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ABSTRACT. This paper studies three natural pre-orders of increasing general-
ity on the set of all completely non-unitary partial isometries with equal defect
indices. We show that the problem of determining when one partial isometry
is less than another with respect to these pre-orders is equivalent to the exis-
tence of a bounded (or isometric) multiplier between two natural reproducing
kernel Hilbert spaces of analytic functions. For large classes of partial isome-
tries these spaces can be realized as the well-known model subspaces and de
Branges–Rovnyak spaces. This characterization is applied to investigate prop-
erties of these pre-orders and the equivalence classes they generate.
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1. INTRODUCTION

This paper explores several partial orders on various sets of equivalence
classes of partial isometries on Hilbert spaces and their relationship to the func-
tion theory problem of when there exists a multiplier from one Hilbert space of
analytic functions to another.

More specifically, for n ∈ N ∪ {∞}, we examine the class Vn(H) of all
bounded linear operators V on a complex separable Hilbert spaceH satisfying:

(i) V is a partial isometry;
(ii) the defect spaces D+(V) := Ker(V) and D−(V) := Ran(V)⊥ have equal

dimension n;
(iii) there exists no proper reducing subspaceM for V for which V|M is uni-

tary.
An operator satisfying this last condition is said to be completely non-unitary.

We use the notation Vn when considering the set of all Vn(H) for any Hilbert
spaceH.
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A theorem of Livšic [17] settles the unitary equivalence question for Vn.
More precisely, to each V ∈ Vn there is an associated operator-valued contrac-
tive analytic function wV on D, called the characteristic function associated with V,
such that V1, V2 ∈ Vn are unitarily equivalent if and only if wV1 coincides with
wV2 . This idea was expanded to contraction operators [5], [6], [19], [24].

In this paper, we explore three partial orders on Vn and their possible rela-
tionships with the Livšic characteristic function. After some introductory mate-
rial, we define three relations -,4, and 4q on Vn. Each defines a pre-order (re-
flexive and transitive) and each induces an equivalence relation on Vn by A ≈ B
if A - B and B - A (similarly for the relations 4 and 4q). In turn, these three
equivalence relations generate corresponding equivalence classes [A] of opera-
tors in Vn and induce partial orders on the set of equivalence classes Vn/≈. The
first of these partial orders - was explored by Halmos and McLaughlin [13] and
the equivalence classes turn out to be trivial in the sense that A - B and B - A
if and only if A = B. Classifying the equivalence classes induced by 4 and 4q is
more complicated and requires further discussion.

Our approach to understanding 4 and 4q is to recast the problem in terms
of the existence of multipliers between spaces of analytic functions. Using ideas
from Livšic [17] and Kreı̆n [16] (and explored further by de Branges and Rovnyak
in [5], [6] and by Nikolskii and Vasyunin in [19]), we associate each V ∈ Vn with a
Hilbert space HV of vector-valued analytic functions on C \T such that V|Ker(V)⊥

is unitarily equivalent to ZV , where ZV f = z f on Dom(ZV) = { f ∈ HV : z f ∈
HV}. We show, for V1, V2 ∈ Vn, that:

(i) V1 is unitarily equivalent to V2 if and only if there is an isometric multi-
plier from HV1 onto HV2 (more precisely, there exists an operator-valued analytic
function Φ on C \ T such that ΦHV1 = HV2 and the operator f 7→ Φ f from HV1

to HV2 is isometric);
(ii) V1 4 V2 if and only if there is an isometric multiplier Φ from HV1 into HV2 ;

(iii) V1 4q V2 if and only if there is a multiplier Φ from HV1 into HV2 (that is,
ΦHV1 ⊂HV2 ).

What makes this partial order problem interesting from a complex analysis
perspective is that under certain circumstances, depending on the Livšic function,
the partial order problem (When is A 4 B? When is A 4q B?) can be also
rephrased in terms of the existence of (isometric) multipliers from one model
space (ΘH2)⊥ to another, or perhaps from one de Branges–Rovnyak H (b) space
to another. These are well-known and well-studied Hilbert spaces of analytic
functions on D which have many connections to operator theory [5], [6], [19], [24].

2. PARTIAL ISOMETRIES

Let B(H) denote the set of all bounded operators on a separable complex
Hilbert spaceH.
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DEFINITION 2.1. An operator V∈B(H) is called a partial isometry if V|Ker(V)⊥

is an isometry. The space Ker(V)⊥ is called the initial space of V while Ran(V) is
called the final space of V. The spaces D+(V) := Ker(V) and D−(V) := Ran(V)⊥

are called the defect spaces of V and the pair of numbers (n+, n−), where n+ and
n− are the corresponding dimensions of D+(V) and D−(V), are called the defi-
ciency indices of V.

Note that a partial isometry V with deficiency indices (0, 0) is a unitary
operator. The following proposition is standard and routine to verify.

PROPOSITION 2.2. For V ∈ B(H) the following are equivalent:
(i) V is a partial isometry;

(ii) V = VV∗V;
(iii) V∗ is a partial isometry;
(iv) V∗V is an orthogonal projection;
(v) VV∗ is an orthogonal projection.

One can show that V∗V is the orthogonal projection of H onto the initial
space of V while VV∗ is the orthogonal projection of H onto the final space of V.
Note that if V is a partial isometry, then Q1VQ2 is also a partial isometry for any
unitary operators Q1, Q2 onH.

When dim (H) < ∞, the partial isometries V on H are better understood
[8], [14], [15]. Here we think of V ∈ Mn(C). For example, if {u1, . . . , un} is an
orthonormal basis for Cn then for any 1 6 r 6 n the (column partitioned) matrix

(2.1) [u1|u2| · · · |ur|0|0| · · · |0]

is a partial isometry with initial space
∨{e1, . . . , er} (where ej is the jth standard

basis vectors for Cn and
∨

is the linear span) and final space
∨{u1, . . . , ur}. For

any n× n unitary matrix Q

(2.2) Q[u1|u2| · · · |ur|0|0| · · · |0]Q∗

is also a partial isometry.

PROPOSITION 2.3. For V ∈ Mn(C), the following are equivalent:
(i) V is a partial isometric matrix;

(ii) V = Q[u1|u2| · · · |ur|0|0| · · · |0]Q∗, where {u1, . . . , ur : 1 6 r 6 n} is a set of
orthonormal vectors in Cn and Q is a unitary matrix;

(iii) V = UP, where U is a unitary matrix and P is an orthogonal projection.

The unitary matrix U in the proposition above is not unique and is often
called a unitary extension of V. For general partial isometries V on possibly infinite
dimensional Hilbert spacesH, unitary extensions in B(H) need not always exist.
However, we know exactly when this happens [1].

PROPOSITION 2.4. A partial isometry V ∈ B(H) has unitary extensions in
B(H) if and only if V has equal deficiency indices.
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When dim (H) < ∞, deficiency indices are always equal.

DEFINITION 2.5. A partial isometry V ∈ B(H) is completely non-unitary if
there is no nontrivial reducing subspaceM ofH (that is, VM⊂M and V∗M⊂
M) such that V|M is a unitary operator onM.

It is well-known [24] that every partial isometry V can be written as V =
V1 ⊕ V2, where V1 is unitary and V2 is completely non-unitary. In finite dimen-
sions it is easy to identify the completely non-unitary partial isometries.

PROPOSITION 2.6. A partially isometric matrix V ∈ Mn(C) is completely non-
unitary if and only if all of its eigenvalues lie in the open unit disk D.

REMARK 2.7. Our launching point here is the work of Livšic [17] which
explores this same material in a slightly different way. Livšic considers isometric
operators V̂ that are defined on a domain Dom(V̂) on a Hilbert spaceH such that
V̂ is isometric on Dom(V̂). Here, the defect spaces are defined to be Dom(V̂)⊥

and (V̂ Dom(V̂))⊥. If we define

(2.3) Vx =

{
V̂x if x ∈ Dom(V̂),
0 if x ∈ Dom(V̂)⊥,

then V is a partial isometry with initial space Dom(V̂)⊥ and final space V̂Dom(V̂).
Conversely, if V is a partial isometry, then V̂ = V|Ker(V)⊥ is an isometric operator
in the Livšic setting.

REMARK 2.8. The discussion of unitary equivalence and partial orders in
this paper focuses on partial isometries. However, using some standard theory,
all of our results have analogues expressed in terms of unbounded symmetric
linear transformations [1]. Indeed, let

β(z) =
z− i
z + i

denote the Cayley transform, a fractional linear transformation that maps the up-
per half plane C+ bijectively to D and R bijectively onto T \ {1}. Here T denotes
the unit circle in C. Notice that

β−1(z) = i
1 + z
1− z

.

If V is a partial isometry, the operator S := β−1(V) = i(I + V)(I − V)−1 is a
unbounded, closed, symmetric linear transformation with domain Dom(S) =
(I − V)Ker(V)⊥. Note that if 1 is an eigenvalue of V, then S = β−1(V) is not
densely defined. This poses no major technical difficulties in our analysis, but it
is something to keep in mind. See [12], [23] for references on symmetric linear
transformations which are not necessarily densely defined. We will reserve the
term symmetric operator for a densely defined symmetric linear transformation.
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Conversely, if S is a symmetric linear transformation with domain Dom(S),
then

β(S) = (S− iI)(S + iI)−1

is an isometric operator on the domain (S + iI)Dom(S) that can be extended
to a partial isometry on all of H by extending it to be zero on the orthogonal
complement of its domain. A closed symmetric linear transformation is said to be
simple if its Cayley transform V = β(S) is completely non-unitary. This happens
if and only if S has no self-adjoint restriction to the intersection of its domain with
a proper, nontrivial invariant subspace.

Note that V has unitary extensions if and only if β−1(V) has self-adjoint
extensions. The Cayley transform shows that if V = β(S), the deficiency sub-
spaces Ker(V) and Ran(V)⊥ are equal to the deficiency spaces Ran(S− iI)⊥ and
Ran(S + iI)⊥, respectively.

