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KEYWORDS: Classification, continuous fields of C∗-algebras, C∗-algebras over X,
graph C∗-algebras.

MSC (2010): Primary 46L35.

1. INTRODUCTION

Continuous fields of C∗-algebras appear naturally in the general theory of
C∗-algebras since every C∗-algebra with a Hausdorff primitive ideal space is iso-
morphic to a continuous field of C∗-algebras with simple fibers (see [5] and [18]).
The problem of classifying these C∗-algebras is an important and classical prob-
lem in the theory. In general, these algebras are very far from being locally trivial.
In a classical paper [11], Jacques Dixmier and Adrien Douady classified a certain
class of continuous fields of C∗-algebras over X (continuous trace C∗-algebras)
by associating to each such C∗-algebra an element in the third cohomology group
Ȟ3(X,Z). By Theorem 5.2 of [6], if X is zero-dimensional, then the section alge-
bra of the continuous field of C∗-algebras studied by Dixmier and Douady are
AF-algebras. Thus, by Elliott’s classification of AF-algebras [17], they are classi-
fied by their K0-groups.

Since K-theory has proven to be a very successful invariant for classifying
C∗-algebras, it is natural to ask “to what extent does K-theory classify continuous
fields of C∗-algebras with simple fibers that are classifiable via K-theory?”.
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There has been recent progress in this direction, for example, Marius Dădâr-
lat and Cornel Pasnicu in [10] classified continuous fields of C∗-algebras over
locally compact, metrizable, zero-dimensional spaces for which the fibers are
purely infinite simple C∗-algebras.

Partial results have also been obtained involving continuous fields of C∗-
algebras over non-zero dimensional spaces (see [3], [4], [7], and [8]). In all of
the above results, either all the fibers are purely infinite or all the fibers are AF-
algebras.

In this paper, we consider the classification of C∗-algebras whose primitive
ideal space is Hausdorff and fibers are of mixed type.

In fact, we consider the classification problem for C∗-algebras whose prim-
itive ideal space is Ñ and each fiber is either an AF-algebra or a purely infinite
simple C∗-algebra. Here Ñ = N ∪ {∞} is the one-point compactification of N.
We show that an ordered isomorphism between ideal-related K-theory with co-
efficients (as defined in [9]) lifts to an isomorphism between the stabilized C∗-
algebras.

Moreover, if the ∞ fiber has torsion-free K-theory, then ideal-related K-
theory with coefficients can be replaced by ideal-related K-theory (which in gen-
eral is a much simpler invariant). This is done by proving a universal coefficient
theorem involving ideal-related K-theory for C∗-algebras over Ñ whose ∞ fiber
has torsion-free K-theory. It was shown in [9] that a universal coefficient theorem
involving ideal-related K-theory does not exist in general.

We note that we can not use the results in [13] since the extension

0→ A(N)→ A→ A(∞)→ 0

does not satisfy the property that for every nonzero a ∈ A(∞), the ideal gen-
erated by τ(a) in the corona algebra Q(A(N)) is Q(A(N)). Here, τ denotes the
Busby map of the above extension. Instead, we prove existence and uniqueness
theorems, which together with an intertwining argument give the desired result.

One of our motivations for studying this class of C∗-algebras is that this
class contains the class of graph C∗-algebras whose primitive ideal space is Ñ.

In fact, it was shown by the first named author in [20] that a graph C∗-
algebra with a T1 (in particular Hausdorff) primitive ideal space has a canonical
C∗-algebra over Ñ structure. In this paper, we classify those for which this struc-
ture is tight over Ñ (see Definition 2.1).

This paper contributes to the ongoing program to classify real rank zero
graph C∗-algebras using ideal-related K-theory. See [14] for an overview of the
classification program for graph C∗-algebras with finitely many ideals.

To the authors knowledge, all known classification results for graph C∗-
algebras involve graph C∗-algebras with finitely many gauge invariant ideals.
Thus, Theorem 7.2 is the first classification result for graph C∗-algebras with in-
finitely many gauge-invariant ideals of mixed type.
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2. PRELIMINARIES

In this section, we recall the definition of C∗-algebras over X and ideal-
related K-theory (with coefficients) for C∗-algebras over a totally disconnected
space X. We also prove several structural properties of C∗-algebras over Ñ that
will be used throughout the paper.

Throughout the paper, ΣA will denote the suspension C0(R)⊗ A of A and
ΣjA is defined recursively Σ((Σj−1A)).

2.1. C∗-ALGEBRAS OVER TOPOLOGICAL SPACES. Let X be a topological space
and let O(X) be the set of open subsets of X, partially ordered by set inclusion
⊆. A subset Y of X is called locally closed if Y = U \ V where U, V ∈ O(X) and
V ⊆ U. The set of all locally closed subsets of X will be denoted by LC(X). For
a C∗-algebra A, let I(A) be the set of all closed two-sided ideals of A, partially
ordered by ⊆.

DEFINITION 2.1. Let A be a C∗-algebra. Let Prim(A) denote the primitive
ideal space of A, equipped with the usual hull-kernel topology, also called the Ja-
cobson topology.

Let X be a topological space. A C∗-algebra over X is a pair (A, ψ) consisting
of a C∗-algebra A and a continuous map ψ : Prim(A)→ X. A C∗-algebra over X,
(A, ψ), is separable if A is a separable C∗-algebra. We say that (A, ψ) is tight if ψ is
a homeomorphism.

We will always identify O(Prim(A)) and I(A) using the canonical lattice
isomorphism U 7→ ⋂

p∈Prim(A)\U
p. Let (A, ψ) be a C∗-algebra over X. Then we get

a map ψ∗ from O(X) to O(Prim(A)) defined by U 7→ {p ∈ Prim(A) : ψ(p) ∈ U}.
Using the lattice isomorphism O(Prim(A)) ∼= I(A), we get a map, which we
again denote by ψ∗, from O(X) to I(A) by

U 7→
⋂
{p ∈ Prim(A) : ψ(p) /∈ U}.

Denote this ideal by A(U). For Y = U \ V ∈ LC(X), set A(Y) = A(U)/A(V).
By Lemma 2.15 of [23], A(Y) (up to a canonical choice of isomorphism) does not
depend on U and V.

By Lemma 2.25 of [23] it follows that if X is a sober space (which is no actual
restriction on X) then any C∗-algebra A together with a map

ψ∗ : O(X)→ I(A),

which respects arbitrary suprema, finite infima and such that ψ∗(∅) = 0, ψ∗(X) =
A, gives rise to a continuous map φ : Prim(A)→ X such that ψ∗ = φ∗.

DEFINITION 2.2. Let (A, ψ) be a C∗-algebra over X. We say that (A, ψ) is
continuous if ψ∗ respects arbitrary infima, i.e., for any collection of open subsets
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{Uλ} of X, then

A(U) =
⋂
λ

A(Uλ)

where U is the interior of
⋂
λ

Uλ.

We should remark that in the case that X is a locally compact Hausdorff
space, a C∗-algebra over X is the same as a C0(X)-algebra by Proposition 2.11
of [23]. Combining Lemma 2.9 of [23] with Corollary 2.2 of [25] one gets that
continuous C∗-algebras over X correspond exactly to continuous C0(X)-algebras.

DEFINITION 2.3. Let A and B be C∗-algebras over X. A ∗-homomorphism
φ : A→ B is X-equivariant if φ(A(U)) ⊆ B(U) for all U ∈ O(X). Hence, for every
Y = U \ V, φ induces a ∗-homomorphism φY : A(Y) → B(Y). Let C∗-alg(X) be
the category whose objects are C∗-algebras over X and whose morphisms are
X-equivariant ∗-homomorphisms.

Let Y be a subspace of X. We define a canonical covariant functor iY from
C∗-alg(Y) to C∗-alg(X) by iY(A)(U) = A(Y ∩U), for every U ∈ O(X). In par-
ticular, if Y = {x} for a point x ∈ X we obtain the functor ix from C∗-alg ∼=
C∗-alg({x}) to C∗-alg(X).

Suppose that X is a sober space. Let A1
λ1,2−−→ A2

λ2,3−−→ · · · be an induc-
tive system with each An a C∗-algebra over X and λk,k+1 an X-equivariant ∗-
homomorphism. We say that (Ak, λk,k+1) is an inductive system of C∗-algebras over
X. By exactness of the C∗-algebra inductive limit functor, the inductive limit
A is canonically a C∗-algebra over X for which the induced ∗-homomorphisms
ιk : Ak → A are X-equivariant.

LEMMA 2.4. Let X be a sober space. Let (Ak, λk,k+1) and (Bk, µk,k+1) be induc-
tive systems of C∗-algebras over X and let A and B be the respective inductive limits.
Suppose that there are X-equivariant ∗-homomorphisms φn : An → Bkn which generate
a ∗-homomorphism φ : A→ B. Then φ is X-equivariant.

Proof. Let U ∈ O(X) and a ∈ A(U), so that we should show that φ(a) ∈
B(U). Given ε > 0 we may, by the X-equivariant structure of A, find an N and
an a′ in AN(U) such that ιN(a′) ≈ε a. Thus

φ(a) ≈ε φ(ιN(a′)) = ιkN (φN(a′)) ∈ B(U),

since both ιkN and φN are X-equivariant. Thus φ(a) ∈ B(U).

2.2. INVARIANTS FOR C∗-ALGEBRAS OVER A TOTALLY DISCONNECTED SPACE.
Let P ⊆ N be the set consisting of 0 and all prime powers. The relevance of
the set P in the universal multicoefficient theorem is that the groups Zp := Z/pZ
for p ∈ P are exactly the indecomposable abelian groups.
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For a non-zero p ∈ P , Ip will denote the mapping cone of the unital ∗-
homomorphism that embeds C into Mp(C). For p = 0, we let I0 := C. It is con-
venient to denote Ip by I0

p and its suspension ΣIp by I1
p. Then for a C∗-algebra A:

Ki(A;Zp) := KKi(Ip, A) ∼= KK(Ii
p, A), i = 0, 1.

