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ABSTRACT. We investigate how a C∗-algebra could consist of functions on a
noncommutative set: a discretization of a C∗-algebra A is a ∗-homomorphism
A → M that factors through the canonical inclusion C(X) ⊆ `∞(X) when
restricted to a commutative C∗-subalgebra. Any C∗-algebra admits an injec-
tive but nonfunctorial discretization, as well as a possibly noninjective functo-
rial discretization, where M is a C∗-algebra. Any subhomogenous C∗-algebra
admits an injective functorial discretization, where M is a W*-algebra. How-
ever, any functorial discretization, where M is an AW*-algebra, must trivialize
A = B(H) for any infinite-dimensional Hilbert space H.
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1. INTRODUCTION

In operator algebra it is common practice to regard C∗-algebras as noncom-
mutative analogues of topological spaces, and to regard W*-algebras as noncom-
mutative analogues of measurable spaces. What would it mean to make precise
how a C∗-algebra is a “noncommutative ring of continuous functions”? Several
natural approaches to this question cannot faithfully represent examples as sim-
ple as matrix algebras Mn(C) [4], [7], [35], [36]. Such obstructions suggest more
carefully considering what “noncommutative sets” in the foundations of non-
commutative geometry should be, before attempting to topologize them.

This article explores the idea of embedding the C∗-algebra in an appropriate
noncommutative algebra of “bounded functions on the noncommutative set un-
derlying its spectrum”, just like any topological space embeds in a discrete one.
More precisely, consider the case of a commutative C∗-algebra A. A representa-
tion of A as operating on a Hilbert space H is equivalent to a ∗-homomorphism
A→ B(H). Similarly, representing A as continuous complex-valued functions on
a compact Hausdorff space X can equivalently be viewed as a ∗-homomorphism
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A → `∞(X) to the algebra of bounded functions on the set X. More generally,
representating A as (discrete) functions on a set X can equivalently be viewed as
a ∗-homomorphism to the algebra CX of all functions on X.

In the spirit of noncommutative geometry, we thus seek a category A of ∗-
algebras to play the role of the dual to the category of “noncommutative sets”.
This category should contain the commutative algebras `∞(X) (or CX) as a full
subcategory, dual to the category of sets. In keeping with the programme of tak-
ing commutative subalgebras seriously [6], [7], [16], [17], [18], [19], [20], [35], [36],
we posit that a representation of a C∗-algebra as an algebra of functions on a non-
commutative set should be an algebra homomorphism φ : A→ M for some M in
A, whose restriction to every commutative C∗-subalgebra C ' C(X) of A factors
through the natural inclusion C(X) ⊆ `∞(X) via a morphism `∞(X) → M in A.
We call such a map φ a discretization of A:

A M

C(X) `∞(X)

φ

Section 2 makes this definition precise, relative to a parameterizing cate-
gory A that can then remain unspecified. This approach to terminology gives
most flexibility in investigating the open problem of finding a suitable noncom-
mutative extension of the functor C(X) 7→ `∞(X). We show that every C∗-algebra
admits a discretization into a C∗-algebra M that is injective but nonfunctorial. We
also show that there is a universal candidate for a functorial discretization into the
category of C∗-algebras, but it remains open whether this functorial discretization
is injective for every C∗-algebra.

In Section 3 we show that a sizeable class of C∗-algebras that are “close to be-
ing commutative” does indeed have injective functorial discretizations, namely
the subhomogeneous algebras: subalgebras of Mn(C) for some commutative C∗-
algebra C. The discretization is achieved by profinite completion, suggesting that
profinite completion for subhomogeneous algebras is a noncommutative substi-
tute for the “underlying set functor” that sends a compact Hausdorff space to its
underlying discrete space.

On the other hand, in Section 4 we show that no subcategory of W*-algebras,
or even AW*-algebras, can be dual to noncommutative sets in the sense of injec-
tively discretizing every C∗-algebra. In particular, every functor from C∗-algebras
to AW*-algebras taking each C∗-algebra to a discretization must trivialize A =
B(H) for any infinite-dimensional Hilbert space H. A number of related exam-
ples and obstructions are discussed, including separable algebras A for which
the same trivialization occurs. Viewing ∗-homomorphisms out of a C∗-algebra
as representing it by functions on a noncommutative set dates back at least to
Akemann [1] and Giles and Kummer [14], who took the representation to be
the canonical homomorphism A → A∗∗ into the bidual. They noted ([2], p. 10)
that their theory was not functorial. Our obstructions amplify this observation
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by suggesting that W*-algebras indeed cannot play the role of “noncommutative
`∞(X)-algebras” for C∗-algebras as large as B(H).

The article concludes with a discussion in Section 5 of the implications of
our obstructions, with an eye toward future work on the problem of finding in-
jective functorial discretizations of all C∗-algebras.

2. DISCRETIZATION

We assume throughout this article that all rings, algebras, and subalgebras
are unital, and that all homomorphisms preserve units. Write Spec(C) for the
Gelfand spectrum of a commutative C∗-algebra C. Write Cstar for the category
of C∗-algebras with ∗-homomorphisms and Wstar for the subcategory of W*-
algebras with normal ∗-homomorphisms.

Recall that a pro-C∗-algebra [31], [32] is a topological ∗-algebra that is a di-
rected (or “inverse”) limit in the category of topological ∗-algebras of a system
of C∗-algebras. Pro-C∗-algebras with continuous ∗-homomorphisms form a cat-
egory proCstar. The algebra CX of all complex-valued functions on a set X
equipped with its topology of pointwise convergence is a pro-C∗-algebra, as it
is the directed limit of the finite-dimensional C∗-algebras CS for all finite subsets
S ⊆ X.