Let us give some examples of partial isometries that will be useful later on.

EXAMPLE 2.9. (i) The matrices Q[u1|u2| · · · |ur|0|0| · · · |0]Q∗ from (2.2) are
all of the partial isometries on Cn.

(ii) Every orthogonal projection is a partial isometry. However, no orthogonal
projection is completely non-unitary.

(iii) The unilateral shift S : H2 → H2, S f = z f , on the Hardy space H2 [7] is a
partial isometry with initial space H2 and final space H2

0 := { f ∈ H2 : f (0) = 0}.
The defect spaces are D+(S) = {0}, D−(S) = C and thus the deficiency indices
of S are (0, 1). Since the indices are not equal, S does not have unitary extensions
to H2 (Proposition 2.4).

(iv) The adjoint S∗ of S is given by S∗ f = f− f (0)
z and it is called the backward

shift. Note that S∗ is a partial isometry (Proposition 2.2) with initial space H2
0

and final space H2. The defect spaces are D+(S∗) = C and D−(S∗) = {0} and
thus the deficiency indices are (1, 0). Thus the backward shift S∗ has no unitary
extensions to H2.

(v) The operator S∗ ⊕ S : H2 ⊕ H2 → H2 ⊕ H2 is a partial isometry with
initial space H2

0 ⊕ H2 and final space H2 ⊕ H2
0 . The defect spaces are D+(S∗ ⊕

S) = C⊕ {0} and D−(S∗ ⊕ S) = {0} ⊕C and thus S∗ ⊕ S has deficiency indices
(1, 1). One can show that this operator is also completely non-unitary and thus
S∗ ⊕ S ∈ V1(H2).

(vi) Consider the partial isometry S ⊗ S∗ acting on H := H2 ⊗ H2. Alterna-
tively, this operator can be viewed as the operator block matrix

(2.4)


0

S∗ 0
S∗ 0

. . . . . .
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acting on the Hilbert space

H :=
⊕
k>0

H2.

One can verify that

Ker(S⊗ S∗)⊥ = H0 :=
⊕
k>0

H2
0 ,

Ran(S⊗ S∗)⊥ = Ker(S∗ ⊗ S) = H2 ⊕
⊕
k>1

{0},

and that S⊗ S∗ is completely non-unitary. Thus S⊗ S∗ ∈ V∞(H2 ⊗ H2).
(vii) If Θ is an inner function, defineKΘ = (ΘH2)⊥ to be the well-known model

space. Consider the compression SΘ := PΘS|KΘ
, of the shift to KΘ, where PΘ is

the orthogonal projection of L2 onto KΘ. If Θ(0) = 0, one can show that

D+(SΘ) = Ker(SΘ) = CΘ

z
, D−(SΘ) = (Ran(SΘ))

⊥ = C.

Furthermore, Ker(SΘ)
⊥ = { f ∈ KΘ : z f ∈ KΘ} and so SΘ is isometric on

Ker(SΘ)
⊥. Thus SΘ is a partial isometry with defect indices (1, 1). It is well-

known that the compressed shift SΘ is irreducible (has no nontrivial reducing
subspaces) and thus SΘ is completely non-unitary. Hence, assuming Θ(0) = 0,
SΘ ∈ V1(KΘ). The model space KΘ is a reproducing kernel Hilbert space with
kernel

kΘ
λ =

1−Θ(λ)Θ

1− λz
.

To every model space there is a natural conjugation CΘ defined via the radial (or
non-tangential) boundary values of f and Θ by CΘ f = Θζ f . One can see that CΘ

is conjugate linear, isometric, and involutive. Furthermore, a calculation shows
that

CΘkΘ
λ =

Θ−Θ(λ)

z− λ
.

The compressed shift SΘ also obeys the property SΘ = CΘS∗ΘCΘ. This puts SΘ

into a class of operators called complex symmetric operators [9], [10], [11]. Further-
more, S∗Θ = S∗|KΘ

, the restriction of the backward shift to the model space KΘ.
(viii) Another partial isometry on KΘ closely related to SΘ is created as follows.

The operator M̂Θ f = z f is not a well defined operator on all of KΘ, but it is
defined on Dom(M̂Θ) = { f ∈ KΘ : z f ∈ KΘ}. A little thought shows that
Dom(M̂Θ) = { f ∈ KΘ : (CΘ f )(0) = 0}. Using the isometric nature of CΘ and
the fact that point evaluations are continuous, we see that Dom(M̂Θ) is closed.
Furthermore, we know that Ran(M̂Θ) = M̂Θ Dom(M̂Θ) = { f ∈ KΘ : f (0) = 0}.
Keeping with our previous notation from Remark 2.7, let MΘ be the operator that
is equal to M̂Θ on Dom(M̂Θ) and equal to zero on Dom(M̂Θ)

⊥. Observe that
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MΘ is a partial isometry with initial space Dom(M̂Θ) and final space Ran(M̂Θ).
Furthermore, the defect spaces are

D+(MΘ) = CCΘkΘ
0 , D−(MΘ) = CkΘ

0 ,

so that MΘ ∈ V1(KΘ). In fact, if Θ(0) = 0, then MΘ = SΘ. We will see in
Example 8.6 below that for any a ∈ D, MΘ

∼= MΘa , where

Θa :=
Θ− a
1− aΘ

.

Thus for any inner Θ, MΘ
∼= SΘΘ(0)

.
(ix) For b ∈ H∞

1 := {g ∈ H∞ : ‖g‖∞ 6 1}, the closed unit ball in H∞, define
H (b), the de Branges–Rovnyak space to be the reproducing kernel space corre-
sponding to the kernel

kb
λ =

1− b(λ)b
1− λz

, λ, z ∈ D.

When ‖b‖∞ < 1, H (b) = H2 with an equivalent norm. On the other extreme,
when b is an inner function, H (b) is the model space Kb with the standard H2

norm [21].
The analogue of the compressed shift SΘ can be generalized to the case

where b is an extreme point of the unit ball of H∞, but not to the case where b
is not an extreme point. To see this, note from II-7 of [21] that S∗H (b) ⊂ H (b).
If X = S∗|H (b), then it was shown in II-9 of [21] that X∗ f = S f − 〈 f , S∗b〉bb. If we
define H0(b) = { f ∈H : f (0) = 0}, we can use the formula above for X∗ to get

X∗X f = X∗S∗ f = SS∗ f − 〈S∗ f , S∗b〉bb = f − 〈S∗ f , S∗b〉bb.

Since b is an extreme point, b /∈H (b) by V-3 of [21], and it follows that 〈S∗ f , S∗b〉bb
= 0. Thus X∗|S∗H0(b) = S|S∗H0(b) and M̂b := S|S∗H0(b) is an isometry from
S∗H0(b) onto H0(b). A little thought shows that { f ∈ H (b) : z f ∈ H (b)} =

S∗H0(b) and so M̂b is multiplication by the independent variable on

Dom(M̂b) = { f ∈H (b) : z f ∈H (b)}.

One also has
Ran(M̂b)

⊥ = Ckb
0.

Furthermore, using the fact that 〈S∗ f , S∗b〉b = 0 for all f ∈ S∗H0(b) = Dom(M̂b),
we see that

Dom(M̂b)
⊥ = CS∗b.

This means that the extension operator Mb from Remark 2.7 is a partial isometry
with (1, 1) deficiency indices. One can also show that Mb is completely non-
unitary and thus Mb ∈ V1(H (b)) whenever b is extreme. The analysis above
breaks down when b is non-extreme.
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3. ABSTRACT MODEL SPACES

In this section we put some results from [5], [6], [16], [17], [19] in a somewhat
different context and show that for V ∈ Vn(H), n < ∞, and model Γ for V (which
we will define momentarily) there is an associated reproducing kernel Hilbert
space of Cn-valued analytic functions HV,Γ on C \T such that

V|Ker(V)⊥
∼= ẐV,Γ,

where

ẐV,Γ : Dom(ẐV,Γ)→HV , ẐV,Γ = z f ,

Dom(ẐV,Γ) = { f ∈HV,Γ : z f ∈HV,Γ}.

As before (Remark 2.7), ZV,Γ is the partial isometric extension of ẐV,Γ. This idea
was used in a recent paper [2], in the setting of symmetric operators, but we
outline the idea here.

Since V ∈ Vn(H), it has equal deficiency indices and we know from Propo-
sition 2.4 that V has a unitary extension U. For V ∈ Vn(H) Livšic [17] defines, for
each z ∈ C \T, the isometric linear transformation Vz by

Vz f := (V − zI)(I − zV)−1 f , f ∈ (I − zV)|Ker(V)⊥ .

Extend this definition to all ofH by making Vz equal to zero on ((I−zV)|Ker(V)⊥)
⊥.

This will define a partial isometry whose initial space is

Ker(Vz)
⊥ = (I − zV)Ker(V)⊥.

We define
R̃an(V − zI) := (V − zI)Ker(V)⊥,

the final space of Vz is

R̃an(Vz) := Vz Ker(Vz)
⊥ = Ran(Vz).

PROPOSITION 3.1. For each z ∈ C \T, we have R̃an(Vz) = R̃an(V − zI).

Proof. Note that Ker(Vz)⊥ = (I − zV)Ker(V)⊥ and so

R̃an(Vz) = Vz Ker(Vz)
⊥ = (V − zI)(I − zV)−1(I − zV)Ker(V)⊥

= (V − zI)Ker(V)⊥ = R̃an(V − zI).

PROPOSITION 3.2 (Livšic). For each z ∈ C \T and unitary extension U of V we
have

(I − zU)−1R̃an(V)⊥ = R̃an(Vz)
⊥.

