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ABSTRACT. A classical result of Birkhoff states that every nontrivial transla-
tion operator on the space H(C) of entire functions of one complex variable
is hypercyclic. Godefroy and Shapiro extended this result considerably by
proving that every nontrivial convolution operator on the spaceH(Cn) of en-
tire functions of several complex variables is hypercyclic. In sharp contrast
with these classical results we show that no convolution operator on the space
H(CN) of entire functions of infinitely many complex variables is hypercyclic.
On the positive side we obtain hypercyclicity results for convolution operators
on spaces of entire functions on important locally convex spaces.
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INTRODUCTION

A classical result of Birkhoff [8] states that every nontrivial translation op-
erator on H(C) is hypercyclic. We recall that if X is a topological vector space,
then a continuous linear operator T : X → X is said to be hypercyclic if its orbit
{x, T(x), T2(x), . . .} is dense in X for some x ∈ X. In this case, x is said to be a hy-
percyclic vector for T. On the other hand a result of MacLane [36] asserts that every
differentiation operator on H(C) is hypercyclic. These results were generalized
by Godefroy and Shapiro [25], who proved that every nontrivial convolution op-
erator onH(Cn) is hypercyclic. We recall that a convolution operator onH(Cn) is a
continuous linear operator that commutes with translations. By a nontrivial con-
volution operator we mean a convolution operator which is not a scalar multiple
of the identity.

There are several directions and ramifications of the study of hypercyclic
operators. References [4], [27], [28] provide an overview of the theory. We remark
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that several results on the hypercyclicity of operators on spaces of entire functions
of infinitely many complex variables have appeared in the last few decades. See
for instance [2], [5], [6], [7], [14], [24], [27], [39], [44].

In this paper we are mainly interested in the hypercyclicity of convolution
operators on spaces of entire functions of infinitely many complex variables. In
sharp contrast with the aforementioned results of Birkhoff [8], MacLane [36] and
Godefroy and Shapiro [25], we show that no convolution operator on H(CN) is
hypercyclic. At first sight this result may look surprising, since it is well known
that every f ∈ H(CN) depends only of finitely many variables. But our result
follows precisely from this fact.

On the positive side we show that, when E is the strong dual of a Fréchet
nuclear space (for short a (DFN)-space), then every nontrivial convolution opera-
tor on H(E) is hypercyclic. More generally we obtain the same conclusion when
E = F′c, where F is a separable Fréchet space with the approximation property.
We denote by F′c the dual of a Fréchet space F with the topology of compact con-
vergence (for short a (DFC)-space).

Our proofs combine results for the spaces HΘb(E) of entire functions of a
given bounded holomorphy type on a complex Banach space E obtained in [6],
[22], with a factorization method introduced by Colombeau and Matos [16]. Be-
sides that, our proofs rest on a classical hypercyclicity criterion, first obtained
by Kitai [34], but never published and later on rediscovered by Gethner and
Shapiro [24].

It is clear that our first positive result follows from the second one, but we
have preferred to present both results separately to illustrate the usefulness of
different holomorphy types. Besides that, we first obtained the result in the case
of (DFN)-spaces, whose proof is simpler, and later on we extended the result to
the case of (DFC)-spaces.

Nowadays it is known, by a result of Costakis and Sambarino [18], that the
classical hypercyclicity criterion of Kitai ensures that the operator is mixing, a
stronger property than hypercyclicity. We recall that if X is a topological vector
space, then a continuous linear operator T : X → X is said to be mixing if for any
two non-empty open sets U, V ⊂ X, there is n0 ∈ N such that Tn(U) ∩ V 6= ∅,
for all n > n0. Actually it is known that if X is a Fréchet space, then a continuous
linear operator T : X → X is mixing if and only if it is hereditarily hypercyclic,
that is, for any strictly increasing sequence (nj) ⊂ N there exists x ∈ X such that
the sequence (Tnj(x)) is dense in X (this is proved in [26] in the case of Banach
spaces, but the proof works equally well in the case of Fréchet spaces).

Because of this, the aforementioned results on (DFN) and (DFC)-spaces en-
sure that every nontrivial convolution operator on H(E) is actually mixing, or
equivalently hereditarily hypercyclic.

This paper is organized as follows. In Section 2 we collect some general
results which are often used in subsequent sections. Sections 3 and 4 are devoted
to the study of convolution operators on spaces of entire functions on (DFN) and



HYPERCYCLIC CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS 143

(DFC)-spaces, respectively. Finally, in Section 5 we prove the aforementioned
result that no convolution operator onH(CN) is hypercyclic.

In the original version of Theorem 4.1(ii) we had proved that no translation
operator on (H(CN), τ) is hypercyclic. By a clever refinement of our original
proof the referee was able to prove that no convolution operator on (H(CN), τ)
is hypercyclic.

