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commutators, nilpotents, and the range of polynomials; characterization of
Lie ideals as similarity invariant subspaces.
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INTRODUCTION

This paper deals with Lie ideals in C∗-algebras. Like other investigations
on this topic ([5], [16]), we use, and take inspiration from, Herstein’s work on
the Lie ideals of semiprime rings. The abundance of semiprime ideals in a C∗-
algebra—e.g., the norm-closed ideals—plus a number of C∗-algebra techniques—
approximate units, polar decompositions, functional calculus—make it possible
to further develop the results of the purely algebraic setting in the C∗-algebraic
setting.

The contributions in the present paper, though varied, revolve around the
following themes: the commutator equivalence of Lie ideals to two-sided ideals;
the study of Lie ideals generated by special elements such as nilpotents and pro-
jections and by the range of polynomials; the characterization of Lie ideals as
subspaces invariant by similarities. These topics have been studied before, and
this paper is a direct beneficiary of works such as [5], [6] and [14].

A selection of results in this paper follows: Let A be a C∗-algebra. We show
below that the following are true:

(i) The closed two-sided ideal generated by the commutators of A is also the
C∗-algebra generated by the commutators of A (Theorem 1.3).

(ii) The closure of the linear span of the square zero elements agrees with
the closure of the linear span of the commutators. If A is unital and without
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1-dimensional representations, then the linear span of the square zero elements
agrees with the linear span of the commutators (Corollary 2.3 and Theorem 4.2).

(iii) If A is unital and has no bounded traces and f is a nonconstant polynomial
in noncommuting variables with coefficients in C, then there exists N such that
every element of A is a linear combination of at most N values of f on A. If
f (C) = {0} (e.g., f (x, y) = [x, y]), then there exist C∗-algebras where the least
such N can be arbitrarily large (Corollary 3.10 and Example 3.11).

(iv) If A is unital and either simple, or without bounded traces, or a von Neu-
mann algebra, then a subspace U of A is a Lie ideal of A if and only if (1 +
x)U(1− x) ⊆ U for all square zero elements x in A (Corollaries 4.3 and 4.6).

1. FROM PURE ALGEBRA TO C∗-ALGEBRAS

Let us fix some notation:

Throughout the paper A denotes a C∗-algebra.

Let x and y be elements in A. Then [x, y] denotes the element xy− yx (the com-
mutator of x and y). Let X and Y be subsets of A. Then X + Y, XY, and [X, Y]
denote the linear spans of the elements of the form x + y, xy, and [x, y], with
x ∈ X and y ∈ Y, respectively. The linear span of X is denoted by span(X). The
C∗-algebra and the closed two-sided ideal generated by X are denoted by C∗(X)
and Id(X), respectively. (For the 2-sided ideal algebraically generated by X we
simply write AXA.) From the identity [xy, a] = [x, ya] + [y, ax], used inductively,
we deduce that

(1.1) [Xn, A] ⊆ [X, A]

for any set X ⊆ A and all n ∈ N. We sometimes refer to this fact as the “linearizing
property of [·, A]”.

A subspace L of A is called a Lie ideal if it satisfies that [L, A] ⊆ L. We will
make frequent use of the following elementary lemma:

LEMMA 1.1. Let L be a Lie ideal of A. Then A[L, L]A ⊆ L + L2.

Proof. We have [[L, L], A] ⊆ [L, L], by Jacobi’s identity. Thus,

[L, L]A ⊆ A[L, L] + [[L, L], A] ⊆ A[L, L] + [L, L].

Multiplying by A on the left we get A[L, L]A ⊆ A[L, L]. Finally, from the identity
a[l1, l2] = [al1, l2]− [a, l2]l1 we deduce that A[L, L] ⊆ L + L2, as desired.

The following theorem of Herstein is the basis of many of our arguments in
this section (it holds for semiprime rings without 2-torsion):

THEOREM 1.2 ([13], Theorem 1). Let L be a Lie ideal of A. Then [t, [t, L]] = 0
implies [t, L] = 0 for all t ∈ A.
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Combining Herstein’s theorem and Lemma 1.1 we get the following theo-
rem:

THEOREM 1.3. The closed two-sided ideal generated by [A, A] agrees with the
C∗-algebra generated by [A, A]. In fact, Id([A, A]) = [A, A] + [A, A]2.

Proof. Let I = Id([[A, A], [A, A]]). Then [[x, y], [[x, y], A/I]] = 0 for all x, y ∈
A/I. Herstein’s theorem implies that [[x, y], A/I] = 0 for all x, y ∈ A/I. That is,
[[A/I, A/I], A/I] = 0. Herstein’s theorem again implies that [A/I, A/I] = 0; i.e.,
[A, A] ⊆ I. On the other hand, I ⊆ [A, A] + [A, A]2, by Lemma 1.1. So,

Id([A, A]) ⊆ I ⊆ [A, A] + [A, A]2 ⊆ C∗([A, A]).

Since C∗([A, A]) ⊆ Id([A, A]), these inclusions must be equalities.

The following lemma is easily derived from the existence of approximately
central approximate units for the closed two-sided ideals of A:

LEMMA 1.4 ([16], Lemma 1, [5], Proposition 5.25). Let I be a closed two-sided
ideal of A. Then

[I, I] = [I, A] = I ∩ [A, A].

Brešar, Kissin, and Shulman show in Theorem 5.27 of [5] that [L, A] =

[Id([L, A]), A] for any Lie ideal L of A. In the theorem below we give a short
proof of this important theorem:

THEOREM 1.5. Let L be a Lie ideal of A. Then
(i) Id([L, A]) = [L, A] + [L, A]2.

(ii) [Id([L, A]), A] = [L, A] = [[L, A], A].

Proof. (i) We follow a line of argument similar to the proof of Theorem 1.3.
Let M = [L, A] and I = Id([M, M]). Let L̃ and M̃ denote the images of L and
M in A/I by the quotient map. Then [M̃, [M̃, A/I]] = 0. By Herstein’s theorem,
[M̃, A/I] = 0; i.e., [[L̃, A/I], A/I]. By Herstein’s theorem again, [L̃, A/I] = 0; i.e.,
[L, A] ⊆ I. On the other hand, I ⊆ M + M2 = [L, A] + [L, A]2, by Lemma 1.1. So,

Id([L, A]) ⊆ I ⊆ [L, A] + [L, A]2 ⊆ C∗([L, A]).

Since C∗([L, A]) ⊆ Id([L, A]), all these inclusions must be equalities.
(ii) By (i) and the linearizing property of [·, A] recalled in (1.1), we have that

[Id([L, A]), A] = [[L, A] + [L, A]2, A] ⊆ [[L, A], A].

Thus, [Id([L, A]), A] ⊆ [[L, A], A] ⊆ [L, A]. On the other hand,

[L, A] ⊆ Id([L, A]) ∩ [A, A] ⊆ [Id([L, A]), A],

(the second inclusion by Lemma 1.4). This completes the proof.

LEMMA 1.6. Let L be a closed Lie ideal of A such that Id(L) = Id([L, A]) and
L ⊆ [A, A]. Then L = [Id(L), A].



390 LEONEL ROBERT

Proof. The inclusion L ⊆ [Id(L), A] follows from L ⊆ [A, A] ∩ Id(L) and
Lemma 1.4. As for the opposite inclusion, we have [Id(L), A] = [Id([L, A]), A],
by assumption, and [Id([L, A]), A] ⊆ L, by Theorem 1.5.

