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ABSTRACT. We analyse C0-semigroups of contractive operators on R-valued
Lp-spaces for p 6= 2 and on other classes of non-Hilbert spaces. We show that,
under some regularity assumptions on the semigroup, the geometry of the
unit ball of those spaces forces the semigroup’s generator to have only trivial
(point) spectrum on the imaginary axis. This has interesting consequences
for the asymptotic behaviour as t → ∞. For example, we can show that a
contractive and eventually norm continuous C0-semigroup on a real-valued
Lp-space automatically converges strongly if p 6∈ {1, 2, ∞}.
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1. INTRODUCTION AND PRELIMINARIES

If we want to analyse the asymptotic behaviour of a bounded C0-semigroup
(etA)t>0 on a Banach space X, then an important question to ask is whether the
spectrum of A on the imaginary axis is trivial, i.e. contained in the set {0}. If this
is the case, then we can often conclude that etA converges strongly as t→ ∞ (see
e.g. Corollary 2.6 of [2]). Therefore, one is interested in simple criteria to ensure
that σ(A) ∩ iR ⊂ {0}. A typical example for such a criterion is positivity of the
semigroup with respect to a Banach lattice cone (in combination with an addi-
tional regularity assumption on the semigroup, see Corollary C-III.2.13 of [3]).

In this article, we consider another geometric condition on the semigroup,
namely contractivity of each operator etA. We will see that on many important
function spaces, this condition ensures that σ(A) ∩ iR ⊂ {0}. To give the reader
a more concrete idea of what we are going to do, let us state the following two
results which will be proved (in a more general form) in the subsequent sections.
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THEOREM 1.1. Let (Ω, Σ, µ) be a measure space and let 1 < p < ∞, p 6= 2. Let
(etA)t>0 be an eventually norm continuous, contractive C0-semigroup on the real-valued
function space Lp(Ω, Σ, µ;R). Then σ(A) ∩ iR ⊂ {0}. In particular, etA converges
strongly as t→ ∞.

In this theorem, σ(A) denotes the spectrum of the complex extension of A
to a complexification of the real space Lp(Ω, Σ, µ;R), see the end of the introduc-
tion for details. The above theorem (in fact, a generalization of it) is proved in
Subsection 4.2 below (Corollaries 4.6 and 4.7).

In the following theorem, c(N;R) denotes the space of all real-valued, con-
vergent sequences (indexed by N) and c0(N;R) denotes its subspace of sequences
which converge to 0; both spaces are endowed with the supremum norm.

THEOREM 1.2. Let X be one of the real-valued sequence spaces c(N;R), c0(N;R)
or lp(N;R) for 1 6 p < ∞, p 6= 2. If (etA)t>0 is a contractive C0-semigroup on X,
then σpnt(A) ∩ iR ⊂ {0}. If, in addition, A has compact resolvent, then etA converges
strongly as t→ ∞.

Here, σpnt(A) denotes the point spectrum of the complex extension of A to
a complexification of the real space X and we say that A has compact resolvent if
the complex extension of A to any complexification of X has compact resolvent;
note that this property does not depend on the choice of the complexification (see
again the end of the introduction for details).

The above theorem follows from results that we are going to prove in Sub-
section 2.2 (see Corollary 2.8 for the case X = lp; for the cases X = c(N;R) and
X = c0(N;R), see Theorem 2.5, Corollary 2.7 and the assertions before and after
Example 2.3).

Both of the above theorems make use of the fact that the underlying Banach
space behaves in some manner oppositely to a Hilbert space (which explains the
condition p 6= 2 in the assumptions). The idea to employ this observation for
the spectral analysis of contractions is not new. A similar approach was used by
Krasnosel’skiı̆ in [17] and by Lyubich in [23] to analyse the peripheral spectrum
of compact and of finite dimensional contractions.

Furthermore, in [12], Goldstein used similar ideas to analyse C0-groups of
isometries on Orlicz spaces (see also [10] where a slight inaccuracy in Goldstein’s
paper was corrected).

Moreover, we note that in [22] Lyubich presented a unified approach to the
spectral analysis of operators with invariant convex sets in finite dimensions; in
particular, this approach allows the analysis of contractions and the analysis of
positive operators within the same framework.

Let us give a short outline of the current article. We mainly focus on con-
tractive C0-semigroups (etA)t>0 (and a slight generalisation of them, see Defini-
tion 2.4), but we also give several results for single operators which are derived
from the semigroup results.
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In Section 2 we consider Banach spaces that do not isometrically contain a
two-dimensional Hilbert space. This is a very strong condition, which enables us
to prove strong results on the point spectrum of semigroups and operators. Some
classical sequence spaces will turn out to be typical examples of such Banach
spaces.

In Section 3 we weaken the geometric condition on the Banach space to
allow for a wider range of spaces. Instead we will impose additional assumptions
on our semigroups to prove similar results on the point spectrum.

In Section 4 we employ an ultrapower technique to deduce results on the
spectrum rather than on the point spectrum. To make this approach work we
need geometrical assumptions not only on the Banach space X, but also on an
ultrapower XU of X. It turns out that those assumptions are fulfilled for Lp-spaces
if p 6∈ {1, 2, ∞}.

We point out that the main reason why our results are interesting is that we
do not impose any positivity assumptions on our semigroups. In the case of posi-
tive semigroups most of our results can be derived from the well-known spectral
theory of positive semigroups (see Sections C-III and C-IV of [3] for an overview;
see also the more recent articles [5] for a treatment of positive contractive semi-
groups on lp, [15], [34] for positive semigroups on more general atomic spaces
and [1], [11] for the non-atomic case).

Before starting our analysis, we fix some notation that will be used through-
out the article: by N := {1, 2, 3, . . .} we denote the set of strictly positive integers
and we set N0 := N ∪ {0}. Whenever X is a vector space over a field F and
M ⊂ X, we denote by spanF(M) the linear span of M in X over F. Whenever X
is a real or complex Banach space, the set of bounded linear operators on X will
be denoted by L(X). For a complex Banach space X and a closed linear operator
A : X ⊃ D(A) → X its spectrum, point spectrum and approximate point spectrum
are denoted respectively by σ(A), σpnt(A) and σappr(A); by s(A) := sup{Re λ :
λ ∈ σ(A)} we denote the spectral bound of A. If A ∈ L(X), then r(A) denotes the
spectral radius of A. Whenever λ 6∈ σ(A), then R(λ, A) := (λ− A)−1 is the resol-
vent of A. For each λ ∈ C, we denote by Eig(λ, A) := ker(λ− A) the eigenspace
of A corresponding λ; this notation will be used even if λ 6∈ σpnt(A), and in this
case we have Eig(λ, A) = {0}, of course. If X is a real or complex Banach space,
then we denote by X′ its norm dual space, and if A : X ⊃ D(A) → X is a densely
defined linear operator, then we denote by A′ the adjoint operator of A. We will
always use the symbol T to denote the unit circle T := {λ ∈ C : |λ| = 1}. All
measure spaces considered in this paper are allowed to be non-σ-finite, unless
something else is stated explicitly.

Let us briefly discuss the concept of complexifications of real Banach spaces
which we will need throughout the article. Complexifications of real Banach
spaces are discussed in some detail in [29]; there the authors consider the notion
of a reasonable complexification which is a bit more restrictive than our definition of
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a complexification below (but which would also be fine for our purposes in this
paper).

Let X be a real Banach space. By a complexification of X we mean a tuple
(XC, J), where XC is a complex Banach space and J : X → XC is an isometric
R-linear mapping with the following properties:

(a) XC = J(X)⊕ i J(X), meaning that J(x) ∩ i J(X) = {0} and XC = J(X) +
i J(X).

(b) The (R-linear) projection from XC onto J(X) along i J(X) is contractive.

It is often convenient to identify X with its image J(X) and to shortly say
that XC ⊃ X is a complexification of X, thereby suppressing the mapping J in
the notation. If XC ⊃ X is a complexification of a real Banach space X, then
we can decompose each element z ∈ XC into a sum z = Re z + i Im z, where
Re z and Im z are uniquely determined elements of X; as usual we denote by
z := Re z − i Im z the complex conjugate vector of z. It follows from property (b)
above that the mappings Re and Im are contractive.

Note that if XC is a complexification of X, then every linear operator A :
X ⊃ D(A) → X has a unique C-linear extension AC : XC ⊃ D(AC) := D(A) +
iD(A) → X; we call AC the complex extension of A to the complexification XC
of X. Similarly, every bounded linear functional x′ ∈ X′ has a unique C-linear
extension (x′)C : XC → C; the functional (x′)C is also bounded and therefore an
element of the dual space (XC)

′ of XC. Let H : X′ → (XC)
′, H(x′) = (x′)C; using

that Re and Im are contractive one can show that H is isometric and, using this,
one can prove that ((XC)

′, H) is a complexification of X′, i.e. we can consider the
dual space of a complexification of X as a complexification of the dual space of
X. It is then easy to verify that the adjoint (AC)

′ of the complex extension of a
densely defined linear operator A : X ⊃ D(A) → X coincides with the complex
extension of the adjoint A′.

We point out that every real Banach space X has a complexification XC. For
example, we can simply endow an algebraic complexification XC of X with the
norm ‖x + iy‖ := sup

θ∈[0,2π]

‖x cos θ + y sin θ‖. This particular complexification has

the advantage that we have ‖T‖ = ‖TC‖ for every operator T ∈ L(X), a property
which need not be true on general complexifications. However, the reader should
be warned that on many concrete function spaces the norm defined above does
not coincide with the “natural norm” one would usually endow the correspond-
ing complex function space with.

