ON THE LIE IDEALS OF C^{*}-ALGEBRAS

LEONEL ROBERT

Communicated by Kenneth R. Davidson

Abstract

Various questions on Lie ideals of C^{*}-algebras are investigated. They fall roughly under the following topics: relation of Lie ideals to closed two-sided ideals; Lie ideals spanned by special classes of elements such as commutators, nilpotents, and the range of polynomials; characterization of Lie ideals as similarity invariant subspaces.

Keywords: Lie ideals, C*-algebras, commutators, nilpotents, polynomials, similarity invariant subspaces.

MSC (2010): 46L05, 16W10.

INTRODUCTION

This paper deals with Lie ideals in C^{*}-algebras. Like other investigations on this topic ([5], [16]), we use, and take inspiration from, Herstein's work on the Lie ideals of semiprime rings. The abundance of semiprime ideals in a C^{*} -algebra-e.g., the norm-closed ideals-plus a number of C^{*}-algebra techniquesapproximate units, polar decompositions, functional calculus-make it possible to further develop the results of the purely algebraic setting in the C^{*}-algebraic setting.

The contributions in the present paper, though varied, revolve around the following themes: the commutator equivalence of Lie ideals to two-sided ideals; the study of Lie ideals generated by special elements such as nilpotents and projections and by the range of polynomials; the characterization of Lie ideals as subspaces invariant by similarities. These topics have been studied before, and this paper is a direct beneficiary of works such as [5], [6] and [14].

A selection of results in this paper follows: Let A be a C^{*}-algebra. We show below that the following are true:
(i) The closed two-sided ideal generated by the commutators of A is also the C^{*}-algebra generated by the commutators of A (Theorem 1.3).
(ii) The closure of the linear span of the square zero elements agrees with the closure of the linear span of the commutators. If A is unital and without

1-dimensional representations, then the linear span of the square zero elements agrees with the linear span of the commutators (Corollary 2.3 and Theorem 4.2).
(iii) If A is unital and has no bounded traces and f is a nonconstant polynomial in noncommuting variables with coefficients in \mathbb{C}, then there exists N such that every element of A is a linear combination of at most N values of f on A. If $f(\mathbb{C})=\{0\}$ (e.g., $f(x, y)=[x, y]$), then there exist C^{*}-algebras where the least such N can be arbitrarily large (Corollary 3.10 and Example 3.11.
(iv) If A is unital and either simple, or without bounded traces, or a von Neumann algebra, then a subspace U of A is a Lie ideal of A if and only if $(1+$ $x) U(1-x) \subseteq U$ for all square zero elements x in A (Corollaries 4.3 and 4.6).

1. FROM PURE ALGEBRA TO C*-ALGEBRAS

Let us fix some notation:
Throughout the paper A denotes a C^{*}-algebra.
Let x and y be elements in A. Then $[x, y]$ denotes the element $x y-y x$ (the commutator of x and y). Let X and Y be subsets of A. Then $X+Y, X Y$, and $[X, Y]$ denote the linear spans of the elements of the form $x+y, x y$, and $[x, y]$, with $x \in X$ and $y \in Y$, respectively. The linear span of X is denoted by span (X). The C^{*}-algebra and the closed two-sided ideal generated by X are denoted by $C^{*}(X)$ and $\operatorname{Id}(X)$, respectively. (For the 2 -sided ideal algebraically generated by X we simply write $A X A$.) From the identity $[x y, a]=[x, y a]+[y, a x]$, used inductively, we deduce that

$$
\begin{equation*}
\left[X^{n}, A\right] \subseteq[X, A] \tag{1.1}
\end{equation*}
$$

for any set $X \subseteq A$ and all $n \in \mathbb{N}$. We sometimes refer to this fact as the "linearizing property of $[\cdot, A]$ ".

A subspace L of A is called a Lie ideal if it satisfies that $[L, A] \subseteq L$. We will make frequent use of the following elementary lemma:

Lemma 1.1. Let L be a Lie ideal of A. Then $A[L, L] A \subseteq L+L^{2}$.
Proof. We have $[[L, L], A] \subseteq[L, L]$, by Jacobi's identity. Thus,

$$
[L, L] A \subseteq A[L, L]+[[L, L], A] \subseteq A[L, L]+[L, L]
$$

Multiplying by A on the left we get $A[L, L] A \subseteq A[L, L]$. Finally, from the identity $a\left[l_{1}, l_{2}\right]=\left[a l_{1}, l_{2}\right]-\left[a, l_{2}\right] l_{1}$ we deduce that $A[L, L] \subseteq L+L^{2}$, as desired.

The following theorem of Herstein is the basis of many of our arguments in this section (it holds for semiprime rings without 2-torsion):

Theorem 1.2 ([|13], Theorem 1). Let L be a Lie ideal of A. Then $[t,[t, L]]=0$ implies $[t, L]=0$ for all $t \in A$.

Combining Herstein's theorem and Lemma 1.1 we get the following theorem:

THEOREM 1.3. The closed two-sided ideal generated by $[A, A]$ agrees with the C^{*}-algebra generated by $[A, A]$. In fact, $\operatorname{Id}([A, A])=\overline{[A, A]+[A, A]^{2}}$.

Proof. Let $I=\operatorname{Id}([[A, A],[A, A]])$. Then $[[x, y],[[x, y], A / I]]=0$ for all $x, y \in$ A / I. Herstein's theorem implies that $[[x, y], A / I]=0$ for all $x, y \in A / I$. That is, $[[A / I, A / I], A / I]=0$. Herstein's theorem again implies that $[A / I, A / I]=0$; i.e., $[A, A] \subseteq I$. On the other hand, $I \subseteq \overline{[A, A]+[A, A]^{2}}$, by Lemma 1.1 So,

$$
\operatorname{Id}([A, A]) \subseteq I \subseteq \overline{[A, A]+[A, A]^{2}} \subseteq C^{*}([A, A])
$$

Since $C^{*}([A, A]) \subseteq \operatorname{Id}([A, A])$, these inclusions must be equalities.
The following lemma is easily derived from the existence of approximately central approximate units for the closed two-sided ideals of A :

Lemma 1.4 ([16], Lemma 1, [5], Proposition 5.25). Let I be a closed two-sided ideal of A. Then

$$
\overline{[I, I]}=\overline{[I, A]}=I \cap \overline{[A, A]} .
$$

Brešar, Kissin, and Shulman show in Theorem 5.27 of [5] that $\overline{[L, A]}=$ $\overline{[\operatorname{Id}([L, A]), A]}$ for any Lie ideal L of A. In the theorem below we give a short proof of this important theorem:

Theorem 1.5. Let L be a Lie ideal of A. Then
(i) $\operatorname{Id}([L, A])=\overline{[L, A]+[L, A]^{2}}$.
(ii) $\overline{[\operatorname{Id}([L, A]), A]}=\overline{[L, A]}=\overline{[[L, A], A]}$.

Proof. (i) We follow a line of argument similar to the proof of Theorem 1.3 Let $M=[L, A]$ and $I=\operatorname{Id}([M, M])$. Let \widetilde{L} and \widetilde{M} denote the images of L and M in A / I by the quotient map. Then $[\widetilde{M},[\widetilde{M}, A / I]]=0$. By Herstein's theorem, $[\widetilde{M}, A / I]=0$; i.e., $[[\widetilde{L}, A / I], A / I]$. By Herstein's theorem again, $[\widetilde{L}, A / I]=0$; i.e., $[L, A] \subseteq I$. On the other hand, $I \subseteq \overline{M+M^{2}}=\overline{[L, A]+[L, A]^{2}}$, by Lemma 1.1. So,

$$
\operatorname{Id}([L, A]) \subseteq I \subseteq \overline{[L, A]+[L, A]^{2}} \subseteq C^{*}([L, A])
$$

Since $C^{*}([L, A]) \subseteq \operatorname{Id}([L, A])$, all these inclusions must be equalities.
(ii) By (i) and the linearizing property of $[\cdot, A]$ recalled in 1.1$]$, we have that

$$
[\operatorname{Id}([L, A]), A]=\left[\overline{[L, A]+[L, A]^{2}}, A\right] \subseteq \overline{[[L, A], A]} .
$$

Thus, $\overline{[\operatorname{Id}([L, A]), A]} \subseteq \overline{[[L, A], A]} \subseteq \overline{[L, A]}$. On the other hand,

$$
[L, A] \subseteq \operatorname{Id}([L, A]) \cap[A, A] \subseteq \overline{[\operatorname{Id}([L, A]), A]}
$$

(the second inclusion by Lemma 1.4). This completes the proof.
Lemma 1.6. Let L be a closed Lie ideal of A such that $\operatorname{Id}(L)=\operatorname{Id}([L, A])$ and $L \subseteq \overline{[A, A]}$. Then $L=\overline{[\operatorname{Id}(L), A]}$.

Proof. The inclusion $L \subseteq \overline{[\operatorname{Id}(L), A]}$ follows from $L \subseteq \overline{[A, A]} \cap \operatorname{Id}(L)$ and Lemma 1.4. As for the opposite inclusion, we have $\overline{\lceil\operatorname{Id}(L), A]}=\overline{[\operatorname{Id}([L, A]), A]}$, by assumption, and $\overline{[\operatorname{Id}([L, A]), A]} \subseteq L$, by Theorem 1.5 .