LEMMA 2.1. The functors X 7→ `∞(X) and X 7→ CX are contravariant equiva-
lences between the category of sets and full subcategories of Wstar and proCstar.

Proof. The proof for the functor `∞ can be found in Section 6.1 of [40]. We
sketch an argument that covers both functors.

It is rather clear that each of the above assignments forms a contravariant
functor into the specified category. It only remains to show that each is naturally
bijective on Hom-sets. Fix x ∈ X. Let evx : CX → C denote the continuous ∗-
homomorphism given by evaluation at x, whose restriction to `∞(X) is normal.
The maps X → proCstar(CX ,C) and X → Wstar(`∞(X),C), given in each case
by x 7→ evx, are both bijections; this follows by verifying that the kernel of ei-
ther kind of morphism CX → C or `∞(X) → C is generated as an ideal by a
characteristic function χS, which entails that S = X \ {x} for some x ∈ X.

Now the argument that the functors in question are bijective on Hom-sets
is purely formal, and can be proved by essentially the same argument as the one
given in the algebraic context in Theorem 4.7 of [21].

The previous lemma leads naturally to the following notion, in keeping with
the programme of taking commutative subalgebras seriously. As mentioned in
the introduction, the definition is made relative to a category A of complex alge-
bras that is a candidate to contain “algebras of bounded functions on noncom-
mutative sets”.
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DEFINITION 2.2. Let A denote a category of C-algebras containing the al-
gebras `∞(X) for any set X with their normal ∗-homomorphisms. Given a C∗-
algebra A, a (bounded) A-discretization is a homomorphism φ : A → M whose
restriction to each commutative C∗-subalgebra C of A factors through the natural
inclusion C → `∞(Spec(C)) via a morphism φC : `∞(Spec(C)) 99K M in A:

A M

C `∞(Spec(C))

φ

φC

We call a discretization φ faithful when it is injective and all φC can be chosen
injective. We call φ compatible if the morphisms φC can be chosen such that φC
factors through φD via the induced morphism `∞(Spec(C)) → `∞(Spec(D)) for
commutative C∗-subalgebras C ⊆ D ⊆ A.

When A is Cstar or Wstar above, we will speak of C∗- or W*-discretizations
instead of A-discretizations.

PROPOSITION 2.3. Every C∗-algebra has a faithful C∗-discretization.

Proof. Write L for the functor C 7→ `∞(Spec(C)). Given a finite family
S = {C1, . . . , Cn} of commutative C∗-subalgebras of A, write AS for the colimit
in Cstar of the diagram whose objects are A, the Ci, and the L(Ci), along with
the inclusions of each Ci into both A and L(Ci). This can be constructed up to
isomorphism as an iterated amalgamated free product:

AS ' (· · · ((A ∗C1 L(C1)) ∗C2 L(C2)) · · · ) ∗Cn L(Cn).

Thus the natural maps from A and the L(Ci) into AS are all embeddings; see The-
orem 3.1 of [8] or Theorem 4.2 of [29].

The finite families S of commutative C∗-subalgebras of A form a directed set
under inclusion. Consider the directed colimit M = colim

S
AS. By construction

the mediating map φ : A→ M is a C∗-discretization. For finite subfamilies S ⊆ T
of commutative C∗-subalgebras of A, the induced map AS → AT is injective
because AT is formed from AS by iterated pushouts. Thus the natural maps AS →
M are injective ([37], Theorem 1), from which it follows that φ is faithful.

The discretization φ : A → M constructed in the proof above is not com-
patible: for commutative C∗-subalgebras C ( D ⊆ A, the algebra M is obtained
by gluing together distinct copies of L(C) and L(D) without regard to the natural
inclusion L(C)→ L(D). In Theorem 2.5 below we modify the construction to en-
sure compatibility, with the caveat that we no longer know that the discretization
is even injective. This universally constructed C∗-discretization will in fact satisfy
the following natural condition.

DEFINITION 2.4. Let A be a category as in Definition 2.2. A functorial A-
discretization is a functor F : Cstar → A together with natural homomorphisms
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ηA : A→F(A) such that ηC for each commutative C∗-algebra C turns into the nat-
ural inclusion C→ `∞(Spec(C)) by a natural isomorphism F(C)' `∞(Spec(C)).

A functorial discretization automatically gives compatible discretizations
A → F(A) for every C∗-algebra A: writing iC : C → A for the inclusion of a
commutative C∗-subalgebra gives the following commutative diagram:

A F(A)

C F(C) ' `∞(Spec(C))

ηA

ηC

iC F(iC)

Compatibility follows by applying F to successive inclusions C ⊆ D ⊆ A.
Write cCstar for the full subcategory of Cstar of commutative C∗-algebras.

Write C(A) for the small subcategory of cCstar consisting of the commutative
C∗-subalgebras of a C∗-algebra A with their inclusion morphisms; we also view
this as a partially ordered set.

THEOREM 2.5. The functor F : Cstar→ Cstar given by

F(A) = colim
C∈C(A)

A ∗C `∞(Spec(C))

equipped with the naturally induced ∗-homomorphisms ηA : A → F(A) is a functorial
C∗-discretization. For each C∗-algebra A, the C∗-discretization A → F(A) is universal
among all compatible C∗-discretizations of A. Thus F is universal among all functorial
C∗-discretizations.

Proof. We follow the idea of Theorem 2.15 in [35] but with arrows reversed.
Write L = `∞ ◦ Spec : cCstar→ Cstar. The assignment A 7→ C(A) is a functor to
the category of small categories. Given a C∗-algebra A, the assignment C 7→ A ∗C
L(C) is functorial C(A) → Cstar. So F(A) = colim

C∈C(A)
A ∗C L(C) defines a functor

F : Cstar → Cstar. Moreover, the induced ∗-homomorphisms ηA : A → F(A)
are natural by construction. Finally, if A is commutative so that A ∈ C(A), then
one naturally has an isomorphism F(A) ' `∞(Spec(A)) that turns ηA into the
inclusion A→ `∞(Spec(A)). Thus F is a functorial C∗-discretization.