Throughout this paper N denotes the set of positive integers and N0 denotes
the set N ∪ {0}. All the locally convex spaces are assumed to be complex and
Hausdorff. By ∆ we mean the open unit disk in the complex field C. If E is a
locally convex space, then E′b (respectively E′c) denotes the dual E′ of E with the
topology of bounded convergence (respectively compact convergence). If E and
F are normed spaces, with F complete, then the Banach space of all continuous
m-homogeneous polynomials from E into F endowed with its usual sup norm
is denoted by P(mE; F). The subspace of P(mE; F) of all polynomials of finite
type is represented by P f (

mE; F). For E and F locally convex spaces, with F
complete, H(E; F) denotes the vector space of all holomorphic mappings from E
into F. In all these cases, when F = C we write P(mE), P f (

mE) andH(E) instead
of P(mE;C), P f (

mE;C) and H(E;C), respectively. The compact-open topology
on the space H(E) is denoted by τ0. For the general theory of homogeneous
polynomials and holomorphic functions we refer to Dineen [20] and Mujica [38].

Finally, cs(E) denotes the set of all continuous seminorms on the locally
convex space E. If p ∈ cs(E), then Ep denotes the normed space (E, p)/p−1(0),
and πp denotes the canonical surjective mapping πp : E → Ep. We say that D ⊂
cs(E) is a fundamental family if D is a directed subset of cs(E) and the seminorms
p ∈ D generate the topology of E.

1. PRELIMINAIRES

In this section we recall the concepts and results about holomorphic func-
tions on normed spaces that we need and we introduce some similar concepts for
holomorphic functions defined on locally convex spaces. It is important to say
that all definitions of this section and all results of [6] and [22] that we will use
during the paper were originally stated for E and F Banach spaces, with excep-
tion of Definitions 1.5, 1.9 and 1.11 that are introduced in this paper for the first
time. But it is clear that they are still valid if we consider E only normed.

DEFINITION 1.1. Let E and F be normed spaces, with F complete, and U
be an open subset of E. A mapping f : U −→ F is said to be holomorphic on U
if for every a ∈ U there exists a sequence (Pm)∞

m=0, where each Pm ∈ P(mE; F)

(P(0E; F) = F), such that f (x) =
∞
∑

m=0
Pm(x − a) uniformly on some open ball

with center a. The m-homogeneous polynomial m!Pm is called the m-th derivative
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of f at a and is denoted by d̂ m f (a). In particular, if P ∈ P(mE; F), a ∈ E and
k ∈ {0, 1, . . . , m}, then

d̂ kP(a)(x) =
m!

(m− k)!
P̌(x, . . . , x︸ ︷︷ ︸

k times

, a, . . . , a)

for every x ∈ E, where P̌ denotes the unique symmetric m-linear mapping asso-
ciated to P.

A mapping f : U → F is holomorphic if and only if f is continuous and G-
holomorphic, that is, f (a + λb) is a holomorphic function of the complex variable
λ for each a ∈ U and b ∈ E (see Theorem 8.7 of [38]).

DEFINITION 1.2 (Nachbin [41]). Let E and F be normed spaces, with F com-
plete. A holomorphy type Θ from E to F is a sequence of Banach spaces
(PΘ(

mE; F))∞
m=0, the norm on each of them being denoted by ‖ · ‖Θ, with the

following properties:
(i) Each PΘ(

mE; F) is a linear subspace of P(mE; F).
(ii) PΘ(

0E; F) coincides with P(0E; F) = F as a normed vector space.
(iii) There is a real number σ > 1 such that, given any k ∈ N0, m ∈ N0, k 6 m,

a ∈ E and P ∈ PΘ(
mE; F), then

d̂ kP(a) ∈ PΘ(
kE; F) and

∥∥∥ 1
k!

d̂ kP(a)
∥∥∥

Θ
6 σm‖P‖Θ‖a‖m−k.

A holomorphy type from E to F shall be denoted by either Θ or (PΘ(
mE; F))∞

m=0.

DEFINITION 1.3. Let (PΘ(
mE; F))∞

m=0 be a holomorphy type from the nor-
med space E to the Banach space F. A given function f ∈ H(E; F) is said to be of
Θ-bounded type if

(i) 1
m! d̂

m f (0) ∈ PΘ(
mE; F) for all m ∈ N0,

(ii) lim
m→∞

(
1

m!‖d̂ m f (0)‖Θ

)1/m
= 0.

The linear subspace of H(E; F) of all functions f of Θ-bounded type is denoted
byHΘb(E; F).

For each ρ > 0, the correspondence

f ∈ HΘb(E; F) 7→ ‖ f ‖Θ,ρ =
∞

∑
m=0

ρm

m!
‖d̂ m f (0)‖Θ < ∞

is a well-defined seminorm and HΘb(E; F) becomes a Fréchet space when en-
dowed with the locally convex topology generated by these seminorms (see, e.g,
Proposition 2.3 of [22]).