The following is an improvement on Theorem 1.5 (ii) obtained by the same technique:

Theorem 1.7. Let K and L be Lie ideals of A. Then $\overline{[K, L]}=\overline{[\operatorname{Id}([K, L]), A]}$.
Proof. Let $M=[K, L]$. Notice that M is again a Lie ideal (by Jacobi's identity). We will deduce that $\bar{M}=\overline{[\operatorname{Id}(M), A]}$ from the previous lemma. We clearly have that $\bar{M} \subseteq \overline{[A, A]}$. Let $I=\operatorname{Id}([M, A])$ and let $\widetilde{K}, \widetilde{L}$, and \widetilde{M} denote the images of K, L, and M in the quotient by this ideal. From $[\widetilde{M}, A / I]=0$ and $[\widetilde{K}, \widetilde{L}]=\widetilde{M}$ we get that $[[\widetilde{K}, \widetilde{L}], \widetilde{L}]=0$. By Herstein's theorem, $[\widetilde{K}, \widetilde{L}]=0$; i.e, $M=[K, L] \subseteq I$. It follows that $\operatorname{Id}(M)=\operatorname{Id}([M, A])$. By Lemma 1.6. $M=\overline{[\operatorname{Id}(M), A]}$, as desired.

REMARK 1.8. The arguments in Theorems $1.3,1.5$, and 1.7 rely crucially on the fact that the closed two-ideals of a C^{*}-algebra are semiprime. This makes it possible to apply Herstein's theorem in the quotient by a closed two-sided ideal. Turning to non-closed Lie ideals, if we impose the semiprimeness of a suitable non-closed two-sided ideal at the outset, part of those same arguments still goes through. We may obtain in this way, for instance, the following result: If L is a Lie ideal of A such that the two-sided ideal generated by $[[L, A],[L, A]]$ is semiprime then (i) $A[L, A] A=[L, A]+[L, A]^{2}$, and (ii) $\left.[A[L, A] A], A\right]=[[L, A], A]$. To get (i) we proceed as in Theorem 1.5 (i): Setting $M=[L, A]$ and $I=A[M, M] A$ and applying Herstein's theorem in A / I in much the same way as we did in Theorem $1.5(\mathrm{i})$ we arrive at $[L, A] \subseteq I$. We then have the inclusions $A[L, A] A \subseteq I \subseteq[L, A]+[L, A]^{2}$, which must in fact be equalities. To get (ii) we apply (i) and the linearizing property of $[\cdot, A]$:

$$
[A[L, A] A, A]=\left[[L, A]+[L, A]^{2}, A\right]=[[L, A], A]
$$

Next we discuss another variation on Theorem 1.5 for non-closed Lie ideals. This time we make use of the Pedersen ideal. Recall that the Pedersen ideal of a C^{*}-algebra is the smallest dense two-sided ideal of the algebra (see 5.6 of [17]). Given a C^{*}-algebra B, we denote its Pedersen ideal by $\operatorname{Ped}(B)$.

Lemma 1.9. Let I be a closed two-sided ideal of A. Then

$$
[\operatorname{Ped}(I), \operatorname{Ped}(I)]=[\operatorname{Ped}(I), A] .
$$

Proof. Let $P=\operatorname{Ped}(I)$. The subspace P^{2} is a dense two-sided ideal of I. Since P is the minimum such ideal, we must have that $P=P^{2}$. From $[P, A]=$ $\left[P^{2}, A\right]$ and the identity $[x y, a]=[x, y a]+[y, a x]$ we get that $\left[P^{2}, A\right] \subseteq[P, P]$.

Theorem 1.10. Let L be a Lie ideal of A and let $P=\operatorname{Ped}(\operatorname{Id}([L, A]))$. Then

$$
[P, P]=[L, P]=[[L, A], P] .
$$

Furthermore, if $L \subseteq P$ then $[L, A]=[P, P]$.
Proof. In the course of proving Theorem 1.5 we have shown that $\operatorname{Id}([L, A])=$ $\operatorname{Id}([[L, A],[L, A]])$. Therefore, the two-sided ideal $A[[L, A],[L, A]] A$ is dense in $\operatorname{Id}([L, A])$. Since P is the smallest such ideal, $P \subseteq A[[L, A],[L, A]] A$. Hence,

$$
[P, P] \subseteq[A[[L, A],[L, A]] A, P] \subseteq\left[[L, A]+[L, A]^{2}, P\right] \subseteq[[L, A], P] \subseteq[L, P]
$$

But $[L, P] \subseteq[P, P]$, by Lemma 1.9 . Thus, the inclusions above must be equalities.
Suppose now that $L \subseteq P$. Then $[L, P] \subseteq[L, A] \subseteq[P, A]=[P, P]$, the latter equality by Lemma 1.9 Since $[L, P]=[P, P]$, these inclusions must be equalities.

Corollary 1.11. Among the Lie ideals L such that $\overline{[L, A]}=\overline{[A, A]}$, the Lie ideal

$$
[\operatorname{Ped}(\operatorname{Id}([A, A])), \operatorname{Ped}(\operatorname{Id}([A, A]))]
$$

is the smallest.
Proof. Let $P=\operatorname{Ped}(\operatorname{Id}([A, A]))$. Then

$$
\begin{aligned}
\overline{[[P, P], A]} & =\overline{[[\operatorname{Id}([A, A]), \operatorname{Id}([A, A])], A]} \\
& =\overline{[[\operatorname{Id}([A, A]), A], A]}=\overline{[\operatorname{Id}([A, A]), A]}=\overline{[A, A]}
\end{aligned}
$$

The second equality holds by Lemma 1.4 and the third and fourth by Theorem 1.5 Thus, $[P, P]$ is a Lie ideal satisfying that $[L, A]=\overline{[A, A]}$.

Suppose now that L is a Lie ideal such that $\overline{[L, A]}=\overline{[A, A]}$. By Theorem 1.10 . $[P, P]=[L, P] \subseteq L$. So L contains $[P, P]$.

It seems possible that under some C^{*}-algebra regularity condition, such as A being pure (i.e, having almost unperforated and almost divisible Cuntz semigroup), it is the case that for every Lie ideal L there exists a two-sided—possibly non-closed-ideal I such that $[L, A]=[I, A]$ (in the language of [5], L and I are called commutator equal). At present, we do not even have an answer to the following question:

Question 1.12. Is there a C^{*}-algebra A and a Lie ideal L of A, such that $[L, A] \neq[I, A]$ for all two-sided (possibly non-closed) ideals I of A ?

We turn now to Lie ideals of $[A, A]$. A linear subspace $U \subseteq A$ is called a Lie ideal of $[A, A]$ if $[U,[A, A]] \subseteq U$. Herstein's Theorem 1.12 of [12] implies that if A is simple and unital then a Lie ideal of $[A, A]$ is automatically a Lie ideal of A (this holds for simple rings without 2-torsion). In Theorem 1.15 below we show that the simplicity assumption can be dropped for closed Lie ideals of $[A, A]$. The key of the argument is again to apply a theorem of Herstein (Lemma 1.14 below) in the quotient by a suitable closed two-sided ideal.

Lemma 1.13. Let U be a Lie ideal of $[A, A]$. Let $V=[U, U], W=[V, V]$, and $X=[W, W]$. Then $A[X, X] A \subseteq[U, U]+[U, U]^{2}$.

Proof. (Cf. Lemma 1.7 of [12].) In the following inclusions we make use of Jacobi's identity and the fact that U is a Lie ideal of $[A, A]$:

$$
\begin{aligned}
{[[U, U], A] } & \subseteq[U,[A, A]] \subseteq U \\
{[[U, U],[A, A]] } & \subseteq[[U,[A, A]], U] \subseteq[U, U]
\end{aligned}
$$

That is, $[V, A] \subseteq U$ and V is a Lie ideal of $[A, A]$. We deduce similarly that $[A, W] \subseteq V$ and that W and X are Lie ideals of $[A, A]$. Finally, since $V \subseteq[A, A]$ we have that $[V, V] \subseteq V$; i.e., $W \subseteq V$. We deduce similarly that $[X, X] \subseteq X$. Having made this preparatory remarks, we attack the lemma:

$$
[X, X] A \subseteq A[X, X]+[[X, X], A] \subseteq A[X, X]+X \subseteq A X+X
$$

Hence, $A[X, X] A \subseteq A X=A[W, W]$. Using now that $a\left[w_{1}, w_{2}\right]=\left[a w_{1}, w_{2}\right]-$ [$\left.a, w_{2}\right] w_{1}$ we get that

$$
A[W, W] \subseteq[A, W]+[A, W] W \subseteq V+V W \subseteq V+V^{2}
$$

Thus, $A[X, X] A \subseteq V+V^{2}$, as desired.
Lemma 1.14. Let U be a Lie ideal of $[A, A]$. If $[[U, U], A]=0$ then $[U, A]=0$.
Proof. See Theorem 1.11 of [12] for the case of simple rings without 2-torsion. See Exercise 17, page 344 of [21] for the extension to semiprime rings without 2torsion (e.g., C*-algebras).

THEOREM 1.15. A (norm) closed Lie ideal of $[A, A]$ is a Lie ideal of A.
Proof. Let U be a closed Lie ideal of $[A, A]$. Consider the sets $V=[U, U]$, $W=[V, V]$ and $X=[W, W]$. Let $I=\operatorname{Id}([X, X])$. Let \widetilde{U} denote the image of U in A / I by the quotient map. Define $\widetilde{V}, \widetilde{W}$, and \widetilde{X} similarly. Then $[\widetilde{X}, \widetilde{X}]=0$, which, by Lemma 1.14 , implies that $[\widetilde{X}, A / I]=0$. That is, $[[\widetilde{W}, \widetilde{W}], A / I]=0$. Again by Lemma 1.14 we get that $[\widetilde{W}, A / I]=0$. That is, $[[\widetilde{V}, \widetilde{V}], A / I]=0$. Two more applications of Lemma 1.14 then yield that $[\widetilde{U}, A / I]=0$. That is, $[U, A] \subseteq I$. Hence,

$$
\operatorname{Id}([U, A]) \subseteq I \subseteq \overline{[U, U]+[U, U]^{2}} \subseteq \operatorname{Id}([U, U])
$$

In the second inclusion we have used Lemma 1.13 . Since $\operatorname{Id}([U, U]) \subseteq \operatorname{Id}([U, A])$, all these must be equalities. Taking commutators with A and using (1.1) we get

$$
\overline{[\operatorname{Id}([U, A]), A]}=\overline{\left[[U, U]+[U, U]^{2}, A\right]}=\overline{[[U, U], A]} \subseteq U
$$

Lemma 1.4, on the other hand, implies that

$$
[U, A] \subseteq \operatorname{Id}([U, A]) \cap \overline{[A, A]}=\overline{[\operatorname{Id}([U, A]), A]} .
$$

Hence, $[U, A] \subseteq U$; i.e., U is a Lie ideal of A.