To verify universality of ηA, fix a compatible C∗-discretization φ : A → M.
Each C ∈ C(A) then makes the following outer square commute:

A M

C L(C)

A ∗C L(C)

φ

φC

The morphisms φ and φC factor uniquely through the pushout A ∗C L(C).
Compatibility of the φC means that these uniquely determined morphisms form
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a cocone from the diagram of the A ∗C L(C) to M. Thus we obtain a ∗-homomo-
rphism F(A) = colim

C∈C(A)
A ∗C L(C) → M through which φ factors uniquely, as

desired.
Finally, if (F′, η′) is any functorial C∗-discretization, then by the local uni-

versality of the previous paragraph the natural morphisms η′A : A→ F′(A) factor
uniquely through ηA : A → F(A), from which it readily follows that F′ factors
through a unique natural transformation F ⇒ F′ whose composite with η is η′.

Whereas the “incompatible” discretization of Proposition 2.3 is faithful, it is
not clear whether the natural C∗-discretizations A→ F(A) of the last theorem are
faithful or even injective. Abstract nonsense alone does not answer this question.

QUESTION 2.6. Is the universal functorial C∗-discretization ηA : A → F(A)
of Theorem 2.5 injective or faithful for every C∗-algebra A? Equivalently, does every
C∗-algebra have an injective or faithful compatible C∗-discretization?

REMARK 2.7. The definitions and results above carefully used the Gelfand
spectrum Spec(C) of a commutative C∗-algebra C. Henceforth we loosen nota-
tion, and write C = C(X) for an arbitrary commutative C∗-algebra, and C '
C(X) for an arbitrary commutative C∗-subalgebra of a C∗-algebra A.

Recall from Lemma 2.1 that sets may also be encoded algebraically through
the algebra of discrete (possibly unbounded) functions as X 7→ CX . The rest of
the paper will also discuss “unbounded” discretizations.

DEFINITION 2.8. Let A denote a category of C-algebras containing the al-
gebras CX for any set X with the ∗-homomorphisms that are continuous with
respect to the topology of pointwise convergence. Given a C∗-algebra A, an un-
bounded A-discretization is a homomorphism φ : A → M whose restriction to
each commutative C∗-subalgebra C ' C(X) of A factors through the inclusion
C(X)→ CX via a morphism φC : CX 99K M in A:

A M

C ' C(X) CX

φ

φC

Define injective, faithful, and functorial unbounded discretizations analogous to
the bounded case. For A = proCstar we refer to unbounded pro-C∗-discretizations.

3. FUNCTORIAL DISCRETIZATIONS THROUGH PROFINITE COMPLETION

For a compact Hausdorff space X, the natural inclusion C(X) → `∞(X)
is a W*-discretization of the corresponding commutative C∗-algebra. Also, if
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A is a finite-dimensional C∗-algebra, then the identity map A → A is a W*-
discretization. This section provides a common generalization of these two ex-
amples: Theorems 3.3 and 3.5 below show that the profinite completion of a C∗-
algebra is a functorial discretization that is faithful for a large class of algebras.

For a C∗-algebra A, let F (A) denote the family of closed ideals I of A
for which A/I is finite-dimensional. Then F (A) is closed under finite intersec-
tions, as is readily verified by embedding A/(I ∩ J) → A/I ⊕ A/J for ideals
I, J ∈ F (A). Thus the finite-dimensional C∗-algebras A/I for I ∈ F (A) form
an inversely directed system. We may take the directed limit of this system ei-
ther in the category Cstar to obtain a C∗-algebra, or in the category of topological
algebras to obtain a pro-C∗-algebra. We denote these two directed limits by

Pb(A) = lim
I∈F (A)

A/I computed in Cstar,

Pu(A) = lim
I∈F (A)

A/I computed in proCstar.

Given a ∗-homomorphism f : A → B and J ∈ F (B), the induced embed-
ding A/ f−1(J) ↪→ B/J ensures that f−1(J) ∈ F (A). Universality provides a
composite ∗-homomorphism

Pb(A) = lim
I∈F (A)

A/I → lim
J∈F (B)

A/ f−1(J)→ lim
J∈F (B)

B/J = Pb(B)

making the assignments Pb and Pu functorial.
Notice that the diagram over which the limit Pb(A) is computed consists of

W*-algebras with normal ∗-homomorphisms. The subcategory Wstar of Cstar is
closed under limits since the forgetful functor Wstar → Cstar is right adjoint to
the universal enveloping W*-algebra functor [12]. Thus Pb(A) is a W*-algebra,
and for f : A → B in Cstar the induced morphism Pb( f ) : Pb(A) → Pb(B) is a
normal ∗-homomorphism. Thus Pb is a functor Cstar→ Wstar.

Each of the two functors Pb and Pu is a kind of profinite completion [13].

DEFINITION 3.1. We call Pb : Cstar → Wstar the bounded profinite comple-
tion, and Pu : Cstar→ proCstar the unbounded profinite completion.

Let b(P) ⊆ P denote the set of bounded elements of a pro-C∗-algebra P: those
elements whose spectrum forms a bounded subset of C. This is a C∗-algebra that
lies densely in P ([31], Proposition 1.11).

PROPOSITION 3.2. If A is a C∗-algebra, then Pb(A) ' b(Pu(A)): the W*-algebra
Pb(A) is ∗-isomorphic to the algebra of bounded elements of the pro-C∗-algebra Pu(A).