Proof. Suppose f ∈ R̃an(V)⊥. By the previous proposition, R̃an(Vz) =

R̃an(V − zI) = (V − zI)Ker(V)⊥. Hence,

〈(I − zU)−1 f , R̃an(Vz)〉 = 〈U∗(U∗ − z)−1 f , (V − zI)Ker(V)⊥〉
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= 〈 f , U Ker(V)⊥〉 = 〈 f , R̃an(V)〉 = 0.

We now follow a construction in [2]. The proofs there are in the setting of
symmetric operators but they carry over to our setting. Indeed, since R̃anV⊥ is
an n-dimensional vector space, we let

j : Cn → R̃anV⊥

be any isomorphism and define

Γ(λ) := (I − λU)−1 ◦ j.

Then Γ : C \T→ B(Cn,H) is anti-analytic and, for each λ ∈ C \T,

Γ(λ) : Cn → R̃an(V − λI)⊥

is invertible. We also see that Γ(z)∗Γ(λ) is invertible for z, λ ∈ D or z, λ ∈ De,
where De := C \ D−. Finally, as discussed in [2], the fact that V is completely
non-unitary (so that β−1(V) is simple) implies∨

λ∈C\T
Ran(Γ(λ)) = H.

For any f ∈ H define

f̂ (λ) = Γ(λ)∗ f ,

and let
HV,Γ := { f̂ : f ∈ H}.

When endowed with the inner product

〈 f̂ , ĝ〉HV,Γ
:= 〈 f , g〉,

HV,Γ becomes a Cn-valued Hilbert space of analytic functions on C \T such that
the operator

f 7→ f̂

is a unitary operator fromH onto HV,Γ which induces the unitary equivalence

V|Ker(V)⊥
∼= ẐV,Γ,

where the isometric linear transformation ẐV,Γ acts as multiplication by the inde-
pendent variable on HV on the domain

Dom(ẐV,Γ) = { f ∈HV,Γ : z f ∈HV,Γ}.

Note that the hypothesis that V is completely non-unitary is needed here for the
inner product on HV,Γ to be meaningfully defined, see [2] for details.

DEFINITION 3.3. HV,Γ is the abstract model space for V induced by the
model Γ.
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REMARK 3.4. We are not constrained by the above Livšic trick in selecting
our model Γ for V. There are other methods of constructing a model [2]. For
example, we can use Grauert’s theorem, as was used to prove a related result for
bounded operators in a paper of Cowen and Douglas [3], to find an anti-analytic
vector-valued function

γ(λ) := (γ(λ)1, . . . , γ(λ)n), λ ∈ C \T,

where {γ(λ)1, . . . , γ(λ)n} is a basis for R̃an(V − λI)⊥. Then, if {ej}n
j=1 is the

standard basis for Cn, we can define our abstract model for V to be

(3.1) Γ(λ) :=
n

∑
j=1

γ(λ)j ⊗ ej.

An abstract model space for HV,Γ is not unique. However, if HV,Γ and
HV,Γ′ are two abstract model spaces for V determined by the models Γ and Γ′,
then HV,Γ′ = ΘHV,Γ for some analytic matrix-valued function on C \T. Via this
multiplier Θ one can often realize, by choosing the model in a particular way,
HV,Γ as a certain well-known space of analytic functions such as a model space,
de Branges–Rovnyak space, or a Herglotz space. We will get to this in a moment.
For now we want to keep our discussion as broad as possible.

REMARK 3.5. Since ẐV,Γ ∼= V|Ker(V)⊥ , ẐV,Γ is isometric on Dom(ẐV,Γ). As

discussed in Remark 2.7, we need to think of ẐV,Γ as a partial isometry on HV,Γ.
We can do this by extending ẐV,Γ to all of HV,Γ so that the extended operator
ZV,Γ on HV,Γ is a partial isometry with

Ker(ZV,Γ)
⊥ = Dom(ẐV,Γ).

The unitary equivalence of V|Ker(V)⊥ and ẐV,Γ can be extended to a unitary equiv-
alence of V and ZV,Γ.

The representing space
HV,Γ =: H

turns out to be a reproducing kernel Hilbert space with reproducing kernel

kH
w (z) = Γ(z)∗Γ(w), w, z ∈ C \T.

This kernel is Mn(C)-valued for each w, z ∈ C \ T, is analytic in z, and anti-
analytic in w. By the term reproducing kernel we mean that for any (Cn-valued)
f ∈H and any w ∈ C \T we have

〈 f , kH
w (·)a〉H = 〈 f (w), a〉Cn ∀a ∈ Cn.

In the above 〈·, ·〉H is the inner product in the Hilbert space H while 〈·, ·〉Cn is
the standard inner product on Cn.

Also note that the space H has the division property in that if f ∈ H and
f (w) = 0, then (z − w)−1 f ∈ H . This means that for any w ∈ C \ T, there is
an f ∈ H for which f (w) 6= 0. From the reproducing kernel identity above, we
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see that for any w ∈ C \ T, the span of {kH
w (·)a : a ∈ Cn} is an n-dimensional

subspace of H . Such a kernel is said to be non-degenerate.
Let us give a few examples of abstract models for some of the partial isome-

tries from Example 2.9. There is a more canonical choice of model space for V.
We will see this in the next section.

EXAMPLE 3.6 (Classical model spaces). Recall the model spaceKΘ=(ΘH2)⊥

and the operator M̂Θ. If we understand that

Ran(M̂Θ − λI) = (M̂Θ − λI)Dom(M̂Θ),

then
R̃an(MΘ − λI) = Ran(M̂Θ − λI).

Standard computations show that

Ran(M̂Θ − λI)⊥ = CkΘ
λ , |λ| < 1,

Ran(M̂Θ − λI)⊥ = CCΘkΘ
1/λ

, |λ| > 1,

where CΘ is the conjugation on KΘ discussed in Example 2.9.
Using our trick from (3.1), we can compute the abstract model for the partial

isometry MΘ by defining

Γ(λ) =

{
kΘ

λ ⊗ 1 if |λ| < 1,
CΘkΘ

1/λ
⊗ 1 if |λ| > 1.

Our abstract model space for MΘ corresponding to Γ is thus

HMΘ ,Γ = {Γ∗ f : f ∈ KΘ}.

Observe that

Γ(λ)∗ f =

{
〈 f , kΘ

λ 〉 if |λ| < 1,
〈 f , CΘkΘ

λ 〉 if |λ| > 1,

which becomes

Γ(λ)∗ f =

{
f (λ) if |λ| < 1,

(CΘ f )(1/λ) if |λ| > 1.

EXAMPLE 3.7 (Vector-valued model spaces). For an n× n matrix-valued in-
ner function Θ on D we can define the vector-valued model space by

KΘ = (ΘH2
Cn)⊥,

where H2
Cn is the vector-valued Hardy space of D. The reproducing kernel forKΘ

is the matrix

KΘ
λ (z) =

1−Θ(λ)∗Θ(z)
1− λz

,

meaning
〈 f (λ), a〉Cn = 〈 f , KΘ

λ a〉H2
Cn

, λ ∈ D, a ∈ Cn, f ∈ H2
Cn .
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There is a conjugation of sorts here, defined by

CΘ : KΘ → KΘT , (CΘ f )(ζ) = ΘT(ζ)(† f )(ζ),

where † is component-wise Schwarz reflection and T denotes the transpose. As
before, one can show that

Ran(M̂Θ − λI) =
∨
{KΘ

λ ej : 1 6 j 6 n}, |λ| < 1 and

Ran(M̂Θ − λI) =
∨
{CΘT KΘT

1/λ
ej : 1 6 j 6 n}, |λ| > 1.

An abstract model for MΘ is then

Γ(λ) =


n
∑

j=1
KΘ

λ ej ⊗ ej if |λ| < 1,

n
∑

j=1
CΘT KΘT

1/λ
ej ⊗ ej if |λ| > 1.

For any f ∈ KΘ, we have

〈Γ(λ)∗ f , a〉Cn =

{
〈 f (λ), a〉Cn if |λ| < 1,
〈a, ΘT(1/λ)(† f )(1/λ)〉Cn if |λ| > 1.

EXAMPLE 3.8 (de Branges–Rovnyak spaces). Let b ∈ H∞
1 . As discussed

previously, there is a natural conjugation Cb : H (b) → H (b) which intertwines
Mb and M∗b and operates on reproducing kernels by

Cbkb
λ(z) =

b(z)− b(λ)
z− λ

.

Using this conjugation, Example 3.6 generalizes almost verbatim to this case. In
particular

Ran(M̂b − λI)⊥ = Ckb
λ, if |λ| < 1,

Ran(M̂b − λI) = CCbkb
1/λ

, if |λ| > 1,

and we can define a model for the partial isometry Mb via

Γ(λ) =

{
kb

λ ⊗ 1 if |λ| < 1,
Cbkb

1/λ
⊗ 1 if |λ| > 1.

As before we get that HMb = {Γ
∗ f : f ∈ Kb} where

Γ(λ)∗ f =

{
f (λ) if |λ| < 1,

(Cb f )(1/λ) if |λ| > 1.

EXAMPLE 3.9 (S∗⊕ S). Consider the operator A := S∗⊕ S onH := H2⊕H2

discussed earlier in Example 2.9. Since S has indices (0, 1) and S∗ has indices
(1, 0), it follows that A has indices (1, 1). Moreover, one can show that A is com-
pletely non-unitary. A calculation using the fact that

Ker(A) = Ker(S∗)⊕Ker(S) = C⊕ 0
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shows that

R̃an(A− λI) = {0} ⊕ Ran(S− λI) = {0} ⊕Ccλ, |λ| < 1 and

R̃an(A− λI) = (S∗ − λI)Ker(S∗)⊥ = Cc1/λ ⊕ {0}, |λ| > 1.

