remark 4.10.
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