Proof. Suppose that a C∗-algebra B forms a cone over the diagram of finite-
dimensional algebras A/I for I ∈ F (A). Then B also forms a cone over this
diagram in the category proCstar, and this cone factors uniquely through a mor-
phism B → Pu(A). But the image of this morphism lands in the C∗-algebra
b(Pu(A)) ([31], Corollary 1.13). Thus b(Pu(A)) satisfies the universal property of
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lim
I∈F (A)

A/I computed in Cstar. It follows that the map Pb(A) → Pu(A) induced

by the universal property of the latter is an isomorphism onto b(Pu(A)).

Henceforth we identify Pb(A) with the dense subalgebra b(Pu(A)) ⊆ Pu(A).
Invoking the universal property of limits once again, for each C∗-algebra A there
is a ∗-homomorphism ηA : A → Pb(A) ⊆ Pu(A) that is natural in A. This map
makes Pb and Pu into functorial discretizations.

THEOREM 3.3. Bounded profinite completion is a functorial W*-discretization.
Unbounded profinite completion is an unbounded functorial pro-C∗-discretization.

Proof. For a commutative C∗-algebra C = C(X), each I ∈ F (C) is of the
form I = IS = { f ∈ C : f (S) = 0} for some finite subset S ⊆ X. The surjection
C� C/I ' C(S) is Gelfand dual to the inclusion S ↪→ X. Thus

Pb(C(X)) = lim
S⊆X

C(S) ' `∞(X), Pu(C(X)) = lim
S⊆X

C(S) ' CX ,

and under these isomorphisms the natural map ηC : C → Pb(C) ⊆ Pu(C) corre-
sponds to the natural inclusion C(X) ↪→ `∞(X) ⊆ CX .

It remains to verify that these functors behave as expected on morphisms.
Fix a ∗-homomorphism f : B = C(Y) → C = C(X), which is Gelfand dual
to a continuous function f̂ : X → Y. For any finite set S ⊆ X, the restriction
of f̂ to S → f̂ (S) is Gelfand dual to C( f̂ (S)) ' B/ f−1(IS) → C/IS ' C(S).
Taking the directed limit in Wstar over finite subsets S ⊆ X, we see that the
induced map Pb( f ) : Pb(B) → Pb(C) corresponds to `∞( f̂ ) under the isomor-
phisms Pb(B) ' `∞(Y) and Pb(C) ' `∞(X). This completes the proof for Pb; the
analogous argument in proCstar also holds for Pu.

EXAMPLE 3.4. Let A = Mn(C(X)) for a compact Hausdorff space X. Then
Pb(A) = Mn(`∞(X)) and Pu(A) = Mn(CX).

Proof. Write C = C(X), and recall that every closed ideal J ⊆ Mn(C) is of
the form Mn(I) for some closed ideal I ⊆ C ([27], Corollary 17.8). Such an ideal J
has finite codimension in A if and only if I has finite codimension in C. Thus

Pb(A) = lim
J∈F (A)

A/J = lim
I∈F (C)

Mn(C)/Mn(I) ' lim
I∈F (C)

Mn(C/I) 'Mn(`
∞(X))

and similarly Pu(A) 'Mn(CX).

Let us emphasize that, even though the profinite completion functors yield
discretizations of all C∗-algebras, there are many C∗-algebras A for which Pb(A) =
Pu(A) = 0 is trivial. Indeed, if A is any C∗-algebra with no finite-dimensional
representations, then by construction of the profinite completions we necessar-
ily have Pb(A) = Pu(A) = 0. Example include: the algebra B(H) of bounded
operators on an infinite-dimensional Hilbert space H; the CCR algebra [30]; the
Calkin algebra B(H)/K(H); and the (separable) Cuntz algebra On generated by
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n > 2 isometries [11]. Thus it is interesting to see which algebras have injective
or faithful discretizations to their profinite completion. This is addressed in the
next theorem.

Recall that a C∗-algebra A is residually finite-dimensional when it has a faith-
ful family of finite-dimensional representations. Similarly, A is subhomogeneous
when there is an integer n > 1 such that every irreducible representation of A
has dimension at most n; this is equivalent ([9], Proposition IV.1.4.3) to A being
isomorphic to a C∗-subalgebra of Mk(C) for a commutative C∗-algebra C and an
integer k > 1. For a point x in a set X, we let δx = χ{x} ∈ `∞(X) ⊆ CX denote the
indicator function of the singleton {x}.

THEOREM 3.5. For a C∗-algebra A, the functorial discretizations Pb and Pu are:
(i) injective if and only if A is residually finite-dimensional;

(ii) faithful if A is subhomogeneous.

Proof. (i) If A is residually finite-dimensional, every nonzero a ∈ A allows
Ia ∈ F (A) with a /∈ Ia (meaning that a has nonzero image in A/Ia). Thus a is not
in the kernel of

ηA : A→ lim
I∈F (A)

A/I = Pb(A) ⊆ Pu(A).

Hence ηA is injective. (See also Lemma 1.10 of [13].) The converse follows directly
from the definition.

(ii) Consider a commutative C∗-subalgebra C(X) ⊆ A, and x ∈ X. Because
the homomorphisms

`∞(X) ' Pb(C(X))→ Pb(A) and CX ' Pu(C(X))→ Pu(A)

are respectively normal and continuous, it suffices to show that δx ∈ `∞(X) ⊆ CX

is not in their kernel. Indeed, the kernel I of either morphism is an ideal generated
by a characteristic function χS for some S ⊆ X, so that I contains exactly those δx
with x ∈ S. Hence if all δx /∈ I, then S = ∅ and therefore I = 0.