In the above,

cλ(z) =
1

1− λz
is the Cauchy kernel (the reproducing kernel for H2). Thus the model becomes

Γ(λ) =

{
(0⊕ cλ)⊗ 1 if |λ| < 1,
(c1/λ ⊕ 0)⊗ 1 if |λ| > 1,

and so

Γ(λ)∗( f1 ⊕ f2) =

{
f2(λ) if |λ| < 1,
f1(1/λ) if |λ| > 1.

EXAMPLE 3.10 (A restriction of (S∗ ⊕ S)). Let

B := A|H2⊕H2
0
= S∗ ⊕ S|H2

0

which was discussed earlier in Example 2.9. Observe that Ker(B) = C(1⊕ 0) and
so Ker(B)⊥ = H2

0 ⊕ H2. Furthermore, Ran(B)⊥ = C(0⊕ z). One can check that
B ∈ V1(H2 ⊕ H2

0). For |λ| > 1 we have

R̃an(B− λI)⊥ = R̃an(S∗ − λI)⊥ ⊕ R̃an(S− λ)⊥ = Cc1/λ ⊕ {0}.

When |λ| < 1 we have

R̃an(B− λI) = R̃an(S∗ − λI)⊕ R̃an(S|H2
0
− λI)⊥ = {0} ⊕ Ran(S|H2

0
− λI)⊥.

A little exercise shows, still assuming |λ| < 1, that

Ran(S|H2
0
− λI)⊥ = C cλ − c0

z
.

Thus the abstract model for B on H2 ⊕ H2
0 is

Γ(λ) =

{
(0⊕ cλ−c0

z )⊗ 1 if |λ| < 1,
(c1/λ ⊕ 0)⊗ 1 if |λ| > 1.

For f1 ∈ H2 and f2 ∈ H2
0 , we have

Γ(λ)∗( f1 ⊕ f2) =

{
f2(λ)

λ if |λ| < 1,
f1(1/λ) if |λ| > 1.

EXAMPLE 3.11 (S⊗ S∗). Recall the representation of S⊗ S∗ as a block oper-
ator matrix with S∗ repeated on the subdiagonal acting on the Hilbert space

H =
⊕
k>0

H2.
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One can show that

Ker(S⊗ S∗) = {δ(k)}∞
k=0, δ

(k)
j = δkj1, and

Ran(S⊗ S∗) = {b̂(k)}∞
k=0, b̂(k)j = zkδ0j.

We also need to calculate R̃an(S⊗ S∗ − wI)⊥. For any w ∈ C \T:

R̃an(S⊗ S∗ − wI)⊥ = Ran((S⊗ S∗ − wI)P0)
⊥ = Ker(P0(S∗ ⊗ S− wI)),

where P0 projects onto

H0 =
⊕
k>1

H2
0 = Ker(S⊗ S∗)⊥.

Hence we need to determine the set of all h ∈ H such that

(S∗ ⊗ S− wI)h =


−w S

−w S
−w S

. . . . . .




h0
h1
h2
...

 =


c01
c11
c21

...

 ,

where ck ∈ C. This yields the recurrence relation Shk+1 = whk + ck1, and acting
on both sides of this equation with S∗ yields

hk+1 = wS∗hk, k ∈ N∪ {0}.

It follows that a basis for R̃an(S⊗ S∗ − wI)⊥ is the set {hk(w)} where

hk(w) = (zk, wzk−1, . . . , wk1, 0, . . .).

Although this is true for any w ∈ C \ T, in the case where w ∈ De = C \D−, we
instead choose

gk(w) = w−khk(w) =
(
(z/w)k, (z/w)k−1, . . . , 1, 0, . . .

)
as a basis for R̃an(S⊗ S∗ − wI)⊥.

A natural choice of model for S⊗ S∗ is then

Γ(w) :=
∞

∑
j=0

γj(w)⊗ ek,

where {ek}k>0 is an orthonormal basis for C∞ := `2(N∪ {0}), and

γj(w) =

{
hj(w) if w ∈ D,
gj(w) if w ∈ De.
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4. THE LIVŠIC CHARACTERISTIC FUNCTION

What is a unitary invariant for the partial isometries? We begin with a result
of Halmos and McLaughlin [13].

THEOREM 4.1. Suppose A, B ∈ Mn(C) are partial isometric matrices with

dim (Ker(A)) = dim (Ker(B)) = 1.

Then A is unitarily equivalent to B if and only if their characteristic polynomials coincide.

This theorem breaks down when the defect index is greater than one. In-
deed, consider the following matrices:

(4.1) A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , B =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

From Proposition 2.3, we see that A and B are partial isometries with

dim (Ker(A)) = dim (Ker(B)) = 2.

Moreover, the characteristic polynomials of A and B are both equal to z4. How-
ever, since A and B have different Jordan forms, A is not unitarily equivalent
to B.

The replacement for Theorem 4.1 when the defect index is greater than one,
and which works for general partial isometries on infinite dimensional Hilbert
spaces, is due to Livšic [17]. Let V ∈ Vn and let {v1, . . . , vn} be an orthonor-
mal basis for Ker(V). Since the deficiency indices of V are equal, we know from
Proposition 2.4 that V has a unitary extension U (in fact many of them). Define
the following n× n matrix

(4.2) wV(z) = z[〈(U − zI)−1vj, vk〉][〈(U − zI)−1Uvj, vk〉]−1, z ∈ D.

Livšic showed that wV is a contractive analytic Mn(C)-valued function on D and
that different choices of basis {v1, . . . , vn} and unitary extension U will change
wV by Q1wV Q2, where Q1, Q2 are constant unitary matrices. The function wV ,
called the Livšic characteristic function, is a unitary invariant for Vn.

THEOREM 4.2 (Livšic). If V1, V2 ∈ Vn, then V1 and V2 are unitarily equivalent if
and only if there are constant n× n unitary matrices Q1, Q2 such that

(4.3) wV1(z) = Q1wV2(z)Q2 ∀z ∈ D.

Two Mn(C)-valued contractive analytic functions w1, w2 on D are said to co-
incide if that satisfy (4.3). Livšic also showed that given any contractive, analytic,
Mn(C)-valued, function w on D with w(0) = 0, then there is a V ∈ Vn such that
wV = w. One can quickly check that (4.3) defined an equivalence relation on such
matrix-valued functions. In other words, there is a bijection from unitary equiva-
lence classes of partial isometries with indices (n, n) onto the unitary coincidence



424 STEPHAN RAMON GARCIA, ROBERT T.W. MARTIN AND WILLIAM T. ROSS

equivalence classes of contractive analytic Mn(C)-valued analytic functions on D
which vanish at zero.

Using the definition above to compute wV can be difficult. However, if one
reads Livšic’s paper carefully, there is an alternate way of computing wV [17].

PROPOSITION 4.3. For V ∈ Vn, let {g1, . . . , gn} be an orthonormal basis for
Ker(V) and let {h1, . . . hn} be an orthonormal basis for R̃an(V)⊥. For each z ∈ D let
{g1(z), . . . , gn(z)} be a (not necessarily orthonormal) basis for R̃an(V − zI)⊥. Then

wV(z) = z[〈hj, gk(z)〉]−1[〈gj, gk(z)〉].

The construction above can be rephrased as follows. For any z ∈ C \T, let

jz : Cn → R̃an(V − zI)⊥,

be an isomorphism. Furthermore, suppose that j0 is a surjective isometry and let

j = j∞ : Cn → Ker(V)⊥,

also be a surjective isometry. The Livšic characteristic function of V is then

(4.4) wV(z) = zA(z)−1B(z),

where A(z) := j∗z j0 and B(z) := j∗z j∞.

EXAMPLE 4.4. Suppose Θ is a scalar-valued inner function with Θ(0) = 0.
Note that

Ker(SΘ) = CΘ

z
, Ker(SΘ)

⊥ = Dom(M̂Θ),

R̃an(SΘ) = z Dom(M̂Θ), R̃an(SΘ)
⊥ = C.

In the formula for wV in the previous proposition, we get g = Θ
z and h = 1. In a

similar way we have

R̃an(SΘ − zI) = (w− z)Dom(M̂Θ − zI), R̃an(SΘ − zI)⊥ = CkΘ
z .

Thus take g(z) = kΘ
z and note that z 7→ g(z) is anti-analytic. From here, one can

show that wV(z) = Θ(z).

EXAMPLE 4.5. If A∈Mn(C), dim (Ker(A))=1, and σ(A)={0, λ1, . . . , λn−1}
⊂ D, then we know from Proposition 2.6 that A ∈ V1. Furthermore, if Θ is a
Blaschke product whose zeros are σ(A), then a well-known fact is that σp(SΘ) =
σ(A). By Halmos–McLaughlin (Theorem 4.1), SΘ is unitarily equivalent to A and
thus wA = Θ.

EXAMPLE 4.6. For the two matrices A and B from (4.1) one can easily com-
pute unitary extensions for A and B. Using the definition of wA and wB from (4.2)
we get

wA(z) =
[

z 0
0 z3

]
, wB =

[
z2 0
0 z2

]
.
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From here one can show there are no unitary matrices Q1, Q2 such that wA(z) =
Q1wB(z)Q2 for all z ∈ D. Indeed, if there were, then

|z| = ‖wA(z)‖ = ‖wB(z)‖ = |z|2, z ∈ D,

which is impossible.

EXAMPLE 4.7. Recall the operator S∗⊕S from Example 3.9 where we showed
that

Ker(S∗ ⊕ S) = C⊕ {0}, Ker(S∗ ⊕ S)⊥ = H2
0 ⊕ H2.

Thus
R̃an(S∗ ⊕ S) = S∗|H2

0
⊕ S, R̃an(S∗ ⊕ S)⊥ = {0} ⊕C.

In the formula from Proposition 4.3 we can take g = 1⊕ 0 and h = 0⊕ 1. Notice
that

R̃an(S∗ ⊕ S− zI) = (S∗ − zI)⊕ (S− zI)|Ker(S∗⊕S)

= (S∗ − zI)|H2
0
⊕ (S− zI) = H2 ⊕ (w− z)H2.

