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ABSTRACT. In 1967, Arveson invented a noncommutative generalization of
classical H∞, known as finite maximal subdiagonal subalgebras, for a finite
von Neumann algebra M with a faithful normal tracial state τ. In 2008,
Blecher and Labuschagne proved a version of Beurling theorem on H∞-right
invariant subspaces in a noncommutative Lp(M, τ) space for 1 6 p 6 ∞.
In the present paper, we define and study a class of norms Nc(M, τ) onM,
called normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norms,
which properly contains the class {‖ · ‖p : 1 6 p < ∞} and the class of re-
arrangement invariant quasi Banach function norms studied by Bekjan. For
α ∈ Nc(M, τ), we define a noncommutative Lα(M, τ) space and a noncom-
mutative Hα space. Then we obtain a version of the Blecher–Labuschagne–
Beurling invariant subspace theorem on H∞-right invariant subspaces in
Lα(M, τ) spaces and Hα spaces. Key ingredients in the proof of our main
result include a characterization theorem of Hα and a density theorem for
Lα(M, τ).
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INTRODUCTION

One of the most celebrated theorems in operator theory is Beurling’s invari-
ant subspace theorem, stating that ifW is a nonzero closed, H∞-invariant subspace
(or, equivalently, zW ⊆ W) of H2(T) on the unit circle, thenW = ψH2(T) for some
ψ ∈ H∞(T) with |ψ| = 1 a.e. (µ) [2]. Later, the Beurling theorem for H2(T) was
generalized to describe closed H∞-invariant subspaces in the Hardy space Hp(T)
with 1 6 p 6 ∞ (see [6], [13], [14], [15], [16], [27] and etc.). Beurling theorem has
been extended to many other directions.
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In 1967, Arveson [1] invented a noncommutative generalization of classical
H∞, known as finite maximal subdiagonal subalgebras, for a finite von Neumann
algebraM with a faithful normal tracial state τ. Roughly, a subdiagonal algebra
A is a subalgebra of a von Neumann algebra M which has many of the struc-
tural properties of the Hardy space H∞(T). Subsequently, several authors stud-
ied the invariant subspaces of A acting on the noncommutative Lebesgue space
Lp(M, τ). In 2008, Blecher and Labuschagne [5] proved a version of Beurling the-
orem on H∞-right invariant subspaces in a noncommutative Lp(M, τ) space for
1 6 p 6 ∞. Very recently, in 2015, T.N. Bekjan [3] obtained the similar Beurl-
ing theorem in noncommutative Hardy spaces based on his beautiful study of
symmetric Banach spaces.

In the present paper, we set up a Beurling theorem for noncommutative
Hardy spaces associated with unitarily invariant norms, which properly contains
the class {‖ · ‖p : 1 6 p < ∞} and the class of rearrangement invariant quasi
Banach function norms studied in [3]. It is worth pointing out that many of the
classical proofs for the ‖ · ‖p case use the L2-result and take cases when p 6 2
and 2 < p (see Theorem 4.5 in [5] and Theorem 6.5 of [3]). In our general set-
ting, the cases p 6 2 and 2 < p have no analogue, hence tools available in the
setting of Lp-spaces and symmetric Banach spaces are no longer available. In
order to achieve this extension, a lot of technology regarding these generalized
settings needs to be developed. This is the reason why we proved a new version
of Hölder’s inequality, a new version of Saito’s result [24] and many other results.
The approach which we use is not only more elementary, even in the Lp-case, but
is much more general.

We now review some of the definitions and notations. Let M be a finite
von Neumann algebra with a faithful normal tracial state τ. For each 1 6 p < ∞,
we define a mapping ‖ · ‖p : M → [0, ∞) by ‖x‖p = (τ((x∗x)p/2))1/p for any
x ∈ M. It is a highly nontrivial fact that ‖ · ‖p actually defines a norm, an Lp-
norm, on M. Thus we let Lp(M, τ) be the completion of M under the norm
‖ · ‖p. Moreover, it is not hard to see that there exists an anti-representation ρ of
M on the space Lp(M, τ) given by ρ(a)ξ = ξa for ξ ∈ Lp(M, τ) and a ∈ M.
Thus we might assume that M acts naturally on each Lp(M, τ) space by right
multiplication for 1 6 p 6 ∞. We will refer to a wonderful handbook [23] by
Pisier and Xu for general knowledge and current development of the theory of
noncommutative Lp-spaces.

A (finite maximal) subdiagonal subalgebra of M is a weak* closed unital
subalgebra A ofM such that if Φ is the unique conditional expectation fromM
onto D = A∩A∗, then

(i) A+A∗ is weak* dense inM;

(ii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ A;

(iii) τ ◦Φ = τ.
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In [10], Exel showed that if A is weak* closed and τ satisfies (iii), then A
(with respect to Φ) is maximal among those subdiagonal subalgebras (with re-
spect to Φ ) satisfying (i), (ii). Such a finite, maximal subdiagonal subalgebra A
ofM is also called an H∞ space ofM. For each 1 6 p < ∞, the closure of H∞

in Lp(M, τ) is denoted by Hp and the closure of H∞
0 = {x ∈ H∞ : Φ(x) = 0} is

denoted by Hp
0 .

The concept of unitarily invariant norms was introduced by von Neumann
[22] for the purpose of metrizing matrix spaces. These norms have now been
generalized and applied in many contexts (for example, see [18], [20], [26] and
etc.). Besides all Lp-norms for 1 6 p 6 ∞, there are many other interesting
examples of unitarily invariant norms on M (for example, see [3], [7], [8], [12]
and others).

In this paper, we introduce a class Nc(M, τ) of normalized, unitarily invari-
ant, ‖ · ‖1-dominating and continuous norms (see Definition 1.2). If α ∈ Nc(M, τ)
and H∞ is a finite, maximal subdiagonal subalgebra ofM, then we let Lα(M, τ)
and Hα be the completion ofM, and H∞ respectively, with respect to the norm α.

In 2008, Fang, Hadwin, Nordgren and Shen set up a generalized noncom-
mutative Lebesgue space associated with unitarily invariant norms. Some clas-
sical results in noncommutative Lp-theory (e.g., noncommutative Hölder’s in-
equality, duality and reflexivity of noncommutative Lp-spaces) are obtained for
unitarily invariant norms on finite factors.

Motivated by the relation between finite factors and finite von Neumann
algebras, in this paper we consider the noncommutative Lp-spaces and the non-
commutative Hp-spaces associated with unitarily invariant norms on a finite von
Neumann algebraM and prove a version of Beurling’s theorem for H∞-right in-
variant subspaces in Lα(M, τ), and therefore for H∞-right invariant subspaces in
Hα, when α ∈ Nc(M, τ). More specifically, we are able to obtain the following
Beurling theorem for Lα(M, τ), built on Blecher and Labuschagne’s result in the
case of p = ∞.

THEOREM 0.1. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let H∞ be a finite, maximal subdiagonal subalgebra of M and D =
H∞ ∩ (H∞)∗. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM. IfW is a closed subspace of Lα(M, τ), thenWH∞ ⊆ W if and only if

W = Z
⊕col

(
⊕col

i∈I ui Hα),

where Z is a closed subspace of Lα(M, τ) such that Z = [ZH∞
0 ]α, and where ui are par-

tial isometries inW ∩M with u∗j ui = 0 if i 6= j, and with u∗i ui ∈ D. Moreover, for each
i, u∗i Z = {0}, left multiplication by the uiu∗i are contractive projections from W onto
the summands ui Hα, and left multiplication by 1− ∑

i
uiu∗i is a contractive projection

fromW onto Z .
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Here
⊕col denotes an internal column sum (see Definition 4.5). Moreover,⊕

i

colui Hα and Z = [ZH∞
0 ]α are of type 1, and of type 2 respectively (see [5] for

definitions of invariant subspaces of different types).
Many tools used in a noncommutative Lp(M, τ) space are no longer avail-

able in an arbitrary Lα(M, τ) space and new techniques or new proofs need to be
invented. Key ingredients in the proof of Theorem 4.7 include a characterization
of Hα (see Theorem 3.9), a factorization result in Lα(M, τ) (see Proposition 4.2),
and a density theorem for Lα(M, τ) (see Theorem 4.3), which extend earlier re-
sults by Saito in [24].

THEOREM 0.2. Let M be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. Then

Hα = H1 ∩ Lα(M, τ) = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H∞
0 }.

PROPOSITION 0.3. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. If k ∈ M
and k−1 ∈ Lα(M, τ), then there are unitary operators w1, w2 ∈ M and operators
a1, a2 ∈ H∞ such that k = w1a1 = a2w2 and a−1

1 , a−1
2 ∈ Hα.