Evaluation at x is a pure state on C(X), which extends ([9], II.6.3.2) to a pure
state ρx on A. Because A is subhomogeneous, the GNS construction applied to
ρx yields a finite-dimensional representation π : A → B(Cn) ' Mn(C) for some
integer n > 1, with cyclic vector vx ∈ Cn. Let I ∈ F (A) denote the kernel of π.
The induced ∗-homomorphism ψ : `∞(X) → A/I ↪→ Mn(C) has image isomor-
phic to C(S) for some finite subset S ⊆ X; in fact, this set S is characterized as
those pure states on C(X) that are induced by vector states of the representation
π. Now π( f )vx = f (x)vx for f ∈ C(X) by construction of π. Thus x ∈ S, so that
δx is not in the kernel of ψ. It follows that δx has nonzero image in each of the
limit algebras Pb(A) and Pu(A), as desired.

REMARK 3.6. For C∗-algebras A that are residually finite-dimensional but
not subhomogeneous, the natural map A→ Pb(A) is technically an injective dis-
cretization, but it does not satisfy all desiderata for an “algebra of bounded func-
tions on the noncommutative underlying set” of A. Consider the C∗-sum A =
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∞⊕
k=1

Mk(C). Let In ⊆ A denote the kernel of the projection A � M1(C) ⊕ · · · ⊕

Mn(C) onto the first n components. By an argument similar to that in Lemma 7.5
of [23], the kernel of any finite-dimensional representation of A must contain
some In. It follows that the In form a cofinal chain in F (A), so that the profinite
completion

A→ Pb(A) ' lim
n→∞

A/In ' A

is an isomorphism. But this is far from the behavior one would expect when com-

paring to the commutative example C =
∞⊕

k=1
C ' `∞(N) ' C(βN); the profinite

completion C → Pb(C) corresponds under this isomorphism to the embedding
C ' C(βN)→ `∞(βN), indicating that C is “far below” Pb(C) as a subalgebra.

Almost all faithful discretizations of C∗-algebras we know are supplied by
Theorem 3.5 above. We conclude this section by describing another significant
example of a faithful compatible discretization that is not of this form.

EXAMPLE 3.7. For an infinite-dimensional Hilbert space H, consider the
C∗-subalgebra A = C⊕K(H) of B(H) generated by the identity and the compact
operators. The embedding A ↪→ B(H) is a faithful compatible W*-discretization.

Proof. Any commuting set of self-adjoint compact operators on H has an
orthonormal basis of H of simultaneous eigenvectors, so the same remains true
for commuting sets of self-adjoint operators in A. Let C ' C(X) ⊆ A be a com-
mutative C∗-subalgebra. For x ∈ X let px ∈ B(H) denote the projection onto the
simultaneous eigenspace {v ∈ H : f · v = f (x)v for all f ∈ C}. Now each px 6= 0
and ∑ px = 1 in B(H). It follows that the W*-subalgebra WC generated by the px
is isomorphic to `∞(X), and the fact that f px = px f = f (x) · px for all f ∈ C guar-
antees that the natural inclusion C ⊆WC corresponds under this isomorphism to
the natural inclusion C(X) ⊆ `∞(X). Thus the discretization is faithful.

Compatibility for commutative C∗-subalgebras C ⊆ D ⊆ A is readily estab-
lished from the simple observation that a simultaneous eigenspace for D restricts
to a simultaneous eigenspace for C.

The example above is a faithful compatible W*-discretization for which we
do not know of any extension to an unbounded discretization.

4. OBSTRUCTIONS TO DISCRETIZATIONS WITH MANY PROJECTIONS

Can the bounded faithful functorial W*-discretization for subhomogeneous
C∗-algebras of Theorem 3.5 be extended to general C∗-algebras through some
method other than profinite completion? Perhaps surprisingly, we prove in this
section that the answer is no: any W*-discretization of the algebra B(H) for an
infinite-dimensional Hilbert space H is necessarily zero. In fact, the obstruction is
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even more serious: if we replace the category of W*-algebras (“noncommutative
measurable spaces”) with the category of AW*-algebras [5], [22] (“noncommuta-
tive complete Boolean algebras” [20]), the obstruction persists.

The next definition is crucial to our obstructions, and relies on the following
notions from measure theory. An atom of a measure space (X, µ) is a measurable
subset U ⊆ X with µ(U) > 0, such that µ(V) < µ(U) implies µ(V) = 0 for any
measurable subset V ⊆ U. An atom of a regular Borel measure on a locally com-
pact Hausdorff space is necessarily a singleton ([24], 2.IV). A measure is diffuse if
it has no atoms. We will say that a positive linear functional ψ : C(X) → C of a
commutative C∗-algebra, given by ψ( f ) =

∫
f dµ for a regular Borel measure µ

on X, is diffuse when µ is diffuse.

DEFINITION 4.1. Let A be a C∗-algebra. A pair of commutative C∗-sub-
algebras C and D is relatively diffuse when every extension of a pure state of D to
a state of A restricts to a diffuse state on C.

EXAMPLE 4.2. Consider the separable Hilbert space H = L2[0, 1], and the
C∗-algebra A = B(H). Write D for the discrete maximal abelian W*-subalgebra
generated by the projections qn onto the Fourier basis vectors en = exp(2πin−)
for n ∈ Z, and C for the continuous maximal abelian W*-subalgebra L∞[0, 1].
Then C and D are relatively diffuse.

Proof. There is a canonical conditional expectation E : A → D that sends

f ∈ A to its diagonal part ∑ qn f qn. For f ∈ C then E( f ) =
1∫

0
f (t)dt because

〈 f en, en〉 =
1∫

0

f (t) · e2πint · e 2πint dt =
1∫

0

f (t)dt.