In general there are, of course, more than one complexification of a real Ba-
nach space X; two complexifications of X need not be isometric, but they are
always topologically C-linearly isomorphic via a (uniquely determined) canoni-
cal mapping which acts as the identity on X. Using this observation it is easy to
see that many properties of complex extensions of operators do not depend on
the choice of the complexification of the Banach space. In particular, if AC,1 and
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AC,2 denote complex extensions of an operator A : X ⊃ D(A) → X to two com-
plexifications XC,1 and XC,2, respectively, then we have σ(AC,1) = σ(AC,2) and
σpnt(AC,1) = σpnt(AC,2). Therefore it makes sense to define the spectrum σ(A)
(respectively, the point spectrum σpnt(A)) of A to be the spectrum (respectively,
the point spectrum) of the complex extension AC of A to any complexification
XC of X.

2. THE POINT SPECTRUM ON EXTREMELY NON-HILBERT SPACES

2.1. EXTREMELY NON-HILBERT SPACES. When we consider contractive C0-semi-
groups (etA)t>0 on a real Banach space X, it turns out that the existence of purely
imaginary eigenvalues of (the complex extension of) A is related to the existence
of two-dimensional Hilbert spaces in X, see Theorem 2.5 below. This motivates
the following notion.

DEFINITION 2.1. A real Banach space X is called extremely non-Hilbert if it
does not isometrically contain a two-dimensional Hilbert space.

Clearly, any closed subspace of an extremely non-Hilbert space is extremely
non-Hilbert itself. Before we analyse the spectral properties of contractive semi-
groups on extremely non-Hilbert spaces, we want to provide some examples of
those spaces to give the reader an idea of when our subsequent results are appli-
cable.

EXAMPLE 2.2. (i) Let 1 6 p < ∞, p 6∈ 2N. Then the real sequence space lp :=
lp(N;R) is extremely non-Hilbert (see Corollary 1.8 of [6]). For finite dimensional
lp-spaces the same result was shown earlier in Proposition 1 of [23].

(ii) If p∈2N, then lp is not extremely non-Hilbert. This is obvious for p=2, and
for p∈{4, 6, . . .} it can be shown that even a finite dimensional (Rn, ‖ · ‖p) exists
which isometrically contains a two-dimensional Hilbert space. This is proved
for example in pp. 283–284 of [28] (note however that the necessary dimension n
increases with p). See also the proof of Proposition 2 in [23], [24] and [16] for a
discussion of this and related topics.

In contrast to lp-sequence spaces, real-valued Lp-spaces over non-discrete
measure spaces are not extremely non-Hilbert, in general. For Lp-spaces on the
torus we will give an explicit example of an isometrically embedded two-dimen-
sional Hilbert space in Example 2.11. Moreover, it can be shown by probabilistic
methods that Lp([0, 1];R) even isometrically contains the infinite dimensional se-
quence space l2, see p. 16 of [14].

A further example of an extremely non-Hilbert space is the space c :=
c(N;R) of real-valued convergent sequences on N, endowed with the supremum
norm. This follows from the next, more general example.
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EXAMPLE 2.3. Let K be a compact Hausdorff space and let C(K;R) be the
space of continuous, real-valued functions on K which is endowed with the supre-
mum norm. If K is countable, then C(K,R) is extremely non-Hilbert.

Proof. Assume for a contradiction that V ⊂ C(K;R) is a two-dimensional
Hilbert space. Since V is isometrically isomorphic to (R2, ‖ · ‖2), there are two
vectors x, y ∈ V such that

ϕ : [0, 2π]→ V, t 7→ cos(t)x + sin(t)y

is a mapping into the unit sphere of V. Hence, the mapping t 7→ ‖ϕ(t)‖ =
max
k∈K
|ϕ(t)(k)| is identically 1.

Now, for each k ∈ K, let Ak := {t ∈ [0, 2π] : |ϕ(t)(k)| = 1}. Each set Ak
is closed and we have

⋃
k∈K

Ak = [0, 2π]. Since K is countable, Baire’s theorem

implies that at least one of the sets Ak, say Ak0 , has non-empty interior and thus
contains a non-empty open interval I. For continuity reasons, the mapping

t 7→ ϕ(t)(k0) = cos(t)x(k0) + sin(t)y(k0)

is either identically 1 or identically−1 on I. Hence, it is identically 1 or identically
−1 on the whole interval [0, 2π] due to the identity theorem for analytic functions.
This is a contradiction since cos, sin and 1 (where 1 denotes the function on [0, 2π]
which is identically 1) are linearly independent functions on [0, 2π].

Preceding to the above example we claimed that the sequence space c is
extremely non-Hilbert. This follows indeed from Example 2.3 since c is isomet-
rically isomorphic to the space C(N ∪ {∞};R), where N ∪ {∞} is the one-point-
compactification of the discrete space N. Note that this also implies that the space
c0 := c0(N;R) of all real-valued sequences which converge to 0 is extremely non-
Hilbert, since it is a closed subspace of c.

2.2. C0-SEMIGROUPS ON EXTREMELY NON-HILBERT SPACES. Since we have now
several examples of extremely non-Hilbert spaces at hand, let us turn to contrac-
tive semigroups on them. In fact, we will not really need our semigroups to be
contractive. In each of our theorems, one of the following asymptotic properties
will suffice.

DEFINITION 2.4. Let (etA)t>0 be a C0-semigroup on a real Banach space X.
The semigroup (etA)t>0 is called

(i) uniformly asymptotically contractive if lim sup
t→∞

‖etA‖ 6 1.

(ii) strongly asymptotically contractive if lim sup
t→∞

‖etAx‖ 6 1 for each x ∈ X with

‖x‖ = 1.
(iii) weakly asymptotically contractive if lim sup

t→∞
|〈etAx, x′〉| 6 1 for all x ∈ X and

all x′ ∈ X′ with ‖x‖ = ‖x′‖ = 1.
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For every operator T ∈ L(X), the same notions are defined by replacing the
semigroup by the powers Tn.

If a C0-semigroup (etA)t>0 on X is weakly asymptotically contractive, then
it is bounded, and if an operator T ∈ L(X) is weakly asymptotically contractive,
then it is power-bounded; this follows from the uniform boundedness principle.

We now begin our analysis with a result on the purely imaginary eigenval-
ues of the semigroup generator.

THEOREM 2.5. Let X be a real Banach space which is extremely non-Hilbert and
let (etA)t>0 be a weakly asymptotically contractive C0-semigroup on X. Then σpnt(A)∩
iR ⊂ {0}.

Proof. Let XC be a complexification of X. The complex extension AC of A
generates a C0-semigoup (etAC)t>0 on XC, where each operator etAC is the com-
plex extension of the operator etA; by definition σpnt(A) is the point spectrum
of AC.

Assume for a contradiction that iα is an eigenvalue of AC, where α ∈ R \
{0}. Then we have

ACz = iαz for some 0 6= z = x + iy ∈ XC,

where x, y ∈ X. One easily checks that ACz = −iαz and that x and y are linearly
independent over R. In particular, x 6= 0 and thus we may assume that ‖x‖ = 1.

Let V be the linear span of x and y over R. We show that V is a Hilbert space
with respect to the norm induced by X. For each t > 0 we have

etAx = etAC Re z = Re(etACz) = Re(eiαtz) = cos(αt)x− sin(αt)y.

This shows that the orbit (etAx)t>0 is periodic. Together with the weak asymp-
totic contractivity of (etA)t>0 this implies that ‖etAx‖ = 1 for each t > 0. Hence,
the vectors cos(αt)x− sin(αt)y are contained in the surface of the unit ball of V.
Now, endow R2 with the euclidean norm ‖ · ‖2 and consider the linear bijection

φ : R2 → V,

w 7→ w1x− w2y.

Whenever ‖w‖2 = 1, the vector w can be written as w = (cos(αt), sin(αt)) for
some t > 0. Hence, φ(w) = cos(αt)x− sin(αt)y and thus, φ maps the surface of
the unit ball of (R2, ‖ · ‖2) into the surface of the unit ball of V. This shows that φ
is isometric, i.e. V is a Hilbert space.

It follows from Example 2.2 that the dual or the pre-dual of an extremely
non-Hilbert space need not be extremely non-Hilbert, in general. For example,
the sequence space l4/3 is extremely non-Hilbert, while its dual and pre-dual
space l4 is not. Nevertheless, the assertion of the above Theorem 2.5 can be ex-
tended to reflexive Banach spaces with an extremely non-Hilbert dual space.
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COROLLARY 2.6. Let X be a reflexive Banach space over the real field and suppose
that its dual space X′ is extremely non-Hilbert. Let (etA)t>0 be a weakly asymptotically
contractive C0-semigroup on X. Then σpnt(A) ∩ iR ⊂ {0}.

Proof. Since X is reflexive, the semigroup of adjoint operators ((etA)′)t>0 is
a C0-semigroup on X′ and its generator is the adjoint A′ of A. The reflexivity of X
also implies that the adjoint semigroup ((etA)′)t>0 is weakly asymptotically con-
tractive, and thus we conclude that σpnt(A′) ∩ iR ⊂ {0} by Theorem 2.5. How-
ever, we have σpnt(A′) ∩ iR ⊃ σpnt(A) ∩ iR according to Lemma 2.3 of [2] since
the semigroup (etA)t>0 is bounded. This proves the corollary.