2. NILPOTENTS AND POLYNOMIALS

In this section we look at closed Lie ideals spanned by nilpotents and by the range of polynomials.

For each natural number $k \geqslant 2$ let N_{k} denote the set of nilpotent elements of A of order exactly k. Since the set N_{k} is invariant by unitary conjugation (and by similarity), the closed subspace $\overline{\operatorname{span}\left(N_{k}\right)}$ is a Lie ideal of A (see 17] and Theorem 2.6 below).

The following lemma is surely well known:
Lemma 2.1. Every element of N_{k} is a sum of $k-1$ commutators for all $k \geqslant 2$.
Proof. Let x be a nilpotent of order at most k (i.e., in $\bigcup_{j \leqslant k} N_{j}$). Let $x=v|x|$ be the polar decomposition of x in $A^{* *}$. Let $\widetilde{x}=|x|^{1 / 2} v|x|^{1 / 2}$ (the Aluthge transform of x). Observe that $x=\left[v|x|^{1 / 2},|x|^{1 / 2}\right]+\tilde{x}$. Also,

$$
\tilde{x}^{k-1}\left(\tilde{x}^{k-1}\right)^{*}=|x|^{1 / 2} x^{k-1} v^{*}\left(x^{k-2}\right)^{*}|x|^{1 / 2}=0,
$$

where we have used that $|x|^{1 / 2} x^{k-1}=0\left(\right.$ since $|x|^{1 / 2} \in C^{*}\left(x^{*} x\right)$ and $\left(x^{*} x\right) x^{k-1}=$ 0). Thus \widetilde{x} is a nilpotent of order at most $k-1$. Continuing this process inductively we arrive at the desired result.

For each $k \in \mathbb{N}$ let I_{k} denote the intersection of the kernels of all representations of A of dimension at most k. Notice that $I_{1}=\operatorname{Id}([A, A])$ and that $I_{1} \supseteq I_{2} \supseteq \cdots$. It is not hard to show that I_{k} is the smallest closed two-sided ideal the quotient by which is a k-subhomogeneous C^{*}-algebra (i.e., one whose irreducible representations are at most k-dimensional).

Theorem 2.2. $\overline{\operatorname{span}\left(N_{k}\right)}=\overline{\left[I_{k-1}, A\right]}$ for all $k \geqslant 2$.
Proof. It is well known that $\operatorname{Id}\left(N_{k}\right)=I_{k-1}$ (e.g., see Lemma 6.1.3 of [3]). We must then show that $\overline{\operatorname{span}\left(N_{k}\right)}=\overline{\left[\operatorname{Id}\left(N_{k}\right), A\right]}$. Let $I=\operatorname{Id}\left(\left[N_{k}, A\right]\right)$. Let $x \in N_{k}$. Since $[x, A] \subseteq I$, the quotient map sends x to the center of A / I. But the center, being a commutative C^{*}-algebra, cannot contain nonzero nilpotents. Thus, $x \in I$. This shows that $N_{k} \subseteq \operatorname{Id}\left(\left[N_{k}, A\right]\right)$. On the other hand, $N_{k} \subseteq[A, A]$ by Lemma 2.1 . Thus, $\overline{\operatorname{span}\left(N_{k}\right)}=\overline{\left[\operatorname{Id}\left(N_{k}\right), A\right]}$ by Lemma 1.6

Corollary 2.3. $\overline{\operatorname{span}\left(N_{2}\right)}=\overline{[A, A]}$.
Proof. The previous theorem implies that $\overline{\operatorname{span}\left(N_{2}\right)}=\overline{[\operatorname{Id}([A, A]), A]}$. On the other hand, $\overline{\operatorname{Id}([A, A]), A]}=\overline{[A, A]}$, by Theorem 1.5 (ii) applied with $L=A$.

The following corollary is merely a restatement of Corollary 2.3
Corollary 2.4. A positive bounded functional on A is a trace if and only if it vanishes on N_{2}.

QUESTION 2.5. Is $[A, A]=\operatorname{span}\left(N_{2}\right)$? Is $\operatorname{span}\left(N_{2}\right)$ a Lie ideal?

We will return to these questions in Section 4
Combining Corollary 2.3 and Theorem 1.15 of the previous section we can prove the following C^{*}-algebraic version of a theorem of Amitsur for simple rings ([1], Theorem 1):

THEOREM 2.6. A closed subspace U of A is a Lie ideal if and only if $(1+x) U(1-$ $x) \subseteq U$ for all $x \in N_{2}$.

Proof. Say U is a Lie ideal. Let $u \in U$ and $x \in N_{2}$. Then

$$
(1+x) u(1-x)=u+[x, u]+\frac{1}{2}[x,[x, u]] \in U
$$

Suppose now that $(1+x) U(1-x) \subseteq U$ for all $x \in N_{2}$. Let $u \in U$ and $x \in N_{2}$. Then

$$
\begin{aligned}
& {[x, u]-x u x=(1+x) u(1-x)-u \in U,} \\
& {[x, u]+x u x=-(1-x) u(1+x)+u \in U .}
\end{aligned}
$$

Hence $[u, x] \in U$. That is, $\left[U, N_{2}\right] \subseteq U$. Passing to the span of N_{2} and taking closure we get from Corollary 2.3 that $[U,[A, A]] \subseteq U$. That is, U is a closed Lie ideal of $[A, A]$. By Theorem $1.15, U$ is a Lie ideal of A.

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in noncommuting variables with coefficients in \mathbb{C}. Let us denote by $f(A, \ldots, A)$, or $f(A)$ for short, the range of f on A. (If A is non-unital we assume that f has no independent term.) Since the set $f(A)$ is invariant by similarity, $\overline{\operatorname{span}(f(A))}$ is a Lie ideal. It is shown in Theorem 2.3 of [6] that even $\operatorname{span}(f(A))$ is Lie ideal.

In the sequel by a polynomial we always understand a polynomial in noncommuting variables with coefficients in \mathbb{C}.

Recall that for each $k \in \mathbb{N}$ we let I_{k} denote the intersection of the kernels of all representations of A of dimension at most k. In the following theorem we use the conventions $I_{0}=A$ and $M_{0}(\mathbb{C})=\{0\}$. We regard every polynomial as an identity on $M_{0}(\mathbb{C})$. By a nonconstant polynomial we mean one with positive degree in at least one of its variables.

THEOREM 2.7. Let f be a nonconstant polynomial. Suppose that $f(A) \subseteq \overline{[A, A]}$. Then $\overline{\operatorname{span}(f(A))}=\overline{\left[I_{k}, A\right]}$, where $k \geqslant 0$ is the largest number such that f is an identity on $M_{k}(\mathbb{C})$ (such a number must exist since no polynomial is an identity on all matrix algebras).

Proof. Let $I=\operatorname{Id}([f(A), A])$. Then A / I is a subhomogeneous C^{*}-algebra, since it satisfies the (nontrivial) polynomial identity $\left[f\left(x_{1}, \ldots, x_{n}\right), y\right]$ (see Proposition IV.1.4.6 of [4]). The range of f on A / I is both in the center of A / I and in $\overline{[A / I, A / I]}$, as $f(A) \subseteq \overline{[A, A]}$. But in a subhomogeneous C^{*}-algebra the center and the closure of the span of the commutators have zero intersection (since this is true in every finite dimensional representation). Hence, $f(A / I)=\{0\}$; i.e.,
$f(A) \subseteq I$. Thus, $\operatorname{Id}(f(A))=I=\operatorname{Id}([f(A), A])$. By assumption, we also have that $f(A) \subseteq \overline{[A, A]}$. It follows that $\overline{\operatorname{span}(f(A))}=\overline{[I, A]}$ by Lemma 1.6

Let us now show that $I=I_{k}$, with $k \geqslant 0$ as in the statement of the theorem. Let $\pi: A \rightarrow M_{l}(\mathbb{C})$ be a representation of A with $l \leqslant k$. By assumption, $f\left(M_{l}(\mathbb{C})\right)=\{0\}$. Hence, $f(A) \subseteq \operatorname{ker} \pi$, and so $I=\operatorname{Id}(f(A)) \subseteq \operatorname{ker} \pi$. Since, by definition, I_{k} is the intersection of the kernels of all such π, we get that $I \subseteq I_{k}$. To prove the opposite inclusion notice first that A / I must be a k subhomogeneous C^{*}-algebra. For suppose that there exists an irreducible representation $\pi: A / I \rightarrow M_{m}(\mathbb{C})$, with $m>k$. Since f is an identity on A / I and π is onto, we get that f is an identity on $M_{m}(\mathbb{C})$. This contradicts our choice of k. Hence, every irreducible representation of A / I has dimension at most k; i.e., A / I is k-subhomogeneous. Since I_{k} may be alternatively described as the smallest closed two-sided ideal the quotient by which is k-subhomogeneous, $I_{k} \subseteq I$.