The following is an improvement on Theorem 1.5(ii) obtained by the same
technique:

THEOREM 1.7. Let K and L be Lie ideals of A. Then [K, L] = [Id([K, L]), A].

Proof. Let M = [K, L]. Notice that M is again a Lie ideal (by Jacobi’s iden-
tity). We will deduce that M = [Id(M), A] from the previous lemma. We clearly
have that M ⊆ [A, A]. Let I = Id([M, A]) and let K̃, L̃, and M̃ denote the images
of K, L, and M in the quotient by this ideal. From [M̃, A/I] = 0 and [K̃, L̃] = M̃ we
get that [[K̃, L̃], L̃] = 0. By Herstein’s theorem, [K̃, L̃] = 0; i.e, M = [K, L] ⊆ I. It
follows that Id(M) = Id([M, A]). By Lemma 1.6, M = [Id(M), A], as desired.

REMARK 1.8. The arguments in Theorems 1.3, 1.5, and 1.7 rely crucially on
the fact that the closed two-ideals of a C∗-algebra are semiprime. This makes it
possible to apply Herstein’s theorem in the quotient by a closed two-sided ideal.
Turning to non-closed Lie ideals, if we impose the semiprimeness of a suitable
non-closed two-sided ideal at the outset, part of those same arguments still goes
through. We may obtain in this way, for instance, the following result: If L is a Lie
ideal of A such that the two-sided ideal generated by [[L, A], [L, A]] is semiprime then (i)
A[L, A]A = [L, A] + [L, A]2, and (ii) [A[L, A]A], A] = [[L, A], A]. To get (i) we pro-
ceed as in Theorem 1.5(i): Setting M = [L, A] and I = A[M, M]A and applying
Herstein’s theorem in A/I in much the same way as we did in Theorem 1.5(i) we
arrive at [L, A] ⊆ I. We then have the inclusions A[L, A]A ⊆ I ⊆ [L, A] + [L, A]2,
which must in fact be equalities. To get (ii) we apply (i) and the linearizing prop-
erty of [·, A]:

[A[L, A]A, A] = [[L, A] + [L, A]2, A] = [[L, A], A].

Next we discuss another variation on Theorem 1.5 for non-closed Lie ideals.
This time we make use of the Pedersen ideal. Recall that the Pedersen ideal of a
C∗-algebra is the smallest dense two-sided ideal of the algebra (see 5.6 of [17]).
Given a C∗-algebra B, we denote its Pedersen ideal by Ped(B).

LEMMA 1.9. Let I be a closed two-sided ideal of A. Then

[Ped(I), Ped(I)] = [Ped(I), A].

Proof. Let P = Ped(I). The subspace P2 is a dense two-sided ideal of I.
Since P is the minimum such ideal, we must have that P = P2. From [P, A] =
[P2, A] and the identity [xy, a] = [x, ya] + [y, ax] we get that [P2, A] ⊆ [P, P].

THEOREM 1.10. Let L be a Lie ideal of A and let P = Ped(Id([L, A])). Then

[P, P] = [L, P] = [[L, A], P].
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Furthermore, if L ⊆ P then [L, A] = [P, P].

Proof. In the course of proving Theorem 1.5 we have shown that Id([L, A]) =
Id([[L, A], [L, A]]). Therefore, the two-sided ideal A[[L, A], [L, A]]A is dense in
Id([L, A]). Since P is the smallest such ideal, P ⊆ A[[L, A], [L, A]]A. Hence,

[P, P] ⊆ [A[[L, A], [L, A]]A, P] ⊆ [[L, A] + [L, A]2, P] ⊆ [[L, A], P] ⊆ [L, P].

But [L, P] ⊆ [P, P], by Lemma 1.9 . Thus, the inclusions above must be equalities.
Suppose now that L ⊆ P. Then [L, P] ⊆ [L, A] ⊆ [P, A] = [P, P], the latter

equality by Lemma 1.9. Since [L, P] = [P, P], these inclusions must be equali-
ties.

COROLLARY 1.11. Among the Lie ideals L such that [L, A] = [A, A], the Lie
ideal

[Ped(Id([A, A])), Ped(Id([A, A]))]

is the smallest.

Proof. Let P = Ped(Id([A, A])). Then

[[P, P], A] = [[Id([A, A]), Id([A, A])], A]

= [[Id([A, A]), A], A] = [Id([A, A]), A] = [A, A].

The second equality holds by Lemma 1.4 and the third and fourth by Theorem 1.5.
Thus, [P, P] is a Lie ideal satisfying that [L, A] = [A, A].

Suppose now that L is a Lie ideal such that [L, A] = [A, A]. By Theorem 1.10,
[P, P] = [L, P] ⊆ L. So L contains [P, P].

It seems possible that under some C∗-algebra regularity condition, such as
A being pure (i.e, having almost unperforated and almost divisible Cuntz semi-
group), it is the case that for every Lie ideal L there exists a two-sided—possibly
non-closed—ideal I such that [L, A] = [I, A] (in the language of [5], L and I are
called commutator equal). At present, we do not even have an answer to the
following question:

QUESTION 1.12. Is there a C∗-algebra A and a Lie ideal L of A, such that
[L, A] 6= [I, A] for all two-sided (possibly non-closed) ideals I of A?

We turn now to Lie ideals of [A, A]. A linear subspace U ⊆ A is called a Lie
ideal of [A, A] if [U, [A, A]] ⊆ U. Herstein’s Theorem 1.12 of [12] implies that if
A is simple and unital then a Lie ideal of [A, A] is automatically a Lie ideal of A
(this holds for simple rings without 2-torsion). In Theorem 1.15 below we show
that the simplicity assumption can be dropped for closed Lie ideals of [A, A]. The
key of the argument is again to apply a theorem of Herstein (Lemma 1.14 below)
in the quotient by a suitable closed two-sided ideal.

LEMMA 1.13. Let U be a Lie ideal of [A, A]. Let V = [U, U], W = [V, V], and
X = [W, W]. Then A[X, X]A ⊆ [U, U] + [U, U]2.
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Proof. (Cf. Lemma 1.7 of [12].) In the following inclusions we make use of
Jacobi’s identity and the fact that U is a Lie ideal of [A, A]:

[[U, U], A] ⊆ [U, [A, A]] ⊆ U,

[[U, U], [A, A]] ⊆ [[U, [A, A]], U] ⊆ [U, U].

That is, [V, A] ⊆ U and V is a Lie ideal of [A, A]. We deduce similarly that
[A, W] ⊆ V and that W and X are Lie ideals of [A, A]. Finally, since V ⊆ [A, A]
we have that [V, V] ⊆ V; i.e., W ⊆ V. We deduce similarly that [X, X] ⊆ X.
Having made this preparatory remarks, we attack the lemma:

[X, X]A ⊆ A[X, X] + [[X, X], A] ⊆ A[X, X] + X ⊆ AX + X.

Hence, A[X, X]A ⊆ AX = A[W, W]. Using now that a[w1, w2] = [aw1, w2] −
[a, w2]w1 we get that

A[W, W] ⊆ [A, W] + [A, W]W ⊆ V + VW ⊆ V + V2.

Thus, A[X, X]A ⊆ V + V2, as desired.