Let us set I :=
⊕

p∈P
Ip and consider the ring KK∗(I, I) with multiplication

given by the Kasparov product. The non-unital subring

Λ =
⊕

p,q∈P
KK∗(Ip, Iq)

of KK∗(I, I) is called the ring of Böckstein operations. It consists of matrices in-
dexed by P × P with only finitely many non-zero entries λpq ∈ KK∗(Ip, Iq). The
Kasparov product

KK∗(Ip, Iq)× KK∗(Iq,A)→ KK∗(Ip,A)

induces a natural Λ-module structure on the Z2 ×P-graded group

K(A) =
⊕
p∈P

K∗(A;Zp).

If A is a separable C∗-algebra over a totally disconnected, metrizable, com-
pact space X, then K(A) has a natural structure of a module over the ring C(X, Λ)
of locally constant functions from X to Λ, and K∗(A) has a natural structure of a
Z2-graded module over the ring C(X,Z) of locally constant functions from X to

Z. This is easily seen by observing that A ∼=
n⊕

k=1
A(Uk) naturally for any clopen

partition (Uk)
n
k=1 of X. In the case when we have an evenly graded homomor-

phism of Z2-graded C(X,Z)-modules, we will often abuse notation by just saying
that we have a C(X,Z)-homomorphism.

2.3. STRUCTURAL PROPERTIES OF C∗-ALGEBRAS OVER Ñ. Let {An}∞
n=1 be a se-

quence of C∗-algebras. Set

c0({An}) =
{
{an}∞

n=1 : an ∈ An, lim
n→∞

‖an‖ = 0
}

,

`∞({An}) = {{an}∞
n=1 : an ∈ An and {an}∞

n=1is bounded},
q∞({An}) = `∞({An})/c0({An}).

If {Bn}∞
n=1 is a sequence of C∗-algebras and if {φn : An → Bn}∞

n=1 is a sequence
of ∗-homomorphisms, then {φn}∞

n=1 induces ∗-homomorphisms from c0({An})
to c0({Bn}), from `∞({An}) to `∞({Bn}), and from q∞({An}) to q∞({Bn}),
which we denote by c0({φn}), {φn}∞

n=1, and q∞({φn}) respectively.
Let A be a C∗-algebra over Ñ. For each n ∈ Ñ, denote the ∗-homomorphism

from A to A(n) by πn. The quotient map from `∞({A(n)}) to q∞({A(n)}) will be
denoted ρA or just ρ.
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LEMMA 2.5. Let A be a continuous C∗-algebra over Ñ, B be a C∗-algebra and let
ι be an injective ∗-homomorphism from B to A(∞). Construct the pullback diagram

0 // A(N) // E //

��

B

ι

��

// 0

0 // A(N) // A
π∞ // A(∞) // 0.

Then E is a continuous C∗-algebra over Ñ when given the structure

E(U) = E∩ (A(U)⊕ i∞(B)(U))

for U ⊆ Ñ open.

Proof. That E is a C∗-algebra over Ñ follows from Lemma 2.24 of [9] by
observing that π∞ : A→ i∞(A(∞)) and ι : i∞(B)→ i∞(A(∞)) are Ñ-equivariant.

For continuity we check that if U1 ) U2 ) · · · is a strictly decreasing se-

quence of open subsets of Ñ, and we let U denote the interior of
∞⋂

n=1
Un, then

∞⋂
n=1

E(Un) = E(U). Observe that U ⊆ N since the sequence {Un}∞
n=1 is strictly

decreasing, and thus A(U) is a subset of A(N). Since A is continuous we have
that

∞⋂
n=1

E(Un) = E∩
∞⋂

n=1

(A(Un)⊕ i∞(B)(Un)) = E∩
(
A(U)⊕

∞⋂
n=1

i∞(B)(Un)
)

.

Since π∞(A(U)) = 0 and ι is injective it follows that
∞⋂

n=1

E(Un) = E∩ (A(U)⊕ 0) = E∩ (A(U)⊕ i∞(B)(U)) = E(U).

LEMMA 2.6. Let A be a C∗-algebra over Ñ, and consider the commutative diagram
with exact rows

0 // A(N) //

∼=
��

A //

`∞({πn})
��

A(∞) //

τA

��

0

0 // c0({A(n)}) // `∞({A(n)})
ρA

//

ιA
��

q∞({A(n)}) //

ιA
��

0

0 // c0({A(n)}) //M(c0({A(n)})) // Q(c0({A(n)})) // 0,

where πn : A → A(n) are the canonical epimorphisms, ι is the canonical inclusion and
τA and ι are the unique induced ∗-homomorphisms. Let τA denote the Busby map of the
top row. Then τA = ι ◦ τA. Also,

A ∼= A(∞)⊕τA,ρA `∞({A(n)})
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via the ∗-isomorphism a 7→ (π∞(a), {πn(a)}∞
n=1).

Proof. That A ∼= A(∞) ⊕τA,ρA `∞({A(n)}) follows by a diagram chase in
the top part of the diagram. Let σ : A → M(A(N)) ∼= `∞({M(A(n))}) denote
the map induced by the Busby map. Note that if a ∈ A and b ∈ A(n), then
ab = πn(a)b ∈ A(n). Hence if {an}∞

n=1 ∈ c0({A(n)}) we get that

σ(a)({an}∞
n=1) = {πn(a)an}∞

n=1 = (ι ◦ `∞({πn})(a))({an}∞
n=1)

and similarly
{an}∞

n=1σ(a) = {an}∞
n=1(ι ◦ `∞({πn})(a))

and thus σ = ι ◦ `∞({πn}). This implies that τA = ι ◦ τA by a canonical unique-
ness argument.

DEFINITION 2.7. Let A be a C∗-algebra over Ñ. The ∗-homomorphism τA

in Lemma 2.6, will be called the reduced Busby map of A.

To ease the notation throughout the paper, we will remove the subscript A
of all ∗-homomorphisms in Lemma 2.6 whenever we are working with only one
algebra A.

LEMMA 2.8. Let A be a C∗-algebra over Ñ and let τ : A(∞) → q∞({A(n)}) be
the reduced Busby map. Then A is continuous if and only if for any non-zero a ∈ A(∞)
and every lift {an}∞

n=1 ∈ `∞({A(n)}) of τ(a), there is an ε > 0 such that ‖an‖ < ε for
only finitely many n ∈ N.

Proof. Suppose that a ∈ A(∞) \ {0}, {an}∞
n=1 ∈ `∞({A(n)}) lifts τ(a) such

that ‖an‖ < 1/m for infinitely many n ∈ N for every m ∈ N. Then we may pick
an infinite subsequence {ank}∞

k=1 such that lim
k→∞
‖ank‖ = 0. Let F = {n1, n2, . . . }

and define

bn =

{
an if n /∈ F,
0 if n ∈ F.

Then {bn}∞
n=1 is a lift of τ(a). Set Uk = Ñ \ {n1, . . . , nk}. Then

∞⋂
k=1

Uk = Ñ \ F

and since F is infinite, the interior of this set, say U, is a subset of N. Identify
A with the pullback A(∞)⊕τ,ρ `

∞({A(n)}). Then the element (a, {bn}∞
n=1) is in

∞⋂
k=1

A(Uk) and since a 6= 0 this ideal is not contained in A(N). In particular, this

implies that
∞⋂

k=1
A(Uk) 6= A(U) and thus A is not continuous.

For the other implication suppose that A is not continuous and let U1 )
U2 ) · · · be a (strictly decreasing) sequence of open subsets of Ñ such that
∞⋂

k=1
A(Uk) 6= A(U), where U is the interior of

∞⋂
k=1

Uk. Note that
∞⋂

k=1
A(Uk) *

A(N) otherwise
∞⋂

k=1
A(Uk) = A(U). Identifying A with the pullback A(∞)⊕τ,ρ
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`∞({A(n)}), we may pick an element (a, {an}∞
n=1) in

∞⋂
k=1

A(Uk) such that a is

non-zero. Now {an}∞
n=1 is a lift of τ(a) and ‖an‖ = 0 for n ∈ N \

∞⋂
k=1

Uk which is

an infinite set.

COROLLARY 2.9. Let A be a continuous C∗-algebra over Ñ and let τ : A(∞) →
`∞({A(n)}) denote the reduced Busby map. Suppose that p ∈ A(∞) is a non-zero
projection and that {qn}∞

n=1 ∈ `∞({A(n)}) is a projection which lifts τ(a). Then qn =
0 for only finitely many n ∈ N.

Proof. This follows from Lemma 2.8 since qn is a projection for each n ∈ N
and thus has norm 0 or 1.

COROLLARY 2.10. Let A be a C∗-algebra over Ñ such that A(n) is non-zero and
simple for all n ∈ Ñ. Then A is a tight C∗-algebra over Ñ if and only if A is a continuous
C∗-algebra over Ñ.

Proof. Since A is a tight C∗-algebra over Ñ, the map ψ : Prim(A) → Ñ is a
homeomorphism. Hence, ψ is an open map which implies that A is a continuous
C∗-algebra over Ñ.