Because ψ is a pure state of D now ψ = ψ ◦ E by the solution of the Kadison–

Singer problem [28]. Hence ψ( f ) = ψ(E( f )) = ψ
( 1∫

0
f (t)dt

)
=

1∫
0

f (t)dt.

EXAMPLE 4.3. For H = L2[0, 1], consider any separable C∗-subalgebra C ⊆

L∞[0, 1] ⊆ B(H) for which the state f 7→
1∫

0
f (t)dt is diffuse (such as C = C[0, 1]).

Then there is a separable C∗-subalgebra A ⊆ B(H) containing C and a commuta-
tive C∗-subalgebra D generated by projections, with C and D relatively diffuse.

Proof. Let en and E be as in Example 4.2. Because C is separable, we can
fix a sequence { fi}∞

i=1 of elements whose linear span is dense in C. For each fi
and for each integer j > 1, the positive solution to the paving conjecture [28]
ensures that there is a finite set of projections pk = p(i,j)k in the discrete maximal
abelian subalgebra of B(H) relative to the Fourier basis en with ∑ pk = 1 and
‖pk( fi − E( fi))pk‖ 6 1/j. Let D be the commutative C∗-subalgebra of B(H)
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generated by the p(i,j)k for all i, j, and k. Let A be the C∗-subalgebra of B(H)
generated by C and D; as both C and D are countably generated, the same is
true of A, whence A is separable. An argument familiar in the literature on the
Kadison–Singer problem (as in p. 310 of [3]) shows that any extension of a pure
state ψ0 on D to a state ψ on A satisfies ψ( f ) = ψ0(E( f )) for all f ∈ C. The same

computation as in Example 4.2 shows that ψ( f ) =
1∫

0
f (t)dt, which is diffuse on

C by hypothesis.

REMARK 4.4. It is possible to modify Examples 4.2 and 4.3 so that the con-
clusions can be reached without using the full force of Kadison–Singer. In either
case, identify the algebra C = C(T) of continuous functions on the unit circle
with the subalgebra { f : f (0) = f (1)} ⊆ C[0, 1] ⊆ B(H). The algebra of Fourier
polynomials — or more generally, the Wiener algebra A(T) — is a dense subal-
gebra of C and lies in the algebra M0 ⊆ B(H) of operators that are l1-bounded in
the sense of Tanbay [38] with respect to the Fourier basis {en : n ∈ Z}. Thus C
lies in the norm closure M of M0, and it was shown in [38] (without the full force
of Kadison–Singer) that every element of M is compressible (that is, the operator
f − E( f ) satisfies paving with respect to the basis en for any f ∈ M). The compu-
tations in either example given above may now proceed in the same manner.

The relatively diffuse subalgebras C and D in the examples above had pure
states of D inducing a unique diffuse state on C. We thank the referee for the
following example which allows for possibly non-unique extensions.

EXAMPLE 4.5. Let A and D be as in Example 4.2, but consider the commu-
tative C∗-subalgebra of A generated by the bilateral shift en 7→ en+1, and let C be
its bicommutant. Then C and D are relatively diffuse.

Proof. Write C0 for the C∗-subalgebra generated by the shift u : H → H; its
Gelfand spectrum is the unit circle T = {λ ∈ C : |λ| = 1} ([15], Problem 84).
Let fn ∈ C(T) be a decreasing sequence converging to the characteristic function
δλ = χ{λ} of some λ ∈ T. Then, since the bounded sequence ( fn) converges
pointwise to δλ, the sequence ( fn(u)) in C0 converges strongly to the projection
δλ(u) in C. But lim

n
〈 fn(u)(e0), e0〉 = 〈δλ(e0), e0〉 vanishes because u has no eigen-

vectors. Hence ‖E( fn(u))‖ = ‖〈 fn(u)(e0), e0〉1H‖ → 0. Thus a state ψ of A that is
pure on D satisfies ψ( fn) = ψ(E( fn))→ 0, and is therefore diffuse on C.

Relatively diffuse pairs of commutative C∗-subalgebras are inherited along
∗-homomorphisms, as follows.

LEMMA 4.6. Let φ : A → B be a morphism in Cstar. If two commutative C∗-
subalgebras C, D ⊆ A are relatively diffuse, then so are φ(C), φ(D) ⊆ B.

Proof. Fix a pure state ψ0 on φ(D), and let ψ be any extension to a state on
B. Then ψ ◦ φ is a state on A that extends ψ0 ◦ φ from D; observe that the latter is
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a pure state on D as it is a composition of a ∗-homomorphism with a pure state.
By hypothesis, the restriction of ψ ◦ φ to C is diffuse. As the restriction of φ to
C � φ(C) is Gelfand dual to the inclusion Spec(φ(C)) ↪→ Spec(C) of a closed
subspace, the measure on Spec(φ(C)) corresponding to ψ|φ(C) is the restriction of
the measure on Spec(C) corresponding to ψ0|C, which is diffuse. It follows that
the restriction of ψ to C′ is diffuse.

The major result below and its many corollaries will refer to commutative
diagrams of the following kind, where A is a C∗-algebra with relatively diffuse
commutative C∗-subalgebras C ' C(X) and D ' C(Y):

(4.1)

C '

D '

C(X)

A

C(Y)

`∞(X)

M

`∞(Y)

φ
φC

φD

THEOREM 4.7. If a C∗-algebra A has relatively diffuse commutative C∗-subalge-
bras C ' C(X) and D ' C(Y), and if there is a C∗-algebra M with ∗-homomorphisms
φ, φC and φD making the diagram (4.1) commute, then for any x ∈ X and y ∈ Y:

φC(δx)φD(δy) = 0.