LEMMA 1.14. Let U be a Lie ideal of [A, A]. If [[U, U], A] = 0 then [U, A] = 0.

Proof. See Theorem 1.11 of [12] for the case of simple rings without 2-torsion.
See Exercise 17, page 344 of [21] for the extension to semiprime rings without 2-
torsion (e.g., C∗-algebras).

THEOREM 1.15. A (norm) closed Lie ideal of [A, A] is a Lie ideal of A.

Proof. Let U be a closed Lie ideal of [A, A]. Consider the sets V = [U, U],
W = [V, V] and X = [W, W]. Let I = Id([X, X]). Let Ũ denote the image of U in
A/I by the quotient map. Define Ṽ, W̃, and X̃ similarly. Then [X̃, X̃] = 0, which,
by Lemma 1.14, implies that [X̃, A/I] = 0. That is, [[W̃, W̃], A/I] = 0. Again
by Lemma 1.14 we get that [W̃, A/I] = 0. That is, [[Ṽ, Ṽ], A/I] = 0. Two more
applications of Lemma 1.14 then yield that [Ũ, A/I] = 0. That is, [U, A] ⊆ I.
Hence,

Id([U, A]) ⊆ I ⊆ [U, U] + [U, U]2 ⊆ Id([U, U]).

In the second inclusion we have used Lemma 1.13. Since Id([U, U]) ⊆ Id([U, A]),
all these must be equalities. Taking commutators with A and using (1.1) we get

[Id([U, A]), A] = [[U, U] + [U, U]2, A] = [[U, U], A] ⊆ U.

Lemma 1.4, on the other hand, implies that

[U, A] ⊆ Id([U, A]) ∩ [A, A] = [Id([U, A]), A].

Hence, [U, A] ⊆ U; i.e., U is a Lie ideal of A.
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2. NILPOTENTS AND POLYNOMIALS

In this section we look at closed Lie ideals spanned by nilpotents and by the
range of polynomials.

For each natural number k > 2 let Nk denote the set of nilpotent elements
of A of order exactly k. Since the set Nk is invariant by unitary conjugation (and
by similarity), the closed subspace span(Nk) is a Lie ideal of A (see [17] and The-
orem 2.6 below).

The following lemma is surely well known:

LEMMA 2.1. Every element of Nk is a sum of k− 1 commutators for all k > 2.

Proof. Let x be a nilpotent of order at most k (i.e., in
⋃

j6k
Nj). Let x = v|x| be

the polar decomposition of x in A∗∗. Let x̃ = |x|1/2v|x|1/2 (the Aluthge transform
of x). Observe that x = [v|x|1/2, |x|1/2] + x̃. Also,

x̃ k−1(x̃ k−1)∗ = |x|1/2xk−1v∗(xk−2)∗|x|1/2 = 0,

where we have used that |x|1/2xk−1 = 0 (since |x|1/2 ∈ C∗(x∗x) and (x∗x)xk−1 =
0). Thus x̃ is a nilpotent of order at most k − 1. Continuing this process induc-
tively we arrive at the desired result.

For each k ∈ N let Ik denote the intersection of the kernels of all repre-
sentations of A of dimension at most k. Notice that I1 = Id([A, A]) and that
I1 ⊇ I2 ⊇ · · · . It is not hard to show that Ik is the smallest closed two-sided
ideal the quotient by which is a k-subhomogeneous C∗-algebra (i.e., one whose
irreducible representations are at most k-dimensional).

THEOREM 2.2. span(Nk) = [Ik−1, A] for all k > 2.

Proof. It is well known that Id(Nk) = Ik−1 (e.g., see Lemma 6.1.3 of [3]). We
must then show that span(Nk) = [Id(Nk), A]. Let I = Id([Nk, A]). Let x ∈ Nk.
Since [x, A] ⊆ I, the quotient map sends x to the center of A/I. But the center,
being a commutative C∗-algebra, cannot contain nonzero nilpotents. Thus, x ∈ I.
This shows that Nk ⊆ Id([Nk, A]). On the other hand, Nk ⊆ [A, A] by Lemma 2.1.
Thus, span(Nk) = [Id(Nk), A] by Lemma 1.6.

COROLLARY 2.3. span(N2) = [A, A].

Proof. The previous theorem implies that span(N2)= [Id([A, A]), A]. On the
other hand, [Id([A, A]), A]= [A, A], by Theorem 1.5(ii) applied with L=A.

The following corollary is merely a restatement of Corollary 2.3

COROLLARY 2.4. A positive bounded functional on A is a trace if and only if it
vanishes on N2.

QUESTION 2.5. Is [A, A] = span(N2)? Is span(N2) a Lie ideal?
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We will return to these questions in Section 4.
Combining Corollary 2.3 and Theorem 1.15 of the previous section we can

prove the following C∗-algebraic version of a theorem of Amitsur for simple rings
([1], Theorem 1):

THEOREM 2.6. A closed subspace U of A is a Lie ideal if and only if (1+ x)U(1−
x) ⊆ U for all x ∈ N2.

Proof. Say U is a Lie ideal. Let u ∈ U and x ∈ N2. Then

(1 + x)u(1− x) = u + [x, u] +
1
2
[x, [x, u]] ∈ U.

Suppose now that (1 + x)U(1 − x) ⊆ U for all x ∈ N2. Let u ∈ U and
x ∈ N2. Then

[x, u]− xux = (1 + x)u(1− x)− u ∈ U,

[x, u] + xux = −(1− x)u(1 + x) + u ∈ U.

Hence [u, x] ∈ U. That is, [U, N2] ⊆ U. Passing to the span of N2 and taking
closure we get from Corollary 2.3 that [U, [A, A]] ⊆ U. That is, U is a closed Lie
ideal of [A, A]. By Theorem 1.15, U is a Lie ideal of A.

Let f (x1, . . . , xn) be a polynomial in noncommuting variables with coeffi-
cients in C. Let us denote by f (A, . . . , A), or f (A) for short, the range of f on A.
(If A is non-unital we assume that f has no independent term.) Since the set f (A)

is invariant by similarity, span( f (A)) is a Lie ideal. It is shown in Theorem 2.3 of
[6] that even span( f (A)) is Lie ideal.

In the sequel by a polynomial we always understand a polynomial in non-
commuting variables with coefficients in C.

Recall that for each k ∈ N we let Ik denote the intersection of the kernels
of all representations of A of dimension at most k. In the following theorem we
use the conventions I0 = A and M0(C) = {0}. We regard every polynomial as
an identity on M0(C). By a nonconstant polynomial we mean one with positive
degree in at least one of its variables.

THEOREM 2.7. Let f be a nonconstant polynomial. Suppose that f (A) ⊆ [A, A].
Then span( f (A)) = [Ik, A], where k > 0 is the largest number such that f is an identity
on Mk(C) (such a number must exist since no polynomial is an identity on all matrix
algebras).

Proof. Let I = Id([ f (A), A]). Then A/I is a subhomogeneous C∗-algebra,
since it satisfies the (nontrivial) polynomial identity [ f (x1, . . . , xn), y] (see Propo-
sition IV.1.4.6 of [4]). The range of f on A/I is both in the center of A/I and in
[A/I, A/I], as f (A) ⊆ [A, A]. But in a subhomogeneous C∗-algebra the center
and the closure of the span of the commutators have zero intersection (since this
is true in every finite dimensional representation). Hence, f (A/I) = {0}; i.e.,
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f (A) ⊆ I. Thus, Id( f (A)) = I = Id([ f (A), A]). By assumption, we also have
that f (A) ⊆ [A, A]. It follows that span( f (A)) = [I, A] by Lemma 1.6.