When F = C we write HΘb(E) instead of HΘb(E;C) and when Θ is the
current holomorphy type, that is when PΘ(

mE; F) = P(mE; F) for every m ∈ N0, we
writeHb(E; F) instead ofHΘb(E; F) and ‖ · ‖ρ instead of ‖ · ‖Θ,ρ.
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DEFINITION 1.4 ([20], Definition 3.6). Let E and F be locally convex spaces
and let U be an open subset of E. A mapping f : U → F is said to be holomorphic
if f is continuous and G-holomorphic.

When F = C, then f : U → C is holomorphic if and only if for each a ∈ U
there is a unique sequence (Pm)∞

m=0, with Pm ∈ P(mE), m = 0, 1, . . . , such that

f (x) =
∞
∑

m=0
Pm(x− a), where the series converges uniformly for x in a neighbor-

hood of a (see for instance p. 23 of [19]).
Following Colombeau and Matos [16] we introduce a vector subspace of

H(E), when E is a locally convex space, that will play a central role in this paper.

DEFINITION 1.5. Let E be a locally convex space and F a Banach space. A
mapping f ∈ H(E; F) is said to be of uniform Θ-bounded type if there exist p ∈
cs(E) and fp ∈ HΘb(Ep; F) such that f = fp ◦ πp. Let HuΘb(E; F) denote the
vector space of all holomorphic functions of uniform Θ-bounded type from E to
F. Let π∗p denote the injective mapping

π∗p : fp ∈ HΘb(Ep; F)→ fp ◦ πp ∈ HuΘb(E; F).

Then
HuΘb(E; F) =

⋃
p∈cs(E)

π∗p(HΘb(Ep; F))

and we endow HuΘb(E; F) with the locally convex inductive topology with re-
spect to the mappings π∗p. Thus HuΘb(E; F) = indHΘb(Ep; F) is an inductive
limit of Fréchet spaces.

If D ⊂ cs(E) is a fundamental family, then it is clear that

HuΘb(E; F) =
⋃

p∈D
π∗p(HΘb(Ep; F)).

When Θ is the current holomorphy type, then we write Hub(E; F) instead of
HuΘb(E; F), and when F = C we writeHuΘb(E) instead ofHuΘb(E;C)

The next definition is a slight variation of the concept of π1-holomorphy
type (originally introduced in Definitions 2.3 of [22]) and can be found in Defini-
tion 2.5 of [6].

DEFINITION 1.6. Let E and F be normed spaces, with F complete. A holo-
morphy type (PΘ(

mE; F))∞
m=0 from E to F is said to be a π1-holomorphy type if the

following conditions hold:
(i) Polynomials of finite type belong to (PΘ(

mE; F))∞
m=0 and there exists K > 0

such that
‖φm · b‖Θ 6 Km‖φ‖m · ‖b‖

for all φ ∈ E′b, b ∈ F and m ∈ N;
(ii) For each m ∈ N0, P f (

mE; F) is dense in (PΘ(
mE; F), ‖ · ‖Θ).

The main examples that we are interested in are the following:
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EXAMPLE 1.7. Let E and F be normed spaces, with F complete.
(i) It is clear that the sequence of nuclear polynomials (PN(

mE; F))∞
m=0 is a

π1-holomorphy type (see [22] or [30]), which defines the Fréchet spaceHNb(E; F)
of entire functions of nuclear bounded type.

(ii) A polynomial P ∈ P(mE; F) is said to be approximable if P ∈ P f (mE; F)
‖·‖

.
Let PA(

mE; F) denotes the subspace of all approximable members of P(mE; F),
endowed with the sup norm. Then it is clear that the sequence (PA(

mE; F))∞
m=0

is a π1-holomorphy type, which defines the Fréchet space HAb(E; F) of entire
functions of approximable bounded type.

DEFINITION 1.8. Let E and F be normed spaces, with F complete and let
(PΘ(

mE; F))∞
m=0 be a π1-holomorphy type.

(i) We recall that the polynomial Borel transform

Bm : PΘ(
mE; F)′ → P(mE′b; F′b)

is defined by

(BmT)(φ)(y) = T(φmy) for every T ∈ PΘ(
mE; F)′, φ ∈ E′b, y ∈ F.

Then Bm is linear, continuous and injective. The image of Bm in P(mE′b; F′b) is
denoted by PΘ′(

mE′b; F′b), and the function

BmT ∈ PΘ′(
mE′b; F′b)→ ‖T‖ ∈ R

defines a norm ‖.‖Θ′ on PΘ′(
mE′b; F′b). Thus (PΘ(

mE; F)′, ‖ · ‖) is isometrically
isomorphic to (PΘ′(

mE′b; F′b), ‖ · ‖Θ′).
(ii) A function f ∈ H(E′b) is said to be of Θ′-exponential type if d̂ m f (0) ∈

PΘ′(
mE′b) for every m ∈ N0, and there are C, c > 0 such that ‖d̂ m f (0)‖Θ′ 6 Ccm

for every m ∈ N0. The vector space of all entire functions of Θ′-exponential type
on E′b is denoted by ExpΘ′(E′b) (see p. 915 of [22]).