Proof. Let x ∈ X and y ∈ Y, and write p = φC(δx) and q = φD(δy). Fix
any state σ on the C∗-algebra qMq, and let ψ denote the state on A given by
ψ(a) = σ(qφ(a)q). For g ∈ D, observe ψ(g) = σ(φD(δygδy)) = σ(φD(g(y)δy)) =
g(y)σ(q) = g(y), so that ψ restricts to a pure state on D. By hypothesis, the
restriction of ψ to C is of the form f 7→

∫
f dµ for some diffuse Radon measure

µ on X. Thus for each integer n > 1 we may find an open neighborhood Un of x
with µ(Un) 6 1/n. Urysohn’s lemma provides a continuous function fn : X →
[0, 1] that vanishes on X \Un and satisfies fn(x) = 1. Since δx 6 fn in `∞(X) we
have p = φC(δx) 6 φC( fn). Positivity of b 7→ σ(qbq) yields

σ(qpq) 6 σ(qφC( fn)q) = ψ( fn) =
∫

fn dµ 6 µ(Un) 6
1
n

.

As n → ∞ we find that σ(pqp) = 0 for all states σ on qMq, making qpq = 0. It
follows that ‖qp‖2 = ‖qpq‖ = 0 and thus pq = (qp)∗ = 0.

Write AWstar for the category of AW*-algebras with ∗-homomorphisms
whose restriction to the projection lattices preserve arbitrary least upper bounds
(see Lemma 2.2 of [20] for further characterizations of these morphisms); Wstar
is a full subcategory. We call AWstar-discretizations AW*-discretizations.
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COROLLARY 4.8. If a C∗-algebra A has two relatively diffuse commutative C∗-
subalgebras, then any AW*-discretization φ : A → M satisfies M = 0. Consequently,
every functorial AW*-discretization F : Cstar→ AWstar has F(A) = 0 for such A.

Proof. Let C ' C(X) and D ' C(Y) be the relatively diffuse commutative
C∗-subalgebras, and let φC : `∞(X)→ M and φD : `∞(Y)→ M be the discretizing
morphisms as in Definition 2.2, yielding a commuting diagram (4.1). For x ∈ X
and y ∈ Y, set px = φC(δx) and qy = φD(δy). As ∑ δx = 1C and ∑ δy = 1D (in
the sense of least upper bounds of orthogonal projections), and as φC and φD are
morphisms in AWstar, we have ∑ px = 1 = ∑ qy in M. By Theorem 4.7, each px
is orthogonal to all of the qy, so that px is orthogonal to ∑ qy = 1 ∈ M. Therefore
px = 0 for all x ∈ X, whence 1 = ∑ px = 0 in M and M = 0.

EXAMPLE 4.9. If there is a morphism B(H)→ A in Cstar for some infinite-
dimensional Hilbert space, then A has no nontrivial AW*-discretization.

Proof. First note that H as above is unitarily isomorphic to L2[0, 1]⊗ H, so
a 7→ a⊗ 1 is a ∗-homomorphism B(L2[0, 1]) → B(L2[0, 1])⊗ B(H) ' B(H). Ex-
ample 4.2 along with Lemma 4.6 show that A contains a relatively diffuse com-
mutative C∗-subalgebras, so that Corollary 4.8 applies.

In particular, by the last example the Calkin algebra A = B(H)/K(H) has
no nontrivial AW*-discretization for H = L2[0, 1].

Theorem 4.7 has the following consequence for purely ring-theoretic dis-
cretizations, with much tamer conclusion than those of Corollaries 4.8 or 4.11.

COROLLARY 4.10. If a C∗-algebra A has relatively diffuse C∗-subalgebras C '
C(X) and D ' C(Y), and if there is a commutative diagram of the form (4.1) where M
is a ring and φ, φC, φD are ring homomorphisms, then for every x ∈ X and y ∈ Y:

φC(δx)φD(δy) = φD(δy)φC(δx) = 0.

Proof. Invoking Theorem 4.7 in the case where

M1 = (A ∗C(X) `
∞(X)) ∗C(Y) `

∞(Y)

is the colimit in Cstar of the diagram (4.1) with M deleted, we obtain that the
images of δx and δy are orthogonal in M1. Now let R~S T denote the amalga-
mated free product of rings (which coincides with the amalgamated free product
of C-algebras when S is a unital subalgebra of algebras R and T), and let

M0 = (A~C(X) `
∞(X))~C(Y) `

∞(Y)

be the colimit in the category of rings of the diagram (4.1) with M deleted. There
is a natural map M0 → M1 induced by the universal property of M0. It is a folk
result that this is an embedding [10], [34]. Thus the images of δx and δy in M0 are
already orthogonal. But the morphisms φ, φC, and φD of (4.1) factor universally
through M0, so the images of δx and δy in M are orthogonal.
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We conclude this section with an obstruction for unbounded discretizations
into topological algebras. Write TAlg for the category of Hausdorff topological
C-algebras with continuous homomorphisms. Recall ([39], Chapter 10) that a
family (ai)i∈I of elements in a Hausdorff topological ring R is summable if the net
(aJ) indexed by finite subsets J ⊆ I converges, where aJ = ∑

j∈J
aj; in that case we

write ∑ ai for the limit.

COROLLARY 4.11. Let A be a C∗-algebra with relatively diffuse C∗-subalgebras
C ' C(X) and D ' C(Y). Then every unbounded TAlg-discretization of A is zero.
More precisely, if there is a commutative diagram

C ' C(X)

A

D ' C(Y)

CX

M

CY

φ
φC

φD

where M is a Hausdorff topological ring, φC and φD are continuous homomorphisms,
and φ is a homomorphism, then M = 0.