Let us now show that I = Ik, with k > 0 as in the statement of the the-
orem. Let π : A → Ml(C) be a representation of A with l 6 k. By assump-
tion, f (Ml(C)) = {0}. Hence, f (A) ⊆ ker π, and so I = Id( f (A)) ⊆ ker π.
Since, by definition, Ik is the intersection of the kernels of all such π, we get
that I ⊆ Ik. To prove the opposite inclusion notice first that A/I must be a k-
subhomogeneous C∗-algebra. For suppose that there exists an irreducible repre-
sentation π : A/I → Mm(C), with m > k. Since f is an identity on A/I and π
is onto, we get that f is an identity on Mm(C). This contradicts our choice of k.
Hence, every irreducible representation of A/I has dimension at most k; i.e., A/I
is k-subhomogeneous. Since Ik may be alternatively described as the smallest
closed two-sided ideal the quotient by which is k-subhomogeneous, Ik ⊆ I.

Let sk denote the standard polynomial in k noncommuting variables. That is,

sk(x1, . . . , xk) = ∑
σ∈Sk

sign(σ)xσ(1) · · · xσ(k),

where Sk denotes the symmetric group on k elements. The Amitsur–Levitzky
theorem states that s2k is a polynomial identity of minimal degree on Mk(C) [2].
Define π1(x, y) = [x, y] and

πk+1(x1, . . . , x2k+1) = [πk(x1, . . . , x2k ), πk(x2k+1, . . . , x2k+1)]

for all k > 1. The following two special cases of the previous theorem are worth
remarking upon:

COROLLARY 2.8. span(σ2k(A)) = [Ik, A] and span(πk(A)) = [A, A] for all
k > 1.

Proof. Let k ∈ N. It is well known that s2k is expressible as a sum of com-
mutators in the algebra of polynomials in 2k noncommuting variables. Hence,
s2k(A) ⊆ [A, A]. We can thus apply Theorem 2.7 to s2k. By the Amitsur–Levitsky
theorem, s2k is a polynomial identity of Mk(C) but not of Mk+1(C). Thus, by
Theorem 2.7, span(σ2k(A)) = [Ik, A].

The polynomial πk is an identity on C but not on M2(C). (In fact, by Theo-
rem 2 of [13], if πk is a polynomial identity on a semiprime ring without 2-torsion
then the ring must be commutative.) Thus, by Theorem 2.7, span(πk(A)) =

[A, A].

Let’s now give a characterization of the polynomials whose range is con-
tained in [A, A]. Following [6], we say that two polynomials f and g (in non-
commuting variables, with coefficients in C) are cyclically equivalent if f − g is a
sum of commutators in the ring C(X1, X2, . . . ) of polynomials in noncommuting
variables. If a polynomial is cyclically equivalent to 0 then its range is clearly
in [A, A]. On the other hand, if A has no bounded traces then A = [A, A] (see
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[8]) and so any polynomial has range in [A, A]. The general case is a mixture of
these two. In the following theorem we maintain the conventions that I0 = A,
M0(C) = {0}, and that every polynomial is an identity on M0(C).

THEOREM 2.9. Let k > 0 be the smallest number such that the closed two-sided
ideal Ik has no bounded traces (set k = ∞ if this is never the case). Let f be a nonconstant
polynomial.

(i) If k = ∞ then f (A) ⊆ [A, A] if and only if f is cyclically equivalent to 0.
(ii) If k < ∞ then f (A) ⊆ [A, A] if and only if f is cyclically equivalent to a polyno-

mial identity on Mk(C).

Proof. Let us first prove the forward implications. If f is cyclically equiva-
lent to 0 then clearly f (A) ⊆ [A, A]. Suppose that k < ∞ and that f is cyclically
equivalent to a polynomial g which is an identity on Mk(C). Then g(A) ⊆ Ik
and Ik = [Ik, Ik], since Ik has no bounded traces. Thus, g(A) ⊆ [A, A]. But
( f − g)(A) ⊆ [A, A]. Thus, f (A) ⊆ [A, A], as desired.

Let us suppose now that f (A) ⊆ [A, A]. We will follow closely the proof of
Theorem 4.5 in [6] where the result is obtained for the range of polynomials on
matrix algebras. If the independent term of f is nonzero then 1 ∈ f (A) ⊆ [A, A].
Hence, A has no bounded traces; i.e., k = 0. Since, by convention, any polyno-
mial is an identity on M0(C), we are done. Let us assume now that f has no inde-

pendent term. Let f =
m
∑

i=1
fi be the decomposition of f into multihomogeneous

polynomials. Then, by the proof of Theorem 2.3 in [6], fi(A) ⊆ span( f (A)) for
all i. This reduces the proof to the case that f is multihomogeneous. We prove the
theorem for multihomogeneous polynomials by induction on the smallest degree
of its variables. Suppose that the degree of f on x1 is 1. Then f is cyclically equiv-
alent to a polynomial of the form x1g(x2, . . . , xn). Hence Ag(A) ⊆ [A, A], which
in turn implies that Id(g(A)) ⊆ [A, A]. If g is 0, then f is cyclically equivalent to
0 and we are done. If g is constant and nonzero, then A = Id(g(A)) ⊆ [A, A].
That is, A = [A, A], k = 0, and f is an identity on M0(C); again we are done. If
g is nonconstant then Id(g(A)) = Ik′ for some k′ and furthermore g is an identity
on Mk′(C) (see the proof of Theorem 2.7). From Ik′ ⊆ [A, A] and Lemma 1.4 we
deduce that Ik′ = [Ik′ , Ik′ ]. Hence, Ik′ has no bounded traces; i.e., k′ > k. It follows
that g is an identity on Mk(C), and since f = x1g, so is f . This completes the first
step of the induction.

Suppose now that f (x1, . . . , xn) is a multihomogeneous polynomial whose
variable of smallest degree, xn, has degree d, with d > 1. Consider the polynomial

g(x1, . . . , xn, xn+1)

= f (x1, . . . , xn−1, xn + xn+1)− f (x1, . . . , xn−1, xn+1)− f (x1, . . . , xn).

Then g(A) ⊆ [A, A] and the degree of g on xn is less than d. By induction, g is
cyclically equivalent to a polynomial identity on Mk(C) (if k < ∞) or cyclically
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equivalent to 0 (if k = ∞). Since f (x1, . . . , xn) = 1
2d−2

g(x1, . . . , xn, xn), the same
holds for f .

3. FINITE SUMS AND SUMS OF PRODUCTS

Recall the following basic fact: a dense two-sided ideal in a unital C∗-algebra
must agree with the whole C∗-algebra (because it would intersect the ball of ra-
dius one centered at the unit, all whose elements are invertible). It follows that
if A is unital and A = Id(X) then A = AXA. Here we exploit this fact to obtain
quantitative versions of some of the results from the previous sections.

THEOREM 3.1. Let A be unital and let L be a Lie ideal of A such that Id([L, A]) =
A. Suppose that L is linearly spanned by a set Γ ⊆ A; i.e., L = span(Γ). Suppose
furthermore that there exists M ∈ N such that for all l ∈ Γ and z ∈ A the commutator
[l, z] is a linear combination of at most M elements of the set Γ. The following are true:

(i) There exists N such that every element of A is expressible as a linear combination
of N elements of Γ and N products of two elements of Γ.