Let s_{k} denote the standard polynomial in k noncommuting variables. That is,

$$
s_{k}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)},
$$

where S_{k} denotes the symmetric group on k elements. The Amitsur-Levitzky theorem states that $s_{2 k}$ is a polynomial identity of minimal degree on $M_{k}(\mathbb{C})$ [2]. Define $\pi_{1}(x, y)=[x, y]$ and

$$
\pi_{k+1}\left(x_{1}, \ldots, x_{2^{k+1}}\right)=\left[\pi_{k}\left(x_{1}, \ldots, x_{2^{k}}\right), \pi_{k}\left(x_{2^{k}+1}, \ldots, x_{2^{k+1}}\right)\right]
$$

for all $k \geqslant 1$. The following two special cases of the previous theorem are worth remarking upon:

Corollary 2.8. $\overline{\operatorname{span}\left(\sigma_{2 k}(A)\right)}=\overline{\left[I_{k}, A\right]}$ and $\overline{\operatorname{span}\left(\pi_{k}(A)\right)}=\overline{[A, A]}$ for all $k \geqslant 1$.

Proof. Let $k \in \mathbb{N}$. It is well known that $s_{2 k}$ is expressible as a sum of commutators in the algebra of polynomials in $2 k$ noncommuting variables. Hence, $s_{2 k}(A) \subseteq[A, A]$. We can thus apply Theorem 2.7 to $s_{2 k}$. By the Amitsur-Levitsky theorem, $s_{2 k}$ is a polynomial identity of $M_{k}(\mathbb{C})$ but not of $M_{k+1}(\mathbb{C})$. Thus, by Theorem 2.7, $\overline{\operatorname{span}\left(\sigma_{2 k}(A)\right)}=\overline{\left[I_{k}, A\right]}$.

The polynomial π_{k} is an identity on \mathbb{C} but not on $M_{2}(\mathbb{C})$. (In fact, by Theorem 2 of [13], if π_{k} is a polynomial identity on a semiprime ring without 2 -torsion then the ring must be commutative.) Thus, by Theorem $2.7, \overline{\operatorname{span}\left(\pi_{k}(A)\right)}=$ $\overline{[A, A]}$.

Let's now give a characterization of the polynomials whose range is contained in $\overline{[A, A]}$. Following [6], we say that two polynomials f and g (in noncommuting variables, with coefficients in \mathbb{C}) are cyclically equivalent if $f-g$ is a sum of commutators in the ring $\mathbb{C}\left(X_{1}, X_{2}, \ldots\right)$ of polynomials in noncommuting variables. If a polynomial is cyclically equivalent to 0 then its range is clearly in $\overline{[A, A]}$. On the other hand, if A has no bounded traces then $A=\overline{[A, A]}$ (see
[8]) and so any polynomial has range in $\overline{[A, A]}$. The general case is a mixture of these two. In the following theorem we maintain the conventions that $I_{0}=A$, $M_{0}(\mathbb{C})=\{0\}$, and that every polynomial is an identity on $M_{0}(\mathbb{C})$.

THEOREM 2.9. Let $k \geqslant 0$ be the smallest number such that the closed two-sided ideal I_{k} has no bounded traces (set $k=\infty$ if this is never the case). Let f be a nonconstant polynomial.
(i) If $k=\infty$ then $f(A) \subseteq \overline{[A, A]}$ if and only if f is cyclically equivalent to 0 .
(ii) If $k<\infty$ then $f(A) \subseteq \overline{[A, A]}$ if and only if f is cyclically equivalent to a polynomial identity on $M_{k}(\mathbb{C})$.

Proof. Let us first prove the forward implications. If f is cyclically equivalent to 0 then clearly $f(A) \subseteq \overline{[A, A]}$. Suppose that $k<\infty$ and that f is cyclically equivalent to a polynomial g which is an identity on $M_{k}(\mathbb{C})$. Then $g(A) \subseteq I_{k}$ and $I_{k}=\overline{\left[I_{k}, I_{k}\right]}$, since I_{k} has no bounded traces. Thus, $g(A) \subseteq \overline{[A, A]}$. But $(f-g)(A) \subseteq[A, A]$. Thus, $f(A) \subseteq \overline{[A, A]}$, as desired.

Let us suppose now that $f(A) \subseteq \overline{[A, A]}$. We will follow closely the proof of Theorem 4.5 in [6] where the result is obtained for the range of polynomials on matrix algebras. If the independent term of f is nonzero then $1 \in f(A) \subseteq \overline{[A, A]}$. Hence, A has no bounded traces; i.e., $k=0$. Since, by convention, any polynomial is an identity on $M_{0}(\mathbb{C})$, we are done. Let us assume now that f has no independent term. Let $f=\sum_{i=1}^{m} f_{i}$ be the decomposition of f into multihomogeneous polynomials. Then, by the proof of Theorem 2.3 in [6], $f_{i}(A) \subseteq \operatorname{span}(f(A))$ for all i. This reduces the proof to the case that f is multihomogeneous. We prove the theorem for multihomogeneous polynomials by induction on the smallest degree of its variables. Suppose that the degree of f on x_{1} is 1 . Then f is cyclically equivalent to a polynomial of the form $x_{1} g\left(x_{2}, \ldots, x_{n}\right)$. Hence $\operatorname{Ag}(A) \subseteq \overline{[A, A]}$, which in turn implies that $\operatorname{Id}(g(A)) \subseteq \overline{[A, A]}$. If g is 0 , then f is cyclically equivalent to 0 and we are done. If g is constant and nonzero, then $A=\operatorname{Id}(g(A)) \subseteq \overline{[A, A]}$. That is, $A=\overline{[A, A]}, k=0$, and f is an identity on $M_{0}(\mathbb{C})$; again we are done. If g is nonconstant then $\operatorname{Id}(g(A))=I_{k^{\prime}}$ for some k^{\prime} and furthermore g is an identity on $M_{k^{\prime}}(\mathbb{C})$ (see the proof of Theorem 2.7). From $I_{k^{\prime}} \subseteq \overline{[A, A]}$ and Lemma 1.4 we deduce that $I_{k^{\prime}}=\overline{\left[I_{k^{\prime}}, I_{k^{\prime}}\right]}$. Hence, $I_{k^{\prime}}$ has no bounded traces; i.e., $k^{\prime} \geqslant k$. It follows that g is an identity on $M_{k}(\mathbb{C})$, and since $f=x_{1} g$, so is f. This completes the first step of the induction.

Suppose now that $f\left(x_{1}, \ldots, x_{n}\right)$ is a multihomogeneous polynomial whose variable of smallest degree, x_{n}, has degree d, with $d>1$. Consider the polynomial

$$
\begin{aligned}
& g\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{n-1}, x_{n}+x_{n+1}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n+1}\right)-f\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Then $g(A) \subseteq \overline{[A, A]}$ and the degree of g on x_{n} is less than d. By induction, g is cyclically equivalent to a polynomial identity on $M_{k}(\mathbb{C})$ (if $k<\infty$) or cyclically
equivalent to 0 (if $k=\infty$). Since $f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2^{d}-2} g\left(x_{1}, \ldots, x_{n}, x_{n}\right)$, the same holds for f.

3. FINITE SUMS AND SUMS OF PRODUCTS

Recall the following basic fact: a dense two-sided ideal in a unital C^{*}-algebra must agree with the whole C^{*}-algebra (because it would intersect the ball of radius one centered at the unit, all whose elements are invertible). It follows that if A is unital and $A=\operatorname{Id}(X)$ then $A=A X A$. Here we exploit this fact to obtain quantitative versions of some of the results from the previous sections.

Theorem 3.1. Let A be unital and let L be a Lie ideal of A such that $\operatorname{Id}([L, A])=$ A. Suppose that L is linearly spanned by a set $\Gamma \subseteq A$; i.e., $L=\operatorname{span}(\Gamma)$. Suppose furthermore that there exists $M \in \mathbb{N}$ such that for all $l \in \Gamma$ and $z \in A$ the commutator $[l, z]$ is a linear combination of at most M elements of the set Γ. The following are true:
(i) There exists N such that every element of A is expressible as a linear combination of N elements of Γ and N products of two elements of Γ.
(ii) There exists K such that every single commutator $[x, y]$ in A is expressible as a linear combination of K elements of Γ.

Proof. We have shown that $\operatorname{Id}([L, A])=\operatorname{Id}([L, L])$ in the proof of Theorem 1.5 (i). (Indeed, after setting $I=\operatorname{Id}([[L, A],[L, A]])$, we proceeded to show that $[L, A] \subseteq I$, which implies that $\operatorname{Id}([L, A]) \subseteq I \subseteq \operatorname{Id}([L, L])$. Clearly, these inclusions must be equalities.) Therefore, $A=\operatorname{Id}([L, L])=\operatorname{Id}([\Gamma, \Gamma])$. Since A is unital, it is algebraically generated as a two-sided ideal by $[\Gamma, \Gamma]$. Hence,

$$
1=\sum_{i=1}^{n} x_{i}\left[k_{i}, l_{i}\right] y_{i}
$$

for some $x_{i}, y_{i} \in A$ and $k_{i}, l_{i} \in \Gamma$. Let $a \in A$. Then

$$
a=\sum_{i=1}^{n}\left(a x_{i}\right)\left[k_{i}, l_{i}\right] y_{i}
$$

It suffices to show that each term of the sum on the right is a linear combination of a fixed number of elements of Γ and of products of two elements of Γ. We have the following identity (derived from the arguments in the proof of Lemma $1.1(\mathrm{i})$):

$$
x[l, m] y=[x y l, m]-[x y, m] l+[x m,[y, l]]-[x,[y, l]] m+[x l,[m, y]]-[x,[m, y]] l,
$$

for all $x, y \in A$ and $l, m \in \Gamma$. Observe that each of the terms on the right side are of either one of the following forms: $[z, l],[z, l] l^{\prime},\left[z,\left[z^{\prime}, l\right]\right]$, or $\left[z,\left[z^{\prime}, l\right]\right] l^{\prime}$, where $z, z^{\prime} \in$ A and $l, l^{\prime} \in \Gamma$. Recall now that, by assumption, the commutators $[z, l]$, with $z \in A$ and $l \in \Gamma$, are expressible as linear combinations of at most M elements of Γ. This implies that elements of either one of the forms mentioned before are
linear combinations of either M or M^{2} elements of Γ or products of two elements of Γ.
(ii) Let $x \in A$. By (i), $x=\sum_{i=1}^{N} \lambda_{i} l_{i}+\sum_{i=1}^{N} \mu_{i} m_{i} n_{i}$ for some scalars λ_{i}, μ_{i} and some $l_{i}, m_{i}, n_{i} \in \Gamma$. Let $y \in A$. Then,

$$
[x, y]=\sum_{i=1}^{N} \lambda_{i}\left[l_{i}, y\right]+\sum_{i=1}^{N} \mu_{i}\left[m_{i}, n_{i} y\right]+\sum_{i=1}^{N} \mu_{i}\left[n_{i}, y m_{i}\right] .
$$

Appealing to the fact that every commutator of the form $[l, z]$, with $l \in \Gamma$ and $z \in A$ is a linear combination of at most M elements of Γ, we deduce that the right side is a linear combination of $3 M N$ elements of Γ.