THEOREM 0.4. Let M be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. If W is a
closed subspace of Lα(M, τ) and N is a weak*-closed linear subspace of M such that
WH∞ ⊆ W and NH∞ ⊆ N , then

(i) N = [N ]α ∩M;
(ii)W ∩M is weak* closed inM;

(iii)W = [W ∩M]α;
(iv) if S is a subspace ofM such that SH∞ ⊆ S , then

[S ]α = [S w∗
]α,

where S w∗ is the weak* closure of S inM.

We end the paper with two quick applications of Theorem 4.7, which con-
tain the classical Beurling theorem as a special case by lettingM be L∞(T, µ).

COROLLARY 0.5. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM. IfW is a closed subspace of Lα(M, τ) such thatWM ⊆ W , then there
exists a projection e inM such thatW = eLα(M, τ).

COROLLARY 0.6. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let H∞ be a finite, maximal subdiagonal subalgebra ofM such that H∞ ∩
(H∞)∗ = CI. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
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norm on M. Assume that W is a closed subspace of Lα(M, τ). If W is simply H∞-
right invariant, i.e. [WH∞]α $ W , then there exists a unitary u ∈ W ∩M such that
W = uHα.

The organization of the paper is as follows. In Section 1, we introduce a class
Nc(M, τ) of normalized, unitarily invariant, ‖ · ‖1-dominating and continuous
norms and study their dual norms on a finite von Neumann algebra M with a
faithful normal tracial state τ. In Section 2, for each α ∈ Nc(M, τ), we show
a new version of Hölder’s inequality and prove a duality theorem of Lα(M, τ),
whose form is different from the usual Lp-spaces for each 1 6 p < ∞. In Section 3,
we define the noncommutative Hα spaces and provide a characterization of Hα.
Finally, in Section 4, based on our density theorem for Lα(M, τ), we obtain the
main result of the paper, a version of Beurling theorem for H∞-right invariant
subspaces in Lα(M, τ) spaces and in Hα spaces.

1. UNITARILY INVARIANT NORMS AND DUAL NORMS ON
FINITE VON NEUMANN ALGEBRAS

1.1. UNITARILY INVARIANT NORMS. Let M be a finite von Neumann algebra
with a faithful normal tracial state τ. For general knowledge about noncommu-
tative Lp-spaces for 0 < p 6 ∞ associated with a von Neumann algebraM, we
will refer to a wonderful handbook [23] by Pisier and Xu. For each 0 < p < ∞,
we let ‖ · ‖p be the mapping fromM to [0, ∞) (see [23]) as defined by

‖x‖p = (τ(|x|p))1/p, ∀ x ∈ M.

It is known that ‖ · ‖p is a norm if 1 6 p < ∞, and a quasi-norm if 0 < p < 1. We
define Lp(M, τ), the so called noncommutative Lp-space associated with (M, τ),
to be the completion ofM with respect to ‖ · ‖p for 0 < p < ∞.

In the paper, we will mainly focus on the following two classes of unitarily
invariant norms of a finite von Neumann algebra.

DEFINITION 1.1. We denote by N(M, τ) the collection of all norms α :
M→ [0, ∞) satisfying:

(i) α(I) = 1, i.e. α is normalized.
(ii) α(uxv) = α(x) for all x ∈ M and unitaries u, v in M, i.e. α is unitarily

invariant.
(iii) ‖x‖1 6 α(x) for every x ∈ M, i.e. α is ‖ · ‖1-dominating.

The norm α in N(M, τ) is called a normalized, unitarily invariant, ‖ · ‖1-
dominating norm onM.

DEFINITION 1.2. We denote by Nc(M, τ) the collection of all norms α :
M→ [0, ∞) such that:

(i) α ∈ N(M, τ) and
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(ii) lim
τ(e)→0

α(e) = 0 as e ranges over the projections in M (α is a continuous

norm with respect to a trace τ).
The norm α in Nc(M, τ) is called a normalized, unitarily invariant, ‖ · ‖1-

dominating, continuous norm onM.

EXAMPLE 1.3. Each p-norm, ‖ · ‖p, is in the class Nc(M, τ) for 1 6 p < ∞.

EXAMPLE 1.4. LetM be a finite von Neumann algebra with a faithful nor-
mal tracial state τ satisfying the weak Dixmier property (see [12]). Let α be a
normalized tracial gauge norm on M. Then Theorem 3.30 in [12] shows that
α ∈ N(M, τ).

EXAMPLE 1.5. LetM be a finite von Neumann algebra with a faithful nor-
mal tracial state τ and E(0, 1) be a rearrangement invariant Banach function space
on (0, 1). A noncommutative Banach function space E(τ) together with a norm
‖ · ‖E(τ), corresponding to E(0, 1) and associated with (M, τ), can be introduced
(see [7] or [8]). MoreoverM is a subspace in E(τ) and the restriction of the norm
‖ · ‖E(τ) toM lies in N(M, τ). If E is also order continuous, then the restriction
of the norm ‖ · ‖E(τ) toM lies in Nc(M, τ).

EXAMPLE 1.6. Let N be a type II1 factor with a tracial state τN . Let ‖ · ‖1,N
and ‖ · ‖2,N be L1-norm, and L2-norm respectively, on N . LetM = N ⊕N be a
finite von Neumann algebra with a faithful normal tracial state τ, defined by

τ(x⊕ y) =
τN (x) + τN (y)

2
, ∀ x⊕ y ∈ M.

Let α be a norm ofM, defined by

α(x⊕ y) =
‖x‖1,N + ‖y‖2,N

2
, ∀ x⊕ y ∈ M.

Then α ∈ Nc(M, τ). But α is neither tracial (see Definition 3.7 in [12]) nor re-
arrangement invariant (see Definition 2.1 in [9]).

The following lemma is well-known.

LEMMA 1.7. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ and α be a norm onM. If α is unitarily invariant, i.e.

α(uxv) = α(x) for all x ∈ M and unitaries u, v inM,

then
α(x1yx2) 6 ‖x1‖ · ‖x2‖ · α(y), ∀ x1, x2, y ∈ M.

In particular, if α is a normalized unitarily invariant norm onM, then

α(x) 6 ‖x‖, ∀ x ∈ M.

Proof. Let x ∈ M such that ‖x‖ = 1. Assume that x = v|x| is the polar
decomposition of x in M, where v is a unitary in M and |x| is positive. Then
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u = |x|+ i
√

I − |x|2 is a unitary inM such that |x| = (u + u∗)/2. Thus

α(xy) = α(|x|y) = α( uy+u∗y
2 ) 6

α(uy) + α(u∗y)
2

= α(y).

Hence α(xy) 6 ‖x‖α(y), ∀ x, y ∈ M. Similarly, α(yx) 6 ‖x‖α(y), ∀ x, y ∈ M.
Furthermore, if α is a normalized unitarily invariant norm onM, then from

the discussion in the preceding paragraph we have that

α(x) 6 ‖x‖α(I) = ‖x‖, ∀ x ∈ M.

1.2. DUAL NORMS OF UNITARILY INVARIANT NORMS ON M. The concept of
dual norm plays an important role in the study of noncommutative Lp-spaces.
In this subsection, we will introduce dual norms for unitarily invariant norms on
a finite von Neumann algebra.

LEMMA 1.8. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating norm onM (see
Definition 1.1). Define a mapping α′ :M→ [0, ∞] as follows:

α′(x) = sup{|τ(xy)| : y ∈ M, α(y) 6 1}, ∀ x ∈ M.

Then the following statements are true:
(i) ∀ x ∈ M, ‖x‖1 6 α′(x) 6 ‖x‖.

(ii) α′ is a norm onM.
(iii) α′ ∈ N(M, τ), i.e. α′ is a normalized, unitarily invariant, ‖ · ‖1-dominating

norm.
(iv) |τ(xy)| 6 α(x)α′(y) for all x, y inM.

Proof. (i) Suppose x ∈ M. If y ∈ M with α(y) 6 1, then, from the fact that
α is ‖ · ‖1-dominating, we have

|τ(xy)| 6 ‖x‖‖y‖1 6 ‖x‖α(y) 6 ‖x‖,
whence α′(x) 6 ‖x‖. Thus α′ is a mapping fromM to [0, ∞).

Now, assume that x = uh is the polar decomposition of x inM, where u is a
unitary element inM and h inM is positive. Then, from the fact that α(u∗) = 1,
we have

α′(x) > |τ(u∗x)| = τ(h) = ‖x‖1.
Therefore ‖x‖1 6 α′(x) for every x ∈ M. This ends the proof of part (i).