(ii) There exists K such that every single commutator [x, y] in A is expressible as a
linear combination of K elements of Γ.

Proof. We have shown that Id([L, A]) = Id([L, L]) in the proof of Theo-
rem 1.5(i). (Indeed, after setting I = Id([[L, A], [L, A]]), we proceeded to show
that [L, A] ⊆ I, which implies that Id([L, A]) ⊆ I ⊆ Id([L, L]). Clearly, these
inclusions must be equalities.) Therefore, A = Id([L, L]) = Id([Γ, Γ]). Since A is
unital, it is algebraically generated as a two-sided ideal by [Γ, Γ]. Hence,

1 =
n

∑
i=1

xi[ki, li]yi,

for some xi, yi ∈ A and ki, li ∈ Γ. Let a ∈ A. Then

a =
n

∑
i=1

(axi)[ki, li]yi.

It suffices to show that each term of the sum on the right is a linear combination
of a fixed number of elements of Γ and of products of two elements of Γ. We have
the following identity (derived from the arguments in the proof of Lemma 1.1(i)):

x[l, m]y = [xyl, m]− [xy, m]l + [xm, [y, l]]− [x, [y, l]]m + [xl, [m, y]]− [x, [m, y]]l,

for all x, y ∈ A and l, m ∈ Γ. Observe that each of the terms on the right side are of
either one of the following forms: [z, l], [z, l]l′, [z, [z′, l]], or [z, [z′, l]]l′, where z, z′ ∈
A and l, l′ ∈ Γ. Recall now that, by assumption, the commutators [z, l], with
z ∈ A and l ∈ Γ, are expressible as linear combinations of at most M elements
of Γ. This implies that elements of either one of the forms mentioned before are
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linear combinations of either M or M2 elements of Γ or products of two elements
of Γ.

(ii) Let x ∈ A. By (i), x =
N
∑

i=1
λili +

N
∑

i=1
µimini for some scalars λi, µi and

some li, mi, ni ∈ Γ. Let y ∈ A. Then,

[x, y] =
N

∑
i=1

λi[li, y] +
N

∑
i=1

µi[mi, niy] +
N

∑
i=1

µi[ni, ymi].

Appealing to the fact that every commutator of the form [l, z], with l ∈ Γ and
z ∈ A is a linear combination of at most M elements of Γ, we deduce that the
right side is a linear combination of 3MN elements of Γ.

THEOREM 3.2. Let A be unital and without 1-dimensional representations. Then
there exists N ∈ N such that every element of A is expressible as a sum of the form

N

∑
i=1

[ai, bi] +
N

∑
i=1

[ci, di] · [c′i, d′i].

Proof. The quotient A/Id([A, A]) is a commutative C∗-algebra. If it were
nonzero, it would have non-trivial 1-dimensional representations. But we have
asssumed that A has no 1-dimensional representations, Thus, A = Id([A, A]).
The previous theorem is then applicable to L = [A, A] and Γ = {[x, y] : x, y ∈ A},
yielding the desired result.

We can link the constant N in Theorem 3.2 to a certain notion of “divisi-
bility” studied in [19]. A unital C∗-algebra A is called weakly (2, N)-divisible if
there exist x1, . . . , xN ∈ N2 and d1, . . . , dN ∈ A such that

1 =
N

∑
i=1

d∗i x∗i xidi.

(The definition of weakly (2, N)-divisible in [19] is in terms of the Cuntz semi-
group of A but can be seen to be equivalent to this one.) A unital C∗-algebra
without 1-dimensional representations must be weakly (2, N)-divisible for some
N ([19], Corollary 5.4). This fact, combined with the following proposition, gives
another proof of Theorem 3.2.

PROPOSITION 3.3. If A is unital and weakly (2, N)-divisible then every element

of A is expressible as a sum of the form
N
∑

i=1
[ai, bi] +

N
∑

i=1
[ci, di] · [c′i, d′i].

Proof. Suppose that 1 =
N
∑

i=1
d∗i x∗i xidi, with xi ∈ N2 for all i. Let a ∈ A. Then

a =
( N

∑
i=1

d∗i x∗i xidi

)
· a =

N

∑
i=1

[d∗i x∗i , xidia] +
N

∑
i=1

xidiad∗i x∗i .



ON THE LIE IDEALS OF C∗ -ALGEBRAS 399

It thus suffices to show that xbx∗ is a product of 2 commutators for all x ∈ N2
and b ∈ A. Say x = v|x| is the polar decomposition of x in A∗∗. Then xbx∗ =
(xb|x|1/2) · |x|1/2v∗. But both xb|x|1/2 and |x|1/2v∗ belong to N2. (Let us prove
this for the latter: We have |x|1/2 ∈ C∗(x∗x) ⊆ |x|Ax. Multipliying by v on the
left we get that v|x|1/2 ∈ xAx. Since x is a square zero element, we deduce that
v|x|1/2, and its adjoint, are square zero elements as well.) By Lemma 2.1, both
xb|x|1/2 and |x|1/2v∗ are commutators.

REMARK 3.4. If 1 ∈ B ⊆ A and B is weakly (2, N)-divisible then so is A.
This observation can be used to find upper bounds on N for specific examples
(e.g., when B is a dimension drop C∗-algebra; see Example 3.12 of [19]).

Let P ⊆ A denote the set of projections of A. Let us apply Theorem 3.1 to
span(P). To see that this is a Lie ideal, recall that the linear span of the idempo-
tents is Lie ideal and that, by a theorem of Davidson (see paragraph after Theo-
rem 4.2 of [15]), every idempotent is a linear combination of five projections. In
Davidson’s theorem, the number of projections can be reduced to four:

LEMMA 3.5. Every idempotent of A is a linear combination of four projections.

Proof. Let e ∈ A be an idempotent and let p ∈ A denote its range projection.
Then e = p + x, with x ∈ pA(1− p). Let us show that x is a linear combination
of three projections. It suffices to assume that ‖x‖ < 1

2 . For each x ∈ pA(1− p)
such that ‖x‖ < 1

2 let us define

q(x) =

(
1+
√

1−4xx∗
2 x

x∗ 1−
√

1−4x∗x
2

)
∈
(

pAp pA(1− p)
(1− p)Ap (1− p)A(1− p)

)
.

A straightforward computation shows that q(x) is a projection and, furthermore,
that

x =
1 + i

4
q(x) +

−1 + i
4

q(−x)− i
2

q(ix).

THEOREM 3.6. Suppose that the C∗-algebra A is unital and that Id([P, A]) = A.
The following are true:

(i) There exists N such that every element of A is expressible as a linear combination
of N projections and N products of two projections.

(ii) There exists K such that every commutator [x, y], with x, y ∈ A, is expressible as
a linear combination of K projections.

Proof. Both (i) and (ii) will follow once we show that Theorem 3.1 is appli-
cable to the Lie ideal span(P) and the generating set P. It suffices to show that
a commutator of the form [p, z], with p a projection, is a linear combination of
projections with a uniform bound on the number of terms. But

[p, z] = (p + pz(1− p))− (p + (1− p)zp),
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where p + pz(1− p) and p + (1− p)zp are idempotents. Each of them is a linear
combination of four projections by Lemma 3.5.