By Theorem 2.1 of [22] the holomorphic Borel transform

B : [HΘb(E)]′b → ExpΘ′(E′b),

which is defined by

(BT)(φ) = T(eφ) for every T ∈ [HΘb(E)]′b and φ ∈ E′b,

is a vector space isomorphism.
Let E be a locally convex space such that there exists a fundamental family

D ⊂ cs(E) such that (PΘ(
mEp))∞

m=0 is a π1-holomorphy type for every p ∈ D.
Then it is clear that for each φ ∈ E′b there exist p ∈ cs(E) and φp ∈ (Ep)′b such
that φ = φp ◦ πp. Thus, for T ∈ HuΘb(E)′ we have

T(eφ) = T(eφp◦πp) = T ◦ π∗p(e
φp) = Tp(eφp),

with Tp = T ◦ π∗p ∈ HΘb(Ep). By the preceding definition the function φp ∈
(Ep)′b → Tp(eφp) ∈ C belongs to ExpΘ′((Ep)′b).
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Now it makes sense to give the next definition.

DEFINITION 1.9. Let E be a locally convex space such that there exists a
fundamental family D ⊂ cs(E) such that (PΘ(

mEp))∞
m=0 is a π1-holomorphy type

for every p ∈ D. We denote by ExpΘ′(E′b) the subspace of all f ∈ H(E′b) such
that f ◦ π∗p ∈ ExpΘ′((Ep)′b) for some p ∈ cs(E). We define the holomorphic Borel
transform

B : [HuΘb(E)]′b → ExpΘ′(E′b)
by

(BT)(φ) = T(eφ) for every T ∈ [HuΘb(E)]′b, φ ∈ E′b.
It follows that B is well-defined, that is BT ∈ H(E′b). In fact,

(BT)(φ) =
∞

∑
m=0

T(φm)

m!

is the Taylor series expansion of BT around 0 and this implies that BT is holo-
morphic (see, for instance Example 5.4 of [38]).

Finally we recall the concept of convolution operator on HΘb(E) when E is
a normed space and we introduce convolution operators on HuΘb(E) in the case
where E is a locally convex space.

DEFINITION 1.10 ([22], Definition 3.1). Let E be a normed space.
(i) A convolution operator onHΘb(E) is a continuous linear mapping

L : HΘb(E)→ HΘb(E)

such that L(τa f ) = τa(L f ) for every f ∈ HΘb(E) and a ∈ E. We recall that
(τa f )(x) = f (x− a) for every x ∈ E and we denote by AΘb(E) the vector space
of all convolution operators onHΘb(E).

(ii) The linear mapping

Γ : AΘb(E)→ HΘb(E)′

is defined by

(ΓL)( f ) = (L f )(0) for every L ∈ AΘb(E) and f ∈ HΘb(E).

DEFINITION 1.11. Let E be a locally convex space. A convolution operator on
HuΘb(E) is a continuous linear mapping

L : HuΘb(E)→ HuΘb(E)

such that L(τa f ) = τa(L f ) for every f ∈ HuΘb(E) and a ∈ E.
We denote by AuΘb(E) the vector space of all convolution operators on

HuΘb(E). The linear mapping

Γ : AuΘb(E)→ HuΘb(E)′

is defined by

(ΓL)( f ) = (L f )(0) for every L ∈ AuΘb(E) and f ∈ HuΘb(E).
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2. CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS ON (DFN)-SPACES

A (DFN)-space is the strong dual of a Fréchet nuclear space. Nuclear spaces
were introduced by Grothendieck [29] and together with normed spaces are the
most important classes of locally convex spaces encountered in analysis. A very
good reference for the theory of nuclear spaces is the book of Pietsch [45]. Holo-
morphic functions on nuclear spaces were first investigated by Boland [9], but
many other authors have worked in that direction. We mention, among many
others, [10], [11], [12].

The main result of this section is the following theorem.

THEOREM 2.1. Let E be a (DFN)-space, and let L be a nontrivial convolution
operator onH(E). Then L is mixing and thus in particular hypercyclic.

Our proof of Theorem 2.1 rests on the following theorem, which, as men-
tioned in the Introduction, is due to Costakis and Sambarino [18] and sharpens
an earlier result of Kitai [34] and Gethner and Shapiro [24].

THEOREM 2.2. Let X be a separable Fréchet space. Then a continuous linear map-
ping T : X → X is mixing if there are dense subsets Z, Y of X and a mapping S : Y → Y
satisfying the following three conditions:

(i) Tn(z)→ 0 when n→ ∞ for every z ∈ Z.
(ii) Sn(y)→ 0 when n→ ∞ for every y ∈ Y.

(iii) T ◦ S(y) = y for every y ∈ Y.

Before proving Theorem 2.1 we need some auxiliary results.