(ii) It is easy to verify that

α′(ax)= |a|α′(x), and α′(x1+x2)6α′(x1)+α′(x2), ∀a∈C, ∀ x, x1, x2∈M.

From the result (i), we know that α′(x) = 0 implies x = 0. Therefore α′ is a norm
onM.

(iii) It is not hard to verify that α′ satisfies conditions (i) and (ii) in the defini-
tion of N(M, τ). From the result (i), α′ also satisfies condition (iii) in the definition
of N(M, τ). Therefore α′ ∈ N(M, τ).

(iv) It follows directly from the definition of α′.
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DEFINITION 1.9. The norm α′, as defined in Lemma 1.8, is called the dual
norm of α onM.

Now we are ready to introduce Lα-spaces and Lα′ -spaces for a finite von
Neumann algebraM with respect to the unitarily invariant norms α, and α′ re-
spectively, as follows.

DEFINITION 1.10. Let M be a finite von Neumann algebra with a faithful
normal tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating
norm onM (see Definition 1.1). Let α′ be the dual norm of α onM (see Defini-
tion 1.9). We define Lα(M, τ) and Lα′(M, τ) to be the completion of M with
respect to α, and α′, respectively.

REMARK 1.11. If α is an Lp-norm for some 1 < p < ∞, then α′ is nothing
but an Lq-norm where 1/p + 1/q = 1. Hence Lα(M, τ), Lα′(M, τ) are the usual
Lp(M, τ), Lq(M, τ) spaces.

It is known that the dual space of Lp(M, τ) is Lq(M, τ) when 1 < p, q < ∞
and 1/p + 1/q = 1. However generally, for α ∈ N(M, τ), the dual of Lα(M, τ)

might not be Lα′(M, τ).

2. DUAL SPACES OF Lα-SPACES ASSOCIATED WITH FINITE VON NEUMANN ALGEBRAS

In this section we will study the dual spaces of Lα(M, τ) by investigating
some subspaces in L1(M, τ).

2.1. DEFINITIONS OF SUBSPACES Lα(M, τ) AND Lα ′(M, τ) OF L1(M, τ).

DEFINITION 2.1. Let M be a finite von Neumann algebra with a faithful
normal tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating
norm onM (see Definition 1.1). Let α′ be the dual norm of α onM (see Defini-
tion 1.9). We define

α : L1(M, τ)→ [0, ∞] and α ′ : L1(M, τ)→ [0, ∞]

as follows:

α(x) = sup{|τ(xy)| : y ∈ M, α′(y) 6 1}, ∀ x ∈ L1(M, τ),

α ′(x) = sup{|τ(xy)| : y ∈ M, α(y) 6 1}, ∀ x ∈ L1(M, τ).

We define

Lα(M, τ) = {x ∈ L1(M, τ) : α(x) < ∞} ⊆ L1(M, τ),

Lα ′(M, τ) = {x ∈ L1(M, τ) : α ′(x) < ∞} ⊆ L1(M, τ).

Thus α and α ′, are mappings from Lα(M, τ), and Lα ′(M, τ) respectively,
into [0, ∞). The next result follows directly from the definitions of α, α ′, and part
(iv) of Lemma 1.8.



NONCOMMUTATIVE BEURLING THEOREM WITH RESPECT TO UNITARILY INVARIANT NORMS 505

LEMMA 2.2. We have

α ′(x) = α′(x) and α(x) 6 α(x) for every x ∈ M.

The following proposition describes properties of α and α ′, which imply
that Lα(M, τ) and Lα ′(M, τ) are normed spaces with respect to α and α ′, respec-
tively.

PROPOSITION 2.3. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating norm onM
(see Definition 1.1). Let α′ be the dual norm of α onM (see Definition 1.9). Let

α : Lα(M, τ)→ [0, ∞) and α ′ : Lα ′(M, τ)→ [0, ∞)

be as in Definition 2.1. Then the following statements are true:
(i) α(I) = 1 and α ′(I) = 1.

(ii) If u, v are unitary elements inM, then

α(x) = α(uxv), ∀ x ∈ Lα(M, τ)

and
α ′(x) = α ′(uxv), ∀ x ∈ Lα ′(M, τ).

(iii1) We have
‖x‖1 6 α(x), ∀ x ∈ Lα(M, τ)

and
‖x‖1 6 α ′(x), ∀ x ∈ Lα ′(M, τ).

(iii2) If x is an element inM, then

α(x) 6 ‖x‖ and α ′(x) 6 ‖x‖.

(iv) α and α ′ are norms on Lα(M, τ), and Lα ′(M, τ), respectively.

Proof. (i) Note that α ∈ N(M, τ) and α′ ∈ N(M, τ) from part (iii) of Lem-
ma 1.8. Thus

α(I) = sup{|τ(y)| : y ∈ M, α′(y) 6 1} = sup{||y||1 : y ∈ M, α′(y) 6 1} = 1.

Similarly,
α ′(I) = 1.

(ii) If u, v are unitaries inM, then

α(uxv)=sup{|τ(uxvy)| : y ∈ M, α′(y) 6 1}
=sup{|τ(xvyu)| : y ∈ M, α′(y) 6 1} (by Definition 2.1)

=sup{|τ(xy0)| : y∈M, α′(y0)=α′(vyu)=α′(y)61} (because α′∈N(M, τ))

=α(x), ∀x ∈ Lα(M, τ).

Similarly, we have

α ′(x) = α ′(uxv), ∀ x ∈ Lα ′(M, τ).
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(iii1) Assume that x ∈ Lα(M, τ) ⊆ L1(M, τ). We let x = uh be the polar
decomposition of x in L1(M), where u is a unitary inM and h = |x| ∈ L1(M).
Then, from the result (ii), we obtain that

α(x) = α(uh) = α(h) > |τ(h)| = ‖x‖1.

Similarly, we have
‖x‖1 6 α ′(x), ∀ x ∈ Lα ′(M, τ).

(iii2) Note that α′ ∈ N(M, τ). Suppose x ∈ M. If y ∈ M with α′(y) 6 1.
Then

|τ(xy)| 6 ‖x‖‖y‖1 6 ‖x‖α′(y) 6 ‖x‖.
Now it follows from the definition of α that α(x) 6 ‖x‖. Similarly, we have
α ′(x) 6 ‖x‖, ∀x ∈ M.

(iv) From the definition and the result (iii1), we conclude that α and α ′ are
norms on Lα(M, τ), and Lα ′(M, τ) respectively.

The following lemma is a useful tool for our later results.

LEMMA 2.4. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating norm onM (see
Definition 1.1). Let α′ be the dual norm of α onM (see Definition 1.9). Let α and α ′ be
as in Definition 2.1. Then the following statements are true:

(i) For all x ∈ Lα(M, τ) and a ∈ M α(xa) 6 α(x)‖a‖.
(ii) For all x ∈ Lα ′(M, τ) and a ∈ M α ′(xa) 6 α ′(x)‖a‖.

Proof. (i) From Proposition 2.3, α is a norm on Lα(M, τ) satisfying

α(x) = α(uxv), ∀ unitary elements u, v ∈ M and x ∈ Lα(M, τ).

Now the proof of Lemma 1.7 can also be applied here.
(ii) A similar result holds for α ′.

Our next result shows that Lα(M, τ) and Lα ′(M, τ) are Banach spaces with
respect to α and α ′ respectively.

PROPOSITION 2.5. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating norm onM
(see Definition 1.1). Let α′ be the dual norm of α onM (see Definition 1.9). Let α, α ′,
Lα(M, τ) and Lα ′(M, τ) be as in Definition 2.1. Then Lα(M, τ) and Lα ′(M, τ) are
both Banach spaces with respect to norms α and α ′, respectively.

Proof. Since the arguments for Lα(M, τ) and for Lα ′(M, τ) are similar, we
will only present the proof that Lα(M, τ) is a Banach space here.

From part (iv) of Proposition 2.3, we know that Lα(M, τ) is a normed space
with respect to α. To prove the completeness of the space, we suppose {xn} is a
Cauchy sequence in Lα(M, τ) with respect to α. Then there is an M > 0 such that
α(xn) 6 M for all n. From part (iii1) of Proposition 2.3, we have that ‖xm− xn‖1 6
α(xm − xn) for m, n > 1. It follows that {xn} is a Cauchy sequence in L1(M, τ),
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which is a complete Banach space. Then there is an x0 ∈ L1(M, τ) such that
‖xn − x0‖1 → 0.