REMARK 3.7. If B is a unital C∗-subalgebra of A and Id([PB, B]) = B, then

1 =
n

∑
i=1

xi[pi, qi]zi,

for xi, yi, zi ∈ B and projections pi, qi ∈ PB. It follows that the constants N and K
that one finds for B following the proof of Theorem 3.1 applied to L = span(PB)
also work for the C∗-algebra A. This observation can be used to obtain concrete
estimates of these constants in cases where B is rather simple.

An element of a C∗-algebra is called full if it generates the C∗-algebra as a
closed two-sided ideal. Recall also that a unital C∗-algebra is said to have real
rank zero if its invertible selfadjoint elements are dense in the set of selfadjoint el-
ements. By Theorem V.7.3 of [9], this is equivalent to asking that every hereditary
C∗-subalgebra of A has an approximate unit consisting of projections.

COROLLARY 3.8. Suppose that A is unital and either contains two full orthogonal
projections or has real rank zero and no 1-dimensional representations. Then there exist
N and K such that (i) and (ii) of the previous theorem hold for A.

Proof. Let us show in both cases that Id([P, A]) = A.
Say p is a projection such that p and 1− p are full; i.e, A = Id(p) = Id(1− p).

Then
A = Id(p) · Id(1− p) = ApA(1− p)A = Id(pA(1− p)).

On the other hand, Id(pA(1− p)) = Id([p, A]). Indeed,

pA(1− p) = [p, A](1− p) ⊆ Id([p, A]),

and conversely

[p, A] = {pa(1− p)− (1− p)ap : a ∈ A} ⊆ Id(pA(1− p)).

(We have (1 − p)ap ∈ Id(pA(1 − p)) since closed two-sided ideals are selfad-
joint.) Hence, A = Id(pA(1− p)) = Id([p, A]), as desired.

Suppose now that A has real rank zero and no 1-dimensional representa-
tions, i.e., A = Id([A, A]). Since Id([A, A]) = Id(N2) (where, as before, N2 de-
notes the set of nilpotents of order two), A = Id(N2). Furthermore, since A is
unital there exist x1, . . . , xn ∈ N2 such that A = Id(x1, . . . , xn), for it suffices to

choose these elements such that
n
∑

i=1
aixibi is invertible for some ai, bi ∈ A. Since A

has real rank-zero, the hereditary subalgebras x∗i Axi have approximate units con-
sisting of projections for all i. Using this, we can find projections pi ∈ x∗i Axi for
i = 1, . . . , n such that A = Id(p1, . . . , pn). We claim that pi is Murray–von Neu-
mann subequivalent to 1− pi for all i. To prove this, let xi = vi|xi| be the polar de-
composition of xi in A∗∗. Since pi ∈ x∗i Axi we have pi 6 v∗i vi. On the other hand,
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x2
i = 0 implies that v∗i vi and viv∗i are orthogonal projections. Hence, viv∗i 6 1− pi.

It follows that pi = (piv∗i )(vi pi) and (vi pi)(piv∗i ) = vi piv∗i 6 viv∗i 6 1− pi. This
proves the claim. We now have that Id(pi) ⊆ Id(1− pi) for all i = 1, . . . , n. Hence,

Id(pi) = Id(pi) · Id(1− pi) = Id(pi A(1− pi)) = Id([pi, A]),

for all i = 1, . . . , n. So A = Id(p1, . . . , pn) = Id([p1, A], . . . , [pn, A]), as desired.

Next we turn to the Lie ideals generated by polynomials already investi-
gated in the previous section. As before, by a polynomial we understand a poly-
nomial in noncommuting variables with coefficients in C.

THEOREM 3.9. Let k ∈ N. Suppose that the C∗-algebra A is unital and has no
representations of dimension less than or equal to k. Let f be a nonconstant polyno-
mial such that f (A) ⊆ [A, A] and which is not a polynomial identity on Mk(C). The
following are true:

(i) There exists N such that each element of A is expressible as a linear combination
of N values of f on A and N products of two values of f on A.

(ii) There exists K such that each commutator [x, y] in A is expressible as a linear
combination of K values of f on A.

Proof. Both (i) and (ii) will follow from Theorem 3.1 applied to the Lie ideal
span( f (A)), with generating set f (A), once we show the hypotheses of that the-
orem are valid in this case.

Since all representations of A have dimension at least k + 1, we have A =
Ik, where Ik is as defined in the previous section. Also, by the proof of Theo-
rem 2.7, Id( f (A)) = Ik′ , where k′ is the largest number such that f is an identity
on Mk′(C). But f is not an identity on Mk(C), so we must have that k′ 6 k.
Hence Id( f (A)) = A. Furthermore, as argued in the proof of Theorem 2.7,
Id([ f (A), A]) = Id( f (A)). Thus, A = Id([ f (A), A]).

To complete the proof, it remains to show that there is a uniform bound on
the number of terms expressing a commutator [ f (a), y] as a linear combination
of elements of f (A). This is indeed true, and can be derived from the proof of
Theorem 2.3 in [6] (showing that span( f (A)) is a Lie ideal). We only sketch the

argument here: Say f =
m
∑

i=1
fi is the decomposition of f into a sum of multihomo-

geneous polynomials. Then, as argued in the proof of Theorem 2.3 in [6], relying
on Lemma 2.2 of [6], each evaluation fi(a) is expressible as a linear combination
of at most (d + 1)n values of f . Here d is the maximum of the degrees of f on
its variables and n the number of variables. It thus suffices to prove the desired
result for each fi, or put differently, to assume that f is multihomogeneous. If
f is a constant polynomial then [ f (a), y] = 0 and the desired conclusion holds
trivially. Let us assume that f is multihomogeneous and has nonzero degree. We
can furthermore reduce ourselves to the multilinear case. For suppose that f has
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degree d > 1 on xn. Let

g(x1, . . . , xn, xn+1)= f (x1, . . . , xn−1, xn+xn+1)−f (x1, . . . , xn−1, xn+1)−f (x1, . . . , xn).

Then the degree of g on xn is less than d and f (x1, . . . , xn) =
1

2d−2
g(x1, . . . , xn, xn).

This reduces the proof to g. Continuing in this way, we arrive at a multilinear
polynomial. Finally, if f is multilinear then the identity

[ f (a1, . . . , an), y] = f ([a1, y], . . . , an)+ f (a1, [a2, y], . . . , an)+ · · ·+ f (a1, . . . , [an, y])

shows that there is a uniform bound on the number of terms expressing [ f (a), y]
as a linear combination of values of f .

A theorem of Pop ([18], Theorem 1) says that if A is unital and without
bounded traces then there exists M ∈ N such every element of A is a sum of M
commutators. Combining this with the previous theorem yields the following
corollary:

COROLLARY 3.10. Let A be unital and without bounded traces. Let f be a non-
constant polynomial. Then there exists N ∈ N such that each element of A is expressible
as a linear combination of N values of f on A.

Proof. Since A has no bounded traces it has no finite dimensional represen-
tations. Hence Ik = A for all k ∈ N. Furthermore, f (A) ⊆ A = [A, A] by Pop’s
theorem. Thus, by the preceding theorem, every commutator is a linear combi-
nation of K values of f . On the other hand, every element of A is a sum of M
commutators (by Pop’s theorem). So every element of A is a linear combination
of KM values of f .