THEOREM 3.2. Let A be unital and without 1-dimensional representations. Then there exists $N \in \mathbb{N}$ such that every element of A is expressible as a sum of the form

$$
\sum_{i=1}^{N}\left[a_{i}, b_{i}\right]+\sum_{i=1}^{N}\left[c_{i}, d_{i}\right] \cdot\left[c_{i}^{\prime}, d_{i}^{\prime}\right] .
$$

Proof. The quotient $A / \operatorname{Id}([A, A])$ is a commutative C^{*}-algebra. If it were nonzero, it would have non-trivial 1-dimensional representations. But we have asssumed that A has no 1-dimensional representations, Thus, $A=\operatorname{Id}([A, A])$. The previous theorem is then applicable to $L=[A, A]$ and $\Gamma=\{[x, y]: x, y \in A\}$, yielding the desired result.

We can link the constant N in Theorem 3.2 to a certain notion of "divisibility" studied in [19]. A unital C^{*}-algebra A is called weakly $(2, N)$-divisible if there exist $x_{1}, \ldots, x_{N} \in N_{2}$ and $d_{1}, \ldots, d_{N} \in A$ such that

$$
1=\sum_{i=1}^{N} d_{i}^{*} x_{i}^{*} x_{i} d_{i}
$$

(The definition of weakly $(2, N)$-divisible in [19] is in terms of the Cuntz semigroup of A but can be seen to be equivalent to this one.) A unital C^{*}-algebra without 1-dimensional representations must be weakly $(2, N)$-divisible for some N ([19], Corollary 5.4). This fact, combined with the following proposition, gives another proof of Theorem 3.2 .

Proposition 3.3. If A is unital and weakly $(2, N)$-divisible then every element of A is expressible as a sum of the form $\sum_{i=1}^{N}\left[a_{i}, b_{i}\right]+\sum_{i=1}^{N}\left[c_{i}, d_{i}\right] \cdot\left[c_{i}^{\prime}, d_{i}^{\prime}\right]$.

Proof. Suppose that $1=\sum_{i=1}^{N} d_{i}^{*} x_{i}^{*} x_{i} d_{i}$, with $x_{i} \in N_{2}$ for all i. Let $a \in A$. Then

$$
a=\left(\sum_{i=1}^{N} d_{i}^{*} x_{i}^{*} x_{i} d_{i}\right) \cdot a=\sum_{i=1}^{N}\left[d_{i}^{*} x_{i}^{*}, x_{i} d_{i} a\right]+\sum_{i=1}^{N} x_{i} d_{i} a d_{i}^{*} x_{i}^{*}
$$

It thus suffices to show that $x b x^{*}$ is a product of 2 commutators for all $x \in N_{2}$ and $b \in A$. Say $x=v|x|$ is the polar decomposition of x in $A^{* *}$. Then $x b x^{*}=$ $\left(x b|x|^{1 / 2}\right) \cdot|x|^{1 / 2} v^{*}$. But both $x b|x|^{1 / 2}$ and $|x|^{1 / 2} v^{*}$ belong to N_{2}. (Let us prove this for the latter: We have $|x|^{1 / 2} \in C^{*}\left(x^{*} x\right) \subseteq \overline{|x| A x}$. Multipliying by v on the left we get that $v|x|^{1 / 2} \in \overline{x A x}$. Since x is a square zero element, we deduce that $v|x|^{1 / 2}$, and its adjoint, are square zero elements as well.) By Lemma 2.1. both $x b|x|^{1 / 2}$ and $|x|^{1 / 2} v^{*}$ are commutators.

REmARK 3.4. If $1 \in B \subseteq A$ and B is weakly $(2, N)$-divisible then so is A. This observation can be used to find upper bounds on N for specific examples (e.g., when B is a dimension drop C^{*}-algebra; see Example 3.12 of [19]).

Let $P \subseteq A$ denote the set of projections of A. Let us apply Theorem 3.1 to $\operatorname{span}(P)$. To see that this is a Lie ideal, recall that the linear span of the idempotents is Lie ideal and that, by a theorem of Davidson (see paragraph after Theorem 4.2 of [15]), every idempotent is a linear combination of five projections. In Davidson's theorem, the number of projections can be reduced to four:

Lemma 3.5. Every idempotent of A is a linear combination of four projections.
Proof. Let $e \in A$ be an idempotent and let $p \in A$ denote its range projection. Then $e=p+x$, with $x \in p A(1-p)$. Let us show that x is a linear combination of three projections. It suffices to assume that $\|x\|<\frac{1}{2}$. For each $x \in p A(1-p)$ such that $\|x\|<\frac{1}{2}$ let us define

$$
q(x)=\left(\begin{array}{cc}
\frac{1+\sqrt{1-4 x x^{*}}}{2} & x \\
x^{*} & \frac{1-\sqrt{1-4 x^{*} x}}{2}
\end{array}\right) \in\left(\begin{array}{cc}
p A p & p A(1-p) \\
(1-p) A p & (1-p) A(1-p)
\end{array}\right) .
$$

A straightforward computation shows that $q(x)$ is a projection and, furthermore, that

$$
x=\frac{1+\mathrm{i}}{4} q(x)+\frac{-1+\mathrm{i}}{4} q(-x)-\frac{\mathrm{i}}{2} q(\mathrm{i} x) .
$$

THEOREM 3.6. Suppose that the C^{*}-algebra A is unital and that $\operatorname{Id}([P, A])=A$. The following are true:
(i) There exists N such that every element of A is expressible as a linear combination of N projections and N products of two projections.
(ii) There exists K such that every commutator $[x, y]$, with $x, y \in A$, is expressible as a linear combination of K projections.

Proof. Both (i) and (ii) will follow once we show that Theorem 3.1 is applicable to the Lie ideal span (P) and the generating set P. It suffices to show that a commutator of the form $[p, z]$, with p a projection, is a linear combination of projections with a uniform bound on the number of terms. But

$$
[p, z]=(p+p z(1-p))-(p+(1-p) z p)
$$

where $p+p z(1-p)$ and $p+(1-p) z p$ are idempotents. Each of them is a linear combination of four projections by Lemma 3.5

REMARK 3.7. If B is a unital C^{*}-subalgebra of A and $\operatorname{Id}\left(\left[P_{B}, B\right]\right)=B$, then

$$
1=\sum_{i=1}^{n} x_{i}\left[p_{i}, q_{i}\right] z_{i}
$$

for $x_{i}, y_{i}, z_{i} \in B$ and projections $p_{i}, q_{i} \in P_{B}$. It follows that the constants N and K that one finds for B following the proof of Theorem 3.1 applied to $L=\operatorname{span}\left(P_{B}\right)$ also work for the C^{*}-algebra A. This observation can be used to obtain concrete estimates of these constants in cases where B is rather simple.

An element of a C^{*}-algebra is called full if it generates the C^{*}-algebra as a closed two-sided ideal. Recall also that a unital C^{*}-algebra is said to have real rank zero if its invertible selfadjoint elements are dense in the set of selfadjoint elements. By Theorem V.7.3 of [9], this is equivalent to asking that every hereditary C^{*}-subalgebra of A has an approximate unit consisting of projections.

COROLLARY 3.8. Suppose that A is unital and either contains two full orthogonal projections or has real rank zero and no 1-dimensional representations. Then there exist N and K such that (i) and (ii) of the previous theorem hold for A.

Proof. Let us show in both cases that $\operatorname{Id}([P, A])=A$.
Say p is a projection such that p and $1-p$ are full; i.e, $A=\operatorname{Id}(p)=\operatorname{Id}(1-p)$. Then

$$
A=\operatorname{Id}(p) \cdot \operatorname{Id}(1-p)=\overline{A p A(1-p) A}=\operatorname{Id}(p A(1-p))
$$

On the other hand, $\operatorname{Id}(p A(1-p))=\operatorname{Id}([p, A])$. Indeed,

$$
p A(1-p)=[p, A](1-p) \subseteq \operatorname{Id}([p, A])
$$

and conversely

$$
[p, A]=\{p a(1-p)-(1-p) a p: a \in A\} \subseteq \operatorname{Id}(p A(1-p))
$$

(We have $(1-p) a p \in \operatorname{Id}(p A(1-p))$ since closed two-sided ideals are selfadjoint.) Hence, $A=\operatorname{Id}(p A(1-p))=\operatorname{Id}([p, A])$, as desired.