We claim that x0 ∈ Lα(M, τ) and α(xn − x0) → 0 as n goes to infinity. In
fact, we let y ∈ M with α′(y) 6 1. Since

|τ(xny)− τ(x0y)| = |τ((xn − x0)y)| 6 ‖xn − x0‖1‖y‖ → 0,

we have
|τ(x0y)| = lim

n→∞
|τ(xny)|.

By the definition of α, we have that

|τ(x0y)| = lim
n→∞

|τ(xny)| 6 lim sup
n→∞

α(xn)α
′(y) 6 M,

whence α(x0) 6 M. This implies x0 ∈ Lα(M, τ). Furthermore, since {xn} is
Cauchy in Lα(M, τ), it follows that, for each n > 1,

|τ((x0 − xn)y)| = lim
m→∞

|τ((xm − xn)y)| 6 lim sup
m→∞

α(xm − xn)α
′(y)

6 lim sup
m→∞

α(xm − xn).

Thus α(xn − x0) 6 lim sup
m→∞

α(xm − xn) for each n > 1. Again from the fact that

{xn} is Cauchy in Lα(M, τ), we conclude that α(xn− x0)→ 0 as n goes to infinity.
Therefore Lα(M, τ) is a Banach space with respect to the norm α. This ends the
proof of the whole proposition.

2.2. HÖLDER’S INEQUALITY. In this subsection, we will prove Hölder’s inequal-
ity for Lα(M, τ) when α is a normalized, unitarily invariant, ‖ · ‖1-dominating,
continuous norm.

We will need the following result from [29].

LEMMA 2.6 (Corollary III.3.11 in [29]). Let M be a finite von Neumann alge-
bra with a faithful normal tracial state τ. If φ is a bounded linear functional on a von
Neumann algebraM, then the following two statements are equivalent:

(i) φ is normal;
(ii) for every orthogonal family {ei}i∈I inM,

φ
(

∑
i∈I

ei

)
= ∑

i∈I
φ(ei).

When α is a continuous norm, the following result relates the dual space of
Lα(M, τ) to the space Lα′(M, τ).

PROPOSITION 2.7. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm on M (see Definition 1.2). Let Lα ′(M, τ) be as in Definition 2.1. Then for ev-
ery bounded linear functional φ ∈ (Lα(M, τ))], there is a ξ ∈ Lα ′(M, τ) such that
α ′(ξ) = ‖φ‖ and φ(x) = τ(xξ) for all x ∈ M.
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Proof. Suppose α ∈ Nc(M, τ) and φ ∈ (Lα(M, τ))]. Let {en} be a family

of orthogonal projections inM. It is easily verified that
∞
∑

n=N
en → 0 in the strong

operator topology as N approaches infinity. Since τ is normal, by Lemma 2.6, we

have that lim
N→∞

τ
( ∞

∑
n=N

en

)
→ 0. Note that α ∈ Nc(M, τ). Then the continuity

of α with respect to τ implies that lim
N→∞

α
( ∞

∑
n=N

en

)
→ 0. From the fact that φ ∈

(Lα(M, τ))], we know that

lim
N→∞

φ
( ∞

∑
n=1

en −
N−1

∑
n=1

en

)
= lim

N→∞
φ
( ∞

∑
n=N

en

)
= 0.

Now Lemma 2.6 implies that φ is a normal functional on M. Hence φ is in the
predual space of M, i.e. there is a ξ ∈ L1(M, τ) such that φ(x) = τ(xξ) for all
x ∈ M. Furthermore, sinceM is dense in Lα(M, τ), we see that

‖φ‖ = sup{|φ(x)| : x ∈ M, α(x) 6 1}
= sup{|τ(xξ)| : x ∈ M, α(x) 6 1} = α ′(ξ),

which implies that ξ ∈ Lα ′(M, τ). This ends the proof of the result.

For a finite von Neumann algebra M acting on a Hilbert space H, the set
of possibly unbounded, closed and densely defined operators on H which are
affiliated toM, forms a topological ∗-algebra where the topology is the noncom-
mutative topology of convergence in measure [21]. We will denote this algebra
by M̃; it is the closure ofM in the topology just mentioned. We let M̃+ be the
set of positive operators in M̃. Then the trace

τ :M+ → [0, ∞)

can be extended to a generalized trace

τ̃ : M̃+ → [0, ∞].

We refer to [21], [25], [30] for more details on the noncommutative integration
theory.

We will summarize some properties of the generalized trace on M̃+ as fol-
lows.

LEMMA 2.8. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ acting on a Hilbert space H. Let M̃ be the set of closed and densely-defined
operators affiliated to M and M̃+ be the set of positive operators in M̃. If a ∈ M̃+,
there is a family {eλ}λ>0 of projections (spectral resolution of a) inM such that:

(i) eλ → I increasingly;
(ii) eλa = aeλ ∈ M for every 0 < λ < ∞;

(iii) τ̃(a) = sup
λ>0

τ(eλa) ( τ̃(a) could be infinity);
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(iv) if a ∈ L1(M, τ), then ‖eλa− a‖1 → 0.
Assume that x is an element in M̃. Then x ∈ L1(M, τ) if and only if τ̃(|x|) < ∞.

The result is well-known. More details could be found in Section 1.1 of [11]
or in [30].

If no confusion arises, we still use τ to denote the generalized trace τ̃ on M̃+.
A consequence of the preceding lemma is the following result.

COROLLARY 2.9. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ acting on a Hilbert space H. Let α be a normalized, unitarily invariant,
‖ · ‖1-dominating, continuous norm onM (see Definition 1.2). Let α′ be the dual norm
of α onM (see Definition 1.9). Let α and α ′ be as defined in Definition 2.1. Then

α(x) = α(x) and α′(x) = α ′(x) for all x ∈ M.

Proof. It is clear by Lemma 2.2 that α′(x) = α ′(x) and α(x) 6 α(x) for all
x ∈ M. We will need only to show that α(x) > α(x) for all x ∈ M.

Now suppose x ∈ M with α(x) = 1. By the Hahn–Banach theorem, there
is a continuous linear functional φ ∈ (Lα(M, τ))] such that φ(x) = α(x) = 1
and ‖φ‖ = 1. Since φ ∈ (Lα(M, τ))], from Proposition 2.7, there is an element
ξ ∈ Lα ′(M, τ) such that φ(x) = |τ(xξ)| = 1 and α ′(ξ) = ‖φ‖ = 1.

Let ξ = uh be the polar decomposition of ξ ∈ Lα ′(M, τ), where u ∈ M is a
unitary and h ∈ Lα ′(M, τ) ⊆ L1(M) is positive. Then it follows from Lemma 2.8
that there exists a family {eλ}λ>0 of projections inM such that

‖h− heλ‖1 → 0(2.1)

and eλh = heλ ∈ M for every 0 < λ < ∞. Thus uheλ ∈ M. It follows from
Lemma 2.2 and Lemma 2.4 that

α′(uheλ) = α ′(uheλ) 6 α ′(uh)‖eλ‖ 6 α ′(uh) = α ′(ξ) = 1.(2.2)

Therefore,

|τ(xξ)| = |τ(xuh)|
= lim

λ→∞
|τ(xuheλ)| (by (2.1) and xu ∈ M)

6 sup{|τ(xy)| : y ∈ M, α′(y) 6 1} by (2.2).

Hence, from the definition of α we obtain

α(x) = sup{|τ(xy)| : y ∈ M, α′(y) 6 1} > |τ(xξ)| = 1 = α(x).

This finishes the proof of the result.

A quick corollary of the preceding result is the following conclusion.

PROPOSITION 2.10. LetM be a finite von Neumann algebra with a faithful nor-
mal tracial state τ acting on a Hilbert spaceH. Let α be a normalized, unitarily invariant,
‖ · ‖1-dominating, continuous norm onM (see Definition 1.2). Let α′ be the dual norm
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of α onM (see Definition 1.9). Let α and α ′ be as defined in Definition 2.1. There are
natural isometric embeddings

Lα(M, τ) ↪→ Lα(M, τ) and Lα′(M, τ) ↪→ Lα ′(M, τ),

such that
x 7→ x and x 7→ x, ∀ x ∈ M.

Thus Lα(M, τ) and Lα′(M, τ) are Banach subspaces of Lα(M, τ), and Lα ′(M, τ),
respectively.

The following theorem is a generalization of Hölder’s inequality in non-
commutative Lp-spaces.