Recall again that an operator A on a real Banach space X is said to have com-
pact resolvent if its complex extension AC to a complexification XC of X has com-
pact resolvent, a property which does not depend on the choice of XC. For semi-
groups whose generator has compact resolvent, Theorem 2.5 and Corollary 2.6
yield the following convergence result.

COROLLARY 2.7. Suppose the assumptions of Theorem 2.5 or of Corollary 2.6 are
fulfilled. If A has compact resolvent, then etA strongly converges as t→ ∞.

Proof. We know from Theorem 2.5 respectively from Corollary 2.6 that we
have σpnt(A) ∩ iR ⊂ {0}. Hence the assertion follows from Theorem V.2.14 and
Corollary V.2.15 of [8].

Let us mention the particular case of lp-spaces in an extra corollary.

COROLLARY 2.8. Let (etA)t>0 be a strongly continuous semigroup on the space
lp = lp(N;R) for 1 6 p < ∞ and p 6= 2. If (etA)t>0 is weakly asymptotically
contractive, then σpnt(A) ∩ iR ⊂ {0}.

If, in addition, A has compact resolvent, then etA strongly converges as t→ ∞.

Proof. If p is not an even integer, then lp is an extremly non-Hilbert space by
Example 2.2 and thus the assumptions of Theorem 2.5 are fulfilled. If p > 2 is an
even integer instead, then the conjugate index p′, which is defined by 1

p + 1
p′ = 1,

is not an even integer. Thus, the dual space (lp)′ = lp′ is extremely non-Hilbert
and so the assumptions of Corollary 2.6 are fulfilled.

The following connection of Corollary 2.8 to the spectral theory of positive
semigroups is interesting.

REMARK 2.9. It is shown in Theorem 9 of [5] that a contractive positive C0-
semigroup on lp for 1 6 p < ∞ always fulfils σpnt(A) ∩ iR ⊂ {0}. Corollary 2.8
shows that the assumption of positivity is not needed for this result whenever
p 6= 2. Note, however, that the result for positive semigroups can be generalized
to a large class of semigroups on other Banach lattices, as well (see the articles
quoted in the introduction for details).
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Now, let us demonstrate by a couple of examples what goes wrong with our
above results on spaces which are not extremely non-Hilbert. First, we consider
an example of a contraction semigroup on a two-dimensional Hilbert-space.

EXAMPLE 2.10. Consider the two-dimensional euclidean space (R2, ‖ · ‖2)
and the C0-semigroup (etA)t>0, where the matrices of A and etA are given by

A =

(
0 −1
1 0

)
and etA =

(
cos t − sin t
sin t cos t

)
.

Then etA acts as a rotation with angle t on R2, and (etA)t>0 is clearly a contraction
semigroup with respect to the euclidean norm ‖ · ‖2. Since (R2, ‖ · ‖2) is a Hilbert
space, we cannot apply Theorem 2.5, and indeed the spectrum of the generator A
is given by σ(A) = {i,−i}, i.e. the assertion of Theorem 2.5 fails in our example.

It is also very instructive to observe what happens on (R2, ‖ · ‖p) for p 6= 2.
If we consider the same semigroup as above on such a space, then we still have
σ(A) = {i,−i}, but the space is extremely non-Hilbert now (for p 6∈ 2N this
follows from Example 2.2, but it is true even for p ∈ 2N \ {2} since our space
is two-dimensional). Hence, another assumption of Theorem 2.5 must fail here,
and indeed, it is easily seen that our rotation semigroup is not contractive with
respect to the ‖ · ‖p-norm due to the low symmetry of the unit ball of this norm.

Our next example shows that Theorem 2.5 does in general not hold on Lp-
spaces on non-discrete measure spaces.

EXAMPLE 2.11. Let 1 6 p < ∞, suppose that the complex unit circle T is
equipped with a non-zero Haar measure µ and let (etA)t>0 be the shift semigroup
on Lp(T;R), i.e.

etA f (z) = f (eitz) for all f ∈ Lp(T;R).

Then (etA) is contractive, but the point spectrum of A is given by σpnt(A) = iZ.
By virtue of Theorem 2.5 this implies that Lp(T;R) is not extremely non-

Hilbert; however, we can also see this explicitly. In fact, let

f1 : T→ R, f1(z) = Re z and f2 : T→ R, f2(z) = Im z.

Let α, β ∈ R and choose ϕ ∈ [0, 2π) and r > 0 such that α− iβ = reiϕ. Then we
obtain

‖α f1 + β f2‖p =
[ ∫
T

|Re((α− iβ)z)|p dµ
]1/p

=
[ ∫
T

|Re(reiϕz)|p dµ
]1/p

=

= r ·
[ ∫
T

|Re z|p dµ
]1/p

= (α2 + β2)1/2 · ‖ f1‖p.

Hence, (α, β) 7→ 1
‖ f1‖p

(α f1 + β f2) yields an isometric isomorphism between the

two-dimensional euclidean space (R2, ‖ · ‖2) and the subspace spanR{ f1, f2} of
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Lp(T;R). The reader might also compare Remark 5 of [12] for a slightly different
presentation of this example.

Finally, we want to demonstrate that it is essential for our above results (and
also for the results in the subsequent sections) that we consider C0-semigroups of
real operators.

EXAMPLE 2.12. Consider the space (Cn, ‖ · ‖p) for some arbitrary p ∈ [1, ∞]
and let A ∈ Cn×n be the diagonal matrix whose diagonal entries are all equal to i.
Then (etA)t>0 is clearly a contractive C0-semigroup on (Cn, ‖ · ‖p), but we obtain
σ(A) = {i} for the spectrum of its generator.

2.3. SINGLE OPERATORS ON EXTREMELY NON-HILBERT SPACES. Next, we show
how Theorem 2.5 can be applied to yield a result on the point spectrum of a single
operator.

THEOREM 2.13. Let X be a real Banach space which is extremely non-Hilbert and
let T ∈ L(X) be weakly asymptotically contractive. Then σpnt(T) ∩ T consists only of
roots of unity.

Proof. Let TC be the complex extension of T to a complexification XC of X.
Assume for a contradiction that eiα ∈ σpnt(T) ∩ T (where α ∈ R) is not a root of
unity and let

TCz = eiαz for some 0 6= z = x + iy ∈ XC,

where x, y ∈ X. It is easy to show that x and y are linearly independent over R
and that we have TC z = e−iα z.

Let

V = spanR{x, y} and VC = spanC{z, z}.

Then we have VC = V ⊕ iV, and therefore VC is a complexification of V. We
define a C0-semigroup (etAC)t>0 on VC by means of

etACz = eitz, etAC z = e−it z.

Note that etAC is well-defined since z and z are linearly independent over C (as
they are eigenvectors of TC for two different eigenvalues). Clearly, this semigroup
is strongly (in fact uniformly) continuous and its generator AC is the complexifi-
cation of an operator A ∈ L(V), given by

Ax = −y and Ay = x.

We have σpnt(A) = {−i, i}, and the semigroup (etAC)t>0 is the complexification
of the semigroup (etA)t>0. We now show that (etA)t>0 is a contraction semigroup
on V, so that we can apply Theorem 2.5.

Let t > 0. Since eiα is not a root of unity, we find a sequence of integers
Nn → ∞ such that eiNnα → eit. Since V ⊂ VC, each element v ∈ V can be written
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in the form v = λ1z + λ2z with complex scalars λ1, λ2. We thus obtain for each
x′ ∈ X′ that

|〈etAv, x′〉| =|〈etACv, (x′)C〉| = |〈λ1eitz + λ2e−itz, (x′)C〉| =

= lim
n
|〈λ1TNn

C z + λ2TNn
C z, (x′)C〉| = lim

n
|〈TNn v, x′〉| 6 ‖v‖‖x′‖.

Thus, each operator etA is contractive. Since X is extremely non-Hilbert, so is its
subspace V, and we conclude from Theorem 2.5 that σpnt(A) ∩ iR ⊂ {0}, which
is a contradiction.

Similarly to Corollary 2.6 we obtain the following dual result.

COROLLARY 2.14. Let X be a reflexive Banach space over the real field and sup-
pose that its dual space X′ is extremely non-Hilbert. Let T ∈ L(X) be weakly asymptot-
ically contractive. Then σpnt(T) ∩T consists only of roots of unity.

Proof. Since X is reflexive, the adjoint operator T′ is also weakly asymptoti-
cally contractive, so σpnt(T′) ∩ T only consists of roots of unity by Theorem 2.13.
Moreover, since T is power-bounded, we can show with the same proof as in
Lemma 2.3 of [2] that σpnt(T′) ∩T ⊃ σpnt(T) ∩T. This proves the corollary.

Again, we note that the sequence spaces lp for 1 6 p < ∞ and p 6= 2 fulfil
the assumption of either Theorem 2.13 or Corollary 2.14.

Under additional assumptions on T, Theorem 2.13 and Corollary 2.14 can
be used to derive results on the asymptotic behaviour of the powers Tn. How-
ever, we delay this to Subsection 3.3. There we first prove additional spectral
results on single operators on another type of Banach spaces; then we describe
the asymptotic behaviour of Tn in Corollary 3.12.