PROPOSITION 2.3. Let E be a locally convex space, and assume there is a funda-
mental family D ⊂ cs(E) such that the sequence (PΘ(

mEp))∞
m=0 is a π1-holomorphy

type for every p ∈ D. Then:
(i) The set

SU = span{eφ : φ ∈ U}

is a dense subspace ofHuΘb(E) for each nonvoid open subset U of E′b.
(ii) The set

B = {eφ : φ ∈ E′b}

is a linearly independent subset ofHuΘb(E).

Proof. (i) Let U be a nonvoid open subset of E′b. For each p ∈ D consider the
mapping

π′p : φp ∈ (Ep)
′
b → φp ◦ πp ∈ E′b

and observe that π′p((Ep)′b) ⊂ E′b and π′p is continuous. Let Up = (π′p)
−1(U).

Then Up is a nonvoid open subset of (Ep)′b. Let

SUp = span{eφp : φp ∈ Up}.



HYPERCYCLIC CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS 149

By Proposition 4.3 of [6] SUp is a dense subspace ofHΘb(Ep). Since

HuΘb(E) =
⋃

p∈D
π∗p(HΘb(Ep))

it follows that SU is a dense subspace ofHuΘb(E).
(ii) If we set

Bp = {eφp : φp ∈ (Ep)
′
b}

for every p ∈ D, then it is clear that B =
⋃

p∈D
π∗p(Bp). By Proposition 4.6 of [6],

each Bp is a linearly independent subset ofHΘb(Ep). Since each π∗p is injective, it
follows that B is a linearly independent subset ofHuΘb(E).

LEMMA 2.4. Let E be a locally convex space, and assume there is a fundamental
family D ⊂ cs(E) such that the sequence (PΘ(

mEp))∞
m=0 is a π1-holomorphy type for

every p ∈ D. Let L be a convolution operator onHuΘb(E). Then:
(i) L(eφ) = B(ΓL)(φ)eφ for every φ ∈ E′b.

(ii) L is a scalar multiple of the identity operator if and only if the entire function
B(ΓL) : E′b → C is constant.

Proof. (i) If φ ∈ E′b, then it follows from Definitions 1.9 and 1.11 that

B(ΓL)(φ) = (ΓL)(eφ) = L(eφ)(0).

Hence for each y ∈ E it follows that

[B(ΓL)(φ)eφ](y) = B(ΓL)(φ)eφ(y) = eφ(y)(ΓL)(eφ)

= eφ(y)(Leφ)(0) = [L(eφ(y)eφ)](0) = [L(τ−yeφ)](0)

= [τ−y(Leφ)](0) = L(eφ)(y).

(ii) Let λ ∈ C such that B(ΓL)(φ) = λ for every φ ∈ E′b. It follows from (i)
that

Leφ = B(ΓL)(φ)eφ = λeφ for every φ ∈ E′b.

Since span {eφ : φ ∈ E′} is dense in HuΘb(E), it follows that L f = λ f for every
f ∈ HuΘb(E).

Conversely let λ ∈ C such that L f = λ f for every f ∈ HuΘb(E). It follows
from (i) that

λeφ = Leφ = B(ΓL)(φ)eφ,

and therefore B(ΓL)(φ) = λ for every φ ∈ E′b.

PROPOSITION 2.5. Let E be a locally convex space and assume there is a funda-
mental family D ⊂ cs(E) such that the sequence (PΘ(

mEp))∞
m=0 is a π1-holomorphy

type for every p ∈ D. Let L be a nontrivial convolution operator on HuΘb(E). Consider
the sets

V = {φ ∈ E′b : |B(ΓL)(φ)| < 1} = [B(ΓL)]−1(∆)
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and
W = {φ ∈ E′b : |B(ΓL)(φ)| > 1} = [B(ΓL)]−1(C \∆).

Consider also the sets

HV = span{eφ : φ ∈ V} and HW = span{eφ : φ ∈W}.

Then:
(i) HV and HW are dense subspaces ofHuΘb(E).

(ii) Ln f → 0 when n→ ∞ for each f ∈ HV .
(iii) If we define

S(eφ) =
eφ

B(ΓL)(φ)
for every φ ∈W ,

then S admits a unique extension to a linear mapping S : HW → HW , and Sn f → 0
when n→ ∞ for each f ∈ HW .

(iv) L ◦ S( f ) = f for every f ∈ HW .

Proof. (i) Since L is not a scalar multiple of the identity, Lemma 2.4(ii) im-
plies that the entire function B(ΓL) : E′b → C is not constant. Hence, it follows
from Liouville’s theorem that V and W are nonvoid open subsets of E′b. By Propo-
sition 2.3(i) HV and HW are dense subspaces ofHuΘb(E).

(ii) Given φ ∈ V, Lemma 2.4(i) implies that

L(eφ) = B(ΓL)(φ)eφ ∈ HV .

Since L is linear, it is clear that L(HV) ⊂ HV . It is easy to see that

Ln(eφ) = [B(ΓL)(φ)]neφ for every φ ∈ V, n ∈ N.