THEOREM 2.11. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ acting on a Hilbert space H. Let α be a normalized, unitarily invariant,
‖ · ‖1-dominating, continuous norm on M (see Definition 1.2). Let α′ be the dual
norm of α on M (see Definition 1.9). Let Lα(M, τ) and Lα ′(M, τ) be as defined
in Definition 2.1. If x ∈ Lα(M, τ) and y ∈ Lα ′(M, τ), then xy ∈ L1(M, τ) and
‖xy‖1 6 α(x)α ′(y).

In particular, if x ∈ Lα(M, τ) and y ∈ Lα ′(M, τ), then xy ∈ L1(M, τ) and
‖xy‖1 6 α(x)α ′(y).

Proof. Suppose x ∈ Lα(M, τ) ⊆ L1(M, τ) and y ∈ Lα ′(M, τ) ⊆ L1(M, τ).
Then xy ∈ M̃, where M̃ is the set of closed and densely defined operators affili-
ated withM. Let xy = uh be the polar decomposition of xy in M̃, where u ∈ M
is a unitary and h = |xy| ∈ M̃+. From Lemma 2.8, there exists an increasing
family {eλ}λ>0 of projections inM, such that eλh = heλ ∈ M for each λ > 0 and
such that τ(h) = sup

λ>0
τ(eλh). We will show that τ(h) 6 α(x)α ′(y).

Assume, to the contrary, that

τ(h) = sup
λ>0

τ(eλh) > α(x)α ′(y).

Then there is a projection e ∈ M and ε > 0 such that eh ∈ M and

τ(eh) > α(x)α ′(y) + ε.

Note that eh = eu∗xy. Let eu∗x = h2u2, where u∗2h2 is the polar decomposi-
tion of x∗ue in M̃. It is clear that u2 ∈ M is a unitary and h2 ∈ M̃+. Again
from Lemma 2.8, we may choose { fλ}λ>0 to be an increasing family of projec-
tions inM such that (i) fλ → I increasingly in the strong operator topology, (ii)
fλh2 = h2 fλ ∈ M, and (iii) τ(eu∗xu∗2) = τ(h2) = sup

λ

τ( fλh2). From (ii), we have

fλh2u2 ∈ M for each λ > 0. It follows that, for each λ > 0,

|τ( fλeh)| = |τ( fλeu∗xy)| = |τ( fλh2u2y)|
6 α( fλh2u2)α

′(y) (by definition of α ′)

= α( fλh2u2)α
′(y) (by Corollary 2.9)
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6 ‖ fλ‖α(h2u2)α
′(y) (by Lemma 2.4)

6 α(h2)α
′(y) (by properties of α)

= α(eu∗xu∗2)α
′(y)

6 ‖e‖α(u∗xu∗2)α
′(y) (by Lemma 2.4)

6 α(x)α ′(y) (by properties of α).

Moreover, since fλ → I increasingly in the strong operator topology and
eh ∈ M, we have fλeh → eh in the strong operator topology. Since τ is nor-
mal, τ is continuous on bounded subsets ofM in the strong operator topology.
Therefore, we have

τ(eh) = |τ(eh)| = lim
λ
|τ( fλeh)| 6 α(x)α ′(y),

which is a contradiction. Therefore

‖xy‖1 = τ(|xy|) = τ(h) 6 α(x)α ′(y),

and xy ∈ L1(M). If x ∈ Lα(M, τ) and y ∈ Lα ′(M, τ), then, from Proposi-
tion 2.10, α(x) = α(x). Hence, ‖xy‖1 6 α(x)α ′(y).

2.3. DUAL SPACE OF Lα(M, τ). Now we are ready to describe the dual space
of Lα(M, τ), when α is a normalized, unitarily invariant, ‖ · ‖1-dominating and
continuous norm onM.

THEOREM 2.12. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM (see Definition 1.2). Let Lα ′(M, τ) be as defined in Definition 2.1. Then

(Lα(M, τ))] = Lα ′(M, τ),

i.e.,
(i) for every φ ∈ (Lα(M, τ))], there is a ξ ∈ Lα ′(M, τ) such that α ′(ξ) = ‖φ‖

and φ(x) = τ(xξ) for all x ∈ Lα(M, τ).
(ii) for every ξ ∈ Lα ′(M, τ), the mapping φ : Lα(M, τ) → C, defined by φ(x) =

τ(xξ) for all x in Lα(M, τ), is in (Lα(M, τ))]. Moreover, ‖φ‖ = α ′(ξ).

Proof. (i) Assume that φ ∈ (Lα(M, τ))]. From Proposition 2.7, there exists a
ξ ∈ Lα ′(M, τ) such that α ′(ξ) = ‖φ‖ and φ(y) = τ(yξ) for all y ∈ M. Thus we
need only to show that φ(x) = τ(xξ) for all x ∈ Lα(M, τ).

Suppose x ∈ Lα(M, τ). Then there is a sequence {xn} inM such that α(xn−
x) → 0. Note that φ ∈ (Lα(M, τ))]. Then φ(xn − x) → 0. By the generalized
Hölder’s inequality (Theorem 2.11), we have

|τ(xnξ)− τ(xξ)| = |τ((xn − x)ξ)| 6 α(xn − x)α ′(ξ)→ 0.

Thus τ(xξ) = lim
n→∞

τ(xnξ) = lim
n→∞

φ(xn) = φ(x).
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(ii) It follows directly from the definition of α ′ in Definition 2.1 and the fact
thatM is dense in Lα(M, τ), that

‖φ‖ = sup{|φ(x)| : x ∈ M, α(x) 6 1}
= sup{|τ(xξ)| : x ∈ M, α(x) 6 1} = α ′(ξ) < ∞,

and thus φ ∈ (Lα(M, τ))].

3. NONCOMMUTATIVE HARDY SPACES Hα

LetM be a finite von Neumann algebra with a faithful normal tracial state
τ. Given a von Neumann subalgebraD ofM, a conditional expectation Φ :M→
D is defined to be a positive linear map which preserves the identity and satisfies
Φ(x1yx2) = x1Φ(y)x2 for all x1, x2 ∈ D and y ∈ M. For a finite von Neumann
algebra M with a faithful normal tracial state τ and a von Neumann subalge-
bra D, it is a well-known fact that there exists a unique, faithful, normal, condi-
tional expectation Φ from M onto D such that τ(Φ(y)) = τ(y), for all y ∈ M.
Furthermore it is known that such Φ : M → D can be extended to a contrac-
tive linear mapping Φ : L1(M, τ) → L1(D, τ) satisfying τ(y) = τ(Φ(y)) for all
y ∈ L1(M, τ) (for example, see Proposition 3.9 in [19].)

3.1. ARVESON’S NONCOMMUTATIVE HARDY SPACES. We now recall the non-
commutative analogue of the classical Hardy space H∞(T) by Arveson in [1] (also
see [10]).

DEFINITION 3.1. SupposeM is a finite von Neumann algebra with a faith-
ful normal tracial state τ. Let A be a weak* closed unital subalgebra ofM, and
let Φ be a faithful, normal conditional expectation fromM onto the diagonal von
Neumann algebra D = A ∩A∗. Then A is called a finite, maximal subdiagonal
subalgebra ofM with respect to Φ if

(i) A+A∗ is weak* dense inM;
(ii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ A;

(iii) τ ◦Φ = τ.

Such a finite, maximal subdiagonal subalgebraA ofM is also called an H∞

space ofM.

EXAMPLE 3.2. LetM = Mn(C) be the algebra of n× n matrices with com-
plex entries equipped with a trace τ. Let A be the subalgebra of upper triangular
matrices. NowD is the diagonal matrices and Φ is the natural projection onto the
diagonal. Then A is a finite maximal subdiagonal algebra ofM.

EXAMPLE 3.3. LetM = L∞(X, µ), where (X, µ) is a probability space. Let
τ( f ) =

∫
f dµ for all f in L∞(X, µ). Let A be a weak* closed subalgebra of

L∞(X, µ) such that I ∈ A, A + A∗ is weak* dense in L∞(X, µ), and such that
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f gdµ = (

∫
f dµ)(

∫
gdµ) for all f , g ∈ A. Let Φ( f ) = (

∫
f dµ)I for all f in

L∞(X, µ). Then A is a finite, maximal subdiagonal algebra in L∞(X, µ). These
examples are the weak* Dirichlet algebras of Srinivasan and Wang [28].

3.2. NONCOMMUTATIVE Hα SPACES. Let H∞ be a finite, maximal subdiagonal
subalgebra ofM. We let

H∞
0 = {x ∈ H∞ : Φ(x) = 0}.

For S ⊆ Lp(M, τ), 0 < p < ∞, let [S ]p denote the closure of S in Lp(M, τ) with
respect to ‖ · ‖p. Let

Hp = [H∞]p and Hp
0 = [H∞

0 ]p.