3. THE POINT SPECTRUM ON PROJECTIVELY NON-HILBERT SPACES

3.1. PROJECTIVELY NON-HILBERT SPACES. The results of Section 2 all have the
major flaw that they are applicable only on the small range of Banach spaces
which are extremely non-Hilbert or have an extremely non-Hilbert dual space.
We have seen in Example 2.11 that Lp-spaces on non-discrete measure spaces do,
in general, not fulfil this property. This indicates that we should consider Banach
spaces which fulfil only a weaker geometric condition (at the cost of extra condi-
tions on our semigroup, of course). The geometric condition in the subsequent
Definition 3.1 seems to be the appropriate notion to do this. Before stating this
definition, let us recall that a subspace V of a (real or complex) Banach space X
is said to admit a contractive linear projection in X if there is a projection P ∈ L(X)
such that PX = V and such that ‖P‖ 6 1.
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DEFINITION 3.1. A real Banach space X is called projectively non-Hilbert if
it does not isometrically contain a two-dimensional Hilbert space V ⊂ X which
admits a contractive linear projection in X.

Note that if X is a projectively non-Hilbert space and P ∈ L(X) is a con-
tractive projection, then the range PX is a projectively non-Hilbert space, too. It
was shown by Lyubich in [23] that projectively non-Hilbert spaces provide an
appropriate setting for the spectral analysis of finite dimensional (and more gen-
erally, for compact) contractive operators. Preceding to his work, Krasnosel’skiı̆
achieved similar results in [17], but on a more special class of Banach spaces
which he called completely non-Hilbert spaces.

Of course, a Banach space which is extremely non-Hilbert is also projec-
tively non-Hilbert, but in fact the class of projectively non-Hilbert spaces is much
larger. Again, we start with several examples for those spaces.

EXAMPLE 3.2. Let (Ω, Σ, µ) be a measure space and let 1 6 p < ∞. If p 6= 2,
then the real Banach space Lp := Lp(Ω, Σ, µ;R) is projectively non-Hilbert.

To see this, let V ⊂ Lp be a two-dimensional subspace and assume that P is
a contractive linear projection on Lp with range PLp = V. Then V is isometrically
isomorphic to Lp(Ω̃, Σ̃, µ̃;R) for another measure space (Ω̃, Σ̃, µ̃), see Theorem 6
of [33]. However, every two-dimensional real-valued Lp-space is isometrically
isomorphic to the space (R2, ‖ · ‖p). Since p 6= 2, it follows that V cannot be a
Hilbert space.

We saw in Example 2.11 that the space Lp(T;R) on the complex unit circle
T isometrically contains a two-dimensional Hilbert space V. The above Exam-
ple 3.2 shows that this subspace cannot admit a contractive projection (although
it of course admits a bounded projection since it is finite dimensional). To ob-
tain further examples of projectively non-Hilbert spaces, we now show how they
behave with respect to duality.

PROPOSITION 3.3. Let X be a real Banach space. If its dual space X′ is projectively
non-Hilbert, then so is X itself.

This proposition shows that projectively non-Hilbert spaces behave better
with respect to duality than extremely non-Hilbert spaces do (compare the com-
ments before Corollary 2.6). The proof of Proposition 3.3 relies on the following
elementary observation.

LEMMA 3.4. Let P be a bounded linear projection on a (real or complex) Banach
space X. Then the mapping

i : P′ X′ → (PX)′,

x′ 7→ x′|PX

is a contractive Banach space isomorphism. If P is contractive, then i is even isometric.
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Proof. Clearly, i is linear and contractive. If x′ ∈ P′X′ and i(x′) = x′|PX = 0,
then we obtain for every x ∈ X that

〈x′, x〉 = 〈P′x′, x〉 = 〈x′, Px〉 = 0,

hence x′ = 0. This shows that i is injective. Surjectivity of i follows from the
Hahn–Banach theorem: a given functional x̃′ ∈ (PX)′ can be extended to a func-
tional x′ ∈ X′ and we obtain for each x ∈ PX that

〈P′x′, x〉 = 〈x′, Px〉 = 〈x′, x〉 = 〈x̃′, x〉.

Thus, i(P′x′) = (P′x′)|PX = x̃′, i.e. i is surjective and hence a Banach space iso-
morphism.

Finally, assume that the projection P is a contraction and let x′ ∈ P′X′. For
each ε > 0, we can find a normalized vector x ∈ X such that |〈x′, x〉| > ‖x′‖ − ε.
Since ‖Px‖ 6 ‖x‖ = 1, we obtain

‖i(x′)‖ = ‖x′|PX‖ > |〈x′|PX , Px〉| = |〈x′, x〉| > ‖x′‖ − ε.

Thus, ‖i(x′)‖ > ‖x′‖. Since i is a contraction, we conclude that it is in fact isomet-
ric.

Proof of Proposition 3.3. If X is not projectively non-Hilbert, then there is a
two-dimensional Hilbert space V ⊂ X and a contractive projection P from X onto
V. The adjoint operator P′ is also a contractive projection and by Lemma 3.4, its
range P′X′ is isometrically isomorphic to (PX)′ = V′ which is a two-dimensional
Hilbert space. Thus, X′ is not projectively non-Hilbert, either.

From Proposition 3.3 we obtain another class of examples of projectively
non-Hilbert spaces.

EXAMPLE 3.5. Let L be a locally compact Hausdorff space and let C0(L;R)
be the space of real-valued continuous functions on L which vanish at infinity,
endowed with the supremum norm. Then C0(L;R) is projectively non-Hilbert.

To see this, note that the dual space C0(L;R)′ is isometrically isomorphic
to L1(Ω, Σ, µ;R) for some measure space (Ω, Σ, µ). This well-known result fol-
lows from Kakutani’s representation theorem for abstract L-spaces, see Propo-
sition 1.4.7(i) and Theorem 2.7.1 of [27]. Since we know from Example 3.2 that
the space L1(Ω, Σ, µ;R) is projectively non-Hilbert, Proposition 3.3 implies that
C0(L;R) is projectively non-Hilbert as well.

If K is a compact Hausdorff space, then we of course have C0(K;R) =
C(K;R), and so the space C(K;R) of continuous, real-valued functions on K is
projectively non-Hilbert. This also implies that the space L∞(Ω, Σ, µ;R), for an
arbitrary measure space (Ω, Σ, µ), is projectively non-Hilbert. In fact, each L∞-
space is isometrically isomorphic to a C(K;R)-space for some compact Hausdorff
space K, due to Kakutani’s representation theorem for abstract M-spaces (see
Theorem 2.1.3 of [27]).
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Let us close this subsection with some further examples of projectively non-
Hilbert spaces.

EXAMPLE 3.6. (i) As explained in the last paragraph of Remark 3.5 of [30],
Orlicz sequences spaces which satisfy certain technical conditions are projectively
non-Hilbert.

(ii) If p, q ∈ (1, ∞) \ {2}, then the vector-valued sequence space lp(lq), more
precisely being given by lp(lq) := lp(N; lq(N;R)), is projectively non-Hilbert.
This can easily be derived from Theorem 5.1 of [19].

3.2. C0-SEMIGROUPS ON PROJECTIVELY NON-HILBERT SPACES. We are now go-
ing to study the point spectrum of contractive C0-semigroups on projectively non-
Hilbert spaces. Before stating the main result of this section, we recall that a C0-
semigroup (etA)t>0 on a (real or complex) Banach space X is called weakly almost
periodic, if for each x ∈ X the orbit {etAx : t > 0} is weakly pre-compact in X.

THEOREM 3.7. Let X be real Banach space which is projectively non-Hilbert and
let (etA)t>0 be a weakly almost periodic C0-semigroup on X. If (etAx)t>0 is weakly
asymptotically contractive and if σpnt(A)∩ iR is bounded, then actually σpnt(A)∩ iR ⊂
{0}.

Before proving Theorem 3.7, let us make a few remarks on the assumptions
and consequences of the theorem: the condition on σpnt(A)∩ iR to be bounded is
for example fulfilled if (etA)t>0 is eventually norm continuous, since in this case
the intersection of the entire spectrum σ(A) with every right half plane {λ ∈ C :
Re λ > α} (where α ∈ R) is automatically bounded (see Theorem II.4.18 of [8]). If
(etA)t>0 is bounded (which is always the case if (etA)t>0 is weakly asymptotically
contractive), then the condition that the semigroup be weakly almost periodic is
automatically fulfilled if the space X is reflexive. It is also automatically fulfilled
if the semigroup is bounded and eventually compact (i.e. if etA is compact for
sufficiently large t) or if it is bounded and its generator has compact resolvent; in
the latter two cases the orbits of the semigroup are even pre-compact in the norm
topology on X, see Corollary V.2.15 of [8].

Moreover, for eventually compact semigroups we even obtain the following
convergence result as a corollary.

COROLLARY 3.8. Let X be a real Banach space which is projectively non-Hilbert
and let (etA)t>0 be an eventually compact C0-semigroup on X which is weakly asymp-
totically contractive. Then etA converges with respect to the operator norm as t→ ∞.

Proof. Let AC be the complex extension of A to a complexification XC of X.
Since the semigroup (etAC)t>0 is eventually compact, it is weakly almost periodic
(in fact, its orbits are even pre-compact in norm, see Corollary V.2.15(ii) of [8]).
Moreover, as an eventually compact semigroup, (etAC)t>0 is eventually norm-
continuous (cf. Lemma II.4.22 of [8]) and therefore, the intersection of σ(A) with
any right half plane {z ∈ C : Re z > α}, α ∈ R, is bounded. We thus can apply
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Theorem 3.7 to conclude that σpnt(A) ∩ iR ⊂ {0}. Since the spectrum of AC
consists only of eigenvalues (see Corollary V.3.2 (i), and assertion (ii) at the end
of paragraph IV.1.17 of [8]), this implies that σ(A) ∩ iR ⊂ {0}.