Now let f ∈ HV , that is f =
m
∑

j=1
αje

φj , with αj ∈ C and φj ∈ V. It follows that

Ln( f ) =
m

∑
j=1

αjLn(eφj) =
m

∑
j=1

αj[B(ΓL)(φj)]
neφj .

Since |B(ΓL)(φj)| < 1 for every j = 1, . . . , m, it follows that Ln f → 0 when
n→ ∞.

(iii) If φ ∈W, then B(ΓL)(φ) 6= 0. Hence we may define

S(eφ) =
eφ

B(ΓL)(φ)
∈ HW .

It is easy to see that

Sn(eφ) =
eφ

[B(ΓL)(φ)]n
for every φ ∈W, n ∈ N.

By Proposition 2.3(ii) {eφ : φ ∈ W} is a Hamel basis of HW . Hence S admits a
unique extension to a linear mapping S : HW → HW . Now let f ∈ HW , that is
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f =
m
∑

j=1
αje

φj , with αj ∈ C and φj ∈W. It follows that

Sn f =
m

∑
j=1

αje
φj

[B(ΓL)(φj)]n
.

Since |B(ΓL))(φj)| > 1 for every j, it follows that Sn f → 0 when n→ ∞.
(iv) It is clear that L ◦ S(eφ) = eφ for every φ ∈W, and therefore L ◦ S( f ) = f

for every f ∈ HW .

Proof of Theorem 2.1. By Theorem 6.5 of [17],H(E) = HuNb(E) algebraically
and topologically. By a result of Boland ([10], Corollary 1.4), H(E) is a Fréchet
nuclear space. In particular HuNb(E) is a separable Fréchet space. If D ⊂ cs(E)
is any fundamental family, then the sequence (PN(

mEp))∞
m=0 is a π1-holomorphy

type for every p ∈ D, by Example 1.7.
By Proposition 2.5 HV and HW are dense subspaces of HuNb(E), and there

is a linear mapping S : HW → HW such that:

(a) Ln f → 0 when n→ ∞ for every f ∈ HV ;
(b) Sn f → 0 when n→ ∞ for every f ∈ HW ;
(c) L ◦ S( f ) = f for every f ∈ HW .

By Theorem 2.2 the operator L is mixing.

3. CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS ON (DFC)-SPACES

A (DFC)-space is a locally convex space of the form E = F′c, where F is
a Fréchet space. (DFC)-spaces were first studied by Brauner [13] and Höllstein
[31], [32]. Holomorphic functions on (DFC)-spaces have been studied by Mujica
[37], Valdivia [48], Schottenloher [46], Nachbin [43], Lourenço [35] and Galindo
et al. [23].

The main result in this section is the following theorem.

THEOREM 3.1. Let E = F′c, where F is a separable Fréchet space with the approx-
imation property. Let L be a nontrivial convolution operator on (H(E), τ0). Then L is
mixing and thus in particular hypercyclic.

The proof of Theorem 3.1 rests on Theorem 2.2, but before proving the the-
orem we need some auxiliary results.

PROPOSITION 3.2. Let E = F′c, where F is a Fréchet space. Then:
(i) E is a semi-Montel, hemicompact k-space.

(ii) (H(E), τ0) is a Fréchet space.

Proof. (i) By Proposition 7.2 of [37] E is a semi-Montel, hemicompact space.
By the Banach–Dieudonné theorem (see p. 245, Theorem 1 of [33]) E is a k-space.
(ii) follows at once from (i).
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If E = F′c, where F is a Fréchet space, then a result of Schwartz guarantees
that F has the approximation property if and only if E has the approximation
property (see Exposé n0 14, Théorème 2 of [47] or Corollary 1.3 of [21]).

PROPOSITION 3.3. Let E = F′c, where F is a separable Fréchet space with the
approximation property. Then (H(E), τ0) is a separable Fréchet space.

Proof. By considering the Taylor series we see that every f ∈ H(E) can
be approximated, uniformly on compact sets, by continuous polynomials on E.
Since E has the approximation property, it is clear that every continuous poly-
nomial on E can be approximated, uniformly on compact sets, by continuous
polynomials of finite type. By the Mackey–Arens theorem (see p. 205, Theorem 1
of [33]) E′b = E′c = F is separable, it follows that (P f (

mE), τ0) is separable for
every m ∈ N0. Hence it follows that (H(E), τ0) is separable, as asserted.

DEFINITION 3.4. Let E and F be normed spaces. An operator T ∈ L(E; F)
is said to be approximable if T ∈ E′ ⊗ F.

For the next result recall the definition of the space of entire functions of
approximable bounded type in Example 1.7(ii).

LEMMA 3.5. Let E, F and G be normed spaces, with G complete, and let T ∈
L(F; E) be an approximable operator. Then f ◦ T ∈ HAb(F; G) for every f ∈ Hb(E; G),
and the mapping

f ∈ Hb(E; G)→ f ◦ T ∈ HAb(F; G)

is linear and continuous.