Suppose now that A has real rank zero and no 1-dimensional representations, i.e., $A=\operatorname{Id}([A, A])$. Since $\operatorname{Id}([A, A])=\operatorname{Id}\left(N_{2}\right)$ (where, as before, N_{2} denotes the set of nilpotents of order two), $A=\operatorname{Id}\left(N_{2}\right)$. Furthermore, since A is unital there exist $x_{1}, \ldots, x_{n} \in N_{2}$ such that $A=\operatorname{Id}\left(x_{1}, \ldots, x_{n}\right)$, for it suffices to choose these elements such that $\sum_{i=1}^{n} a_{i} x_{i} b_{i}$ is invertible for some $a_{i}, b_{i} \in A$. Since A has real rank-zero, the hereditary subalgebras $\overline{x_{i}^{*} A x_{i}}$ have approximate units consisting of projections for all i. Using this, we can find projections $p_{i} \in \bar{x}_{i}^{*} A x_{i}$ for $i=1, \ldots, n$ such that $A=\operatorname{Id}\left(p_{1}, \ldots, p_{n}\right)$. We claim that p_{i} is Murray-von Neumann subequivalent to $1-p_{i}$ for all i. To prove this, let $x_{i}=v_{i}\left|x_{i}\right|$ be the polar decomposition of x_{i} in $A^{* *}$. Since $p_{i} \in \overline{x_{i}^{*} A x_{i}}$ we have $p_{i} \leqslant v_{i}^{*} v_{i}$. On the other hand,
$x_{i}^{2}=0$ implies that $v_{i}^{*} v_{i}$ and $v_{i} v_{i}^{*}$ are orthogonal projections. Hence, $v_{i} v_{i}^{*} \leqslant 1-p_{i}$. It follows that $p_{i}=\left(p_{i} v_{i}^{*}\right)\left(v_{i} p_{i}\right)$ and $\left(v_{i} p_{i}\right)\left(p_{i} v_{i}^{*}\right)=v_{i} p_{i} v_{i}^{*} \leqslant v_{i} v_{i}^{*} \leqslant 1-p_{i}$. This proves the claim. We now have that $\operatorname{Id}\left(p_{i}\right) \subseteq \operatorname{Id}\left(1-p_{i}\right)$ for all $i=1, \ldots, n$. Hence,

$$
\operatorname{Id}\left(p_{i}\right)=\operatorname{Id}\left(p_{i}\right) \cdot \operatorname{Id}\left(1-p_{i}\right)=\operatorname{Id}\left(p_{i} A\left(1-p_{i}\right)\right)=\operatorname{Id}\left(\left[p_{i}, A\right]\right)
$$

for all $i=1, \ldots, n$. So $A=\operatorname{Id}\left(p_{1}, \ldots, p_{n}\right)=\operatorname{Id}\left(\left[p_{1}, A\right], \ldots,\left[p_{n}, A\right]\right)$, as desired.
Next we turn to the Lie ideals generated by polynomials already investigated in the previous section. As before, by a polynomial we understand a polynomial in noncommuting variables with coefficients in \mathbb{C}.

Theorem 3.9. Let $k \in \mathbb{N}$. Suppose that the C^{*}-algebra A is unital and has no representations of dimension less than or equal to k. Let f be a nonconstant polynomial such that $f(A) \subseteq \overline{[A, A]}$ and which is not a polynomial identity on $M_{k}(\mathbb{C})$. The following are true:
(i) There exists N such that each element of A is expressible as a linear combination of N values of f on A and N products of two values of f on A.
(ii) There exists K such that each commutator $[x, y]$ in A is expressible as a linear combination of K values of f on A.

Proof. Both (i) and (ii) will follow from Theorem 3.1 applied to the Lie ideal $\operatorname{span}(f(A))$, with generating set $f(A)$, once we show the hypotheses of that theorem are valid in this case.

Since all representations of A have dimension at least $k+1$, we have $A=$ I_{k}, where I_{k} is as defined in the previous section. Also, by the proof of Theorem 2.7. $\operatorname{Id}(f(A))=I_{k^{\prime}}$, where k^{\prime} is the largest number such that f is an identity on $M_{k^{\prime}}(\mathbb{C})$. But f is not an identity on $M_{k}(\mathbb{C})$, so we must have that $k^{\prime} \leqslant k$. Hence $\operatorname{Id}(f(A))=A$. Furthermore, as argued in the proof of Theorem 2.7 . $\operatorname{Id}([f(A), A])=\operatorname{Id}(f(A))$. Thus, $A=\operatorname{Id}([f(A), A])$.

To complete the proof, it remains to show that there is a uniform bound on the number of terms expressing a commutator $[f(\bar{a}), y]$ as a linear combination of elements of $f(A)$. This is indeed true, and can be derived from the proof of Theorem 2.3 in [6] (showing that $\operatorname{span}(f(A))$ is a Lie ideal). We only sketch the argument here: Say $f=\sum_{i=1}^{m} f_{i}$ is the decomposition of f into a sum of multihomogeneous polynomials. Then, as argued in the proof of Theorem 2.3 in [6], relying on Lemma 2.2 of [6], each evaluation $f_{i}(\bar{a})$ is expressible as a linear combination of at most $(d+1)^{n}$ values of f. Here d is the maximum of the degrees of f on its variables and n the number of variables. It thus suffices to prove the desired result for each f_{i}, or put differently, to assume that f is multihomogeneous. If f is a constant polynomial then $[f(\bar{a}), y]=0$ and the desired conclusion holds trivially. Let us assume that f is multihomogeneous and has nonzero degree. We can furthermore reduce ourselves to the multilinear case. For suppose that f has
degree $d>1$ on x_{n}. Let
$g\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(x_{1}, \ldots, x_{n-1}, x_{n}+x_{n+1}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n+1}\right)-f\left(x_{1}, \ldots, x_{n}\right)$.
Then the degree of g on x_{n} is less than d and $f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2^{d}-2} g\left(x_{1}, \ldots, x_{n}, x_{n}\right)$. This reduces the proof to g. Continuing in this way, we arrive at a multilinear polynomial. Finally, if f is multilinear then the identity
$\left[f\left(a_{1}, \ldots, a_{n}\right), y\right]=f\left(\left[a_{1}, y\right], \ldots, a_{n}\right)+f\left(a_{1},\left[a_{2}, y\right], \ldots, a_{n}\right)+\cdots+f\left(a_{1}, \ldots,\left[a_{n}, y\right]\right)$
shows that there is a uniform bound on the number of terms expressing $[f(\bar{a}), y]$ as a linear combination of values of f.

A theorem of Pop ([18], Theorem 1) says that if A is unital and without bounded traces then there exists $M \in \mathbb{N}$ such every element of A is a sum of M commutators. Combining this with the previous theorem yields the following corollary:

Corollary 3.10. Let A be unital and without bounded traces. Let f be a nonconstant polynomial. Then there exists $N \in \mathbb{N}$ such that each element of A is expressible as a linear combination of N values of f on A.

Proof. Since A has no bounded traces it has no finite dimensional representations. Hence $I_{k}=A$ for all $k \in \mathbb{N}$. Furthermore, $f(A) \subseteq A=\overline{[A, A]}$ by Pop's theorem. Thus, by the preceding theorem, every commutator is a linear combination of K values of f. On the other hand, every element of A is a sum of M commutators (by Pop's theorem). So every element of A is a linear combination of $K M$ values of f.

In [7], Brešar and Klep reach the conclusion of the preceding corollary for $K(H)$ and $B(H)$ (the compact and bounded operators on a Hilbert space) and for certain rings obtained as tensor products.

Next we construct examples showing that if $f(\mathbb{C})=\{0\}$ then the number N in Corollary 3.10 can be arbitrarily large. Taking $f(x, y)=[x, y]$ this shows that in Pop's theorem the number of commutators can be arbitrarily large. Taking $f\left(x_{1}, \ldots, x_{6}\right)=\left[x_{1}, x_{2}\right]+\left[x_{3}, x_{4}\right] \cdot\left[x_{5}, x_{6}\right]$ this shows that the N in Theorem 3.2 can be arbitrarily large as well.

EXAMPLE 3.11. Let f be a polynomial in n noncommuting variables such that $f(\mathbb{C})=\{0\}$. Let $K \in \mathbb{N}$. We will construct a C^{*}-algebra A, unital and without bounded traces, and an element $e \in A$ not expressible as a linear combination of K values of f. Let S^{2} denote the 2-dimensional sphere. Let $\eta \in M_{2}\left(C\left(S^{2}\right)\right)$ be a rank one non-trivial projection (i.e, one not Murray-von Neumann equivalent to a constant rank one projection). Choose $N \geqslant 2 K n$. Let $\eta_{N}=\eta^{\otimes N} \in M_{2^{N}}\left(C\left(\left(S^{2}\right)^{N}\right)\right)$. It is well know that the vector bundle associated to $\eta_{N}^{\otimes N}$ has non-trivial Euler class. In particular, any N sections of the vector bundle associated to η_{N} have a common vanishing point.

Let $X=\prod_{i=1}^{\infty}\left(S^{2}\right)^{N}$. Let 1_{X} denote the unit of $C(X)$. Let e, p, and q be projections in $C\left(X, B\left(\ell^{2}(\mathbb{N})\right)\right)$ defined as follows:

$$
\begin{aligned}
e & =\operatorname{diag}\left(1_{X}, 0,0, \ldots\right) \\
q\left(x_{1}, x_{2}, \ldots\right) & =\operatorname{diag}\left(0, \eta_{N}\left(x_{1}\right), \eta_{N}\left(x_{2}\right), \ldots\right) \\
p\left(x_{1}, x_{2}, \ldots\right) & =\operatorname{diag}\left(1_{X}, \eta_{N}\left(x_{1}\right), \eta_{N}\left(x_{2}\right), \ldots\right)
\end{aligned}
$$

where $x_{i} \in\left(S^{2}\right)^{N}$ for all $i=1,2, \ldots$ The following facts are known (see Théorème 6 of [10] and Section 4 of [20]):
(i) $q^{\oplus N+1}$ is a properly infinite projection (i.e., $q^{\oplus N+2}$ is Murray-von Neumann subequivalent to $q^{\oplus N+1}$),
(ii) e is not Murray-von Neumann subequivalent to $q^{\oplus N}$. Thus, for any N elements of $q C\left(X, B\left(\ell^{2}(\mathbb{N})\right)\right) e$ (i.e., "sections" of q) there exists $x \in X$ on which they all vanish.