Since the semigroup (etAC)t>0 is eventually compact, it admits the represen-
tation stated in Corollary V.3.2, formula (3.1) of [8]. Using that σ(A) ∩ iR ⊂ {0}
and that the semigroup is bounded, it follows that etAC converges with respect to
the operator norm as t→ ∞.

Next, we want to prove Theorem 3.7. Since we are going to reuse several
parts of the proof in Section 4, we extract those parts into two lemmas. The first
lemma is based on an idea used by Lyubich in the proof of Theorem 1 in [23].

LEMMA 3.9. Let XC be a complexification of a real Banach space X and let (etA)t>0
be a C0-semigroup of isometries on X. Furthermore, suppose that we have σpnt(A) =
{i,−i} and that XC = Y1 ⊕Y2, where Y1 := Eig(i, AC) and Y2 := Eig(−i, AC). Then
X cannot be projectively non-Hilbert.

Proof. We define a binary operation ◦ : C× XC → XC by

λ ◦ (y1 + y2) = λy1 + λy2 for all y1 ∈ Y1, y2 ∈ Y2.

The mapping ◦ is continuous and moreover it is easy to check that (XC,+, ◦) is a
complex vector space again. For each t > 0, each r > 0 and each x = y1 + y2 ∈ XC
(where y1 ∈ Y1, y2 ∈ Y2) we have

(reit) ◦ x = reity1 + re−ity2 = r · (etACy1 + etACy2) = retACx.

This implies that X is invariant under the complex multiplication ◦, i.e. X is a
complex vector subspace of (XC,+, ◦).

Moreover, we have for each t > 0, each r > 0 and each x ∈ X that ‖(reit) ◦
x‖ = ‖retACx‖ = ‖retAx‖ = r ‖x‖ since etA is isometric. Hence, ‖λ ◦ x‖ = |λ| ‖x‖
for each λ ∈ C and each x ∈ X. Therefore, the norm ‖ · ‖ on our real Banach space
X is also a norm on the complex vector space (X,+, ◦).

Now, choose an element x0 ∈ X such that ‖x0‖ = 1. The one-dimensional
complex subspace C ◦ x0 ⊂ X admits a contractive C-linear (with respect to ◦)
projection P : X → C ◦ x0 due to the Hahn–Banach theorem. Moreover, P is also
a linear mapping over the real field with respect to the original multiplication on
X since we have r ◦ x = rx for each r ∈ R and each vector x ∈ X. Also note that
(C ◦ x0,+, ◦) is two-dimensional over the real field, and since the restriction of
◦ to real scalars coincides with the original multiplication on X, C ◦ x0 is a two
dimensional real vector subspace of the original space X.

Finally, we show that C ◦ x0 is a real Hilbert space. Since ‖x0‖ = 1, the
mapping ψ : C→ C ◦ x0, λ 7→ λ ◦ x0 is a C-linear (with respect to ◦) and isometric
bijection. If we restrict all scalars to the real field, ψ thus becomes an isometric
and linear bijection between the two-dimensional normed real spaces (R2, ‖ · ‖2)
and (C ◦ x0, ‖ · ‖). This proves the lemma.
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The next lemma is an elementary fact from linear algebra.

LEMMA 3.10. Let T be a linear operator on a complex vector space X and let
λ ∈ C \ {0}. Then Eig(λ, T2) = Eig(µ, T) ⊕ Eig(−µ, T), where µ and −µ denote
the complex square roots of λ.

Proof. First note that we have Eig(µ, T) ∩ Eig(−µ, T) = {0} since −µ 6= µ;
hence, the sum is indeed direct.

The inclusion “⊃” is obvious. To show the converse inclusion, let x ∈
ker(λ − T2); we may assume x 6= 0. Since T2x = λx, the linear span V =
spanC{x, Tx} is a T-invariant vector subspace of X. As T2x = λx and T2 Tx =
λTx, we have (T|V)2 = T2|V = λ idV . Since λ 6= 0, the operator T|V cannot be
similar to a non-trivial Jordan block; this is obvious if dim V = 1 and it follows
from (T|V)2 = λ idV and a short matrix computation if dim V = 2. Hence V
contains a basis of eigenvectors of T|V . From the spectral mapping theorem we
know that σ(T|V) ⊂ {−µ, µ} and thus V = spanC{x, Tx} is spanned by eigen-
vectors of T with corresponding eigenvalues −µ and/or µ. In particular, x is a
linear combination of such eigenvectors.

Of course it may happen that one of the spaces Eig(µ, T) and Eig(−µ, T)
in the above lemma equals {0} while the other does not. Moreover, note that
Lemma 3.10 is false for λ = 0; of course, the sum is no longer direct in this case,
but the assertions even fails if we do not require the sum to be direct. Simply
choose T as a two-dimensional Jordan block with eigenvalue 0 to see this.

We are now ready to prove Theorem 3.7. For the proof, recall that an oper-
ator T on a Banach space X is called mean ergodic if the sequence of Cesàro means
1
n

n−1
∑

k=0
Tk is strongly convergent as n → ∞. In this case it is well-known (and easy

to see) that the limit is a projection P ∈ L(X) whose range coincides with the
fixed space ker(1− T) of T; P is called the mean ergodic projection of T.

Proof of Theorem 3.7. Step 1. Let XC be a complexification of X and let
(etAC)t>0 be the complex extension of the semigroup (etA)t>0. Assume for a con-
tradiction that σpnt(A) ∩ iR 6⊂ {0}. Replacing A with cA for some c > 0, we may
assume that i,−i ∈ σpnt(A) and that σpnt(A) ⊂ i · (−3, 3).

Step 2. We proceed with some observations about several eigenspaces that
will be used throughout the proof. For each t ∈ (0, π

2 ] we have that

Eig(eit, etAC) = spann∈Z Eig( i + 2πin
t , AC) = Eig( i, AC) =: Y1,(3.1)

Eig(e−it, etAC) = spann∈Z Eig(−i + 2πin
t , AC) = Eig(−i, AC) =: Y2.(3.2)

The equalities on the left follow from a general relationship between the eigen-
spaces of AC and etAC (see Corollary IV.3.8 of [8]) and hold for all t > 0; the
equalities on the right hold for all t ∈ (0, π

2 ] due to the condition σpnt(A) ⊂
i · (−3, 3).
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While the equalities (3.1) and (3.2) hold only for t ∈ (0, π
2 ], we have for t > 0

at least the inclusions

Y1 ⊂ Eig(eit, etAC) and Y2 ⊂ Eig(e−it, etAC).(3.3)

For the time t = π we can make a more precise observation: in fact, we have

Eig(−1, eπAC) = Eig(eiπ/2, eπ/2AC)⊕ Eig(e−iπ/2, eπ/2AC) = Y1 ⊕Y2 =: ZC.

The first of these equalities follows if we apply Lemma 3.10 to the operator T =
eπ/2AC and to the complex number λ = −1; the second equality follows from
(3.1) and (3.2).

Step 3. Let us analyse the space ZC. Since the operator −eπAC is almost
weakly periodic (meaning that the orbits of its powers are weakly pre-compact
in XC), it is mean ergodic ([7], Proposition 1.1.19). Hence the Cesàro means
1
n

n−1
∑

k=0
(−eπAC)k converge to a projection PC : XC → ZC, because ZC is the fixed

space of −eπAC . Clearly, PC leaves the real space X invariant and therefore, the
range ZC = PCXC is the complexification of the real space Z := PCX = X ∩ ZC.
Moreover, the restriction PC|X is contractive, since the operator−eπA = −eπAC |X
is weakly asymptotically contractive. Thus, the real Banach space Z is the range
of the contractive projection PC|X ∈ L(X) and is therefore projectively non-
Hilbert.

Step 4. Finally, we want to apply Lemma 3.9 to the space ZC = Y1 ⊕ Y2 and
to the restricted semigroup (etAC |ZC)t>0 in order to obtain a contradiction. First,
note that (etAC |ZC)t>0 is indeed a semigroup on ZC, since etAC leaves ZC invari-
ant due to (3.3). Moreover, the spectral assumptions of Lemma 3.9 are clearly ful-
filled. Since the semigroup (etAC |ZC)t>0 is periodic and since it is weakly asymp-
totically contractive on Z ⊂ X, we conclude that it acts in fact isometrically on
Z. Thus, the assumptions of Lemma 3.9 are fulfilled and we can conclude from
this lemma that Z is not projectively non-Hilbert. This contradicts the statement
proved in (iii).

A crucial argument in step (iii) of the preceding proof is the use of a mean er-
godic theorem to obtain a contractive projection onto the real part of Y1⊕Y2. This
argument stems from the proof of Theorem 1 in [23]. In this context, we should
also mention that the condition on (etA)t>0 to be weakly almost periodic can be
slightly relaxed in Theorem 3.7: indeed, the proof of the theorem shows that we
only need that each negative operator −etA is mean ergodic. However, we pre-
ferred to state the theorem with the condition that (etA)t>0 be weakly almost
periodic, since this seems to be more natural than a condition on the negative
operators −etA.