If cz(w) is the standard Cauchy kernel for H2 we see that

R̃an(S∗ ⊕ S− zI)⊥ = 0⊕ cz.

So in Proposition 4.3 we can take g(z) = 0⊕ cz. A computation yields

wS∗⊕S(z) = z
〈g, g(z)〉
〈h, g(z)〉 = z

〈1⊕ 0, 0⊕ cz〉
〈0⊕ 1, 0⊕ cz〉

= 0.

EXAMPLE 4.8. To calculate the characteristic function of S⊗ S∗, it is perhaps
easiest to consider the block operator representation from (2.4). In this case, given
h = (h0, h1, . . .) ∈ H where hk ∈ H2, we have

(S⊗ S∗)h =


0

S∗ 0
S∗ 0

. . . . . .




h0
h1
h2
...

 =


0

S∗h0
S∗h1

...

 ,

so that an orthonormal basis of Ker(S⊗ S∗) is {δ(k)}∞
k=0 where δk

j = δkj1. Note
that

Ker(S⊗ S∗)⊥ = H0 :=
⊕
k>0

H2
0 ,

in which H2
0 = { f ∈ H2 : f (0) = 0}. Similarly

(S∗ ⊗ S)h =


0 S

0 S
0 S

. . . . . .




h0
h1
h2
...

 =


Sh1
Sh2
Sh3

...

 ,
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so that
Ran(S⊗ S∗)⊥ = Ker(S∗ ⊗ S) = H2

⊕
k>1

{0}

has orthonormal basis {b̂(k)}∞
k=0, where {bk}∞

k=0 is the standard basis of H2, bk(z)

= zk, and b̂(k)j = bkδ0j.
A calculation yields

R̃an(S⊗ S∗ − wI)⊥ = {hk(w)}, hk(w) = (zk, wzk−1, . . . , wk1, 0, . . .).

Putting this together, wS⊗S∗(z) = zA(z)−1B(z) where

A(z) = [〈b̂(k), hj(z)〉] = [〈zk, zj〉H2 = δkj] = I, and

B(z) = [〈δ(k), hj(z)〉] = [〈1, zk1〉H2 δkj] = [zkδkj],

so that

wS⊗S∗(z) =


z

z2

z3

. . .

 .

5. HERGLOTZ SPACES

There is a canonical choice of abstract model space for operators from Vn
called a Herglotz space. A Mn(C)-valued analytic function on D is called a Her-
glotz function if

<G(z) :=
1
2
(G(z) + G(z)∗) > 0.

There is a bijective correspondence between Mn(C)-valued Herglotz functions G
on D and Mn(C)-valued contractive analytic functions b on D given by:

b 7→ Gb := (I + b)(I − b)−1 and G 7→ bG := (G− I)(G + I)−1.

Any Herglotz function on D extends to a function on C \T by

G(1/λ) := −G(λ)∗,

which ensures that G has non-negative real part on C \ T. Note that if G = Gb
for a contractive analytic function b, then it follows that b can be extended to a
meromorphic function on C \T which obeys

b(λ)b(1/λ)∗ = I.

Given any contractive analytic Mn(C)-valued function b on D, consider the
positive matrix kernel function

Kw(z) :=
Gb(z) + Gb(w)∗

1− zw
, z, w ∈ C \T.
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By the abstract theory of reproducing kernel Hilbert spaces [20], it follows that
there is a reproducing kernel Hilbert space of Cn-valued functions on C \ T with
reproducing kernel Kw(z). This RKHS is denoted by L (b) and is called the Her-
glotz space corresponding to b.

THEOREM 5.1. Let V ∈ Vn(H) with characteristic function wV = b and suppose
that Γ is an abstract model for V. Then there is an isometric multiplier from the abstract
model space HV,Γ onto the Herglotz space L (b). More precisely, there is an analytic
Mn(C)-valued function W on C \T such that WHV,Γ = L (b) and

‖W f ‖L (b) = ‖ f ‖HV,Γ
, f ∈HV,Γ.

Proof. We will prove this by adapting the approach of Section 4 in [2] to
prove the following formula for the reproducing kernel kΓ

w(z) of HV,Γ

(5.1) kΓ
w(z) =

A(z)A(w)∗ − zB(z)B(w)∗w
1− zw

,

where
A(z) := j∗z j0 and B(z) := j∗z j,

and the maps jz, j : Cn → H are as defined before formula (4.4). Namely,

jz : Cn → R̃an(V − zI)⊥,

is an isomorphism such that z 7→ jz is anti-analytic, j0 is a surjective isometry and

j = j∞ : Cn → Ker(V)⊥,

is also an onto isometry.
To prove (5.1), consider the abstract model space HV,Γ for the model Γ of

V. The reproducing kernel is

kw(z) = Γ(z)∗Γ(w).

Now for any u, v ∈ Cn, if Q∞ denotes the projection of H onto Ker(ZV,Γ)
⊥ and

Q0 denotes the projection ofH onto Ran(ZV,Γ), then

((Z∗Γkw)(z)u, v)Cn = 〈Z∗Γkwu, kzv〉Γ = 〈kwu,ZΓQ∞kzv〉Γ = 〈ZΓQ∞kzv, kwu〉Γ
= w[(kw(z)u, v)Cn − ((P∞kw)(z)u, v)Cn ],

where P∞ = I − Q∞. However, Z∗Γ also acts as multiplication by 1
z on Ran(ZΓ)

and so

((Z∗Γkw)(z)u, v)Cn =
1
z
〈Q0kwu, kzv〉Γ =

1
z
[(kw(z)u, v)Cn − ((P0kw)(z)u, v)Cn ],

where P0 = I −Q0. Equating these two expressions yields

kw(z) =
(P0kw)(z)− zw(P∞kw)(z)

1− zw
.

Now define surjective isometries j0 : Cn → Ran(V)⊥ and j∞ : Cn → Ker(V), and
let jz = Γ(z) for any z ∈ C \ T, z 6= 0. Observe that if UΓ : H → HV,Γ is the
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unitary transformation onto the abstract model space given by UΓ f (z) = Γ(z)∗ f ,
then

P0 = UΓ j0 j∗0U∗Γ and kwu = UΓ jwu
for any u ∈ Cn. It follows that

(P0kw)(z) = j∗z U∗ΓUΓ j0 j∗0U∗ΓUΓ jw = j∗z j0 j∗0 jw = A(z)A(w)∗,

and similarly
(P∞kw)(z) = j∗z j∞ j∗∞ jw = B(z)B(w)∗,

so that the reproducing kernel for HΓ takes the form in (5.1) as claimed.
To obtain the isometric multiplier W from HV,Γ onto L (b), we proceed as

follows. By Proposition 4.3, it further follows that for z ∈ D, A(z) is invertible
and b(z) = zA(z)−1B(z) and so

kΓ
w(z) = A(z)

(1− b(z)b(w)∗

1− zw

)
A(w)∗, z, w ∈ D,

and similarly for z, w ∈ C \D−, B(z), B(w) are invertible and so

kΓ
w(z) = B(z)

(1− b(z)−1(b(w)∗)−1

1− z−1w−1

)
B(w)∗

= B(z)
(1− b(1/z)∗b(1/w)

1− z−1w−1

)
B(w)∗, |z|, |w| > 1.

Now compare this kernel for HΓ to that of L (b),

Kw(z) =
Gb(z) + Gb(w)∗

1− zw
.

Using the formula

Gb :=
1 + b
1− b

,

and the fact that b(z) = zA(z)−1B(z) for z ∈ D, we have

Gb(z) =
A(z) + zB(z)
A(z)− zB(z)

, z ∈ C \T.

Inserting this expression into the formula for the kernel Kw(z) of L (b) yields

Kw(z) =
√

2(A(z) + zB(z))−1
(A(z)A(w)∗ − zB(z)B(w)∗w

1− zw

)
(A(w)∗ + B(w)∗w)−1

√
2.

The preceding simplifies to

W(z)kΓ
w(z)W(w)∗, z, w ∈ C \T

where
W(z) :=

√
2(A(z) + zB(z))−1, z ∈ C \T.

Hence W : HV,Γ → L (b) is an isometric multiplier of HΓ onto L (b).
It follows that given any model Γ for the partial isometry V, we can define

a new model
Γ̃(z) := Γ(z)W(z)∗,
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so that
kΓ̃

w(z) = W(z)Γ(z)∗Γ(w)W(w)∗ = Kw(z).

This shows that HΓ̃ = L (b), so that L (b) can be thought of as the canonical
model space for a partial isometry with characteristic function wV = b. Since
L (b) is canonical in this sense, we will use the notation Zb for the partial isome-
try which acts as multiplication by z on its initial space in L (b) and is unitarily
equivalent to V. It is also straightforward to check that the characteristic function
of Zb is b so that b = wV .

6. THE PARTIAL ORDER OF HALMOS AND McLAUGHLIN

Halmos and McLaughlin gave the following partial order on the set of all
partial isometries, not only the ones in Vn [13]. For two partial isometries A, B,
we say that A - B if B agrees with A on the initial space of A. Since A∗A is the
orthogonal projection onto its initial space, A - B if and only if

A = BA∗A.

The following follows quickly from the definition of -.

PROPOSITION 6.1. The relation - defines a partial order on the set of partial
isometries.