For S ⊆ M, let Sw∗
denote the weak* closure of S inM.

The following characterization of noncommutative Hp spaces for 1 6 p 6
∞ was proved by Saito in [24].

PROPOSITION 3.4 (from [24]). Let 1 6 p 6 ∞. Then
(i) H1 ∩ Lp(M, τ) = Hp and H1

0 ∩ Lp(M, τ) = Hp
0 .

(ii) Hp = {x ∈ Lp(M, τ) : τ(xy) = 0 for all y ∈ H∞
0 }.

(iii) Hp
0 = {x ∈ Lp(M, τ) : τ(xy) = 0 for all y ∈ H∞} = {x ∈ Hp : Φ(x) = 0}.

Similarly, we have the following definition in Lα(M, τ) spaces.

DEFINITION 3.5. SupposeM is a finite von Neumann algebra with a faith-
ful normal tracial state τ. Let H∞ be a finite, maximal subdiagonal subalgebra of
M. Suppose α is a normalized, unitarily invariant, continuous, ‖ · ‖1-dominating
norm onM. For S ⊆ Lα(M, τ), let [S ]α denote the closure of S in Lα(M, τ) with
respect to the norm α. In particular, We define Hα to be the α-closure of H∞, i.e.,

Hα = [H∞]α.

3.3. CHARACTERIZATIONS OF Hα SPACES. In this section, our object is to provide
an analogue of Saito’s result stated in Proposition 3.4 in the new setting Hα, where
α is a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM.

It is proved in [4] that the multiplicativity of the conditional expectation Φ
on H∞ surprisingly extends to multiplicativity on Hp for all 0 < p < ∞.

LEMMA 3.6 (from [4]). The conditional expectation Φ is multiplicative on Hardy
spaces. More precisely, Φ(ab) = Φ(a)Φ(b) for all a ∈ Hp and b∈Hq with 0< p, q6∞.

Next we will prove two lemmas before we state the main result of the sec-
tion.

LEMMA 3.7. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ, and H∞ be a finite, maximal subdiagonal subalgebra ofM. Let α be a normalized,
unitarily invariant, ‖ · ‖1-dominating, continuous norm onM (see Definition 1.2). Let
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Lα ′(M, τ) be as defined in Definition 2.1.Then

Hα = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.

Proof. Let

X = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.

Suppose x ∈ H∞. If y ∈ H1
0 ∩ Lα ′(M, τ) ⊆ H1

0 , then it follows from part (iii) of
Proposition 3.4 that τ(xy) = 0, which implies x ∈ X, and so H∞ ⊆ X.

We claim that X is α-closed in Lα(M, τ). In fact, suppose {xn} is a sequence
in X and x ∈ Lα(M, τ) such that α(xn − x) → 0. If y ∈ H1

0 ∩ Lα ′(M, τ), then by
the generalized Hölder’s inequality (Theorem 2.11), we have

|τ(xy)− τ(xny)| = |τ((x− xn)y)| 6 α(x− xn)α
′(y)→ 0.

Since xn ∈ X for all n ∈ N, it follows that τ(xy) = lim
n→∞

τ(xny) = 0 for all

y ∈ H1
0 ∩ Lα ′(M, τ). By the definition of X, we know that x ∈ X. Hence X is

closed in Lα(M, τ). Therefore

Hα = [H∞]α ⊆ X.

Next, we show that Hα = X. Assume, via contradiction, that Hα $ X ⊆
Lα(M, τ). By the Hahn–Banach theorem, there is a φ ∈ (Lα(M, τ))] and x ∈ X
such that

(i) φ(x) 6= 0, and
(ii) φ(y) = 0 for all y ∈ Hα.

Since α is a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM, it follows from Proposition 2.7 that there exists a ξ ∈ Lα ′(M, τ) such
that

(iii) φ(z) = τ(zξ) for all z ∈ Lα(M, τ).
Hence from (ii) and (iii) we can conclude that

(iv) τ(yξ) = φ(y) = 0 for every y ∈ H∞ ⊆ Hα ⊆ Lα(M, τ).

Since ξ ∈ Lα ′(M, τ) ⊆ L1(M, τ), it follows from part (iii) of Proposition 3.4
and (iv) as above that ξ ∈ H1

0 , which means ξ ∈ H1
0 ∩ Lα ′(M, τ). Combining

this with the fact that x ∈ X = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩

Lα ′(M, τ)}, we obtain that τ(xξ) = 0. Note, again, that x ∈ X ⊆ Lα(M, τ). From
(i) and (iii), it follows that τ(xξ) = φ(x) 6= 0. This is a contradiction. Therefore

Hα = X = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.

LEMMA 3.8. LetM be a finite von Neumann algebra with a faithful normal tracial
state τ, and H∞ be a finite, maximal subdiagonal subalgebra ofM. Let α be a normalized,
unitarily invariant, ‖ · ‖1-dominating, continuous norm onM (see Definition 1.2). Let
Lα ′(M, τ) be as defined in Definition 2.1. Then

H1 ∩ Lα(M, τ) = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.
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Proof. Let

X = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.

It is clear that X ⊆ Lα(M, τ).
Now we suppose x ∈ X, that is x ∈ Lα(M, τ) such that τ(xy) = 0 for

all y ∈ H1
0 ∩ Lα ′(M, τ). Since H∞

0 ⊆ H∞ ⊆ M ⊆ Lα ′(M, τ) and H∞
0 ⊆ H1

0 , it
follows that τ(xy) = 0 for all y ∈ H∞

0 . Then by part (ii) of Proposition 3.4, x ∈ H1,
which implies X ⊆ H1 ∩ Lα(M, τ).

To prove H1 ∩ Lα(M, τ) ⊆ X, suppose x ∈ H1 ∩ Lα(M, τ). Then x ∈
Lα(M, τ). Assume that y ∈ H1

0 ∩ Lα ′(M, τ). So Φ(y) = 0. Note that xy ∈
H1H1

0 ⊆ H1/2. From Lemma 3.6, we know that Φ(xy) is in L1/2(D, τ) (see The-
orem 2.1 in [4]) and Φ(xy) = Φ(x)Φ(y) = 0. Moreover, since x ∈ Lα(M, τ) and
y ∈ Lα ′(M, τ), it follows from Theorem 2.11 that xy ∈ L1(M, τ), whence Φ(xy)
is also in L1(M, τ). Thus τ(xy) is well defined and τ(xy) = τ(Φ(xy)) = 0. By
the definition of X, we conclude that x ∈ X. Therefore H1 ∩ Lα(M, τ) ⊆ X. Now
we can obtain that

H1 ∩ Lα(M, τ) = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H1
0 ∩ Lα ′(M, τ)}.

The following theorem gives a characterization of Hα.

THEOREM 3.9. Let M be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. Then

Hα = H1 ∩ Lα(M, τ) = {x ∈ Lα(M, τ) : τ(xy) = 0 for all y ∈ H∞
0 }.

The result follows directly from Lemma 3.7, Lemma 3.8 and Proposition 3.4.

4. BEURLING INVARIANT SUBSPACE THEOREM

In this section, we extend the classical Beurling theorem to Arveson’s non-
commutative Hardy spaces associated with unitarily invariant norms.

4.1. A FACTORIZATION RESULT. In [24], Saito proved the following useful factor-
ization theorem.

LEMMA 4.1 (from [24]). Suppose M is a finite von Neumann algebra with a
faithful normal tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of
M. If k ∈ M and k−1 ∈ L2(M, τ), then there are unitary operators u1, u2 ∈ M and
operators a1, a2 ∈ H∞ such that k = u1a1 = a2u2 and a−1

1 , a−1
2 ∈ H2.

We shall show that in fact it is possible to choose a1 and a2 with their in-
verses in Hα.

PROPOSITION 4.2. LetM be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
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normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. If k ∈ M
and k−1 ∈ Lα(M, τ), then there are unitary operators w1, w2 ∈ M and operators
a1, a2 ∈ H∞ such that k = w1a1 = a2w2 and a−1

1 , a−1
2 ∈ Hα.