Proof. Let
∞
∑

m=0
Pm(x) denote the Taylor series of f at the origin. Then

f ◦ T(y) =
∞

∑
m=0

Pm ◦ T(y) for every y ∈ F.

Since T is approximable, there is a sequence (Tn)∞
n=1 ∈ F′ ⊗ E such that ‖T −

Tn‖ → 0. Since Pm ∈ P(mE) for every m ∈ N0, it is clear that Pm ◦ T ∈ P(mF) and
‖Pm ◦ T‖ 6 ‖Pm‖‖T‖m for every m ∈ N0.

Since f ∈ Hb(E; G), the Taylor series of f at the origin has an infinite radius
of convergence. By the Cauchy–Hadamard formula (see Theorem 4.3 of [38]),
‖Pm‖1/m → 0. Hence it follows that

‖Pm ◦ T‖1/m 6 ‖Pm‖1/m‖T‖ → 0.

Hence the Taylor series of f ◦ T at the origin has also an infinite radius of conver-
gence, and therefore f ◦ T ∈ Hb(F; G).

To show that f ◦ T ∈ HAb(F; G) we have to prove that Pm ◦ T ∈ PA(F; G)
for every m ∈ N0. By the Newton binomial formula (see Corollary 1.9 of [38]), for
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every y ∈ F with ‖y‖ 6 1 it follows that

‖Pm ◦ T(y)− Pm ◦ Tn(y)‖ =
∥∥∥ m

∑
k=1

(
m
k

)
P̌m(Tny)m−k(Ty− Tny)k

∥∥∥
6

m

∑
k=1

(
m
k

)
‖P̌m‖‖Tn‖m−k‖T − Tn‖k

6 em‖Pm‖‖T − Tn‖
m

∑
k=1

(
m
k

)
cm−kdk−1

for suitable positive constants c and d. Therefore ‖Pm ◦ T − Pm ◦ Tn‖ → 0. Since
Tn ∈ F′ ⊗ E, it is clear that Pm ◦ Tn ∈ P f (

mF), and therefore Pm ◦ T ∈ PA(
mF; G).

Finally it is clear that the mapping f ∈ Hb(E; G) → f ◦ T ∈ HAb(F; G) is
continuous, since

‖ f ◦ T‖ρ =
∞

∑
m=0
‖Pm ◦ T‖ρm 6

∞

∑
m=0
‖Pm‖‖T‖mρm = ‖ f ‖‖T‖ρ

for every ρ > 0.

THEOREM 3.6. Let E be a (DFC)-space with the approximation property. Then
HuAb(E) = Hub(E) = (H(E), τ0) algebraically and topologically.

Proof. We first establish the continuous inclusions

HuAb(E) ↪→ Hub(E) ↪→ (H(E), τ0).

Since
HuAb(E) =

⋃
p∈cs(E)

π∗p(HAb(Ep))

and
Hub(E) =

⋃
p∈cs(E)

π∗p(Hb(Ep)),

it is clear that HuAb(E) ⊂ Hub(E), and the inclusion mapping is continuous.
Since the inclusion mapping π∗p(Hb(Ep)) ↪→ (H(E), τ0) is clearly continuous, we
obtain the continuous inclusionHub(E) ↪→ (H(E), τ0).

We next show that HuAb(E) = (H(E), τ0) algebraically and topologically.
We know that HuAb(E) is bornological, and (H(E), τ0) is a Fréchet space, in
particular bornological. Hence it suffices to show that each bounded subset of
(H(E), τ0) is contained and bounded in HuAb(E). Let { fi : i ∈ I} be a bounded
subset of (H(E), τ0). Let f ∈ H(E; `∞(I)) be defined by f (x) = ( fi(x))i∈I for
every x ∈ E. By a result of Galindo et al. (see Corollary 1 of [23]),

(H(E; `∞(I)), τ0) = Hub(E; `∞(I))

algebraically and topologically. In particular f ∈ Hub(E; `∞(I)) and therefore
there are p ∈ cs(E) and fp ∈ Hb(E; `∞(I)) such that f = fp ◦ πp. By a result
of Lourenço (see Lemma 2.2 of [35]), there are q ∈ cs(E), q > p such that the
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canonical mapping πpq : Eq → Ep is an approximable operator. Let fq = fp ◦ πpq.
By the preceding lemma fq ∈ HAb(Eq; `∞(I)) and

f = fp ◦ πp = fp ◦ πpq ◦ πq = fq ◦ πq.

Thus f = ( fi)i∈I ∈ HuAb(E; `∞(I)), and therefore { fi : i ∈ I} is a bounded subset
ofHuAb(E), as asserted.