EXAMPLE 6.2. (i) Suppose that {u1, u2, . . . , un} is any orthonormal basis for
Cn. The matrices

A = [u1|u2| · · · |ur|0|0| · · · |0], B = [u1|u2| · · · |ur|ur+1|0| · · · |0]

are partial isometric matrices and one can check that A - B.
(ii) Consider the n× n block matrix

V =

[
0 0
U 0

]
where U is any r× r unitary matrix. If A is any (n− r)× (n− r) partial isometric
matrix, one can show that

VA =

[
0 A
U 0

]
is a partial isometry. Using block multiplication of matrices one can verify the
formula

V = VA(V∗V)

and so V - VA. One can argue that if W is any partial isometry with V - W then
W = VA for some partial isometry A. We thank Yi Guo and Zezhong Chen for
pointing this out to us.
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(iii) Recall the operators A = S∗ ⊕ S on H2⊕ H2 and B = A|H2⊕H2
0

from Exam-

ples 3.9 and 3.10. Since Ker(B) = C⊕ 0, Ker(B)⊥ = H2
0 ⊕ H2

0 . Note that

B|Ker(B)⊥ = A|Ker(B)⊥

and so B - A.

7. TWO OTHER PARTIAL ORDERS

Let Sn(H) denote the simple symmetric linear transformations on H with
(n, n) deficiency indices and Sn denote the collection of all such operators on any
Hilbert space. Recall here that a symmetric linear transformation S is said to be
simple if its Cayley transform V = β(S) is completely non-unitary.

DEFINITION 7.1.
(i) For S ∈ Sn(HS) and T ∈ Sn(HT) we say that S 4 T if there exists an

isometric map U : HS → HT such that U Dom(S) ⊂ Dom(T) and

US|Dom(S) = TU|Dom(S).

(ii) For S ∈ Sn(HS) and T ∈ Sn(HT) we say that S 4q T if there exists a
bounded injective map X : HS → HT such that X Dom(S) ⊂ Dom(T) and

XS|Dom(S) = TX|Dom(S).

DEFINITION 7.2.
(i) For A ∈ Vn(HA) and B ∈ Vn(HB) we say that A 4 B if there exists an

isometric map U : HA →HB such that U Ker(A)⊥ ⊂ Ker(B)⊥ and

UA|Ker(A)⊥ = BU|Ker(A)⊥ .

(ii) For A ∈ Vn(HA) and B ∈ Vn(HB) we say that A 4q B if there exists an
injective X : HA →HB such that X Ker(A)⊥ ⊂ Ker(B)⊥ and

XA|Ker(A)⊥ = BX|Ker(A)⊥ .

Given A ∈ Vn(HA) and B ∈ Vn(HB), let S = β−1(A) and T = β−1(B),
where

β(z) =
z− i
z + i

, β−1(z) = i
1 + z
1− z

.

Standard theory implies that S ∈ Sn(HA) and T ∈ Sn(HB). The following two
facts are straightforward to verify.

PROPOSITION 7.3. With the above notation we have:
(i) A 4 B ⇐⇒ S 4 T;

(ii) A 4q B ⇐⇒ S 4q T.

PROPOSITION 7.4. The relations 4 and 4q are reflexive and transitive.
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Recall here that any binary relation which is reflexive and transitive is called
a pre-order ( [22], Definition 5.2.2). This proposition shows that 4 and 4q are pre-
orders on V , the set of all completely non-unitary partial isometries with equal
deficiency indices.

DEFINITION 7.5. For A, B ∈ Vn, we say that:
(i) A ∼ B if both A 4 B and B 4 A;

(ii) A ∼q B if both A 4q B and B 4q A.

It is well-known that given any pre-order . on a set S, if one defines a
binary relation ∼ on S× S as above, then ∼ is an equivalence relation and . can
be viewed as a partial order on S/ ∼ ( [22], Proposition 5.2.4). In particular we
have that:

COROLLARY 7.6. The binary relations ∼ and ∼q are equivalence relations on Vn
and the pre-orders 4 and 4q induce partial orders on Vn/ ∼ and Vn/ ∼q respectively.

At this point, one could ask what the equivalences classes generated by ∼
and ∼q are. In particular, one might expect that the equivalence classes of ∼
to simply be unitary equivalence classes. We can show that this is the case for
a large subclass of Vn (see Theorems 9.1 and 9.2), but the proofs are nontrivial.
Before investigating the nature of these equivalence classes further, it will first
be convenient to develop a function theoretic characterization of these two par-
tial orders in terms of multipliers between the abstract model spaces or Herglotz
spaces associated with partial isometries in Vn.

8. PARTIAL ORDERS AND MULTIPLIERS

Recall the associated operator ẐA of multiplication by the independent vari-
able on HA defined on Dom(ẐA) = { f ∈ HA : z f ∈ HA}. Also recall the
associated partial isometry ZA obtained by extending ẐA by zero on Dom(ẐA)

⊥.

THEOREM 8.1. For A, B ∈ Vn with associated operators ZA on HA and ZB on
HB, the following are equivalent:

(i) A 4q B;
(ii) ZA 4q ZB;

(iii) there exists a multiplier from HA to HB.

Proof. Assume that A 4q B. Then there is a bounded injective operator
X : HA → HB with X Ker(A)⊥ ⊂ Ker(B)⊥ and XA|Ker(A)⊥ = BX|Ker(A)⊥ . Let
UA : HA →HA be the unitary which induces the unitary equivalence between A
and ZA, that is, UA Ker(A)⊥ = Dom(ẐA) = Ker(ZA)

⊥ (and hence UA Ker(A) =
Ker(ZA)) and such that ZAUA = UA A. Define

Y : HA →HB, Y = UBXU∗A
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and note that

Y Ker(ZA)
⊥ = UBXU∗A Ker(ZA)

⊥ = UBX Ker(A)⊥ ⊂ UB Ker(B)⊥ = Ker(ZB)
⊥.

Also note that if f ∈ Ker(ZA)
⊥ = Dom(ẐA) then f = UAx f for some x f ∈

Ker(A)⊥. Moreover,

YẐA f = UBXU∗AẐAUAx f = UBXAx f = UBBXx f

= ẐBUBXx f = ẐBUBXU∗A f = ẐBY f .

This is precisely the definition of ZA 4q ZB. Thus statement (i) implies state-
ment (ii).

The proof of (ii)⇒(i) is similar. Indeed, if ZA 4q ZB then there is a bounded
injective operator X1 : HA → HB with X1 Ker(ZA)

⊥ ⊂ Ker(ZB)
⊥ such that

X1ZA|Ker(ZA)⊥
= ZBX1|Ker(ZA)⊥

. Define

Y1 : HA → HB, Y1 = U∗BX1UA,

and follow the computation above to show that Y1 A|Ker(A)⊥ = BY1|Ker(A)⊥ .
We now show the equivalence of statements (ii) and (iii). First we note that

for any a ∈ C and w ∈ C \T that

kA
wa ∈ Ran(ẐA − wI)⊥, kB

wb ∈ Ran(ẐB − wI)⊥.

This implies that

Ran(ẐA − wI)⊥ =
∨

a∈Cn

kA
wa, Ran(ẐB − wI)⊥ =

∨
a∈Cn

kB
wa.

Recall that

Ker(ZA)
⊥ = Dom(ẐA), Ker(ZB)

⊥ = Dom(ẐB).

Now suppose that X : HA →HB is injective with

X Ker(ZA)
⊥ ⊂ Ker(ZB)

⊥ and XZA|Ker(ZA)⊥
= ZBX|Ker(ZA)⊥

.

Then for any f ∈HA we have

〈(X f )(z), a〉Cn = 〈X f , kA
z a〉 = 〈 f , X∗kA

z a〉.

Since
X Ran(ẐA − wI) ⊂ Ran(ẐB − wI), w ∈ C \T,

we obtain
X∗ Ran(ẐB − wI)⊥ ⊂ Ran(ẐA − wI)⊥ =

∨
a∈Cn

kA
wa.

Thus
X∗kB

z a = kA
z R(z)a

for some R(z)∗ ∈ Mn(C), which says that

〈(X f )(z), a〉Cn=〈 f , X∗kB
z a〉=〈 f , kA

z R(z)∗a〉HA
=〈 f (z), R(z)∗a〉Cn=〈R(z) f (z), a〉Cn .
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This says that
(X f )(z) = R(z) f (z), z ∈ C \T.

Conversely, suppose that R is a multiplier from HA to HB. Then, via the
closed graph theorem, MR, multiplication by R, is an injective bounded operator
from HA to HB. This means that if f ∈ Ker(Z′A)

⊥ = Dom(ẐA) then R f , and
zR f = Rz f ∈HB and so R f ∈ Dom(ẐB) = Ker(ZB)

⊥. Thus

MR Ker(ZA)
⊥ ⊂ Ker(ZB)

⊥.

Furthermore, for f ∈ Ker(ZA)
⊥ we have

(MRZA f )(z) = (RẐA f )(z) = R(z)z f (z) = zR(z) f (z) = (ẐBR f )(z) = (ZBR f )(z).

Thus ZA 4q ZB.

THEOREM 8.2. For A, B ∈ Vn with associated operators ZA on HA and ZB on
HB, the following are equivalent:

(i) A 4 B;
(ii) ZA 4 ZB;

(iii) there exists an isometric multiplier from HA to HB.

The proof is the same as before but multiplication by R is an isometric mul-
tiplier.

EXAMPLE 8.3. Suppose Θ1 and Θ2 are inner functions and consider the par-
tial isometries MΘ1 on KΘ1 and MΘ2 on KΘ2 . If Θ1 divides Θ2, i.e., Θ−1

1 Θ2 is an
inner function, then MΘ1 4 MΘ2 since KΘ1 ⊂ KΘ2 . The isometric U : KΘ1 → KΘ2

can be taken to be the inclusion operator. Note that the norm on both spaces is
the same (the H2 norm) and so this inclusion is indeed isometric.

EXAMPLE 8.4. The previous example can be generalized further. Suppose
that Θ2 is an arbitrary contractive Mn-valued analytic function such that Θ2 =
Θ1Φ where Φ is a contractive analytic Mn-valued function and Θ1 is inner. Then
by II-6 of [21], KΘ1 is contained isometrically in the de Branges–Rovnyak space
H (Θ2). By Section 5, the reproducing kernel for any Herglotz space L (Θ) on
C \T can be expressed as

KΘ
w(z)=

√
2(I−Θ(z))−1

( I−Θ(z)Θ(w)∗

1− zw

)√
2(I−Θ(w)∗)−1=V(z)kΘ

w(z)V(w)∗,

where kΘ
w(z) is the reproducing kernel for the de Branges–Rovnyak space H (Θ).