Note that Theorem 3.7 fails if we do not require the set σpnt(A) ∩ iR a priori
to be bounded. A counterexample is again provided by the shift semigroup on
Lp(T;R).
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3.3. SINGLE OPERATORS ON PROJECTIVELY NON-HILBERT SPACES. As in Sec-
tion 2, we now apply our semigroup result to study the single operator case.
Recall that an operator T on a (real or complex) Banach space X is called weakly
almost periodic if for each x∈X, the orbit {Tnx : n∈N0} is weakly pre-compact in X.

THEOREM 3.11. Let X be a real Banach space which is projectively non-Hilbert
and let T ∈ L(X) be weakly almost periodic. If T is weakly asymptotically contractive
and if σpnt(T) ∩T is finite, then σpnt(T) ∩T in fact only consists of roots of unity.

Proof. Step 1. By means of the well-known Jacobs–deLeeuw–Glicksberg de-
composition (see e.g. Section 2.4 of [18] and Section V.2 of [8]) we can find a
projection P : X → X which reduces T and has the following properties: the
restriction of T to PX is bijective, σpnt(T|PX) = σpnt(T) ∩ T and any complexifi-
cation YC of PX is the closed linear span of all eigenvectors of (T|PX)C. Since T is
weakly asymptotically contractive, it follows that P is contractive and that T|PX
is isometric. In particular, PX is projectively non-Hilbert.

We may thus assume for the rest of the proof that T is an isometric bijec-
tion with σpnt(T) ⊂ T and that any complexification XC of X is the closed linear
span of all eigenvectors of the complex extension TC of T. Since the point spec-
trum of TC is finite and TC is power bounded, we can show by a similar tech-
nique as in the proof of Theorem 1.1 in [25] that the projection from the direct
sum

⊕
λ∈σpnt(T)

Eig(λ, TC) ⊂ XC onto each eigenspace Eig(λ, TC) along the other

eigenspaces is continuous. Hence, the direct sum is closed, which shows that
actually XC =

⊕
λ∈σpnt(T)

Eig(λ, TC).

Step 2. We may choose a finite set A ⊂ R such that the exponential function
maps 2πiA bijectively to σpnt(T). Let B ⊂ A ∪ {1} be a basis of spanQ(A∪ {1})
over the field of rational numbers Q which fulfils 1 ∈ B. For each β ∈ B and each
α ∈ A, denote by αβ ∈ Q the uniquely determined rational number such that
α = ∑

β∈B
αββ. We can find an integer k 6= 0 such that kαβ ∈ Z for each α ∈ A and

each β ∈ B. Now, assume for a contradiction that at least one element of A is not
contained in Q. Then B also contains an irrational number β0.

Step 3. We define a strongly (in fact uniformly) continuous semigroup
(etA)t>0 on XC by means of

etACxα = eitkαβ0 xα for xα ∈ Eig(e2πiα, TC).

We show that this semigroup leaves X invariant and that its restriction to X is
contractive: let t > 0. Since B is linearly independent over Q and since 1 ∈ B, we
conclude from Kronecker’s theorem that the powers of the tuple (e2πiβ)β∈B\{1}
are dense in TB\{1}. Hence, we can find a sequence of natural numbers (Nn)n∈N
such that e2πiNn β0 → eit and such that e2πiNn β → 1 for each β ∈ B \ {β0, 1}.
Moreover, we clearly have e2πiNn ·1 → 1, so that e2πiNn β → 1 holds actually for
each β ∈ B \ {β0}. Therefore, we obtain for each α ∈ A and xα ∈ Eig(e2πiα, TC)
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that

TkNn
C xα =e2πikNnαxα =∏

β∈B
e2πikNnαβ βxα =∏

β∈B
(e2πiNn β)kαβ xα

n→∞→ eitkαβ0 xα =etACxα,

which implies etACx = lim
n

TkNn
C x for each x ∈ XC. This shows that etAC leaves

X invariant and that it is contractive on X. We conclude that AC is the complex
extension of an operator A on X and that A generates a contractive C0-semigroup
(etA)t>0 on X whose complex extension is given by (etAC)t>0.

Step 4. For the point spectrum of A we have σpnt(A) = {ikαβ0 : α ∈ A}.
In particular, the element 0 6= ik = ik(β0)β0 is contained in σpnt(A). However,
we can apply Theorem 3.7 to the semigroup (etA)t>0: indeed, the semigroup
(etAC)t>0 is weakly almost periodic, since each trajectory {etACx : t > 0} is
bounded and contained in a finite-dimensional space. Hence, (etA)t>0 is almost
weakly periodic, and Theorem 3.7 implies that σpnt(A) ∩ iR ⊂ {0}. This is a
contradiction.

For compact operators, Theorem 3.11 was proved by Lyubich in [23] by sim-
ilar methods (but more directly, since the paper [23] focussed on single operators
rather than on C0-semigroups). Moreover, on some important function spaces,
Theorem 3.11 was proved for compact operators even earlier by Krasnosel’skiı̆
in [17].

Under some additional a priori assumptions on the spectrum, we obtain the
following simple corollary concerning the asymptotics of (Tn)n∈N0 .

COROLLARY 3.12. Let X be a real Banach space which is projectively non-Hilbert
and suppose that T ∈ L(X) is weakly asymptotically contractive. Assume furthermore
that σ(T) ∩ T is finite, isolated from the rest of the spectrum and consists only of poles
of the resolvent R(·, TC). Then T can be decomposed into two linear operators T =

Tper + T0 which fulfil T0Tper = TperT0 = 0, ‖Tn
0 ‖ → 0 as n → ∞ and Tn0+1

per = Tper
for some n0 > 1.

Proof. Let TC denote the complex extension of T to a complexification XC of
X and let PC be the spectral projection corresponding to the part σ(T) ∩ T of the
spectrum of TC. Then the powers of the operator TC,0 := TC(1− PC) converge to
0 with respect to the operator norm.

Moreover, each λ ∈ σ(T)∩T is a simple pole of the resolvent. Indeed, if this
was not true, then we could find a vector z ∈ ker((λ− T)2) \ ker(λ− T) (this fol-
lows from Theorems 1 and 2 in Section VIII.8 of [35]). A brief induction argument
then shows that Tnz = nλn−1(T− λ)z + λnz for all n ∈ N0, contradicting the fact
the T is power-bounded. Thus, λ is indeed a first order pole of the resolvent and
hence, the range of the spectral projection corresponding to λ coincides with the
eigenspace ker(λ− T) ([35], Theorem 3 in Section VIII.8).

Since PC is the sum of all spectral projections corresponding to the single
spectral values in T, it follows that for each x ∈ XC the vector PCx can be written
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as a finite sum PCx = x1 + · · · + xm, where x1, . . . , xm are all eigenvectors of
T belonging to eigenvalues in T. Hence, the bounded set {Tn

CPCx : n ∈ N0}
is contained in the finite dimensional space spanC{x1, . . . , xm} and is thus pre-
compact. Since for each ε > 0, the set

{Tn
C(1− PC)x : n ∈ N0} = {(TC(1− PC))nx : n ∈ N0}

contains only finitely many elements whose norm is large than ε, we conclude
that this set is pre-compact, as well. This implies that the trajectory {Tn

Cx : n ∈
N0} is pre-compact. In particular, TC is weakly almost periodic, and so is T.

Hence, we can apply Theorem 3.11 to conclude that σpnt(T) ∩ T only con-
sists of roots of unity. Therefore, the powers of the operator TC,per := TCPC are pe-
riodic. Finally, note that the spectral projection PC leaves X invariant (this easily
follows from the representation of PC by Cauchy’s integral formula), and hence
the operators TC,0 and TC,per leave X invariant, as well. Thus, the assertion fol-
lows with T0 := TC,0|X and Tper := TC,per|X .

Note that the assumptions on σ(T)∩T in Corollary 3.12 are for example ful-
filled if T is compact or, more generally, if the essential spectral radius ress(TC) :=
sup{|λ| : λ− TC is not Fredholm} is strictly smaller than 1.

In finite dimensions a result related to Corollary 3.12 can also be found
in Theorem 2.1 of [20]. Besides this, we want to mention that a very similar result
holds even for non-linear operators if they satisfy an additional assumption on
their ω-limit sets; this was shown by Lemmens and van Gaans in Theorem 2.8
of [21], employing a result on projectively non-Hilbert spaces from Theorem 4 of
[23]. For the special case of Lp-spaces, 1 < p < ∞, p 6= 2, such a non-linear result
had already been shown by Sine in Theorem 3 of [32].

4. THE SPECTRUM ON Lp-SPACES

In the preceding sections, we considered C0-semigroups (etA)t>0 and fo-
cussed on results that ensure that A has no purely imaginary eigenvalues. How-
ever, to turn those results into convergence results, we always needed rather
strong compactness conditions.

In this final section, we will employ an ultrapower technique to ensure that
the intersection of the entire spectrum with iR is trivial. This will allow us to
derive a much more general convergence result. To make our method work, we
have to ensure that an ultrapower of our space X is still a projectively non-Hilbert
space. This seems to be rather difficult in general, but Lp-spaces are particularly
well-suited for this task since an ultrapower of an Lp-space is again an Lp-space.

4.1. ULTRAPOWERS OF BANACH SPACES. We shortly recall the most important
facts about ultrapowers of Banach spaces that will be used in the next subsection.
For a more detailed treatment, we refer for example to [13], p. 251–253 of [27]
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and Section V.1 of [31]. Let X be a real or complex Banach space. By l∞(X) :=
l∞(N, X) we denote the space of all bounded sequences in X. We endow this
space with the supremum norm ‖x‖∞ = sup

n∈N
‖xn‖ for x = (xn)n∈N ∈ l∞(X).