Since $p=e \oplus q$, we have that $p^{\oplus N+1}$ is also a properly infinite projection. Let us define $A=p C\left(X, B\left(\ell^{2}(\mathbb{N})\right)\right) p$. Notice first that A cannot have bounded traces, since its unit is stably properly infinite. Let us show that $e \in A$ cannot be approximated within a distance less than one by a linear combination of K elements of $f(A)$. Suppose, for the sake of contradiction, that

$$
\left\|e-\sum_{i=1}^{K} \lambda_{i} f\left(\bar{a}_{i}\right)\right\|<1
$$

Multiplying by e on the left and on the right we get

$$
\begin{equation*}
\left\|e-\sum_{i=1}^{K} \lambda_{i} e f\left(\bar{a}_{i}\right) e\right\|<1 \tag{3.1}
\end{equation*}
$$

Say $\bar{a}_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right)$ for $i=1, \ldots, K$. Since $p=e \oplus q$, we may regard each $a_{i, j} \in A$ as an " $e \times q$ " matrix:

$$
a_{i, j}=\left(\begin{array}{ll}
b_{i, j} & c_{i, j} \\
d_{i, j} & e_{i, j}
\end{array}\right) \in\left(\begin{array}{ll}
e C\left(X, B\left(\ell^{2}\right)\right) e & e C\left(X, B\left(\ell^{2}\right)\right) q \\
q C\left(X, B\left(\ell^{2}\right)\right) e & q C\left(X, B\left(\ell^{2}\right)\right) q
\end{array}\right)
$$

for all $i=1, \ldots, K$ and $j=1, \ldots, n$. Since $N \geqslant 2 n K$, there exists $x \in X$ such that $c_{i, j}(x)=d_{i, j}(x)=0$ for all i, j. But $e C\left(X, B\left(\ell^{2}\right)\right) e \cong \mathbb{C}$ and $f(\mathbb{C})=0$. So $e f\left(\bar{a}_{i}(x)\right) e=f\left(\bar{b}_{i}(x)\right)=0$ for all $i=1, \ldots, K$. Evaluating at $x \in X$ in (3.1) we then get $\|e(x)-0\|<1$, which is clearly impossible.

REMARK 3.12. The previous example shows also that the existence of a unit cannot be dropped neither in Theorem 3.2 nor in Corollary 3.10. Indeed, consider $A=\bigoplus_{N=1}^{\infty} A_{N}$, with A_{N} as in the example above. Then A has no bounded traces (whence no 1-dimensional representations) but $A \neq \operatorname{span}(f(A))$ for any polynomial f in noncommuting variables such that $f(\mathbb{C})=0$.

Let $U \subseteq A$ be a linear subspace. In this section we investigate the equivalence between the following two properties of U :
(i) $(1+x) U(1-x) \subseteq U$ for all $x \in N_{2}$,
(ii) U is a Lie ideal.

We have seen in Theorem 2.6 that if U is closed then (i) and (ii) are indeed equivalent. Furthermore, the proof of (ii) \Rightarrow (i) in Theorem 2.6 is valid for any subspace U of A. Thus, we are interested in the implication (i) \Rightarrow (ii) when U is not necessarily closed. In the closed case, the proof of (i) \Rightarrow (ii) in Theorem 2.6 can be split into two steps: In the first step we showed that U is a Lie ideal of $[A, A]$. This was done as follows: (i) readily implies that $\left[U, N_{2}\right] \subseteq U$. Then using that $[A, A] \subseteq \overline{\operatorname{span}\left(N_{2}\right)}$ (by Corollary 2.3) and that U is closed, we arrived at $[U,[A, A]] \subseteq U$. In the second step we appealed to Theorem 1.15 , showing that a closed Lie ideal of $[A, A]$ is a Lie ideal of A.

Let us first address the passage from $\left[U, N_{2}\right] \subseteq U$ to $[U,[A, A]] \subseteq U$ in the non-closed case. Let A_{+}denote the positive elements of A. Let us define

$$
N_{2}^{\mathrm{c}}=\left\{x \in A: x e=f x=x \text { for some } e, f \in A_{+} \text {such that } e f=0\right\} .
$$

One readily checks that $N_{2}^{c} \subseteq N_{2}$. Let us show that N_{2}^{c} is dense in N_{2}. Let $x \in N_{2}$. Observe that for each $\phi \in C_{0}(0,1]$ we have $\phi(|x|) \phi\left(\left|x^{*}\right|\right)=0$, since $\phi(|x|) \in$ $C^{*}\left(x^{*} x\right)$ and $\phi\left(\left|x^{*}\right|\right) \in C^{*}\left(x x^{*}\right)$. Let us choose $\phi_{1}, \phi_{2}, \ldots \in C_{0}(0,1]$, an approximate unit of $C_{0}(0,1]$ such that $\phi_{n+1} \phi_{n}=\phi_{n}$ for all n. Then $\phi_{n}\left(\left|x^{*}\right|\right) x \phi_{n}(|x|) \in N_{2}^{c}$ for all n, since we can set $e=\phi_{n+1}(|x|)$ and $f=\phi_{n+1}\left(\left|x^{*}\right|\right)$. Furthermore, $\phi_{n}\left(\left|x^{*}\right|\right) x \phi_{n}(|x|) \rightarrow x$. Thus, N_{2}^{c} is dense in N_{2}.

Let us define

$$
S N_{2}^{\mathrm{c}}=\bigcup_{x \in N_{2} \cup\{0\}}(1+x) N_{2}^{\mathrm{c}}(1-x) .
$$

Notice that we still have $S N_{2}^{c} \subseteq N_{2}$.
Lemma 4.1. $\operatorname{span}\left(S N_{2}^{c}\right)$ is a Lie ideal.
Proof. It suffices to show that $[A, x] \subseteq \operatorname{span}\left(S N_{2}^{\mathrm{c}}\right)$ for all $x \in N_{2}^{\mathrm{c}}$. For then, conjugating by the algebra automorphism $a \mapsto(1+y) a(1-y)$, with $y \in N_{2}$, and using the invariance of $S N_{2}^{c}$ under such automorphisms, we get that $[A,(1+$ y) $x(1-x)] \subseteq \operatorname{span}\left(S N_{2}^{\mathrm{c}}\right)$ for all $x \in N_{2}^{\mathrm{c}}$ and $y \in N_{2}$, as desired.

Let $x \in N_{2}^{c}$. Let e and f be positive elements such that $x e=f x=x$ and $e f=$ 0 . Using functional calculus on e, let us find positive contractions $e_{0}, e_{1}, e_{2}, e_{3} \in$ $C^{*}(e)$ such that $e_{0} e_{1}=e_{1}, e_{1} e_{2}=e_{2}, e_{2} e_{3}=e_{3}$ and $x e_{3}=x$. Similarly, let us find positive contractions $f_{0}, f_{1}, f_{2}, f_{3} \in C^{*}(f)$ such that $f_{0} f_{1}=f_{1}, f_{1} f_{2}=f_{2}, f_{2} f_{3}=f_{3}$ and $f_{3} x=x$. Note that $x e_{i}=f_{j} x=x$ and $e_{i} f_{j}=0$ for all $i, j=0,1,2,3$. Now let $a \in A$. Then

$$
a x-x a=a x-e_{1} a x+e_{1} a x-x a f_{1}+x a f_{1}-x a=\left(1-e_{1}\right) a x+\left[e_{1} a f_{1}, x\right]-x a\left(1-f_{1}\right) .
$$

The term $\left(1-e_{1}\right) a x$ is in N_{2}^{c}. Indeed, $1-e_{2}$ and e_{3} act as multiplicative units on the left and on the right of $\left(1-e_{1}\right) a x$ and $\left(1-e_{2}\right) e_{3}=0$. We check similarly that $x a\left(1-f_{1}\right)$ is in N_{2}^{c}. As for $\left[e_{1} a f_{1}, x\right]$ (a commutator of elements in N_{2}^{c}), we have that

$$
\left[e_{1} a f_{1}, x\right]=\left(1+e_{1} a f_{1}\right) x\left(1-e_{1} a f_{1}\right)+\left(e_{1} a f_{1}\right) x\left(e_{1} a f_{1}\right)-x
$$

The first term on the right belongs to $S N_{2}^{c}$. The other two have multiplicative units e_{0} and f_{0} on the left and on the right and thus belong to N_{2}^{c}.

The following theorem answers Question 2.5affirmatively when A is unital and without 1-dimensional representations.

THEOREM 4.2. Suppose that A has no 1-dimensional representations. Then

$$
\operatorname{span}\left(S N_{2}^{\mathrm{c}}\right)=[\operatorname{Ped}(A), \operatorname{Ped}(A)]
$$

If in addition A is unital, then $\operatorname{span}\left(N_{2}\right)=[A, A]$. Furthermore, in the unital case there exists $K \in \mathbb{N}$ such that every single commutator $[x, y]$ in A is a sum of at most K square zero elements.

Proof. Let $P=\operatorname{Ped}(A)$. Let us first show that $S N_{2}^{c} \subseteq[P, P]$. By the similarity invariance of $[P, P]$, it suffices to show that $N_{2}^{c} \subseteq[P, P]$. Let $x \in N_{2}^{c}$ and let $e, f \in$ A_{+}be such that $x e=x=f x$ and $e f=0$. From the description of the Pedersen ideal in Theorem 5.6.1 of [17] we know that $g(e) \in P$ for any $g \in C_{0}(0, \infty)_{+}$ of compact support, and since $x g(e)=x g(1)$, we deduce that $x \in P$. Hence, $x=[x, e] \in[P, A]$. Since $[P, A]=[P, P]$ by Lemma 1.9, $x \in[P, P]$. This shows that $\operatorname{span}\left(S N_{2}^{\mathrm{C}}\right) \subseteq[P, P]$. Notice now that

$$
\overline{\left[\operatorname{span}\left(S N_{2}^{\mathrm{c}}\right), A\right]}=\overline{\left[\operatorname{span}\left(N_{2}\right), A\right]}=\overline{[[A, A], A]}=\overline{[A, A]}
$$

But $[P, P]$ is the smallest Lie ideal such that $\overline{[L, A]}=\overline{[A, A]}$, by Corollary 1.11 (To apply Corollary 1.11 we have used that $\operatorname{Id}([A, A])=A$, since A has no 1dimensional representations.) Thus, $[P, P] \subseteq \operatorname{span}\left(S N_{2}^{c}\right)$.