Suppose A is a continuous C∗-algebra over Ñ. Let I be an ideal of A. Sup-
pose I ⊆ A(N). Since A(n) is simple for all n ∈ N, we have that I = A(U) for
some U ⊆ N. Suppose I is not a subset of A(N). By Lemma 2.8,

F = {n ∈ N : I∩A(n) = 0}

is finite. Set U = Ñ \ F. Then U is an open subset of Ñ and I ⊆ A(U). Let
ι : I→ A(U) be the inclusion map. Then the diagram

0 // A(U \ {∞}) // I //

ι

��

A(∞) // 0

0 // A(U \ {∞}) // A(U) // A(∞) // 0

is commutative and the rows are exact. Thus, ι is surjective which implies that
I = A(U). We have just shown that the lattice map O(Ñ) → I(A) is surjective,
thus it remains to show that it is injective. Let U, V ∈ O(Ñ) such that A(U) =
A(V). If U ⊆ N then as A(U) is tight over U it follows that V = U. If ∞ ∈ U then
F = Ñ \U is a finite subset of N and A ∼= A(F)⊕ A(U) naturally. It follows that
F = Ñ \V and thus U = V.

DEFINITION 2.11. A C∗-algebra A has weak cancellation if any pair of projec-
tions p and q in A that generate the same closed ideal I in A and have the same
image in K0(I) must be Murray–von Neumann equivalent. If Mn(A) has weak
cancellation for every n, then we say that A has stable weak cancellation.
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Note that A has stable weak cancellation if and only if A ⊗ K has weak
cancellation. Ara, Moreno, and Pardo in [2] showed that every graph C∗-algebra
has stable weak cancellation. It is an open question if every real rank zero C∗-
algebra has stable weak cancellation.

PROPOSITION 2.12. Let A be a C∗-algebra over Ñ. If A has real rank zero and
A(n) has stable weak cancellation for all n ∈ Ñ, then A has stable weak cancellation.

Proof. Note that c0({A(n)}) has stable weak cancellation since A(n) has
stable weak cancellation for each n ∈ N. The proposition now follows from
Lemma 3.15 of [15].

LEMMA 2.13. Let A be a C∗-algebra and let I be an ideal of A such that A/I
is a finite dimensional C∗-algebra. If for every projection p ∈ A the corner pIp has
an approximate identity consisting of projections, and every projection in A/I lifts to a
projection in A, then there exists a ∗-homomorphism φ : A/I → A such that π ◦ φ =
idA/I, where π : A→ A/I is the quotient map.

Consequently, if A is a C∗-algebra with an ideal I such that for every projection
p ∈ A the corner pIp has an approximate identity consisting of projections, A/I is an
AF-algebra, and every projection in A/I lifts to a projection in A, then there exists a
sequence of finite dimensional sub-C∗-algebras {Ck}∞

k=1 of A such that Ck ∩ I = 0 for all

k, Ck + I ⊆ Ck+1 + I for all k, and
∞⋃

k=1
(Ck + I) is dense in A.

Proof. The first part of the lemma is proved in the same way as in Lemma 9.8
of [12]. The following are the key ingredients of the proof: (i) the existence of an
approximate identity consisting of projections for pIp for every projection p ∈ A

and (ii) every projection in A/I lifts to a projection in A.
Suppose A is a C∗-algebra with an ideal I such that pIp has an approximate

identity consisting of projections for all projections p ∈ A, A/I is an AF-algebra,
every projection in A/I lifts to a projection in A. Since A/I is an AF-algebra, there
exists an increasing sequence of finite dimensional sub-C∗-algebras {Dk}∞

k=1 of

A/I such that A/I =
∞⋃

k=1
Dk. By the first part of the lemma, we have a sequence

of ∗-homomorphisms, {φk : Dk → A}∞
k=1 such that π ◦ φk = idDk .

Set Ck = φk(Dk). Then Ck is a finite dimensional sub-C∗-algebra of A. Note
that Ck ∩ I = 0 since π ◦ φk = idDk . Since Dk ⊆ Dk+1, we have that Ck + I ⊆

Ck+1 + I. Let x ∈ A and let ε > 0. Since π
( ∞⋃

k=1
Ck

)
=

∞⋃
k=1

Dk, there exists

y1 ∈ Ck (for some k) such that ‖π(x) − π(y1)‖ < ε. Thus, there exists y2 ∈ I

such that ‖x− y1− y2‖ < ε. Since y1 + y2 ∈
∞⋃

k=1
(Ck + I), we have just shown that

∞⋃
k=1

(Ck + I) is dense in A.
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DEFINITION 2.14. An extension 0 → B
ι→ E

π→ A → 0 is said to be quasi-
diagonal if B has an approximate identity consisting of projections {pn}∞

n=1 such
that

lim
n→∞

‖ι(pn)x− xι(pn)‖ = 0

for all x ∈ E.

We end this section by showing that the extension

0→ A(N)→ A→ A(∞)→ 0

is a quasi-diagonal extension under mild assumptions on the fibers. This fact will
be used repeatedly throughout the paper.

PROPOSITION 2.15. Let A be a separable C∗-algebra over Ñ such that each A(n)
has real rank zero and A(∞) is an AF-algebra. Then the extension

0→ A(N)→ A→ A(∞)→ 0

is a quasi-diagonal extension.

Proof. A functional calculus argument implies that every projection in the
quotient algebra q∞({A(n)}) lifts to a projection in `∞({A(n)}). By Lemma 2.6,
we have that A ∼= A(∞) ⊕τ,ρ `

∞({A(n)}). It is now clear that every projection
in A(∞) lifts to a projection in A. By Lemma 2.13, there exists a sequence of
finite dimensional sub-C∗-algebras of A, {Bk}∞

k=1, such that Bk ∩ A(N) = 0 and
∞⋃

k=1
(Bk + A(N)) is dense in A. By the epimorphisms onto the direct summands

πn : A → A(n) for n ∈ N, we get a ∗-homomorphism σ : A → `∞({A(n)}). Let
{pn

m}∞
m=1 be an increasing approximate identity of projections in A(n) for each

n ∈ N. By passing to subsequences we may assume that

‖pn
mx− xpn

m‖ <
1
m

for x ∈ πn

( m⋃
k=1

(Bk)1

)
, n 6 m,

since the closed unit balls (Bk)1 are compact. Define pm :=
m
∑

n=1
pn

m. Clearly

{pm}∞
m=1 is an approximate identity of projections in A(N). We claim that this is

quasi-central in A. Identifying A with the pull-back A(∞) ⊕τ,ρ `
∞({A(n)}), we

see that if x ∈ A(N) and a ∈ A, then xa = xσ(a) and ax = σ(a)x. Let a ∈ A. We
should show that

lim
m→∞

‖pma− apm‖ = 0.

Let ε > 0. For some large N we may choose x ∈
N⋃

k=1
Bk and y ∈ A(N) such that

‖a− x− y‖ < ε/4.
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Since lim
m→∞

‖pmy− ypm‖ = 0, there exists N2 > N such that for all m > N2,

‖pmy− ypm‖ < ε/4. For m > N we have

‖pmx− xpm‖ = ‖pmσ(x)− σ(x)pm‖ = max
n=1,...,m

‖pn
mπn(x)− πn(x)pn

m‖ 6
‖x‖
m

.

Suppose m > max{N2, 4(‖x‖+ 1)/ε}. Then

‖pma−apm‖6‖pm(a−x−y)‖+‖pm(x+y)−(x+y)pm‖+‖(x+y−a)pm‖< ε.

Hence, lim
m→∞

‖pma− apm‖ = 0.

3. UNIQUENESS THEOREM

In this section, we show that two “full” Ñ-equivariant ∗-homomorphisms
from A to B are approximately unitarily equivalent provided that they agree on
ideal-related K-theory with coefficient. Theorem 3.4 will be our key uniqueness
result which allows us to use an approximate intertwining argument. We will
also use Theorem 3.4 to lift isomorphisms between ideal-related K-theory with
coefficient to a “full” Ñ-equivariant ∗-homomorphism (see Theorem 4.7).

DEFINITION 3.1. An element a in a C∗-algebra A is said to be full if the ideal
generated by a is A.

(i) Let A and B be tight C∗-algebras over X. A ∗-homomorphism φ : A →
B is said to be a full X-equivariant ∗-homomorphism if φ is an X-equivariant ∗-
homomorphism and for all Y ∈ LC(X), we have that φY(a) is full in B(Y) when-
ever a is full in A(Y).

(ii) Let A and B be C∗-algebras. A ∗-homomorphism φ : A → B is said to be
full if for every nonzero a ∈ A, we have that φ(a) is full in B.

DEFINITION 3.2. Let A and B be separable C∗-algebras over X. Two X-
equivariant ∗-homomorphisms φ, ψ : A→ B are said to be approximately unitarily
equivalent if there exists a sequence of unitaries {un}∞

n=1 inM(B) such that

lim
n→∞

‖unφ(a)u∗n − ψ(a)‖ = 0

for all a ∈ A.

DEFINITION 3.3. We will be interested in classes of C∗-algebras C satisfy-
ing the following property: if A,B ∈ C and φ, ψ : A → B ⊗ K are full ∗-
homomorphisms with K(φ) = K(ψ), then for each non-zero projection e in A,
there exists a sequence of partial isometries {vn}∞

n=1 in B⊗K such that v∗nvn =
φ(e), vnv∗n = ψ(e), and

lim
n→∞

‖vnφ(x)v∗n − ψ(x)‖ = 0

for all x ∈ eAe.
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The class of simple AF-algebras and the class of separable, nuclear, purely
infinite simple C∗-algebras in the bootstrap category N satisfy the properties of
Definition 3.3. This follows e.g. by Theorem 2.6 of [22].

THEOREM 3.4. For each n ∈ N, let Cn be a class of C∗-algebras satisfying the
properties of Definition 3.3. Let A1 be a separable C∗-algebra over Ñ with real rank zero
such that A1(∞) is an AF-algebra and A1(n) ∈ Cn for each n ∈ N. Let A2 be a separable
C∗-algebra over Ñ such that A2 is a stable C∗-algebra, and A2(n) ∈ Cn for each n ∈ N.