Proof of Theorem 3.1. By Proposition 3.3 and Theorem 3.6 we have that
HuAb(E) = (H(E), τ0) is a separable Fréchet space. If D ⊂ cs(E) is any fun-
damental family, then it follows from Example 1.7 that (PA(

mEp))∞
m=0 is a π1-

holomorphy type for every p ∈ D. By Proposition 2.5 there are dense subspaces
HV and HW ofHuAb(E) and there is a linear mapping S : HW → HV such that:

(a) Ln f → 0 when n→ ∞ for every f ∈ HV ;
(b) Sn f → 0 when n→ ∞ for every f ∈ HW ;
(c) L ◦ S( f ) = f for every f ∈ HW .

By Theorem 2.2 the operator L is mixing.

4. CONVOLUTION OPERATORS ONH(CN)

We will prove that no convolution operator onH(CN) is hypercyclic. So far
we have only considered the compact-open topology τ0 on the space H(E). But
now we will also consider the compact-ported topology τω introduced by Nach-
bin [40], and the bornological topology τδ introduced by Coeuré [15] and Nachbin
[42]. For background information on these topologies we refer the reader to the
book of Dineen [20].

THEOREM 4.1. (i) (H(CN), τ0) = (H(CN), τω) 6= (H(CN), τδ) = Hub(CN).
(ii) No convolution operator on (H(CN), τ) is hypercyclic, for τ = τ0, τω and τδ.

Proof. (i) By a result of Barroso (see p. 537, Teorema 2.2 of [3]), τ0 = τω on
H(CN). By a result of Dineen (see p. 45, Corollary 3.2 of [19] or Example 3.24(i)
of [20]) we have τω 6= τδ onH(CN).

To see the connection with Hub(CN), for each n ∈ N and for τ = τ0, τω

and τδ, consider the canonical inclusion Jn : Cn ↪→ CN, the canonical projection
πn : CN → Cn and the corresponding mappings

J∗n : f ∈ (H(CN), τ)→ f ◦ Jn ∈ (H(Cn), τ)

and

π∗n : fn ∈ (H(Cn), τ)→ fn ◦ πn ∈ (H(CN), τ).

Since J∗n ◦ π∗n is the identity on H(Cn), it follows that (H(Cn), τ) is topologically
isomorphic to a complemented subspace of (H(CN), τ). In particular π∗n(H(Cn))
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is a proper closed subspace of (H(CN), τ). By a result of Barroso (see p. 38,
Corolário of [3] or Proposition 1.1 of [1])

H(CN) =
∞⋃

n=1

{ fn ◦ πn : fn ∈ H(Cn)} =
∞⋃

n=1

π∗n(H(Cn)).

If we define pn ∈ cs(CN) by

pn(x) = sup
j6n
|ξ j| for every x = (ξ j)

∞
j=1 ∈ CN,

then we can readily see that the normed space (CN)pn is topologically isomorphic
to Cn, and therefore

Hub(CN) = ind(H((CN)pn , τ0)) = ind(H(Cn), τ0).

By a result of Ansemil (see Proposition 1.3 of [1])

(H(CN), τδ) = ind(H(Cn), τ0) = Hub(CN).

(ii) Suppose that there exists a hypercyclic convolution operator
L : (H(CN), τ) → (H(CN), τ). Then there exists f ∈ H(CN) such that the set
{ f , L f , L2 f , . . .} is dense in (H(CN), τ). Let n ∈ N be such that f = fn ◦ πn, with
fn ∈ H(Cn). We will prove that

{ f , L f , L2 f , . . .} = π∗n({ fn, (L f ) ◦ Jn, (L2 f ) ◦ Jn, . . .}).

Indeed, since τa f = f , for every a ∈ CN such that πn(a) = 0, then we have
τa(L f ) = L(τa f ) = L f , for every a ∈ CN with πn(a) = 0. If x = (xj) ∈ CN is
arbitrary and a = (0, . . . , 0︸ ︷︷ ︸

n

, xn+1, xn+2, . . .), then πn(a) = 0 and so

L f (x) = τa(L f )(x) = L f (x− a) = L f (x1, . . . , xn, 0, 0, . . .)

= L f (Jn ◦ πn(x)) = π∗n((L f ) ◦ Jn)(x).

Thus
L f = (L f ) ◦ Jn ◦ πn = π∗n((L f ) ◦ Jn)

and the same argument shows that

L2 f = L(L f ) = (L2 f ) ◦ Jn ◦ πn = π∗n((L2 f ) ◦ Jn).

Proceeding by induction it follows that

Lk f = (Lk f ) ◦ Jn ◦ πn = π∗n((Lk f ) ◦ Jn),

for every k ∈ N. Therefore

{ f , L f , L2 f , . . .} = π∗n({ fn, (L f ) ◦ Jn, (L2 f ) ◦ Jn, . . .}) ⊂ π∗n(H(Cn)),

a contradiction, since π∗n(H(Cn)) is a proper closed subspace of (H(CN), τ).

COROLLARY 4.2. No convolution operator onHub(CN) is hypercyclic.
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