Proof. It suffices to prove the second, more general claim. Because the nat-
ural embedding C(X) ↪→ CX has image in the subring `∞(X) ⊆ CX and sim-
ilarly for C(Y), we may apply Corollary 4.10 to conclude that the idempotents
px = φC(δx) and qy = φD(δy) satisfy pxqy = 0 for all x ∈ X and y ∈ Y.

The orthogonal set of idempotents {δx : x ∈ X} is summable with ∑ δx = 1
in CX , so the family of images (px)x∈X under the continuous homomorphism φC
is also summable in M with ∑ px = 1. Similarly, we have (qy)y∈Y summable in
M with ∑ qy = 1.

Now consider the net (pIqJ) indexed by the directed set of all “rectangular”
subsets I × J ⊆ X × Y with both I ⊆ X and J ⊆ Y finite. As both (pI) and (qJ)

converge to 1, we have pIqJ → 12 = 1. But each pIqJ = ∑
I

∑
J

pxqy = 0, so we have

1 = lim pIqJ = 0. Thus M = 0.

Just as in Example 4.9, if there is a morphism B(H)→ A in Cstar with H an
infinite-dimensional Hilbert space, then every unbounded TAlg-discretization of
A is trivial.

REMARK 4.12. Similar to the C∗-discretization in Proposition 2.3, one could
construct a pro-C∗-discretization by replacing the pushouts A ∗C `∞(Spec(C)) in
Cstar with the pushouts A ∗C CSpec(C) in proCstar. However, the previous corol-
lary shows that this construction must trivialize for algebras A that have rela-
tively diffuse commutative C∗-subalgebras.

We close with one further example of a separable algebra having no in-
jective W*-discretizations. We only sketch its proof, as the complete argument
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would require us to modify several results above to account for possibly nonuni-
tal commutative subalgebras, a technicality that we have avoided for the sake of
readability.

EXAMPLE 4.13. Let H = L2[0, 1] and C = C[0, 1] ⊆ L∞[0, 1] ⊆ B(H).
Then A = C + K(H) is a separable C∗-algebra of type I for which every AW*-
discretization and every unbounded TAlg-discretizations has nonzero kernel.
(It does, however, have nonzero non-injective such discretizations that factor
through the commutative C∗-algebra A/K(H).)

Proof. Let en, and qn be as in Example 4.2. Within B(H), write C0(Z) ' D ⊆
K(H) for the nonunital commutative C∗-subalgebra generated by the qn. If one
alters Definition 4.1 to allow for possibly nonunital C∗-subalgebras, then C and
D are relatively diffuse. Indeed, each pure state ψ0 on D is supported on some
projection p = qn, and every extension of ψ0 to a state ψ on A satisfies ψ( f ) =

ψ(p f p) =
( 1∫

0
f dt
)

ψ(p) =
1∫

0
f dt for all f ∈ C[0, 1]. A suitable modification of

Theorem 4.7 holds for such C and D, with hardly a change to the proof.
Now if φ : A → M is an AW*-discretization or an unbounded TAlg-discre-

tization, then we claim that K(H) ⊆ ker(φ). Indeed, the same method of proof of
Corollaries 4.8 and 4.11 shows that D is contained in ker(φ) (noting that C is still
a unital subalgebra), and K(H) is the ideal generated by D.

5. CONCLUSION

In contrast to the obstructions [35], [7], [4], based on the Kochen–Specker
theorem [25] from quantum physics, the fact that profinite completion faithfully
discretizes all finite-dimensional C∗-algebras shows that the results in Section 4
are truly infinite-dimensional obstructions and are therefore independent of the
Kochen–Specker theorem.

From the perspective of discretization as discussed in this paper, the search
for a suitable candidate A for a category of algebras dual to “noncommutative
sets” remains open. Having ruled out various candidates, we now briefly discuss
the implications, including possible avenues to avoid these obstructions.

Within the category Cstar, there remains the interesting open Question 2.6
of whether every C∗-algebra has a functorial (or equivalently, compatible) C∗-
discretization that is injective or faithful. This question is addressed in recent
work of Kornell [26] that takes a radically different approach: passing to a model
of set theory in which every subset of R is measurable, so that the Axiom of
Choice fails.

A positive answer to Question 2.6 would still not entail a candidate cate-
gory of algebras dual to “noncommutative sets”. That would require isolating
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a suitable subcategory A of Cstar containing the algebras `∞(X) and their nor-
mal ∗-homomorphisms as a full subcategory (dual to “classical” sets). One of
the most notable feature of the algebras `∞(X) and CX is their abundance of pro-
jections. But using this structure as a guide makes Corollaries 4.8 and 4.11 par-
ticularly troubling. Suppose that A, C(X), and C(Y) are as in Theorem 4.7. Let
φ : A→ M be the discretization of Proposition 2.3. On the one hand, that propo-
sition demonstrates that `∞(X) and `∞(Y) embed faithfully into M. On the other
hand, for all x ∈ X and y ∈ Y, Theorem 4.7 implies that the images of δx ∈ `∞(X)
and δy ∈ `∞(Y) are orthogonal in M. So it is not contradictory to faithfully embed
both `∞(X) and `∞(Y) into a common discretization making all δxδy vanish.

Thus Corollaries 4.8 and 4.11 merely indicate that globally “gluing” pro-
jections via the structure of an AW*-algebra or via convergence of nets of finite
sums is inadequate for functorial discretization. This suggests exploring new
structures imposing a suitable “global coherence” on projections in noncommu-
tative ∗-algebras beyond AW*-algebras or topological algebras. To speculate only
about a single possibility: the notion of contramodule [33] formalizes “infinite
summation” operations that cannot be interpreted as convergence of sums in any
topology.
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