If φ, ψ : A1 → A2 are Ñ-equivariant ∗-homomorphisms such that K(φn) = K(ψn)
for all n ∈ N, φn and ψn are full ∗-homomorphisms, and for each projection e ∈ A1,
we have that φ(e) and ψ(e) are Murray–von Neumann equivalent, then φ and ψ are
approximately unitarily equivalent.

Proof. By Proposition 2.15, we have that 0→ A1(N)→ A1 → A1(∞)→ 0 is
a quasi-diagonal extension. Let {ek}∞

k=1 be an approximate identity consisting of
projections of A1(N) such that

lim
n→∞

‖ekx− xek‖ = 0

for all x ∈ A1.
Since A1(∞) is an AF-algebra and A1 has real rank zero, by Lemma 2.13

there exists a sequence of finite dimensional sub-C∗-algebras {Bk}∞
k=1 such that

Bk ∩A1(N) = {0}, Bk +A1(N) ⊆ Bk+1 +A1(N), and
∞⋃

k=1
(Bk +A1(N)) is dense

in A1. Let ε > 0 and F be a finite subset of A1 so that we should find a unitary
u ∈ M(A2) for which

‖uφ(a)u∗ − ψ(a)‖ < ε

for all a ∈ F . Since Bk + A1(N) ⊆ Bk+1 + A1(N) and
∞⋃

k=1
(Bk + A1(N)) is dense

in A1, we may assume that there exist m ∈ N and a finite subset G of A1(N) such
that every element of F is of the form y1 + y2 where y1 is a generator of Bm and
y2 ∈ G. Since Bm is a finite dimensional C∗-algebra (hence semprojective),

lim
k→∞
‖ekx− xek‖ = 0

for all x ∈ A1, and {ek}k∈N is an approximate identity for A1(N) consisting of
projections, there exist k ∈ N, a finite dimensional sub-C∗-algebra D of A1 with
D∩A1(N) = {0} and D ⊆ (1M(A1)

− ek)A1(1M(A1)
− ek), and there exists a finite

subsetH of ekA1(N)ek such that for all x ∈ F , there exist y1 ∈ D and y2 ∈ H

‖x− (y1 + y2)‖ <
ε

3
.

Set D =
s⊕̀
=1

Mn`
and let { f `ij}

n`
i,j=1 be a system of matrix units for Mn`

. By

assumption, φ( f `11) is Murray–von Neumann equivalent to ψ( f `11). Hence, there
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exists v` ∈ A2 such that v∗`v` = φ( f `11) and v`v∗` = ψ( f `11). Set

u1 =
k

∑
`=1

n`

∑
i=1

ψ( f `i1)v`φ( f `1i).

Therefore, u1 is a partial isometry in A1 such that u∗1u1 = φ(1D), u1u∗1 = ψ(1D),
and u1φ(x)u∗1 = ψ(x) for all x ∈ D.

Since ek is a projection in A1(N), we have that ek =
⊕

n∈U
ek,n for some finite

subset U ⊆ N and ek,n 6= 0. Choose finite subsets Hn of ek,nA1(n)ek,n such that
H ⊆ ⊕

n∈U
Hn. Since φ and ψ are Ñ-equivariant ∗-homomorphisms,

φU =
⊕
n∈U

φn and ψU =
⊕
n∈U

ψn.

By assumption, we have that φn, ψn : A1(n)→ A2(n) are full ∗-homomorphisms.
Let βn be the inclusion of ek,nA1(n)ek,n into A1(n). Note that K(φn ◦ βn) = K(ψn ◦
βn) since K(φn) = K(ψn). Since A1(n) and A2(n) are elements of Cn, there exists
a partial isometry vn ∈ A2(n) such that v∗nvn = φn(ek,n), vnv∗n = ψn(ek,n), and

‖vn(φn ◦ βn)(x)v∗n − (ψn ◦ βn)(x)‖ < ε

3
for all x ∈ Hn. Set u2 =

⊕
n∈U

vn. Since U is finite, u2 is a partial isometry in A2(N).

Moreover, u∗2u2 = φ(ek), u2u∗2 = ψ(ek), and

‖u2φ(x)u∗2 − ψ(x)‖ < ε

3
for all x ∈ H. Since A2 is separable and stable, there exists u3 ∈ M(A2) such that
u∗3u3 = 1M(A2)

− (u1 + u2)
∗(u1 + u2) and u3u∗3 = 1M(A2)

− (u1 + u2)(u1 + u2)
∗.

Set u = u1 + u2 + u3 ∈ M(A2). Then u is a unitary inM(A2).
Let x ∈ F . Choose y1 ∈ D and y2 ∈ H such that ‖x − (y1 + y2)‖ < ε/3.

Then

‖uφ(x)u∗ − ψ(x)‖
6 ‖uφ(x)u∗ − uφ(y1 + y2)u∗‖+ ‖u1φ(y1)u1 + u2φ(y2)u∗2 − ψ(y1)− ψ(y2)‖

+ ‖ψ(y1 + y2)− ψ(x)‖ < ε.

It now follows that φ and ψ are approximately unitarily equivalent since A1 is
separable.

4. EXISTENCE THEOREM

4.1. ASYMPTOTIC MORPHISMS. In this section, we define equivariant E-theory
as in [9]. From now on, let T = [0, ∞), Cb(T,A) be the C∗-algebra of all bounded
continuous functions from T to A, and C0(T,A) be the C∗-algebra of all continu-
ous functions from T to A which vanish at ∞.
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DEFINITION 4.1. Let A and B be C∗-algebras. An asymptotic morphism from
A to B is a map

φ = (φt)t∈T : A→ Cb(T,B)

such that the composition

A
φ→ Cb(T,B)� B∞ := Cb(T,B)/C0(T,B)

is a ∗-homomorphism. Suppose A and B are C∗-algebras over X.
(i) An asymptotic morphism from A to B, (φt)t∈T , is said to be approximately

X-equivariant if for each open set U of X,

lim
t→∞
‖φt(a)‖X\U = 0 for all a ∈ A(U),

where ‖b‖X\U is the norm of b in the quotient B(X)/B(U).
(ii) Two asymptotic morphisms φ0 and φ1 from A to B that are approximately

X-equivariant are said to be homotopic if there exists an asymptotic morphism Φ
from A to C([0, 1],B) that is approximately X-equivariant,

ev0 ◦Φ = φ0, and ev1 ◦Φ = φ1.

The set of homotopy classes of approximately X-equivariant asymptotic mor-
phisms from A to B will be denoted by [[A,B]]X .

DEFINITION 4.2. Let X be a second countable sober space and let A and B

be C∗-algebras over X. Define

E0(X;A,B) = [[ΣA⊗K, ΣB⊗K]]X and E1(X;A,B) = E0(X;A, ΣB),

where ΣA = C0(R) ⊗ A. Equipped with the Cuntz sum these sets are abelian
groups.

Let X be a totally disconnected, metrizable, compact space. Suppose γ ∈
E0(X;A,B). Then γ induces a C(X, Λ)-homomorphism K(γ) : K(A) → K(B)
and a C(X,Z)-homomorphism K∗(γ) : K∗(A)→ K∗(B).

4.2. ISOMORPHISMS OF IDEAL-RELATED K-THEORY WITH COEFFICIENTS. In this
section, we show that invertible elements in ideal-related E-theory can be realized
by Ñ-equivariant ∗-homomorphism (Theorem 4.7). The first lemma shows that
two elements in E(Ñ,A,B) induce the same C(Ñ,Z)-homomorphism provided
that the induced elements in E(A(n),B(n)) are equal for all n ∈ Ñ.

LEMMA 4.3. Let A and B be separable, nuclear C∗-algebras over Ñ and α, β ∈
E(Ñ,A,B). Suppose that αn = βn in E(A(n),B(n)) for all n ∈ Ñ. Then the C(Ñ,Z)-
homomorphisms K∗(α) and K∗(β) are equal.
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Proof. Note that the diagram

E(Ñ; ιN(A(N)), ΣιN(B(N))) //

��

E(Ñ; ιN(A(N)), ΣB) //

��

E(Ñ; ιN(A(N)), Σι∞(B(∞)))

��
E(Ñ; ι∞(A(∞)), ιN(B(N))) //

��

E(Ñ; ι∞(A(∞)),B) //

��

E(Ñ; ι∞(A(∞)), ι∞(B(∞)))

��
E(Ñ;A, ιN(B(N))) //

��

E(Ñ;A,B) //

��

E(Ñ;A, ι∞(B(∞)))

��
E(Ñ; ιN(A(N)), ιN(B(N))) // E(Ñ; ιN(A(N)),B) // E(Ñ; ιN(A(N)), ι∞(B(∞)))

is commutative, and the rows and columns are exact sequences.
Since αn = βn for all n ∈ N, we have that α − β is in the image of the

homomorphism from E(Ñ, ι∞(A(∞)),B) to E(Ñ,A,B). Let y be an element in
E(Ñ, ι∞(A(∞)),B) which is mapped to α− β.

Since ιN(A(N)) is a continuous C∗-algebra over Ñ, by Theorem 5.4 of [9], we
have that KK(Ñ, ιN(A(N)),C) ∼= E(Ñ, ιN(A(N)),C) for any separable C∗-algebra
C over Ñ. Let D be a C∗-algebra. Then, by Proposition 3.12 of [23],

KK(Ñ, ιN(A(N)), ι∞(D)) ∼= KK(N,A(N), rNÑ(ι∞(D))) = KK(N,A(N), 0) = 0.

Hence, E(Ñ, ιN(A(N)), ι∞(B(∞))) = E(Ñ, ιN(A(N)), Σι∞(B(∞))) = 0. This im-
plies that the homomorphism E(Ñ, ι∞(A(∞)), ι∞(B(∞))) → E(Ñ,A, ι∞(B(∞)))
in the above diagram is an isomorphism. Since α∞ = β∞, y is in the image of the
homomorphism from E(Ñ, ι∞(A(∞)), ιN(B(N))) to E(Ñ, ι∞(A(∞)),B).