In [7], Brešar and Klep reach the conclusion of the preceding corollary for
K(H) and B(H) (the compact and bounded operators on a Hilbert space) and for
certain rings obtained as tensor products.

Next we construct examples showing that if f (C) = {0} then the number
N in Corollary 3.10 can be arbitrarily large. Taking f (x, y) = [x, y] this shows that
in Pop’s theorem the number of commutators can be arbitrarily large. Taking
f (x1, . . . , x6) = [x1, x2] + [x3, x4] · [x5, x6] this shows that the N in Theorem 3.2
can be arbitrarily large as well.

EXAMPLE 3.11. Let f be a polynomial in n noncommuting variables such
that f (C) = {0}. Let K ∈ N. We will construct a C∗-algebra A, unital and without
bounded traces, and an element e ∈ A not expressible as a linear combination of K
values of f . Let S2 denote the 2-dimensional sphere. Let η ∈ M2(C(S2)) be a rank
one non-trivial projection (i.e, one not Murray–von Neumann equivalent to a con-
stant rank one projection). Choose N > 2Kn. Let ηN = η⊗N ∈ M2N (C((S2)N)).
It is well know that the vector bundle associated to η⊗N

N has non-trivial Euler
class. In particular, any N sections of the vector bundle associated to ηN have a
common vanishing point.
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Let X =
∞
∏
i=1

(S2)N . Let 1X denote the unit of C(X). Let e, p, and q be projec-

tions in C(X, B(`2(N))) defined as follows:

e = diag(1X , 0, 0, . . . ),

q(x1, x2, . . . ) = diag(0, ηN(x1), ηN(x2), . . . ),

p(x1, x2, . . . ) = diag(1X , ηN(x1), ηN(x2), . . . ),

where xi∈ (S2)N for all i=1, 2, . . . . The following facts are known (see Théorème 6
of [10] and Section 4 of [20]):

(i) q⊕N+1 is a properly infinite projection (i.e., q⊕N+2 is Murray–von Neu-
mann subequivalent to q⊕N+1),

(ii) e is not Murray–von Neumann subequivalent to q⊕N . Thus, for any N
elements of qC(X, B(`2(N)))e (i.e., “sections” of q) there exists x ∈ X on which
they all vanish.

Since p = e⊕ q, we have that p⊕N+1 is also a properly infinite projection.
Let us define A = pC(X, B(`2(N)))p. Notice first that A cannot have bounded
traces, since its unit is stably properly infinite. Let us show that e ∈ A cannot
be approximated within a distance less than one by a linear combination of K
elements of f (A). Suppose, for the sake of contradiction, that∥∥∥e−

K

∑
i=1

λi f (ai)
∥∥∥ < 1.

Multiplying by e on the left and on the right we get

(3.1)
∥∥∥e−

K

∑
i=1

λie f (ai)e
∥∥∥ < 1.

Say ai = (ai,1, . . . , ai,n) for i = 1, . . . , K. Since p = e ⊕ q, we may regard each
ai,j ∈ A as an “e× q” matrix:

ai,j =

(
bi,j ci,j
di,j ei,j,

)
∈
(

eC(X, B(`2))e eC(X, B(`2))q
qC(X, B(`2))e qC(X, B(`2))q

)
for all i = 1, . . . , K and j = 1, . . . , n. Since N > 2nK, there exists x ∈ X such
that ci,j(x) = di,j(x) = 0 for all i, j. But eC(X, B(`2))e ∼= C and f (C) = 0. So
e f (ai(x))e = f (bi(x)) = 0 for all i = 1, . . . , K. Evaluating at x ∈ X in (3.1) we
then get ‖e(x)− 0‖ < 1, which is clearly impossible.

REMARK 3.12. The previous example shows also that the existence of a unit
cannot be dropped neither in Theorem 3.2 nor in Corollary 3.10. Indeed, con-

sider A =
∞⊕

N=1
AN , with AN as in the example above. Then A has no bounded

traces (whence no 1-dimensional representations) but A 6= span( f (A)) for any
polynomial f in noncommuting variables such that f (C) = 0.
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4. SIMILARITY INVARIANCE AND THE SPAN OF N2

Let U ⊆ A be a linear subspace. In this section we investigate the equiva-
lence between the following two properties of U:

(i) (1 + x)U(1− x) ⊆ U for all x ∈ N2,
(ii) U is a Lie ideal.

We have seen in Theorem 2.6 that if U is closed then (i) and (ii) are indeed
equivalent. Furthermore, the proof of (ii) ⇒ (i) in Theorem 2.6 is valid for any
subspace U of A. Thus, we are interested in the implication (i)⇒ (ii) when U is
not necessarily closed. In the closed case, the proof of (i) ⇒ (ii) in Theorem 2.6
can be split into two steps: In the first step we showed that U is a Lie ideal of
[A, A]. This was done as follows: (i) readily implies that [U, N2] ⊆ U. Then using
that [A, A] ⊆ span(N2) (by Corollary 2.3) and that U is closed, we arrived at
[U, [A, A]] ⊆ U. In the second step we appealed to Theorem 1.15, showing that a
closed Lie ideal of [A, A] is a Lie ideal of A.

Let us first address the passage from [U, N2] ⊆ U to [U, [A, A]] ⊆ U in the
non-closed case. Let A+ denote the positive elements of A. Let us define

Nc
2 = {x ∈ A : xe = f x = x for some e, f ∈ A+ such that e f = 0}.

One readily checks that Nc
2 ⊆ N2. Let us show that Nc

2 is dense in N2. Let x ∈ N2.
Observe that for each φ ∈ C0(0, 1] we have φ(|x|)φ(|x∗|) = 0, since φ(|x|) ∈
C∗(x∗x) and φ(|x∗|) ∈ C∗(xx∗). Let us choose φ1, φ2, . . . ∈ C0(0, 1], an approxi-
mate unit of C0(0, 1] such that φn+1φn = φn for all n. Then φn(|x∗|)xφn(|x|) ∈ Nc

2
for all n, since we can set e = φn+1(|x|) and f = φn+1(|x∗|). Furthermore,
φn(|x∗|)xφn(|x|)→ x. Thus, Nc

2 is dense in N2.
Let us define

SNc
2 =

⋃
x∈N2∪{0}

(1 + x)Nc
2(1− x).

Notice that we still have SNc
2 ⊆ N2.

LEMMA 4.1. span(SNc
2) is a Lie ideal.

Proof. It suffices to show that [A, x] ⊆ span(SNc
2) for all x ∈ Nc

2 . For then,
conjugating by the algebra automorphism a 7→ (1 + y)a(1 − y), with y ∈ N2,
and using the invariance of SNc

2 under such automorphisms, we get that [A, (1 +
y)x(1− x)] ⊆ span(SNc

2) for all x ∈ Nc
2 and y ∈ N2, as desired.