Proof. Suppose k ∈ M with k−1 ∈ Lα(M, τ). Assume that k = vh is the
polar decomposition of k in M, where v is a unitary operator in M and h in
M is positive. Then from the assumption that k−1 = h−1v∗ ∈ Lα(M, τ), we
see h−1 ∈ Lα(M, τ) ⊆ L1(M, τ). Since h inM is positive, we can conclude that
h−1/2 ∈ L2(M, τ). Note that h1/2 ∈ M. It follows from Lemma 4.1 that there exist
a unitary operator u1 ∈ M and h1 ∈ H∞ such that h1/2 = u1h1 and h−1

1 ∈ H2.
Now h = h1/2 · h1/2 = u1(h1u1)h1. Since h1u1 is in M and (h1u1)

−1 =
u∗1h−1

1 ∈ L2(M, τ), by Lemma 4.1 there exist a unitary operator u2 ∈ M and
h2 ∈ H∞ such that h1u1 = u2h2 and h−1

2 ∈ H2. Thus

k = vh = vu1h1u1h1 = vu1u2h2h1 = w1a1,

where w1 = vu1u2 is a unitary operator inM and a1 = h2h1 ∈ H∞ with

a−1
1 = (h2h1)

−1 = h−1
1 h−1

2 ∈ H2 · H2 ⊆ H1.

Since k−1 = (w1a1)
−1 = a−1

1 w∗1 ∈ Lα(M, τ), we obtain that a−1
1 ∈ Lα(M, τ).

Then by Theorem 3.9, we have

a−1
1 ∈ H1 ∩ Lα(M) = Hα.

Hence w1 is a unitary inM and a1 is in H∞ such that k = w1a1 and a−1
1 ∈ Hα.

Similarly, there exist a unitary operator w2 ∈ M and a2 ∈ H∞ such that
k = a2w2 and a−1

2 ∈ Hα.

4.2. DENSE SUBSPACES. The following theorem plays an important role in the
proof of our main result of the paper.

THEOREM 4.3. Let M be a finite von Neumann algebra with a faithful normal
tracial state τ, and H∞ be a finite, maximal subdiagonal subalgebra of M. Let α be a
normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm onM. If W is a
closed subspace of Lα(M, τ) and N is a weak* closed linear subspace of M such that
WH∞ ⊆ W and NH∞ ⊆ N , then

(i) N = [N ]α ∩M;
(ii)W ∩M is weak* closed inM;

(iii)W = [W ∩M]α;
(iv) if S is a subspace ofM such that SH∞ ⊆ S , then

[S ]α = [Sw∗
]α,

where Sw∗ is the weak* closure of S inM.

Proof. (i) It is clear that N ⊆ [N ]α ∩M. Assume, via contradiction, that
N $ [N ]α ∩M. Note that N is a weak* closed linear subspace of M and
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L1(M, τ) is the predual space ofM. It follows from the Hahn–Banach theorem
that there exist a ξ ∈ L1(M, τ) and an x ∈ [N ]α ∩M such that

(a) τ(ξx) 6= 0, but
(b) τ(ξy) = 0 for all y ∈ N .

We claim that there exists a z ∈ M such that

(a’) τ(zx) 6= 0, but
(b’) τ(zy) = 0 for all y ∈ N .

Actually assume that ξ = |ξ∗|v is the polar decomposition of ξ in L1(M, τ),
where v is a unitary element in M and |ξ∗| in L1(M, τ) is positive. Let f be a
function on [0, ∞) defined by the formula f (t) = 1 for 0 6 t 6 1 and f (t) =
1/t for t > 1. We define k = f (|ξ∗|) by the functional calculus. Then by the
construction of f , we know that k ∈ M and k−1 = f−1(|ξ∗|) ∈ L1(M, τ). It
follows from Theorem 4.2 that there exist a unitary u ∈ M and a ∈ H∞ such
that k = ua and a−1 ∈ H1. Therefore, we can further assume that {an}∞

n=1 is a
sequence of elements in H∞ such that ‖a−1 − an‖1 → 0. Observe that

(1) since a, an are in H∞, for each y ∈ N we have that yana ∈ NH∞ ⊆ N and

τ(anaξy) = τ(ξyana) = 0;

(2) we have aξ = (u∗u)a(|ξ∗|v) = u∗(k|ξ∗|)v ∈ M, by the choice of a and u;
(3) from (a) and (ii), we have

0 6= τ(ξx) = τ(a−1aξx) = lim
n→∞

τ(anaξx).

Combining (1), (2) and (3), we are able to find an N ∈ N such that z =
aN aξ ∈ M satisfying

(a’) τ(zx) 6= 0, but
(b’) τ(zy) = 0 for all y ∈ N .

Recall that x ∈ [N ]α. Then there is a sequence {xn} in N such that α(x −
xn)→ 0. We have

|τ(zxn)− τ(zx)| = |τ(z(x− xn))| 6 ‖x− xn‖1‖z‖ 6 α(x− xn)‖z‖ → 0.

Combining with (b’) we conclude that τ(zx) = lim
n→∞

τ(zxn) = 0. This contradicts

the result (a’). Therefore N = [N ]α ∩M.
(ii) LetW ∩Mw∗

be the weak* closure ofW ∩M inM. In order to show
thatW ∩M = W ∩Mw∗

, it suffices to show thatW ∩Mw∗ ⊆ W . Assume, to
the contrary, thatW ∩Mw∗ *W . Thus there exists an element x inW ∩Mw∗ ⊆
M ⊆ Lα(M, τ), but x /∈ W . Since W is a closed subspace of Lα(M, τ), by
the Hahn–Banach theorem and Theorem 2.12, there exists a ξ ∈ Lα ′(M, τ) ⊆
L1(M, τ) such that τ(ξx) 6= 0 and τ(ξy) = 0 for all y ∈ W . Since ξ ∈ L1(M, τ),
the linear mapping τξ :M→ C, defined by τξ(a) = τ(ξa) for all a ∈ M, is weak*
continuous. Note that x ∈ W ∩Mw∗

and τ(ξy) = 0 for all y ∈ W . But then we
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know that τ(ξx) = 0, which contradicts the assumption that τ(ξx) 6= 0. Hence
W ∩Mw∗ ⊆ W , whenceW ∩Mw∗

=W ∩M.
(iii) SinceW is α-closed, it is easy to see [W ∩M]α ⊆ W . Now we assume

[W ∩M]α $ W ⊆ Lα(M, τ). By the Hahn–Banach theorem and Theorem 2.12
there exist an x ∈ W and ξ ∈ Lα ′(M, τ) such that τ(ξx) 6= 0 and τ(ξy) = 0 for all
y ∈ [W ∩M]α. Let x = v|x| be the polar decomposition of x in Lα(M, τ), where
v is a unitary element inM. Let f be a function on [0, ∞) defined by the formula
f (t) = 1 for 0 6 t 6 1 and f (t) = 1/t for t > 1. We define k = f (|x|) through
the functional calculus. Then we see k ∈ M and k−1 = f−1(|x|) ∈ Lα(M, τ). It
follows from Theorem 4.2 that there exist a unitary u ∈ M and a ∈ H∞ such that
k = au and a−1 ∈ Hα. A little computation shows that |x|k ∈ M, which implies
that

xa = xauu∗ = xku∗ = v(|x|k)u∗ ∈ M.

Since a ∈ H∞, we know xa ∈ WH∞ ⊆ W , and thus xa ∈ W ∩M. Furthermore,
note that (W ∩M)H∞ ⊆ W ∩M. Thus, if b ∈ H∞, we see xab ∈ W ∩M, and
so τ(ξxab) = 0. Since H∞ is dense in Hα and ξ is in Lα ′(M, τ), it follows from
Theorem 2.11 that τ(ξxab) = 0 for all b ∈ Hα. Since a−1 ∈ Hα, we see τ(ξx) =
τ(ξxaa−1) = 0. This contradicts the assumption that τ(ξx) 6= 0. ThereforeW =
[W ∩M]α.

(iv) Assume that S is a subspace ofM such that SH∞ ⊆ S and Sw∗
is the

weak* closure of S inM. Then [S ]α H∞ ⊆ [S ]α. Note that S ⊆ [S ]α ∩M. From
(ii), we know that [S ]α ∩M is weak*-closed. Therefore Sw∗ ⊆ [S ]α ∩M. Hence
[Sw∗

]α ⊆ [S ]α, whence [Sw∗
]α = [S ]α.

4.3. MAIN RESULT. Before we state our main result in this section, we will need
the following definition from [17].

DEFINITION 4.4. Let M be a finite von Neumann algebra with a faithful,
tracial, normal state τ. Let X be a weak* closed subspace ofM. Then X is called
an internal column sum of a family of weak* closed subspaces {Xi}i∈I ofM, de-
noted by

X =
⊕
i∈I

col
Xi

if

(i) X∗j Xi = {0} for all distinct i, j ∈ I ; and
(ii) the linear span of {Xi : i ∈ I} is weak* dense in X, i.e.,

X = span{Xi : i ∈ I}w∗
.