Let z be a lifting of y. Note that HomC(Ñ,Z)(K∗(ι∞(A(∞))), K∗(ιN(B(N)))) =
0. Hence, K∗(z) is zero which implies that the homomorphism on K-theory in-
duced by y is zero. Therefore, K∗(α)− K∗(β) = 0.

LEMMA 4.4. Let A be a finite dimensional C∗-algebra and let {Bn}∞
n=1 be a se-

quence of separable, stable C∗-algebras such that each Bn has weak cancellation. Suppose
that φ, ψ : A→ q∞({Bn}) are ∗-homomorphisms such that:

(i) K0(φ) = K0(ψ);
(ii) for each nonzero projection p ∈ A, there exist a projection q = {qn}∞

n=1 ∈
`∞({Bn}) and an N ∈ N such that qn is full in Bn for all n > N and ρ(q) = φ(p);
and

(iii) for each nonzero projection p ∈ A, there exist a projection q = {qn}∞
n=1 ∈

`∞({Bn}) and an N ∈ N such that qn is full in Bn for all n > N and ρ(q) = ψ(p).
Then there exist ∗-homomorphisms φ̃n, ψ̃n : A→ Bn such that `∞({φ̃n}) and `∞({ψ̃n})
are liftings of φ and ψ respectively and there exists a unitary {un}∞

n=1 in `∞({M(Bn)})
such that unφ̃n(a)u∗n = ψ̃n(a) for all a ∈ A.
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Proof. By (ii) we may assume that Bn has a full projection for each n. Hence
`∞({Bn}) has an approximate identity of projection, since each Bn is separable.

Thus since each Bn is stable, we have that K0(q∞({Bn}))∼=
∞
∏

n=1
K0(Bn)/

∞⊕
n=1

K0(Bn)

where the isomorphism is induced by the coordinate projections. Using this iden-
tification, the fact that A is finite dimensional, and assumptions (i), (ii), (iii), there
exist ∗-homomorphisms φ̃, ψ̃ : A → `∞({Bn}) and there exists N ∈ N such that
ρ ◦ φ̃ = φ, ρ ◦ ψ̃ = ψ, K0(φ̃) = K0(ψ̃), and for all n > N and for every nonzero
projection p ∈ A, we have that the nth coordinate of φ̃(p) and ψ̃(p) are full pro-
jections in Bn.

Note that φ̃ = `∞({φ̃n}) and ψ̃ = `∞({ψ̃n}), where φ̃n, ψ̃n : A → Bn are
∗-homomorphisms. By construction, for each nonzero projection p ∈ A, we have
that φ̃n(p) and ψ̃n(p) are full projections in Bn for all n > N and K0(φ̃n) =
K0(φ̃n).

Let A =
m⊕

k=1
Mn(k). Let {ek

ij} be a system of matrix units for Mn(k). Let n > N.

Since φ̃n(ek
11) and ψ̃n(ek

11) are full projections in Bn, [φ̃n(ek
11)] = [ψ̃n(ek

11)], and Bn
is a stable C∗-algebra with weak cancellation, we have that there exists vn,k ∈ Bn

such that v∗n,kvn,k = φ̃n(ek
11) and vn,kv∗n,k = ψ̃n(ek

11).
Set

vn =
m

∑
k=1

n(k)

∑
i=1

ψ̃n(ek
i1)vn,kφ̃n(ek

1i).

Then vn is a partial isometry in Bn such that v∗nvn = φ̃n(1A), vnv∗n = ψ̃n(1A), and

vnφ̃n(x)v∗n = ψ̃n(x)

for all x ∈ A. Since Bn is a separable, stable C∗-algebra, there exists a par-
tial isometry wn ∈ M(Bn) such that w∗nwn = 1M(Bn) − φ̃n(1A) and wnw∗n =

1M(Bn) − ψ̃n(1A). Then un = vn + wn is a unitary inM(Bn) such that

Ad(un) ◦ φ̃n = ψ̃n.

Set un = 1M(Bn) and redefining φ̃n = ψ̃n = 0 for 1 6 n < N, we get the desired
result.

LEMMA 4.5. Let A be a tight C∗-algebra over Ñ. For each open subset U ⊆ Ñ, we
have that a ∈ A(U) is full if and only if πn(a) 6= 0 for all n ∈ U.

Proof. By Lemma 2.6 we may assume that A = A(∞) ⊕τ,ρ `∞({A(n)}),
where τ is the reduced Busby map. Let U be an open subset of Ñ. If ∞ /∈ U,
then

A(U) = {(0, {xn}∞
n=1) ∈ A : xn = 0 if n /∈ U}.
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If ∞ ∈ U, then

A(U) = {(x∞, {xn}∞
n=1) ∈ A : x∞ ∈ A(∞) and xn = 0 if n /∈ U}.

It is now clear that (x∞, {xn}∞
n=1) ∈ A(U) is full if and only if for all n ∈ U,

xn 6= 0.

LEMMA 4.6. Let A be a continuous C∗-algebra over Ñ and let B be a tight C∗-
algebra over Ñ. Suppose for each n ∈ N, there exist an injective ∗-homomorphism φn :
A(n) → B(n), a unitary un ∈ M(B(n)), and an injective ∗-homomorphism φ∞ :
A(∞)→ B(∞) such that

q∞({Ad(un) ◦ φn}) ◦ τA = τB ◦ φ∞

and τA and τB are the reduced Busby maps of A and B respectively. Then there ex-
ists an Ñ-equivariant ∗-homomorphism ψ : A → B such that E(φn) = E(ψn) in
E(A(n),B(n)) for all n ∈ Ñ and if a ∈ A with F = {n ∈ Ñ : πn(a) = 0}, then ψ(a)
is full in B(Ñ \ F).

Proof. By Lemma 2.6, we may assume that A = A(∞) ⊕τA,ρA `∞({A(n)})
and we may assume that B = B(∞)⊕τB,ρB `∞({B(n)}). Set φ̃N = `∞({Ad(un) ◦
φn}). Since

q∞({Ad(un) ◦ φn}) ◦ τA = τB ◦ φ∞

is precisely the pull-back relation, ψ : A → B by ψ((a, x)) = (φ∞(a), φ̃N(x)) is
a well-defined ∗-homomorphism. A computation shows that ψ is Ñ-equivariant
since un is a unitary.

Let (a, x) ∈ A and let F = {n ∈ Ñ : πn(a, x) = 0}. Then U = Ñ \ F is open
by Lemma 2.8 and (a, x) ∈ A(U). Since ψ is Ñ-equivariant, ψ(a, x) ∈ B(U). Since
u is a unitary in `∞({M(B(n))}) and φn is injective for each n ∈ Ñ, we have that

F = {n ∈ Ñ : πn(ψ(a, x)) = 0}.

Therefore, by Lemma 4.5, ψ(a, x) is full in B(U) since B is a tight C∗-algebra
over Ñ.

By the construction of ψ, we have that E(φn) = E(ψn) in E(A(n),B(n)) for
all n ∈ Ñ.

We will use the following observation several times for the rest of the paper,
without further mentioning: if A is a C∗-algebra over Ñ for which A(n) has real
rank zero for each n ∈ Ñ, then A has real rank zero. This follows since A(N) and
A(∞) have real rank zero and the map K0(A)→ K0(A(∞)) is surjective.

Recall that a Kirchberg algebra is a separable, nuclear, purely infinite simple
C∗-algebra. Let N be the bootstrap category defined in [27].

THEOREM 4.7. Let A and B be tight, stable C∗-algebras over Ñ. Suppose for
each n ∈ N, that A(n) is an AF-algebra or a Kirchberg algebra in N and that B(n)
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is an AF-algebra or a Kirchberg algebra in N , and suppose that A(∞) and B(∞) are
AF-algebras.

If γ ∈ E(Ñ,A,B) is invertible such that K0(γn) is an order isomorphism for all
n ∈ Ñ, then there exists a full Ñ-equivariant ∗-homomorphism φ : A → B such that
K(φn) = K(γn) for all n ∈ Ñ and such that the C(Ñ,Z)-homomorphisms K∗(φ) and
K∗(γ) are equal.

Proof. Every AF-algebra and every Kirchberg algebra have stable weak can-
cellation, so by Proposition 2.12, A and B have weak cancellation. Since K0(C)+ =
K0(C) for any Kirchberg algebra C and K0(D)+ 6= K0(D) for any non-zero AF-
algebra D, we get for each n ∈ Ñ that either A(n) and B(n) are both AF-algebras
or both Kirchberg algebras. Therefore by the classification of AF-algebras [17] and
the Kirchberg–Phillips classification ([21] and [26]), there exists a ∗-isomorphism
φn : A(n) → B(n) such that E(φn) = γn in E(A(n),B(n)). Define φU =

⊕
n∈U

φn

for all U ⊆ N. Then φU is a ∗-isomorphism from A(U) to B(U) and E(φU) = γU
in E(A(U),B(U)).

Set φ̃N = `∞({φn}) and set φN = q∞({φn}). Then φ̃N : `∞({A(n)}) →
`∞({B(n)}) and φN : q∞({A(n)}) → q∞({B(n)}) are ∗-isomorphisms. Since
A(∞) is an AF-algebra, there exists a sequence of finite dimensional sub-C∗-

algebras of A(∞), {Fn}∞
n=1, such that Fn ⊆ Fn+1 and

∞⋃
n=1

Fn is dense in A(∞).

Let Dk be the pullback of the diagram

ι∞(Fk)

��
A // ι∞(A(∞)).