Let x ∈ Nc
2 . Let e and f be positive elements such that xe = f x = x and e f =

0. Using functional calculus on e, let us find positive contractions e0, e1, e2, e3 ∈
C∗(e) such that e0e1 = e1, e1e2 = e2, e2e3 = e3 and xe3 = x. Similarly, let us find
positive contractions f0, f1, f2, f3 ∈ C∗( f ) such that f0 f1 = f1, f1 f2 = f2, f2 f3 = f3
and f3x = x. Note that xei = f jx = x and ei f j = 0 for all i, j = 0, 1, 2, 3. Now let
a ∈ A. Then

ax−xa= ax−e1ax+e1ax−xa f1+xa f1−xa=(1−e1)ax+[e1a f1, x]−xa(1− f1).
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The term (1− e1)ax is in Nc
2 . Indeed, 1− e2 and e3 act as multiplicative units on

the left and on the right of (1− e1)ax and (1− e2)e3 = 0. We check similarly that
xa(1− f1) is in Nc

2 . As for [e1a f1, x] (a commutator of elements in Nc
2), we have

that

[e1a f1, x] = (1 + e1a f1)x(1− e1a f1) + (e1a f1)x(e1a f1)− x.

The first term on the right belongs to SNc
2 . The other two have multiplicative

units e0 and f0 on the left and on the right and thus belong to Nc
2 .

The following theorem answers Question 2.5 affirmatively when A is unital
and without 1-dimensional representations.

THEOREM 4.2. Suppose that A has no 1-dimensional representations. Then

span(SNc
2) = [Ped(A), Ped(A)].

If in addition A is unital, then span(N2) = [A, A]. Furthermore, in the unital case there
exists K ∈ N such that every single commutator [x, y] in A is a sum of at most K square
zero elements.

Proof. Let P = Ped(A). Let us first show that SNc
2 ⊆ [P, P]. By the similarity

invariance of [P, P], it suffices to show that Nc
2 ⊆ [P, P]. Let x ∈ Nc

2 and let e, f ∈
A+ be such that xe = x = f x and e f = 0. From the description of the Pedersen
ideal in Theorem 5.6.1 of [17] we know that g(e) ∈ P for any g ∈ C0(0, ∞)+
of compact support, and since xg(e) = xg(1), we deduce that x ∈ P. Hence,
x = [x, e] ∈ [P, A]. Since [P, A] = [P, P] by Lemma 1.9, x ∈ [P, P]. This shows that
span(SNc

2) ⊆ [P, P]. Notice now that

[span(SNc
2), A] = [span(N2), A] = [[A, A], A] = [A, A].

But [P, P] is the smallest Lie ideal such that [L, A] = [A, A], by Corollary 1.11.
(To apply Corollary 1.11 we have used that Id([A, A]) = A, since A has no 1-
dimensional representations.) Thus, [P, P] ⊆ span(SNc

2).
Let us now assume that A is unital. In this case P = A, so [A, A] =

span(SNc
2). But span(SNc

2) ⊆ span(N2) ⊆ [A, A]. Thus, span(N2) = [A, A].
To deduce the existence of K we will apply Theorem 3.1 to the Lie ideal

[A, A], with generating set SNc
2 . Notice first that Id([[A, A], A]) = Id([A, A]) =

Id(A), since A has no 1-dimensional representations. It remains to show that
there is a uniform bound on the number of terms expressing a commutator of the
form [x, a], with x ∈ SNc

2 and a ∈ A, as a linear combination of elements of SNc
2 .

The proof of Lemma 4.1 shows that such commutators are sums of at most five
elements of SNc

2 .

For infinite von Neumann algebras, the following corollary is Theorem 2 of
[16]. (Miers also considered closed subspaces of von Neumann algebras, which
we have already dealt with in Theorem 2.6.)
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COROLLARY 4.3. Suppose that A is either unital and without bounded traces or a
von Neumann algebra. Then a subspace U of A is a Lie ideal if and only if (1+ x)U(1−
x) ⊆ U for all x ∈ N2.

Proof. That a Lie ideal satisfies the similarity invariance of the statement
has already been shown in the proof of Theorem 2.6. So let us suppose that U is a
subspace such that (1 + x)U(1− x) ⊆ U for all x ∈ N2. As remarked at the start
of this section, this implies that [U, N2] ⊆ U. Let us consider first the case that A
is unital and without bounded traces. Then span(N2) = [A, A], since A is unital
and has no 1-dimensional representations (since it has no bounded traces). Thus,
[U, [A, A]] ⊆ U. Furthermore, [A, A] = A, by Pop’s theorem. Hence, [U, A] ⊆ U;
i.e., U is a Lie ideal.

Suppose now that A is a von Neumann algebra. Let us show again that
span(N2) = [A, A] and that if U is a Lie ideal of [A, A] then it is a Lie ideal of A.
The latter is Lemma 3 of [16] and can be proven as follows: In a von Neumann
algebra we have A = Z(A) + [A, A], where Z(A) denotes the center of A (if A is
infinite, because A = [A, A], and if A is finite, by Theorem 3.2 of [11]); so [U, A] =
[U, [A, A]] for any subset U of A. Let us now show that span(N2) = [A, A]. The
ideal Id([A, A]) is also a von Neumann algebra. (If p is the unit of the type I1
direct summand of A, then Id([A, A]) = (1− p)A; see Section 2.2 of [22]). Thus,
Id([A, A]) is unital and without 1-dimensional representations. Hence,

span(N2) = [Id([A, A]), Id([A, A])] ⊇ [[A, A], [A, A]].

From A = [A, A] +Z(A) we get that [A, A] = [[A, A], [A, A]]. Hence, span(N2) =
[A, A].

The passage from U being a Lie ideal of [A, A] to being a Lie ideal of A can
also be made assuming that A is unital and that [U, A] is full:

LEMMA 4.4. Suppose that A is unital. If U is a Lie ideal of [A, A] such that
Id([U, A]) = A then [A, A] ⊆ U (so U is a Lie ideal of A).

Proof. Let V = [U, U], W = [V, V], and X = [W, W]. We have shown
in the proof of Theorem 1.15 that Id([U, A]) = Id([X, X]). So A = Id([X, X]).
Since A is unital, the set [X, X] generates A algebraically as a two-sided ideal.
But A[X, X]A ⊆ [U, U] + [U, U]2, by Lemma 1.13. Hence, A = [U, U] + [U, U]2.
Then,

[A, A] = [[U, U] + [U, U]2, A] = [[U, U], A] ⊆ [U, [U, A]] ⊆ U.

THEOREM 4.5. Suppose that A is unital and without 1-dimensional representa-
tions. Let U be a subspace of A such that Id([U, A]) = A. If (1 + x)U(1− x) ⊆ U for
all x ∈ N2 then [A, A] ⊆ U.

Proof. The similarity invariance of U implies that [U, N2] ⊆ U and by The-
orem 4.2 we get that [U, [A, A]] ⊆ U. The previous lemma then shows that
[A, A] ⊆ U.
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COROLLARY 4.6. Let A be simple and unital. A subspace U of A is a Lie ideal if
and only if (1 + x)U(1− x) ⊆ U for all x ∈ N2.

Proof. Since A is simple we have either Id([U, A]) = 0 or Id([U, A]) = A.
If Id([U, A]) = 0 then U is a subset of the center, which by the simplicity of A is
C. If Id([U, A]) = A then by the previous theorem [A, A] ⊆ U. In either case it
follows that U is a Lie ideal of A.

Amitsur’s Theorem 1 of [1] (that a similarity invariant subspace of a simple
algebra must be a Lie ideal) requires the existence of a nontrivial idempotent in
the algebra. An example in [1] shows that this hypothesis cannot be dropped.
Corollary 4.6 shows, however, that for simple unital C∗-algebras this assumption
is not necessary (even though they may well fail to have any nontrivial idempo-
tents).
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