Let us now assume that A is unital. In this case $P=A$, so $[A, A]=$ $\operatorname{span}\left(S N_{2}^{\mathrm{c}}\right)$. But span $\left(S N_{2}^{\mathrm{c}}\right) \subseteq \operatorname{span}\left(N_{2}\right) \subseteq[A, A]$. Thus, $\operatorname{span}\left(N_{2}\right)=[A, A]$.

To deduce the existence of K we will apply Theorem 3.1 to the Lie ideal $[A, A]$, with generating set $S N_{2}^{c}$. Notice first that $\operatorname{Id}([[A, A], A])=\operatorname{Id}([A, A])=$ $\operatorname{Id}(A)$, since A has no 1-dimensional representations. It remains to show that there is a uniform bound on the number of terms expressing a commutator of the form $[x, a]$, with $x \in S N_{2}^{c}$ and $a \in A$, as a linear combination of elements of $S N_{2}^{c}$. The proof of Lemma 4.1 shows that such commutators are sums of at most five elements of $S N_{2}^{c}$.

For infinite von Neumann algebras, the following corollary is Theorem 2 of [16]. (Miers also considered closed subspaces of von Neumann algebras, which we have already dealt with in Theorem 2.6.)

Corollary 4.3. Suppose that A is either unital and without bounded traces or a von Neumann algebra. Then a subspace U of A is a Lie ideal if and only if $(1+x) U(1-$ $x) \subseteq U$ for all $x \in N_{2}$.

Proof. That a Lie ideal satisfies the similarity invariance of the statement has already been shown in the proof of Theorem 2.6 So let us suppose that U is a subspace such that $(1+x) U(1-x) \subseteq U$ for all $x \in N_{2}$. As remarked at the start of this section, this implies that $\left[U, N_{2}\right] \subseteq U$. Let us consider first the case that A is unital and without bounded traces. Then $\operatorname{span}\left(N_{2}\right)=[A, A]$, since A is unital and has no 1-dimensional representations (since it has no bounded traces). Thus, $[U,[A, A]] \subseteq U$. Furthermore, $[A, A]=A$, by Pop's theorem. Hence, $[U, A] \subseteq U$; i.e., U is a Lie ideal.

Suppose now that A is a von Neumann algebra. Let us show again that $\operatorname{span}\left(N_{2}\right)=[A, A]$ and that if U is a Lie ideal of $[A, A]$ then it is a Lie ideal of A. The latter is Lemma 3 of [16] and can be proven as follows: In a von Neumann algebra we have $A=Z(A)+[A, A]$, where $Z(A)$ denotes the center of A (if A is infinite, because $A=[A, A]$, and if A is finite, by Theorem 3.2 of [11]); so $[U, A]=$ $[U,[A, A]]$ for any subset U of A. Let us now show that $\operatorname{span}\left(N_{2}\right)=[A, A]$. The ideal $\operatorname{Id}([A, A])$ is also a von Neumann algebra. (If p is the unit of the type I_{1} direct summand of A, then $\operatorname{Id}([A, A])=(1-p) A$; see Section 2.2 of [22] $)$. Thus, $\operatorname{Id}([A, A])$ is unital and without 1-dimensional representations. Hence,

$$
\operatorname{span}\left(N_{2}\right)=[\operatorname{Id}([A, A]), \operatorname{Id}([A, A])] \supseteq[[A, A],[A, A]] .
$$

From $A=[A, A]+Z(A)$ we get that $[A, A]=[[A, A],[A, A]]$. Hence, $\operatorname{span}\left(N_{2}\right)=$ $[A, A]$.

The passage from U being a Lie ideal of $[A, A]$ to being a Lie ideal of A can also be made assuming that A is unital and that $[U, A]$ is full:

Lemma 4.4. Suppose that A is unital. If U is a Lie ideal of $[A, A]$ such that $\operatorname{Id}([U, A])=A$ then $[A, A] \subseteq U($ so U is a Lie ideal of $A)$.

Proof. Let $V=[U, U], W=[V, V]$, and $X=[W, W]$. We have shown in the proof of Theorem 1.15 that $\operatorname{Id}([U, A])=\operatorname{Id}([X, X])$. So $A=\operatorname{Id}([X, X])$. Since A is unital, the set $[X, X]$ generates A algebraically as a two-sided ideal. But $A[X, X] A \subseteq[U, U]+[U, U]^{2}$, by Lemma 1.13 Hence, $A=[U, U]+[U, U]^{2}$. Then,

$$
[A, A]=\left[[U, U]+[U, U]^{2}, A\right]=[[U, U], A] \subseteq[U,[U, A]] \subseteq U
$$

THEOREM 4.5. Suppose that A is unital and without 1-dimensional representations. Let U be a subspace of A such that $\operatorname{Id}([U, A])=A$. If $(1+x) U(1-x) \subseteq U$ for all $x \in N_{2}$ then $[A, A] \subseteq U$.

Proof. The similarity invariance of U implies that $\left[U, N_{2}\right] \subseteq U$ and by Theorem 4.2 we get that $[U,[A, A]] \subseteq U$. The previous lemma then shows that $[A, A] \subseteq U$.

Corollary 4.6. Let A be simple and unital. A subspace U of A is a Lie ideal if and only if $(1+x) U(1-x) \subseteq U$ for all $x \in N_{2}$.

Proof. Since A is simple we have either $\operatorname{Id}([U, A])=0$ or $\operatorname{Id}([U, A])=A$. If $\operatorname{Id}([U, A])=0$ then U is a subset of the center, which by the simplicity of A is \mathbb{C}. If $\operatorname{Id}([U, A])=A$ then by the previous theorem $[A, A] \subseteq U$. In either case it follows that U is a Lie ideal of A.

Amitsur's Theorem 1 of [1] (that a similarity invariant subspace of a simple algebra must be a Lie ideal) requires the existence of a nontrivial idempotent in the algebra. An example in [1] shows that this hypothesis cannot be dropped. Corollary 4.6 shows, however, that for simple unital C^{*}-algebras this assumption is not necessary (even though they may well fail to have any nontrivial idempotents).

REFERENCES

[1] S.A. Amitsur, Invariant submodules of simple rings, Proc. Amer. Math. Soc. 7(1956), 987-989.
[2] S.A. Amitsur, J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1(1950), 449-463.
[3] P. Ara, M. Mathieu, Local Multipliers of C*-Algebras, Springer-Verlag London, Ltd., London 2003.
[4] B. Blackadar, Operator Algebras, Encyclopaedia Math. Sci., vol. 122, SpringerVerlag, Berlin 2006.
[5] M. Brešar, E. Kissin, V.S. Shulman, Lie ideals: from pure algebra to C^{*}-algebras, J. Reine Angew. Math. 623(2008), 73-121.
[6] M Brešar, I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, Math. Res. Lett. 16(2009), 605-626.
[7] M. Brešar, I. Klep, A note on values of noncommutative polynomials, Proc. Amer. Math. Soc. 138(2010), 2375-2379.
[8] J. Cuntz, G.A. Pedersen, Equivalence and traces on C*-algebras, J. Funct. Anal. 33(1979), 135-164.
[9] K.R. Davidson, C*-Algebras by Example, Fields Inst. Monogr., vol. 6, Amer. Math. Soc., Providence, RI 1996.
[10] J. Dixmier, A. Douady, Champs continus d'espaces hilbertiens et de C^{*}-algèbres, Bull. Soc. Math. France 91(1963), 227-284.
[11] Th. FACK, P. DE LA HARPE, Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier (Grenoble) 30(1980), 49-73.
[12] I.N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, Ill.London 1969.
[13] I.N. Herstein, On the Lie structure of an associative ring, J. Algebra 14(1970), 561571.
[14] L.W. Marcoux, Projections, commutators and Lie ideals in C^{*}-algebras, Math. Proc. R. Ir. Acad. 110A(2010), 31-55.
[15] L.W. Marcoux, G.J. Murphy, Unitarily-invariant linear spaces in C^{*}-algebras, Proc. Amer. Math. Soc. 126(1998), 3597-3605.
[16] C.R. Miers, Closed Lie ideals in operator algebras, Canad. J. Math. 33(1981), 12711278.
[17] G.K. Pedersen, The linear span of projections in simple C^{*}-algebras, J. Operator Theory 4(1980), 289-296.
[18] C. Pop, Finite sums of commutators, Proc. Amer. Math. Soc. 130(2002), 3039-3041 (electronic).
[19] L. Robert, M. RøRDAM, Divisibility properties for C^{*}-algebras, Proc. London Math. Soc. (3) 106(2013), 1330-1370.
[20] M. RøRDAM, A simple C^{*}-algebra with a finite and an infinite projection, Acta Math. 191(2003), 109-142.
[21] L.H. Rowen, Ring Theory. Vol. I, Pure Appl. Math., vol. 127, Academic Press, Inc., Boston, MA 1988.
[22] S. SaKai, C^{*}-Algebras and W^{*}-Algebras, Ergeb. Math. Grenzgeb., vol. 60, SpringerVerlag, New York-Heidelberg 1971.

[^0]Received May 17, 2015; revised September 21, 2015.

[^0]: LeOnel robert, Department of Mathematics, University of Louisiana at Lafayette, Lafayette, 70506, U.S.A. E-mail address: lrobert@louisiana.edu