Then, for each k ∈ N, we have that Dk is a C∗-algebra over Ñ by Lemma 2.24 of
[9], and there exist Ñ-equivariant ∗-homomorphisms ιk : Dk → A and λk,k+1 :
Dk → Dk+1 such that A = lim−→(Dk, λk,k+1) and the diagram

0 // A(N) // Dk //

ιk

��

Fk //

(ιk)∞
��

0

0 // A(N) // A // A(∞) // 0

is commutative with exact rows. Note that Dk = Fk ⊕τA◦(ιk)∞ ,ρA `∞({A(n)}).
Since the extension 0 → A(N) → A → A(∞) → 0 is a quasi-diagonal extension
by Proposition 2.15, we have that 0→ A(N)→ Dk → Fk → 0 is a quasi-diagonal
extension.

Since A is a tight C∗-algebra over Ñ, we have that A is a continuous C∗-
algebra over Ñ. Hence, by Lemma 2.5, Dk is a continuous C∗-algebra over Ñ.
Therefore, by Lemma 2.9 and since B is continuous, φN ◦ τA ◦ (ιk)∞ and τB ◦
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φ∞ ◦ (ιk)∞ satisfy properties (ii) and (iii) of Lemma 4.4. Since each A(n) is separa-
ble, stable and has real rank zero, the coordinate projections induce isomorphisms

K0(`
∞({A(n)}))∼=

∞
∏

n=1
K0(A(n)) and K0(q∞({A(n)}))∼=

∞
∏

n=1
K0(A(n))/

∞⊕
n=1

K0(A(n)).

Hence by Lemma 2.6, K0(τA), and similarly K0(τB), is exactly the map induced
by the coordinate projections. Thus, since K∗(γ) is a C(Ñ,Z)-module homomor-
phism, we have that K0(φN ◦ τA) = K0(τB ◦ φ∞). Therefore,

K0(φN ◦ τA ◦ (ιk)∞) = K0(τB ◦ φ∞ ◦ (ιk)∞).

By Lemma 4.4 and Lemma 4.6, there exists an Ñ-equivariant ∗-homomorphism
ψk : Dk → B such that E((ψk)n) = E(φn) = γn ◦ E((ιk)n) for all n ∈ N and

E((ψk)∞) = E(φ∞ ◦ (ιk)∞) = γ∞ ◦ E((ιk)∞).

Moreover, by Lemma 4.6, ψk has the property that for each p ∈ Dk with U = Ñ \ F
where F = {n ∈ Ñ : πn(p) = 0}, we have that ψk(p) is full in B(U). By
Lemma 4.3, the C(Ñ,Z)-homomorphisms K∗(ψk) and K∗(γ) ◦ K∗(ιk) are equal.
Therefore, for each projection p in Dk, we have that ψk(p) and ψk+1(λk,k+1(p))
generate the same ideal B(U) for some U ∈ Ñ and [ψk(p)] = [ψk+1(λk,k+1(p))]
in K0(B(U)). Thus, for each projection p ∈ Dk, ψk(p) and ψk+1(λk,k+1(p)) are
Murray–von Neumann equivalent since B has stable weak cancellation by Propo-
sition 2.12. Note also that E((ψk)N) = γN ◦ E((ιk)N) = E((ψk+1 ◦ λk,k+1)N).

LetHk be finite subsets of Dk such that λk,k+1(Hk) ⊆ Hk+1 and
∞⋃

k=1
ιk(Hk) is

dense in A. By Theorem 3.4, there exists a unitary wk ∈ M(B) with w1 = 1M(B)

such that

‖wk+1(ψk+1 ◦ λk,k+1)(x)w∗k+1 − wkψk(x)wk‖ <
1
2k

for all x ∈ Hk. Hence, there exists a ∗-homomorphism ψ : A→ B such that

‖ψ ◦ ιk(x)− wkψk(x)w∗k‖ <
∞

∑
m=k

1
2m

for all x ∈ Hk. Since ψk and λk,k+1 are Ñ-equivariant ∗-homomorphisms, we have
that ψ is an Ñ-equivariant ∗-homomorphism by Lemma 2.4. By construction, ψ

is a full Ñ-equivariant ∗-homomorphism since for each x in Dk with ιk(x) full in
A(U), we have that ψk(x) is full in B(U). Also, the C(Ñ,Z)-homomorphisms,
K∗(ψ) and K∗(γ) are equal and K(ψn) = K(γn) for all n ∈ Ñ, by Lemma 4.3.
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5. CLASSIFICATION USING IDEAL-RELATED K-THEORY WITH COEFFICIENT

In this section, we prove a classification result for tight C∗-algebras over
Ñ whose fibers are AF-algebras or Kirchberg algebras in N using ideal-related
K-theory with coefficient.

LEMMA 5.1. Let A and B be C∗-algebras over Ñ and let α and β be C(Ñ, Λ)-
homomorphisms. Suppose that K0(A(∞)) is torsion-free, K1(A(∞)) is zero, and that
the extension

0→ A(N)→ A→ A(∞)→ 0

is quasi-diagonal. If αn = βn for all n ∈ Ñ and the C(Ñ,Z)-homomorphisms, K∗(α)
and K∗(β), are equal, then α = β.

Proof. Since αn = βn for all n ∈ Ñ, for all U ⊆ N, we have that αU = βU .
Let F be a finite subset of N and let U = Ñ \ F. Set V = U \ {∞}. Note that the
extension

0→ A(V)→ A(U)→ A(∞)→ 0

induces the following commutative diagram

Ki(A(V))
×n //

��

Ki(A(V)) //

��

Ki(A(V);Zn) //

��

K1−i(A(V))

��

×n // K1−i(A(V))

��
Ki(A(U))

×n //

��

Ki(A(U)) //

��

Ki(A(U);Zn) //

��

K1−i(A(U))

��

×n // K1−i(A(U))

��
Ki(A(∞))

×n // Ki(A(∞)) // Ki(A(∞);Zn) // K1−i(A(∞))
×n // K1−i(A(∞))

for i = 1, 0 where the rows and columns are exact sequences.
Since K0(A(∞)) is torsion-free and K1(A(∞)) is zero, K1(A(∞);Zn) = 0.

Therefore, the homomorphism from K1(A(V);Zn) to K1(A(U);Zn) is surjective.
Since αV,1 = βV,1, we have that αU,1 = βU,1.

Since the extension

0→ A(V)→ A(U)→ A(∞)→ 0

is quasi-diagonal, we have that the homomorphism from K0(A(U)) to K0(A(∞))
is surjective. Exactness of the bottom row and the fact that K1(A(∞)) = 0 implies
that the homomorphism from K0(A(∞)) to K0(A(∞);Zn) is surjective. A diagram
chase now shows that for all x ∈ K0(A(U);Zn) there exist y1 ∈ K0(A(U)) and
y2 ∈ K0(A(V);Zn) such that x = z1 + z2, where z1 is the image of y1 under
the homomorphism from K0(A(U)) to K0(A(U);Zn) and z2 is the image of y2
under the homomorphism from K0(A(V);Zn) to K0(A(U);Zn). Since αV,0(y2) =
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βV,0(y2) and K0(αU)(y1) = K0(βU)(y2), we have that

αU,0(x) = αU,0(z1 + z2) = βU,0(z1 + z2) = βU,0(x).

Hence, αU = βU .

We are now ready to prove our first main classification result. In the case
that all the fibers are Kirchberg algebras, by Example 6.14 of [9], ideal-related K-
theory without coefficient is not a complete invariant for classification. The result
below shows that ideal-related K-theory with coefficients is a complete invariant.

THEOREM 5.2. Let A and B be tight C∗-algebras over Ñ. Suppose for each n ∈ Ñ,
that A(n) is an AF-algebra or a Kirchberg algebra inN and that B(n) is an AF-algebra
or a Kirchberg algebra in N .

Suppose that there exists a C(Ñ, Λ)-isomorphism γ : K(A) → K(B) such that
K0(γn) is an order isomorphism for each n ∈ Ñ.

(i) Suppose A and B are stable C∗-algebras. Then there exists an Ñ-equivariant ∗-
isomorphism φ : A→ B such that the C(Ñ, Λ)-isomorphisms K(φ) and γ are equal.

(ii) Suppose A and B are unital C∗-algebras and K0(γ)([1A]) = [1B]. Then there
exists an Ñ-equivariant ∗-isomorphism φ : A→ B such that the C(Ñ, Λ)-isomorphisms
K(φ) and γ are equal.

Proof. We first prove (i) in the case that A(∞) is an AF-algebra. Note that
B(∞) is an AF-algebra since K0(C)+ = K0(C) for any Kirchberg algebra C and
K0(D)+ 6= K0(D) for any non-zero AF-algebra D.

By Theorem 6.11 of [9], there exists an invertible element γ̃ in E(Ñ,A,B)

lifting γ. By Theorem 4.7, there exist full Ñ-equivariant ∗-homomorphisms λ

from A to B and β from B to A such that K(λn) = γn, K(βn) = (γ−1)n for each
n ∈ Ñ, the C(Ñ,Z)-isomorphisms K∗(λ) and K∗(γ) are equal, and the C(Ñ,Z)-
isomorphisms K∗(β) and K∗(γ−1) are equal.

By Proposition 2.12, A and B have stable weak cancellation. Since β ◦ λ

and idA are full Ñ-equivariant ∗-homomorphisms, we have that for each a full
in A(U), the element (β ◦ λ)(a) is full in A(U). Let p be a projection in A. Then
(β ◦ λ)(p) and p generate the same ideal A(U) for some U ∈ O(Ñ). By con-
struction, K0((β ◦ λ)U) = K0(idA(U)), which implies that [(β ◦ λ)(p)] = [p]
in K0(A(U)). Since A has stable weak cancellation, we have that (β ◦ λ)(p) is
Murray–von Neumann equivalent to p. Similarly, for each projection q in B, we
have that (λ ◦ β)(q) is Murray–von Neumann equivalent to q.