Let U be a free ultrafilter on N and let c0,U (X) :=
{

x ∈ l∞(X) : lim
U

xn = 0
}

.

The space c0,U (X) is a closed vector subspace of l∞(X), and the quotient space
XU := l∞(X)/c0,U (X) is called the U -ultrapower of X. For each x = (xn)n∈N ∈
l∞(X), we denote by xU the equivalence class xU := x + c0,U (X) ∈ XU . It turns
out that we can compute the quotient norm on the space XU rather easily: for
each xU ∈ XU , we have ‖xU‖XU = lim

U
‖xn‖ (for complex Banach spaces X, this

can be found e.g. in Theorem 4.1.6 of [27] or Proposition V.1.2 of [31]; for real
Banach spaces, the proof is the same). Note that this limit always exists since U is
an ultrafilter and since the set {‖xn‖ : n ∈ N} is pre-compact in R.

If T ∈ L(X), we can define an operator T̃ ∈ L(l∞(X)) by the pointwise
operation

T̃x = T̃(xn)n∈N := (Txn)n∈N for all x = (xn)n∈N ∈ l∞(X).

The bounded linear operator T̃ leaves the subspace c0,U (X) ⊂ l∞(X) invari-
ant and thus induces another bounded linear operator TU ∈ L(XU ) via

TU xU = (T̃x)U for all xU ∈ XU .

One reason for the usefulness of ultrapowers in operator theory is the fact
that the induced operator TU shares a lot of spectral properties with the original
operator T and even improves some of them.

PROPOSITION 4.1. Let T ∈ L(X) for a complex Banach space X and let U be a
free ultrafilter on N.

(i) For the spectra of TU and T we have σ(TU ) = σ(T).
(ii) For the approximate point spectra σappr we have

σpnt(TU ) = σappr(TU ) = σappr(T).

For the proof see for example Theorem 4.1.6 of [27] or Proposition V.1.3 and
Theorem V.1.4 of [31].

If X is a real or complex Banach space and S, T ∈ L(X), then we have
‖TU‖ = ‖T‖ and (ST)U = SUTU . This is very easy to see and will be used tacitly
below. For our application of ultrapowers in the next subsection, it is important
to know how they behave in connection with complexifications of real Banach
spaces. This is described by the following proposition.

PROPOSITION 4.2. Let XC be a complexification of a real Banach space X and let
TC be the complex extension of an operator T ∈ L(X). Let U be a free ultrafilter on N.
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Then (XC)U is a complexification of (X)U via the embedding

(X)U → (XC)U ,

x + c0,U (X) 7→ x + c0,U (XC)

and the operator (TC)U is the complex extension of the operator TU .

The proof is straightforward and therefore left to the reader.
The last result that we need on ultrapowers of Banach spaces is the stability

of Lp-spaces with respect to the construction of ultrapowers.

PROPOSITION 4.3. Let (Ω, Σ, µ) be a measure space, let 1 6 p < ∞ and let
X be the real-valued function space X := Lp(Ω, Σ, µ;R). If U is a free ultrafilter on
N, then there is a measure space (Ω̃, Σ̃, µ̃) such that the ultrapower XU is isometrically
isomorphic to Lp(Ω̃, Σ̃, µ̃;R).

For the proof see Theorem 3.3(ii) of [13].

4.2. CONTRACTION SEMIGROUPS ON Lp-SPACES. We are now going to use the
ultrapower technique described above together with the ideas of Section 3 to
analyse the spectrum of certain semigroups on Lp-spaces. To this end, consider
a C0-semigroup (etA)t>0 on a (real or complex) Banach space and suppose that
its growth bound ω(A) is larger than −∞; the semigroup (etA)t>0 is called norm
continuous at infinity if it fulfils the condition

lim
t→∞

lim sup
h→0

‖e(t+h)(A−ω(A)) − et(A−ω(A))‖ = 0.

Of course a C0-semigroups on a real Banach space X is norm continuous at infin-
ity if and only if its complex extension to any complexification XC of X is so. The
class of C0-semigroups which are norm continuous at infinity contains the class of
all C0-semigroups which are eventually norm continuous and fulfil ω(A) > −∞.

The notion of norm continuity at infinity was introduced by Martinez and
Mazon in Definition 1.1 of [26], where they showed several spectral properties of
those semigroups. We will need the following of those properties in the sequel.

PROPOSITION 4.4. Let (etA)t>0 be a C0-semigroup on a complex Banach space.
Suppose that ω(A) > −∞ and that (etA)t>0 is norm-continuous at infinity.

(i) Let Γt := {λ ∈ C : |λ| = r(etA)}. Then the following partial spectral mapping
theorem holds for each t > 0:

σ(etA) ∩ Γt = etσ(A) ∩ Γt.

(ii) There is an ε > 0 such that the following set is bounded:

{λ ∈ σ(A) : Re λ > s(A)− ε}.
For the proof see Theorem 1.2 of [26] for (i) and Theorem 1.9 of [26] for (ii).
The following theorem is the main result of this section.
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THEOREM 4.5. Let (Ω, Σ, µ) be a measure space and let 1 < p < ∞, p 6= 2.
Suppose that (etA)t>0 is a C0-semigroup on X = Lp(Ω, Σ, µ;R) which fulfils ω(A) >
−∞, is norm continuous at infinity and uniformly asymptotically contractive. Then
σ(A) ∩ iR ⊂ {0}.

Before we prove the theorem, let us briefly discuss its assumptions and its
consequences: for some comments on the validity of Theorem 4.5 on other spaces
we refer to Remark 4.8 below. The assumption ω(A) > −∞ in the theorem is
of course only a technical condition to ensure that the notion “norm-continuous
at infinity” is well-defined. For eventually norm continuous semigroups the fol-
lowing formulation of Theorem 4.5 might be more convenient.

COROLLARY 4.6. Let (Ω, Σ, µ) be a measure space and let 1 < p < ∞, p 6= 2.
Suppose that (etA)t>0 is a C0-semigroup on X = Lp(Ω, Σ, µ;R) which is eventually
norm continuous and uniformly asymptotically contractive. Then σ(A) ∩ iR ⊂ {0}.

If ω(A) = −∞, the assertion is trivial. If ω(A) > −∞, our semigroup is
norm-continuous at infinity and thus the assertion follows from Theorem 4.5.

For the asymptotic behaviour of our semigroups we obtain the following
corollary.

COROLLARY 4.7. Suppose that the assumptions of Theorem 4.5 or Corollary 4.6
are fulfilled. Then etA converges strongly as t→ ∞.

The proof follows from Corollary 2.6 of [2] or from Exercise V.2.25 (4)(ii)
of [8].

Proof of Theorem 4.5. Except for the ultrapower technique involved, the ma-
jor steps of the proof are rather similar to those in the proof of Theorem 3.7.

Step 1. We have ω(A) 6 0 and for ω(A) < 0 the assertion is trivial. So let
ω(A) = 0, and assume for a contradiction that the assertion of the theorem fails.
Replacing A by cA for some c > 0, we may assume that i,−i ∈ σ(A) and that
σ(A) ∩ iR ⊂ i · [−1, 1]. Let XC be a complexification of X and let (etAC)t>0 be the
complex extension of the semigroup (etA)t>0. We then have for each t > 0 that
σ(eitAC) ∩ T = eitσ(A) ∩ T ⊂ {eiϕ : |ϕ| 6 t}; the equality on the left follows from
Proposition 4.4(i) since r(etAC) = etω(AC) = 1.

Step 2. Let U be a free ultrafilter on N and denote by XU and (XC)U the
corresponding ultrapowers of X and XC. According to Proposition 4.2, (XC)U
is a complexification of XU and the operator (etAC)U is the complex extension of
(etA)U . Hence, it follows from Proposition 4.1 that σpnt((etA)U )∩T = σ(etA)∩T
for each t > 0, since the boundary of the spectrum of an operator is automat-
ically contained in the approximate point spectrum. Besides that, we still have
lim sup

t→∞
‖(etA)U‖ 6 1 However, note that the operator family ((etAC)U )t>0 might

not be strongly continuous on (XC)U , although it of course still fulfils the semi-
group law.
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Step 3. We proceed by analysing some properties of several eigenspaces that
will be used in the rest of the proof. Define

Y1 := Eig(e(π/2)i, (e(π/2)AC)U ) and Y2 = Eig(e−(π/2)i, (e(π/2)AC)U ).

By virtue of Lemma 3.10 it follows that Eig(−1, (eπAC)U ) = Y1 ⊕Y2 =: ZC. From
the same lemma and from the fact that σ((eitAC)U ) ∩ T = σ(eitAC) ∩ T ⊂ {eiϕ :
|ϕ| 6 t}, we also conclude that we have Y1 = Eig(ei(π/2n), (e(π/2n)AC)U ) and
Y2 = Eig(e−i(π/2n), (e(π/2n)AC)U ) for all n ∈ N. Thus,

Y1 ⊂ Eig(eiπd, (eπdAC)U ) and Y2 ⊂ Eig(e−iπd, (eπdAC)U )(4.1)

for each dyadic number d > 0, i.e. for each number of the form d = k
2n , where

k, n ∈ N0. Next, note that the mapping [0, ∞)→ (XC)U , t 7→ (etAC)U xU is contin-
uous for each xU ∈ Y1 and each xU ∈ Y2: indeed, let xU ∈ Y1 such that ‖xU‖ = 1,
let t > 0 and ε > 0. For sufficiently large n ∈ N, the norm continuity at infinity of
(etAC)t>0 implies that

lim sup
h→0

‖(e(nπ/2+t+h)AC)U − (e(nπ/2+t)AC)U‖

= lim sup
h→0

‖e(nπ/2+t+h)AC − e(nπ/2+t)AC‖ 6 ε.