Similarly, we introduce a concept of internal column sum of subspaces in
Lα(M, τ) as follows.

DEFINITION 4.5. Let M be a finite von Neumann algebra with a faithful,
tracial, normal state τ, α be a normalized, unitarily invariant, ‖ · ‖1-dominating
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and continuous norm onM. Let X be a closed subspace of Lα(M, τ). Then X is
called an internal column sum of a family of closed subspaces {Xi}i∈I of Lα(M, τ),
denoted by

X =
⊕
i∈I

col
Xi

if
(i) X∗j Xi = {0} for all distinct i, j ∈ I ; and

(ii) the linear span of {Xi : i ∈ I} is dense in X, i.e.,

X = [span{Xi : i ∈ I}]α.

In [5], David P. Blecher and Louis E. Labuschagne proved a version of Beurl-
ing theorem for Lp(M, τ) spaces when 1 6 p 6 ∞.

LEMMA 4.6 (from [5]). LetM be a finite von Neumann algebra with a faithful,
tracial, normal state τ, and H∞ be a maximal subdiagonal subalgebra ofM with D =
H∞ ∩ (H∞)∗. Suppose that K is a closed H∞-right-invariant subspace of Lp(M, τ), for
some 1 6 p 6 ∞. (For p = ∞ we assume thatK is weak* closed.) ThenKmay be written
as a column Lp-sum K = Z⊕col(

⊕col
i ui Hp), where Z is a closed (indeed weak* closed

if p = ∞) subspace of Lp(M, τ) such that Z = [ZH∞
0 ]p, and where ui are partial

isometries inM∩K with u∗j ui = 0 if i 6= j, and with u∗i ui ∈ D. Moreover, for each i,
u∗i Z = {0}, left multiplication by the uiu∗i are contractive projections from K onto the
summands ui Hp, and left multiplication by I − ∑

i
uiu∗i is a contractive projection from

K onto Z .

Now we are ready to prove the main result of the paper, a generalized ver-
sion of the classical theorem of Beurling [2] in a noncommutative Lα(M, τ) space
for a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous norm α.

THEOREM 4.7. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let H∞ be a finite, maximal subdiagonal subalgebra of M and D =
H∞ ∩ (H∞)∗. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM. IfW is a closed subspace of Lα(M, τ), thenWH∞ ⊆ W if and only if

W = Z
⊕col

(
⊕col

i∈I ui Hα),

where Z is a closed subspace of Lα(M, τ) such that Z = [ZH∞
0 ]α, and where ui are par-

tial isometries inW ∩M with u∗j ui = 0 if i 6= j, and with u∗i ui ∈ D. Moreover, for each
i, u∗i Z = {0}, left multiplication by the uiu∗i are contractive projections from W onto
the summands ui Hα, and left multiplication by I − ∑

i
uiu∗i is a contractive projection

fromW onto Z .

Proof. The if part is obvious. SupposeW is a closed subspace of Lα(M, τ)
such thatWH∞ ⊆ W . Then it follows from part (ii) of Theorem 4.3 thatW ∩M
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is weak* closed inM. It follows from Lemma 4.6, in the case p = ∞, that

W ∩M = Z1
⊕col

(
⊕col

i∈I ui H∞),

where Z1 is a weak* closed subspace inM such that Z1 = Z1H∞
0

w∗
, and ui are

partial isometries inW ∩Mwith u∗j ui = 0 if i 6= j, and with u∗i ui ∈ D. Moreover,
for each i, u∗i Z1 = {0}, left multiplication by the uiu∗i are contractive projections
fromW ∩M onto the summands ui H∞, and left multiplication by I − ∑

i
uiu∗i is

a contractive projection fromW ∩M onto Z1.
Let Z = [Z1]α. It is not hard to verify that for each i, u∗i Z = {0}. We also

claim that [ui H∞]α = ui Hα. In fact it is obvious that [ui H∞]α ⊇ ui Hα. We will
need only to show that [ui H∞]α ⊆ ui Hα. Let {an} ⊆ H∞ and a ∈ [ui H∞]α be such
that α(uian − a)→ 0. By the choice of ui, we know that u∗i ui ∈ D ⊆ H∞, whence
u∗i uian ∈ H∞ for each n > 1. Combining with the fact that α(u∗i uian − u∗i a) 6
α(uian − a)→ 0, we obtain that u∗i a ∈ Hα. Again from the choice of ui, we know
that uiu∗i uian = uian for each n > 1. This implies that a = ui(u∗i a) ∈ ui Hα. Thus
we conclude that [ui H∞]α ⊆ ui Hα, whence [ui H∞]α = ui Hα. Now from parts (iii)
and (iv) of Theorem 4.3 and from the definition of internal column sum, it follows
that

W = [W ∩M]α = [span{Z1, ui H∞ : i ∈ I}w∗
]α = [span{Z1, ui H∞ : i ∈ I}]α

= [span{Z , ui Hα : i ∈ I}]α = Z
⊕col

(
⊕col

i
ui Hα).

Next, we will verify that Z = [ZH∞
0 ]α. Recall that Z = [Z1]α. It follows

from part (i) of Theorem 4.3 we have that

[Z1H∞
0 ]α ∩M = Z1H∞

0
w∗

= Z1.

Hence from part (iii) of Theorem 4.3 we have that

Z ⊇ [ZH∞
0 ]α ⊇ [Z1H∞

0 ]α = [[Z1H∞
0 ]α ∩M]α = [Z1]α = Z .

Thus Z = [ZH∞
0 ]α.

Moreover, it is not hard to verify that for each i, left multiplication by the
uiu∗i are contractive projections fromW onto the summands ui Hα, and left multi-
plication by I −∑

i
uiu∗i is a contractive projection fromW onto Z . Now the proof

is completed.

A quick application of Theorem 4.7 yields the following corollary on doubly
invariant subspaces in Lα(M, τ).

COROLLARY 4.8. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM. IfW is a closed subspace of Lα(M, τ) such thatWM ⊆ W , then there
exists a projection e inM such thatW = eLα(M, τ).
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Proof. Note thatM itself is a finite, maximal subdiagonal subalgebra ofM.
Let H∞ = M. Then D = M and Φ is the identity map from M to M. Hence
H∞

0 = {0} and Hα = Lα(M, τ).
Assume that W is a closed subspace of Lα(M, τ) such that WM ⊆ W .

From Theorem 4.7,
W = Z

⊕col
(
⊕col

i∈I ui Hα),

where Z and the u′is satisfy the hypothesis of Theorem 4.7. From the fact that
H∞

0 = {0}, we know that Z = {0}. Since D =M, we know that

ui Hα = uiLα(M, τ) ⊇ uiu∗i Lα(M, τ) ⊇ uiu∗i uiLα(M, τ) = uiLα(M, τ) = ui Hα.

So ui Hα = uiu∗i Lα(M, τ) and

W = Z
⊕col

(
⊕col

i∈I ui Hα) =
⊕
i∈I

col
uiu∗i Lα(M, τ)

=
(

∑
i

uiu∗i
)

Lα(M, τ) = eLα(M, τ),

where e = ∑
i

uiu∗i is a projection inM.

The next result is another application of Theorem 4.7 on simply invariant
subspaces in weak* Dirichlet algebras.

COROLLARY 4.9. LetM be a finite von Neumann algebra with a faithful, normal,
tracial state τ. Let H∞ be a finite, maximal subdiagonal subalgebra ofM such that H∞ ∩
(H∞)∗ = CI. Let α be a normalized, unitarily invariant, ‖ · ‖1-dominating, continuous
norm onM. Assume thatW is a closed subspace of Lα(M, τ). Then

(i) ifW is simply H∞-right invariant, i.e. [WH∞]α $W , thenW = uHα for some
unitary u ∈ W ∩M.

(ii) ifW is simply H∞-right invariant in Hα, i.e. [WH∞]α $ W , thenW = uHα

with u an inner element (i.e., u is unitary and u ∈ H∞).

Proof. It is not hard to see that part (ii) follows directly from part (i). We will
only need to prove (i). From Theorem 4.7, W = Z⊕col(

⊕col
i∈I ui Hα), where Z

and the u′is satisfy the hypothesis of Theorem 4.7.
Since [WH∞]α $ W ,

⊕
i∈I

coli ∈ I such that ui 6= 0. Then u∗i ui is a nonzero

projection in H∞ ∩ (H∞)∗ = CI, or u∗i ui = I. This implies that ui is a unitary
element in W ∩M. From the choice of {ui}i∈I , we further conclude that W =
ui Hα.
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