Using Theorem 3.4 and an approximate intertwining argument, we get a
∗-isomorphism φ : A → B. By Lemma 2.4, we have that φ is an Ñ-equivariant
∗-isomorphism. By construction, the C(Ñ,Z)-isomorphisms K∗(φ) and K∗(γ) are
equal and K(φn) = K(γn) for all n ∈ Ñ. By Lemma 5.1, the C(Ñ, Λ)-isomorphisms
K(φ) and γ are equal. Thus, we have proved (i) for the case that A(∞) is an AF-
algebra.
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We now prove (i) for the case that A(∞) is a Kirchberg algebra. Note that
there exists a full embedding ι from O2 to A(∞) since A(∞) is a Kirchberg al-
gebra. Let τA be the reduce Busby map from A(∞) to q∞({A(n)}). Since O2 is
semiprojective, there exists N ∈ N, such that τA ◦ ι lifts to a homomorphism from

O2 to
∞
∏

n=N
A(n). Since the only ∗-homomorphism from a Kirchberg algebra to an

AF-algebra is the zero homomorphism, by Lemma 2.6, we have that

F = {n ∈ Ñ : A(n) is an AF-algebra}

is finite and a subset of N.
Arguing as above we have that B(∞) is a Kirchberg algebra. Hence,

G = {n ∈ Ñ : B(n) is an AF-algebra}

is finite and subset of N. Since K∗(A(n)) ∼= K∗(B(n)) as ordered groups, we have
that G = F.

We have just shown that A ∼= A(Ñ \ F)⊕A(F) and B ∼= B(Ñ \ F)⊕B(F).
Note that A(Ñ \ F) and B(Ñ \ F) are tight C∗-algebras over Ñ \ F whose fibers
are Kirchberg algebras in N . The result now follows from Theorem 6.11 and 5.4
of [9], Kirchberg’s classification of strongly purely infinite C∗-algebras [21], and
Elliott’s classification of AF-algebras [17]. Thus we have proved (i) for the case
that A(∞) is a Kirchberg algebra.

Since A and B have stable weak cancellation, (ii) now follows from (i) and
Theorem 3.2 of [16].

6. A UNIVERSAL COEFFICIENT THEOREM

In this section we prove a universal coefficient theorem for C∗-algebras over
Ñ which allows us to improve our classification result. This will be done using ho-
mological algebra in triangulated categories, as done by Ralf Meyer and Ryszard
Nest in [24].

6.1. ON C(Ñ,Z)-MODULES. In order to apply the results in [24] we need a good
description of the projective modules and some results on when modules have
projective dimension 1. Our first results will be done for the more general rings
C(X, R) (the ring of locally constant functions from X to R) for any totally discon-
nected, metrizable, compact space X and discrete ring R.

LEMMA 6.1. Let R be a discrete ring and X be a totally disconnected, metrizable,
compact space. If P is a projective (left or right) R-module and U is a clopen subset of X,
then C(U, P) is a projective (left or right) C(X, R)-module.
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Proof. Since P is R-projective there is an R-module Q and an index set I such
that P⊕Q is isomorphic to

⊕
I

R. It is easily verified that

C(U, P)⊕ C(U, Q)⊕ C
(

X \U,
⊕

I
R
)
∼=
⊕

I
C(X, R)

as C(X, R)-modules. Since
⊕
I

C(X, R) is a free C(X, R)-module, it follows that

C(U, P) is projective.

LEMMA 6.2. Let R be a discrete ring and X be a totally disconnected, metrizable,
compact space. Then any finitely generated right (respectively left) ideal J in C(X, R)

is of the form
n⊕

j=1
C(Uj, Ij) where U1, . . . , Un is a clopen partition in X and each Ij is a

finitely generated right (respectively left) ideal of R.

Proof. We only prove the right ideal case, since the proof of the left ideal
case is exactly the same. Let f1, . . . , fm ∈ C(X, R) be generators of J. We may find
a clopen partition U1, . . . , Un such that each fk is constant on Uj for each j. Hence
it makes sense to say that fk(Uj) are elements of R. Define Ij = f1(Uj)R + · · ·+
fm(Uj)R for each j, which are finitely generated right ideals in R. We get that

J = f1C(X, R) + · · ·+ fmC(X, R) = f1

( n⊕
j=1

C(Uj, R)
)
+ · · ·+ fm

( n⊕
j=1

C(Uj, R)
)

=
n⊕

j=1

C(Uj, f1(Uj)R) + · · ·+
n⊕

j=1

C(Uj, fm(Uj)R) =
n⊕

j=1

C(Uj, Ij).

Recall, that a ring R is called left (respectively right) semihereditary if every
finitely generated left (respectively right) ideal is a projective left (respectively
right) R-module.

PROPOSITION 6.3. Let R be a discrete (left or right) semihereditary ring, and X be
a totally disconnected, metrizable, compact space. Any projective (left or right) C(X, R)-
module is isomorphic to a direct sum of modules of the form C(U, I) where U is a clopen
subset of X and I is a finitely generated ideal in R.

Proof. By Lemmas 6.1 and 6.2, C(X, R) is (left or right) semihereditary. By
[1], any projective C(X, R)-module is a direct sum of finitely generated ideals in
C(X, R). The result now follows from Lemma 6.2.

COROLLARY 6.4. Any countably generated projective C(X,Z)-module is isomor-
phic to a countable direct sum of modules of the form C(U,Z) where U is a clopen subset
of X.

Proof. The ring of integers is semihereditary. The countability criterion fol-
lows since an uncountable direct sum of non-zero modules can not be countably
generated.
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LEMMA 6.5. Let {Mn, φn,n+1} be a directed system of projective (left or right)
modules over a ring R. Then lim−→(Mn, φn,n+1) has projective dimension at most 1.

Proof. Define ψ :
∞⊕

n=1
Mn →

∞⊕
n=1

Mn by

ψ({xn}) = (0, φ1,2(x1), φ2,3(x2), . . . ).

A computation shows that id−ψ is injective. Therefore,

0→
∞⊕

n=1

Mn →
∞⊕

n=1

Mn → coker(id−ψ)→ 0

is a projective resolution of length 1 for coker(id−ψ). Since coker(id−ψ) ∼=
lim−→(Mn, φn,n+1), the lemma follows.

We now restrict our attention to the ring C(Ñ,Z). Given a C(Ñ,Z)-module
M, let Mn (for n ∈ N) be the direct summand generated by cutting down the
module with the characteristic function on {n} ⊆ Ñ. Then

⊕
n∈N

Mn is a submodule

of M and we denote the quotient by M∞.
In particular, suppose A is a C∗-algebra over Ñ. Then (Ki(A))n ∼= Ki(A(n))

naturally for n ∈ N. Moreover, since
⊕

n∈N
Ki(A(n)) ∼= Ki(A(N)) naturally, and the

homomorphism Ki(A(N)) → Ki(A) is induced by the coordinate inclusions, and
is thus injective, it follows that Ki(A)∞ ∼= Ki(A(∞)) naturally.

PROPOSITION 6.6. Let M be a countably generated C(Ñ,Z)-module. If M∞ is
torsion-free as an abelian group then M has projective dimension less than 1.

Proof. For any n ∈ N, the module Mn has projective dimension less than
1. To see this, let 0 → P1 → P0 → Mn → 0 be a length 1 projective resolution
of the abelian groups for Mn. Then the induced sequence 0 → C({n}, P1) →
C({n}, P0) → Mn → 0 is a C(Ñ,Z)-projective resolution of length 1. Hence the
module

⊕
n∈N

Mn has projective dimension less than 1.

Since M is countably generated, so is the abelian group M∞. Hence M∞
can be written as an inductive limit of a system of finitely generated free abelian
groups, say

ZN1
f1−→ ZN2

f2−→ ZN3 → · · · .

For each natural number denote by [n, ∞] the clopen set {n, n + 1, . . . , ∞} ⊆ Ñ.
Let in : C([n, ∞],Z) → C([n + 1, ∞],Z) be the canonical projection. Consider the
inductive system of C(Ñ,Z)-modules

ZN1 ⊗Z C([1, ∞],Z)
f1⊗i1−−−→ ZN2 ⊗Z C([2, ∞],Z)

f2⊗i2−−−→ ZN3 ⊗Z C([3, ∞],Z)→ · · · .

The direct limit of the system is easily seen to be M∞. Since ZNn ⊗Z C([n, ∞],Z)
is isomorphic to a direct sum of modules C([n, ∞],Z) which are projective by
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Lemma 6.1, M∞ is an inductive limit of projective modules, and by Lemma 6.5,
has projective resolution of length less than 1.

Now M is an extension of M∞ by
⊕

n∈N
Mn, where M∞ has projective dimen-

sion less than 1. Since
⊕

n∈N
Mn has projective dimension less than 1 it follows eas-

ily from the horseshoe lemma (see e.g. Lemma 2.2.8 of [28]), that M has projective
dimension less than 1.

6.2. THE UCT. Let E(X) denote the E(X)-theory category with objects being
separable C∗-algebras over X and morphisms from A to B being the elements
of E0(X;A,B). It is proven in [9] that E(X) is a triangulated category with exact
triangles isomorphic to diagrams arising from extensions of C∗-algebras over X.

DEFINITION 6.7. We define the (classical) E-theoretic bootstrap class BE to be
the ℵ0-localising subcategory of E generated by C.

We define the E(X)-theoretic bootstrap class BE(X) to be the full subcategory
of E(X) of objects A such that A(U) is an object of BE for any open subset U of X.

The above definition is made in [9] for any second countable, sober space
X, but we will only be considering the case where X is a totally disconnected,
metrizable, compact space. We will prove the following.