Hence, we have

ε > lim sup
h→0

‖(e(nπ/2+t+h)AC)U xU − (e(nπ/2+t)AC)U xU‖

= lim sup
h→0

‖(e(t+h)AC)U xU − (etAC)U xU‖,

where the last equality follows from the fact that (e(πn/2)AC)U xU = ei(πn/2)xU .
Since ε > 0 was an arbitrary number, we conclude that

lim
h→0
‖(e(t+h)AC)U xU − (etAC)U xU‖ = 0.

Similarly, we can show the continuity for xU ∈ Y2. The strong continuity of
t 7→ (etAC)U on Y1 and Y2 together with (4.1) implies the following, for all t > 0:

Eig(eit, (etAC)U ) ⊃ Y1 and Eig(e−it, (etAC)U ) ⊃ Y2.(4.2)

Step 4. Let us now analyse the subspace ZC = Y1 ⊕Y2. This space coincides
with the fixed space of the power-bounded operator−(eπAC)U . Since XU is an Lp-
space (see Proposition 4.3) and 1 < p < ∞, the space XU is reflexive and so is its
complexification (XC)U . Thus,−(eπAC)U is mean ergodic. The mean ergodic pro-
jection P : (XC)U → (XC)U has ZC as its range. Moreover, PC leaves XU invari-
ant and the restriction PC|XU is contractive, since lim sup

n→∞
‖(−(eπAC)U )

n|XU ‖ =

lim sup
n→∞

‖((eπA)U )
n‖ 6 1. Note that ZC is the complexification of the space

Z := PC(XU ) = XU ∩ ZC and that Z is projectively non-Hilbert since it is the
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image of the projectively non-Hilbert space XU under the contractive projection
PC|XU .

Step 5. Finally, we want to apply Lemma 3.9 to the space ZC = Y1 ⊕
Y2 and to the restricted semigroup ((etAC)U |ZC)t>0. It follows from (4.2), that
the space ZC is indeed invariant with respect to the operators (etAC)U , and the
strong continuity assertion shown in Step 3 implies that the restricted semigroup
((etAC)U |ZC)t>0 is indeed a C0-semigoup. Due to (4.2), this C0-semigroup satis-
fies the spectral assumptions in Lemma 3.9. Since it is also periodic (again due to
(4.2)) and uniformly asymptotically contractive on Z ⊂ XU , the semigroup acts in
fact isometrically on Z. Thus, the conditions in Lemma 3.9 are fulfilled and hence
the lemma yields that Z is not projectively non-Hilbert. This is a contradiction to
Step 4.

After this proof, some remarks on the validity of Theorem 4.5 on other
spaces are in order.

REMARKS 4.8. (i) For C0-semigroups which are contractive and norm-con-
tinuous at infinity, the assertion of Theorem 4.5 remains true on the space X :=
L1(Ω, Σ, µ;R). The proof of this assertion relies on the theory of Banach lattices
and is therefore rather different from our proof above. The precise argument
works as follows.

First note that XC := L1(Ω, Σ, µ;C) is a complexification of our space X.
Moreover, if the operator etA is contractive, then its complex extension etAC to
XC is contractive as well; this follows from Proposition 2.1.1 of [9]. Now, assume
for a contradiction that 0 6= iβ ∈ σ(A), where β ∈ R. Then eiβt ∈ σ(etA) for all
t > 0. Moreover, it follows from Proposition 4.4 that σ(etA) ∩ T is contained in a
sector of small angle in the right half plane if we choose t > 0 sufficiently small.
However, since eitβ ∈ σ(etA), it follows from Corollary 2 to Theorem V.7.5 of [31]
that ei(2n+1)tβ ∈ σ(etA) for each n ∈ Z. This is a contradiction.

The result from Corollary 2 to Theorem V.7.5 of [31] that we used in the last
step is based on the spectral theory of positive operators on Banach lattices (al-
though the operator under consideration is itself not positive) and on the special
structure of L1-spaces. Besides that, we note that the above argument strongly
depends on the fact that etA is contractive for small t. Currently, the author does
not know whether the assertion σ(A)∩ iR ⊂ {0} remains true on L1-spaces if we
consider uniformly asymptotically contractive instead of contractive semigroups.

(ii) In Theorem 4.5 we do not really need to consider Lp-spaces. Instead, we
can replace the Lp-space in the theorem by a real Banach space X which fulfils
that some ultrapower XU of X is still reflexive and projectively non-Hilbert. The
theorem remains true for those spaces since its proof only uses that XU is reflexive
and projectively non-Hilbert. However, currently the author does not know any
example of a real Banach space X which is not an Lp-space, but has a reflexive
and projectively non-Hilbert ultrapower XU .
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One might wonder why we required the semigroup to be uniformly asymp-
totically contractive in Theorem 4.5, which is slightly stronger than the weak as-
ymptotic contractivity that we required in the Theorems 2.5 and 3.7. The prob-
lem with weak (and even with strong) asymptotic contractivity is that it does
not carry over to the lifted operators on an ultrapower. The uniform condition
lim sup

t→∞
‖etA‖ 6 1 however still holds for the lifted operators, since their norm

coincides with the norm of the original operators. In fact, the assertion of Theo-
rem 4.5 may fail for strongly (and in particular for weakly) asymptotically con-
tractive semigroups.

EXAMPLE 4.9. Let 1 < p < ∞, p 6= 2, and endow R2 with the p-norm.
For each n ∈ N, let An be the operator on R2 whose representation matrix with
respect to the canonical basis is given by(

− 1
n −1

1 − 1
n

)
.

We have σ(An) = {i − 1
n ,−i − 1

n}, and the representation matrix of etAn with
respect to the canonical basis is given by

e−(1/n)t
(

cos t − sin t
sin t cos t

)
.

We clearly have ‖etAn‖ → 0 as t → ∞. Now, consider the vector-valued lp-
space X = lp(N;R2) (which is isometrically isomorphic to the space lp(N;R))
and let A :=

∞⊕
n=1

An ∈ L(X). Then A generates a C0-semigroup (etA)t>0 on

X and it is easy to see that this semigroup fulfils lim sup
t→∞

‖etAx‖ 6 ‖x‖ (and in

fact even etAx → 0 as t → ∞) for each x ∈ X, but that lim sup
t→∞

‖etA‖ > 1.

Thus, the semigroup is strongly, but not uniformly asymptotically contractive.
Furthermore, we have σ(A)∩ iR = {i,−i} 6⊂ {0}, so the assertion of Theorem 4.5
does not hold for the semigroup (etA)t>0. However, note that i and −i are not
eigenvalues of A, which is in accordance with Theorem 3.7.

Example 4.9 is based on an idea that was used in Section 8 of [4] to construct
a counterexample in the theory of eventually positive semigroups. Note that we
can easily modify Example 4.9 to obtain a semigroup which is strongly asymp-
totically contractive, but even fulfils σ(A) ∩ iR = i · [−1, 1]: we simply have to
multiply the off-diagonal entries of the representation matrices of An by numbers
αn, where (αn)n∈N ⊂ [0, 1] is a sequence which is dense in [0, 1].

4.3. CONTRACTIVE SINGLE OPERATORS ON Lp-SPACES. Using the ultrapower
technique described at the beginning of this section, we can also derive a result
on single operators which is similar to Theorem 3.11, but now for the spectrum
instead of the point spectrum. Actually the proof for the single operator case is
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much easier than for the semigroup case, since we can simply lift a single opera-
tor to an ultrapower of X and apply Theorem 3.11.

THEOREM 4.10. Let (Ω, Σ, µ) be a measure space, let 1 < p < ∞, p 6= 2 and set
X := Lp(Ω, Σ, µ;R). Suppose that T ∈ L(X) is uniformly asymptotically contractive.
If σ(T) ∩T is finite, then it only consists of roots of unity.

Proof. Let U be a free ultrafilter on N; the ultrapower XU of X is an Lp-space
again and we have σ(T) ∩ T = σpnt(TU ) ∩ T. Since the operator TU is defined on
a reflexive Lp-space with p 6= 2 and fulfils the condition lim sup

n→∞
‖Tn
U‖ 6 1, we

can apply Theorem 3.11 to conclude that σpnt(TU ) ∩ T consists only of roots of
unity.

Comparing our results on C0-semigroups with our results on single opera-
tors, it seems that the semigroup results are much more satisfying. For example,
the boundedness condition on σpnt(A) ∩ iR from Theorem 3.7 and the norm con-
tinuity assumption from Theorem 4.5 will be satisfied on many occasions, even
without any compactness assumptions. By contrast, the condition from Theo-
rems 4.10 and 3.11 that the peripheral (point) spectrum σ(T) ∩ T (respectively
σpnt(T) ∩ T) be finite seems to be rather strong. It would be interesting to know
whether the same conclusions for single operators hold under weaker a priori
assumptions on the spectrum.
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