It follows that multiplication by V(z) :=
√

2(1−Θ2(z))−1 is an isometry from
H (Θ2) into the Herglotz space L (Θ2). Hence V : KΘ1 ⊂ H (Θ2) → L (Θ2),
the operator of multiplication by V(z), is an isometry of KΘ1 into L (Θ2). Re-
call that the canonical partial isometry which acts as multiplication by z on the
largest possible domain in L (Θ2) is denoted by ZΘ2 (see Section 5), and the corre-
sponding isometric linear transformation is ẐΘ2 . By the definition of the domain
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of Dom(M̂Θ1),

Dom(M̂Θ1) = Ker(MΘ1)
⊥ = { f ∈ KΘ1 : z f (z) ∈ KΘ1}.

It follows that V Dom(M̂Θ1) ⊂ Dom(ẐΘ2) and that VM̂Θ1 V∗ ⊂ ẐΘ2 so that MΘ1 4
ZΘ2 . Since ZΘ1

∼= MΘ1 , this also shows that ZΘ1 4 ZΘ2 whenever Θ1 is inner, Θ2
is contractive and Θ1 6 Θ2.

Now suppose that Φ := ΘΓ where Φ, Θ, Γ are all scalar-valued inner func-
tions on D. Let

Λ :=
(

Θ 0
0 Γ

)
.

Then Λ is a 2 × 2 matrix-valued inner function, and note that M′Λ has indices
(2, 2), and that there is a natural unitary map W from KΛ = KΘ ⊕KΓ onto KΦ =
KΘ ⊕ΘKΓ. Namely

W( f ⊕ g) := f + Θg,

so that if we view elements ofKΛ as column vectors then W acts as multiplication
by the 1× 2 matrix function

W(z) = (1, Θ(z)).

It follows that MΛ 4 MΦ, where MΛ has indices (2, 2) and MΦ has indices (1, 1).

EXAMPLE 8.5. Even more generally suppose that Θ, Φ are arbitrary contrac-
tive analytic Mn(C)-valued functions on D such that Θ divides Φ, i.e., Φ = ΘΓ
for some other contractive analytic Mn(C)-valued function Γ on D. As in the pre-
vious example the reproducing kernel for the Herglotz space L (Θ) on C \T is

KΘ
w(z) =

GΘ(z) + GΘ(w)∗

1− zw
,

and using that GΘ = (1 + Θ)(1−Θ)−1, this can be re-expressed as

KΘ
w(z) =

√
2(I −Θ(z))−1

( I −Θ(z)Θ(w)∗

1− zw

)√
2(I −Θ(w)∗)−1.

Recall here from Section 5 that Θ is extended to a matrix function on C \ T using
the definition Θ(z)Θ(1/z)∗ = I. Let

W(z) := (I −Φ(z))−1(I −Θ(z)),

and observe that
KΦ

w (z)−W(z)KΘ
w(z)W(w)∗

is equal to
√

2(I −Φ(z))−1Θ(z)
( I − Γ(z)Γ(w)∗

1− zw

)
Θ(w)∗(I −Φ(w)∗)−1

√
2

= (I −Φ(z))−1Θ(z)(I − Γ(z))KΓ
w(z)(I − Γ(w))∗Θ(w)∗(I −Φ(w)∗)−1,

where KΓ
w(z) is the reproducing kernel for the Herglotz space L (Γ) on C \T. This

shows that the difference KΦ
w (z)−W(z)KΘ

w(z)W(w)∗ is a positive Mn(C)-valued
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kernel function on C \T, and so it follows from the general theory of reproducing
kernel Hilbert spaces that W(z) is a contractive multiplier of L (Θ) into L (Φ)
( [20], Theorem 10.20). Theorem 8.1 now implies that ZΘ 4q ZΦ whenever Θ
divides Φ.

EXAMPLE 8.6. Suppose that Θ is a scalar inner function and a ∈ D. A theo-
rem of Crofoot [4] says that the operator

U : KΘ → KΘa , U f =

√
1− |a|2

1− aΘ
f

is a unitary operator from KΘ onto KΘa , where

Θa =
Θ− a
1− aΘ

.

Thus MΘ
∼= MΘa and so certainly MΘ 4 MΘa .

EXAMPLE 8.7. Continuing the previous example, now suppose that Φ is a
scalar inner function such that Θa divides Φ. Then one can see (by composing the
unitary operators from the previous two examples) that MΘ 4 MΦ.

EXAMPLE 8.8. For a scalar inner function Θ, let σ be the unique finite posi-
tive measure on T satisfying

1− |Θ(z)|2
|1−Θ(z)|2 =

∫
T

1− |z|2
|ζ − z|2 dσ(ζ).

Such a measure σ is one of the Clark measures corresponding to Θ. From Clark
theory [21] we know that

KΘ = (1−Θ)CσL2(σ),

where

Cσ : L2(σ)→ O(D), (Cσ f )(z) =
∫
T

f (ζ)
1− ζz

dσ(ζ),

is the Cauchy transform operator, and

‖(1−Θ)Cσ f ‖ = ‖ f ‖L2(σ).

It is also known that E :=
{

ζ ∈ T : lim
r→1−

Θ(rζ) = 1
}

is a carrier for σ. Let F ⊂ E

be such that µ = σ|F is not the zero measure. Standard Clark theory says that µ
is the Clark measure for some inner function Φ, meaning that

1− |Φ(z)|2
|1−Φ(z)|2 =

∫
T

1− |z|2
|ζ − z|2 dµ(ζ), z ∈ D.
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Note that we have L2(µ) ⊂ L2(σ) (understanding this inclusion by extend-
ing the functions in L2(µ) to be zero on T \ F). Furthermore, observe that

KΘ = (1−Θ)CσL2(σ) ⊃ (1−Θ)CσL2(µ) =
1−Θ

1−Φ
(1−Φ)CσL2(µ) =

1−Θ

1−Φ
KΦ.

Thus (1−Θ)(1− Φ)−1 is a multiplier from KΦ to KΘ. Furthermore, if F ∈ KΦ,
then F = (1−Φ)Cσ f , where f ∈ L2(µ) (and considered also to be an element of
L2(σ) by defining it to be zero on T \ F). Finally,∥∥∥1−Θ

1−Φ
F
∥∥∥2

= ‖(1−Θ)Cσ f ‖2 = ‖ f ‖2
L2(σ) =

∫
| f |2dσ =

∫
| f |2dµ = ‖F‖2.

The last equality says that (1−Θ)(1− Φ)−1 is an isometric multiplier from KΦ

to KΘ.
This example is significant since it provides us with an example of two

(scalar) inner functions Φ and Θ such that MΦ 4 MΘ, but so that Φ, the Livšic
function for MΦ does not divide Θ, the Livšic function for MΘ. Indeed, let

Θ(z) = exp
(1 + z

1− z

)
be an atomic inner function. One can show that

(8.1) {ζ ∈ T : Θ = 1} =
{2nπ − i

2nπ + i
: n ∈ Z

}
,

which is a discrete set of points in T accumulating only at ζ = 1. Let F be a finite
subset of (8.1) and construct the inner function Φ as above. A little thought shows
that Φ is a finite Blaschke product. From the discussion above,

G =
1−Θ

1−Φ

is an isometric multiplier from KΦ into KΘ. From this we get that MΦ 4 MΘ. But
Φ is a finite Blaschke product and Θ is an inner function without zeros in D. Thus
Φ does not divide Θ.

If one wanted an example in terms of compressed shifts (Su 4 Sv but the
inner function u does not divide the inner function v) one would need to have
u(0) = v(0) = 0 which can be accomplished as follows: Let

v = zΘ, u =
Φ− a

1− aΦ
,

where a = Φ(0). This makes u(0) = 0. If F is the isometric multiplier from
Ku onto KΦ (via Crofoot) and G = (1−Θ)(1− Φ)−1 then, using the fact that
KΦ ⊂ Kv, we see that FG is an isometric multiplier fromKu toKv and so Su 4 Sv.
However, u is a finite Blaschke product and cannot possibly divide v.

EXAMPLE 8.9. Recall the operators A=S∗⊕S on H2⊕H2 and B=A|H2⊕H2
0
.

Notice that the operator W := I⊕ S is an isometry fromH := H2⊕ H2 onto WH.
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Moreover,

B = WAW∗ = S∗ ⊕ SSS∗ = (S∗ ⊕ S)(I ⊕ SS∗) = A(I ⊕ SS∗).

Notice that I ⊕ SS∗ is the orthogonal projection ofH onto WH. Thus

WAW∗ = A|WH
and so, since WH is a proper invariant subspace of A, it follows that A is unitarily
equivalent to a restriction of itself to a proper invariant subspace. One can check
B 4 A and the associated multiplier from the abstract model space HB to HA is

R(z) =

{
z if |z| < 1,
1 if |z| > 1.

PROPOSITION 8.10. The ∼q equivalence class, [A]q, of the partial isometry A :=
S∗ ⊕ S on H2 ⊕ H2 is the unique maximal element of V1/ ∼q with respect to the partial
order 4q. Moreover it is larger than every other element of V1/ ∼q with respect to 4q.