THEOREM 6.8. Let X be a totally disconnected, metrizable, compact space, and let
A be an object of BE(X). If K∗(A) has C(X,Z)-projective dimension 1, then for any
separable C∗-algebra B over X there is a short exact sequence

0→ ExtC(X,Z)(K∗(A), K∗+1(B))→ E(X;A,B)→ HomC(X,Z)(K∗(A), K∗(B))→ 0

which is natural in both variables.

The main part of the proof of the above theorem is contained in Proposi-
tion 6.9 below. We refer the reader to [24] for the relevant definition.

We will consider the K-theory as a covariant functor

K∗ : E(X)→ModZ2,c
C(X,Z).

Here ModZ2,c
C(X,Z) denotes the category of countably generated Z2-graded C(X,Z)-

modules with evenly graded morphisms. This category is stable with suspension
automorphism functor Σ which interchanges the Z2-grading.

PROPOSITION 6.9. Let X be a totally disconnected, metrizable, compact space and
denote ker K∗ by I. Then E(X) has enough I-projective objects and K∗ : E(X) →
ModZ2,c

C(X,Z) is the universal I-exact, stable, homological functor.

Proof. We will use Proposition 3.39 and Remark 3.42 of [24]. Note that the
functor K∗ from E(X) to ModZ2,c

C(X,Z) is clearly an I-exact, stable, homological func-

tor, and ModZ2,c
C(X,Z) is a stable, abelian category with enough projective objects.
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Let U ⊆ X be clopen. Any homomorphism of C(X,Z)-modules C(U,Z)→
M is uniquely defined by an element in MδU , where δU is the characteristic func-
tion on U. Hence if B is a C∗-algebra over X, then

HomC(X,Z)(Σ
j(C(U,Z), 0), K∗(B)) ∼= Kj(B)δU ∼= Kj(B(U)) ∼= Ej(X; C(U),B),

for j = 0, 1, where the last (natural) isomorphism follows from Lemma 2.30 of [9].
By Corollary 6.4, it follows that any Z2-graded projective C(X,Z)-module P is of
the form

P ∼=
⊕
i∈I

(C(Ui,Z), 0)⊕
⊕
j∈J

(0, C(Uj,Z))

where each Ui and Uj are clopen subsets of X and I and J are countable index
sets. For any such projective module and any C∗-algebra B over X we get that

HomC(X,Z)(P, K∗(B))

∼= ∏
i∈I

HomC(X,Z)((C(Ui,Z), 0), K∗(B))⊕∏
j∈J

HomC(X,Z)((0, C(Uj,Z)), K∗(B))

∼= ∏
i∈I

E(X; C(Ui),B)⊕∏
j∈J

E1(X; C(Uj),B)

∼= E
(

X;
⊕

i∈I
C(Ui)⊕

⊕
j∈J

C(Uj, C0(R)),B
)

,

by countable additivity in the first variable of the E(X) bifunctor. Hence there is a
partially defined left adjoint K†

∗ of K∗, which is defined on the full subcategory of
projective modules. Obviously K∗ ◦ K†

∗(P) ∼= P for any countably generated Z2-
graded projective C(X,Z)-module P, and thus it follows from Proposition 3.39
and Remark 3.42 of [24] that K∗ is the universal I-exact stable homological func-
tor.

Proof of Theorem 6.8. By Proposition 6.9 and Theorems 3.41 and 4.4 of [24] it
suffices to show that any C∗-algebra A over X in BE(X) is in the localising subcat-
egory generated by the I-projective objects. To see this, note that a simple boot-
strapping argument implies that E(X;A,B) = 0 for every I-contractible B if and
only if A is in the localising subcategory in E(X) generated by I-projective objects.
From Propositions 6.10 and 6.5 of [9] we get that A is E(X)-equivalent to a direct

limit of C∗-algebras over X of the form
n⊕

j=1
C(Uj,Ak) where U1, . . . , Un is a clopen

partition of X and each Ak is in BE with finitely generated K-theory. But since
these are obviously in the localising subcategory generated by the I-projective
objects, and this is closed under taking direct limits, the result follows.

COROLLARY 6.10. Let A and B be separable C∗-algebras over Ñ where A is an
object of the bootstrap class BE(Ñ). If K∗(A(∞)) is torsion-free then there is a short exact
sequence

0→ ExtC(Ñ,Z)(K∗(A), K∗+1(B))→ E(Ñ;A,B)→ HomC(Ñ,Z)(K∗(A), K∗(B))→ 0
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which is natural in both variables. Moreover, if B is also an object of BE(Ñ) for which
K∗(B(∞)) is torsion-free, then the short exact sequence splits (unnaturally).

Proof. It follows from Proposition 6.6 that K∗(A) has projective dimension
less than 1, and thus the existence of such a UCT follows from Theorem 6.8. By
using the same method as when proving that the classical UCT is split [27], it
suffices to show that A (and similarly B) is E(Ñ)-equivalent to a direct sum
A0 ⊕ A1 where K1−i(Ai) = 0. Let P1 → P0 → K∗(A) be a length 1 projec-
tive resolution. Since Pi ∼= (Pi

0, 0) ⊕ (0, Pi
1) naturally, we obtain two projective

resolutions Σi(P1
i , 0) → Σi(P0

i , 0) → Σi(Ki(A), 0) for i = 0, 1. We may lift the
maps Σi(P1

i , 0) → Σi(P0
i , 0) for i = 0, 1, by using K†

∗, to morphisms Q1
i → Q0

i in
E(Ñ). Embed these in exact triangles ΣAi → Q1

i → Q0
i → Ai. By construction

K∗(A0) = (K0(A), 0) and K∗(A1) = (0, K1(A)). Thus K∗(A0 ⊕ A1) ∼= K∗(A) and
since both A0 ⊕ A1 and A satisfy the above UCT, naturality of the UCT and the
five lemma implies that the algebras are E(Ñ)-equivalent.

7. CLASSIFICATION USING IDEAL-RELATED K-THEORY AND APPLICATION
FOR GRAPH C∗-ALGEBRAS

In this section, we use the universal coefficient theorem established in Sec-
tion 6 (Corollary 6.10) and Theorem 5.2, to prove a classification result using
ideal-related K-theory for tight C∗-algebras over Ñ whose fibers are AF-algebras
or Kirchberg algebras in N and the K-theory of the ∞ fiber is torsion-free. We
then apply our result to graph C∗-algebras with primitive ideal space Ñ.

THEOREM 7.1. Let A and B be tight C∗-algebras over Ñ. Suppose for each n ∈ Ñ,
that A(n) is an AF-algebra or a Kirchberg algebra inN and that B(n) is an AF-algebra
or a Kirchberg algebra inN , and suppose that K0(A(∞)) and K1(A(∞)) are torsion-free
abelian groups.

Suppose that there exists a C(Ñ,Z)-isomorphism γ : K∗(A) → K∗(B) such that
K0(γn) is an order isomorphism for all n ∈ Ñ.

(i) Suppose A and B are stable C∗-algebras. Then there exists an Ñ-equivariant ∗-
isomorphism φ : A → B such that the C(Ñ,Z)-isomorphisms K∗(φ) and K∗(γ) are
equal.

(ii) Suppose A and B are unital C∗-algebras and K0(γ)([1A]) = [1B]. Then there
exists an Ñ-equivariant ∗-isomorphism φ : A→ B such that the C(Ñ,Z)-isomorphisms
K∗(φ) and K∗(γ) are equal.

Proof. By Corollary 6.10, there exists a C(Ñ, Λ)-isomorphism γ̃ : K(A) →
K(B) lifting γ. The theorem now follows from Theorem 5.2.

In every known classification theorem for graph C∗-algebras, it is always
assumed that there are finitely many gauge-invariant ideals. It turns out that we
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may use Theorem 7.1 to classify graph C∗-algebras with infinitely many gauge-
invariant ideals. This is due to the fact that graph C∗-algebras that are tight over
Ñ has a special form covered by Theorem 7.1. This was proved in [20]. For the
definition of graph C∗-algebras, see [19].

THEOREM 7.2. Let A and B be graph C∗-algebras that are tight C∗-algebras
over Ñ.

(i) Suppose there exists a C(Ñ, Λ)-isomorphism γ : K(A⊗K) → K(B⊗K) such
that K0(γn) is an order isomorphism for each n ∈ Ñ. Then there exists an Ñ-equivariant
∗-isomorphism φ : A⊗K → B⊗K such that the C(Ñ, Λ)-isomorphisms K(φ) and γ
are equal.

(ii) Suppose there exists a C(Ñ,Z)-isomorphism γ : K∗(A⊗K)→ K∗(B⊗K) such
that K0(γn) is an order isomorphism for each n ∈ Ñ. Then there exists an Ñ-equivariant
∗-isomorphism φ : A⊗K→ B⊗K such that the C(Ñ,Z)-isomorphisms K∗(φ) and γ
are equal.

Proof. Since A is a graph C∗-algebra and A(n) is simple, we have that A(n)
is either an AF-algebra or a Kirchberg algebra in N for all n ∈ N. By Remark 4 of
[20], we have that A(∞) is an AF-algebra. Similarly, B(n) is either an AF-algebra
or a Kirchberg algebra in N for all n ∈ N and B(∞) is an AF-algebra. (i) now
follows from Theorem 5.2 and (ii) follows from Theorem 7.1.

If A is a graph C∗-algebra that is a tight C∗-algebra over Ñ, then it is nec-
essarily non-unital since every unital graph C∗-algebra with real rank zero has
finitely many ideals. Theorem 7.2 gives a strong stable classification theorem.
The question of what additional information is needed to get a strong classifica-
tion theorem for non-stable graph C∗-algebras that are tight C∗-algebras over Ñ
remains open.
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