Proof. This follows straightforwardly from Example 8.5. By Example 8.5, if
Θ, Φ are contractive analytic functions on D such that Θ divides Φ, then ZΘ 4q
ZΦ. The characteristic function of A is wA = 0, and so any contractive analytic
function b divides wA: wA = b · 0 = 0. It follows that if V is any completely
non-unitary partial isometry with indices (1, 1), that its characteristic function
wV divides wA. Hence V ' ZwV 4q ZwA ' A, and V 4q A, so that [V]q 4q
[A]q, where [·]q denotes ∼q equivalence class, for any V ∈ V1. It follows that
[A]q is maximal since if [A]q 4q [V]q for some V ∈ V1 then also [V]q 4q [A]q
so that [V]q = [A]q since 4q is a partial order on V1/ ∼q. [A]q is clearly the
unique maximal element since if [V]q is another maximal element then [V]q 4q
[A]q which implies [V]q = [A]q by maximality.

REMARK 8.11. Similarly one can show that for any n ∈ N, the ∼q equiv-
alence class of (S∗)n ⊕ Sn, or equivalently (

⊕n
k=1 S∗) ⊕ (

⊕n
k=1 S) is the unique

maximal element of Vn/ ∼q with respect to the partial order 4q.
By Examples 8.3 and 8.4, if Θ, Φ are contractive analytic Mn(C)-valued func-

tions on D with Θ inner, and Θ divides Φ then ZΘ 4 ZΦ. It follows as in the proof
of the above proposition that the∼ equivalence class [n · A] of n · A := (S∗)n⊕ Sn

is greater than that of V with respect to the partial order 4 on Vn/ ∼ for any
V ∈ Vn for which the characteristic function wV is inner.

For Θ inner, let M̂Θ be the multiplication operator on KΘ and let ẐΘ :=
ẐM̂Θ

be the abstract model realization of M̂Θ. Also let MΘ and ZΘ be the partial

isometric extensions of M̂Θ and ẐΘ. We know that MΘ and ZΘ have the same
Livšic characteristic function and thus they are unitarily equivalent.

Furthermore, by Section 8, for two inner functions Θ and Φ we have that
MΘ 4 MΦ if and only if there is an isometric multiplier from KΘ to KΦ. Thus
we see that ZΘ 4 ZΦ (which is equivalent to the fact that there is an isometric
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multiplier from HMΘ
to HMΦ

) if and only there is an isometric multiplier from
KΘ to KΦ. This relates the isometric multiplier problem in the abstract setting to
the one explored by Crofoot [4].

EXAMPLE 8.12. Consider the partial isometries MB, which act as multi-
plication by z on their initial spaces in a model space KB where B is a finite
Blaschke product. This example will show three things. First we will show that
M1 := MB1 4q M2 := MB2 if and only if the degree of B2 (number of zeroes)
is greater than that of B1, demonstrating that the partial order 4q is somewhat
trivial when restricted to such partial isometries. Next we provide an example of
M1 4 M2 for finite Blaschke products B1, B2 even though B1 does not divide B2.
Finally we will show that there exist B1, B2 so that the degree of B1 is less than
that of B2 but M1 is not less than M2 with respect to 4. This will show that the
two partial orders 4 and 4q are different.

Let B1, B2 be finite Blaschke products of degree n 6 m and zero sets
{z1, . . . , zn} and {w1, . . . , wm}, respectively. Then

KB1 =
{ p(z)
(1− z1z) · · · (1− znz)

: p ∈ C[z]; deg(p) 6 n− 1
}

,

and similarly for KB2 . Since n 6 m, the function

R(z) :=
(1− z1z) · · · (1− znz)
(1− w1z) · · · (1− wmz)

,

is analytic, bounded on D, and is a multiplier from KB1 into KB2 . By Theorem 8.1,
and the discussion above, we have that M1 4q M2.

Let

B1(z) = z2, B2(z) = z
z− a

1− az
, a 6= 0.

Note that

KB1 = {d0 + d1z : d0, d1 ∈ C}, KB2 =
{ c0 + c1z

1− az
: c0, c1 ∈ C

}
.

Thus, as just seen above, if

φ =
1

1− az
,

we clearly have φKB1 ⊂ KB2 . In fact φKB1 = KB2 as a bonus. Hence there is a
multiplier from KB1 to KB2 . However, there is no isometric multiplier from KB1

to KB2 and thus M1 4q M2 but M1 64 M2. To see this, observe that since C ⊂ KB1

we see that any multiplier φ from KB1 to KB2 satisfies φ ∈ KB2 . Thus

φ =
c0 + c1z
1− az

.

Notice that c1 = 0 since otherwise zφ 6∈ KB2 . Thus φ takes the form

φ =
c0

1− az
.
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If φ is an isometric multiplier then φ must satisfy the identities

‖φ1‖ = ‖1‖ = 1, 〈φz, φ1〉 = 〈z, 1〉 = 0.

The first identity says that

1 =
∫
|φ|2dm = |c0|2

∫ 1
|1− az|2 dm = |c0|2

1
1− |a|2

and so

φ = ζ

√
1− |a|2
1− az

for some unimodular constant ζ. The second identity says that

0 =
∫
|φ|2zdm =

∫ 1− |a|2
|1− az|2 zdm.

Notice how the above integral is the Poisson integral of the function z (which is
certainly harmonic on the disk) and so it evaluates to a. Thus a = 0 which yields
a contradiction. Thus there there is a multiplier from KB1 to KB2 but no isometric
multiplier.

9. EQUIVALENCE CLASSES

We have defined two equivalence classes ∼ and ∼q on Vn by declaring A ∼
B if A 4 B and B 4 A (respectively A ∼q B if A 4q B and B 4q A). Can we
precisely identify these equivalence classes? In some cases we can.

THEOREM 9.1. Suppose A, B ∈ V1 with inner Livsic functions. Then A ∼ B if
and only if A is unitarily equivalent to B.

Proof. If A 4 B, then there is an isometric multiplier mA from KΘA to KΘB .
Likewise if B 4 A, then there is an isometric multiplier mB from KΘB to KΘA .
The product m := mAmB is a multiplier from KΘA to itself. By a theorem of
Crofoot, m must be a constant function with unimodular constant. Furthermore,
mKΘA = KΘA .

We now claim that mAKΘA = KΘB . Let g ∈ KΘB . Then mAg = f ∈ KΘB and
so mg = mBmAg = mB f ∈ KΘA . But then g = m−1mB f ∈ KΘA and mAg = f .

But then the isometric operators ẐA and ẐB are unitarily equivalent via

X : KΘA → KΘB , X f = mA f .

Since A and ZA are unitarily equivalent and since B and ZB are unitarily equiva-
lent, we see that A and B are unitarily equivalent.

The converse is obvious.

Is turns out that this result can be extended beyond n = 1 by applying the
theory of [18], but the proof is much more involved and we will not include it
here.
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THEOREM 9.2. Suppose A, B ∈ Vn with inner Livsic functions. Then A ∼ B if
and only if A is unitarily equivalent to B.

THEOREM 9.3. Suppose A, B ∈ V1 with inner Livsic functions. Then A ∼q B if
and only if A|Ker(A)⊥ is similar to B|Ker(B)⊥ .

Proof. Essentially the same argument as above shows that ẐA is similar to
ẐB via the invertible multiplier mA, i.e., Y : KΘA → KΘB , Y f = mA f . Moreover,
Y Dom(ẐA) = Dom(ẐB).

If UA : HA → KΘA (here HA is the Hilbert space on which A acts) is the
unitary operator which induces the unitary equivalence of A and ZA and UB :
HB → KΘB is the unitary inducing the unitary equivalence of B and ZB, one
notes that by the way in which these operators were constructed, we have

UA Ker(A)⊥ = Dom(ẐA), UB Ker(B)⊥ = Dom(ẐB).

One can verify that the operator L = U∗BYUA : HA → HB satisfies

L Ker(A)⊥ = Ker(B)⊥, LA|Ker(A)⊥ = BL|Ker(A)⊥ .

This shows that A|Ker(A)⊥ is similar to B|Ker(B)⊥ .
As in the previous proof, the converse is obvious.

EXAMPLE 9.4. Let {e1, . . . , en} be the standard orthonormal basis for Cn

and let {u1, . . . , un} be any orthonormal basis for Cn. By Proposition 2.3 the ma-
trices

V1 = [e2|e3| · · · |en|0], V2 = [u2|u3| · · · |un|0]
define partial isometries on Cn. Note that V1 is the matrix representation of the
compressed shift SΘ on KΘ, where Θ = zn.

From Example 4.4, we see that the Livšic characteristic function for V1 is
Θ while the Livšic characteristic function for V2 is the finite Blaschke product Ψ
whose zeros are 0 along with the non-zero eigenvalues of V2 (Example 4.5). So
unless Θ = ξΨ, for some ξ ∈ T, V1 is not unitarily equivalent to V2 (Theorem 4.2).
However, we can see that V1 ∼q V2 in the following way.

Observe from (2.1) that

Ker(V1)
⊥ =

∨
{e1, . . . , en−1}, Ran(V1) =

∨
{e2, . . . , en}.

Furthermore, V1ej = ej+1, 1 6 j 6 n − 1. This means that if B1 is the ordered
basis {e1, . . . , en−1} for Ker(V1)

⊥ and B2 is the ordered basis {e2, . . . , en} for
Ran(V1), then the matrix representation of V1|Ker(V1)⊥

with respect to the pair
(B1, B2) is

[V1|Ker(V1)⊥
](B1,B2)

= In−1.

In a similar way,

Ker(V2)
⊥ =

∨
{e1, . . . , en−1}, Ran(V2) =

∨
{u1, . . . , un−1}.
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Moreover, V2ej = uj, 1 6 j 6 n − 1. This means that if C1 is the ordered ba-
sis {e1, . . . , en−1} for Ker(V2)

⊥ and C2 is the ordered basis {u1, . . . , un−1} for
Ran(V2), then the matrix representation of V2|Ker(V2)⊥

with respect to the pair
(C1, C2) is

[V2|Ker(V2)⊥
](C1,C2)

= In−1.

Since we get the (n− 1)× (n− 1) identity matrix in both cases, we see, from basic
linear algebra, that V1|Ker(V1)⊥

is indeed similar to V2|Ker(V2)⊥
.
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