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ABSTRACT. Let E0, E1 be symmetric spaces on [0, ∞), 0 < θ < 1 and E =
(E0, E1)θ . We prove that for the Hardy spaces and conditioned Hardy spaces
of noncommutative martingales the analogue of this relationship holds under
some conditions.
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INTRODUCTION

Interpolation plays a fundamental role in the classical martingale theory
and harmonic analysis (for example, see [6]). For more details on interpolation
theory, see [3], [4]. Musat [21] studied the noncommutative BMO and its interpo-
lation properties. She proved noncommutative analogues of the classical inter-
polation results between BMO and Lp spaces (respectively, Hardy spaces). In [2],
the authors considered the interpolation of the conditioned Hardy spaces hp and
presented an extension of Musat’s results to the conditioned case.

This paper is concerned to the study of interpolation of Hardy spaces of
noncommutative martingales associated to symmetric spaces. We will present
some extensions of interpolation results in [2], [21] to the symmetric space case.
We prove the following result: let E1, E2 be symmetric Banach spaces on [0, ∞)
satisfying the Fatou property (respectively E1, E2 be a fully symmetric Banach
spaces on [0, ∞)). Suppose that 1 < pE1 6 qE1 < 2 and 1 < pE2 6 qE2 < 2
(respectively 2 < pE1 6 qE1 < ∞ and 2 < pE2 6 qE2 < ∞). If 0 < θ < 1 and
E = (E1, E2)θ , then

hE(M) = (hE0(M), hE1(M))θ , HE(M) = (HE0(M), HE1(M))θ

hold with equivalent norms.
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We extend a classical result of Herz to the noncommutative symmetric space
case, i.e., we define an equivalent norm of the conditioned Hardy space hc

E(M)
when the Boyd indices of E are strictly between 1 and 2 and E has some additional
property (for the case E = Lp with p < 2 see [2]).

The remainder of this paper is divided into three sections. In Section 1
we present some preliminaries and notations on the noncommutative symmet-
ric spaces and various Hardy spaces of noncommutative martingales. In Sec-
tion 2 we prove the interpolation results. Finally, we define equivalent norms for
Hc

E(M) and hc
E(M), and discuss the description of the dual spaces of Hc

E(M)
and hc

E(M) in Section 3.

1. PREMIMINARIES

1.1. SYMMETRIC SPACES. Let (Ω, Σ, m) be a σ-measure space and L(Ω) be the
linear space of all measurable, a.e. finite functions on Ω. Define L0(Ω) as the
subspace of L(Ω) which consists of all functions x such that m({ω ∈ (0, ∞) :
|x(ω)| > s}) is finite for some s. Let x ∈ L0(Ω). Recall that the decreasing
rearrangement function of x is defined by

µt(x) = inf{s > 0 : m({ω ∈ Ω : |x(ω)| > s}) 6 t}, t > 0.

For x, y ∈ L0(Ω) we say that x is majorized by y and write x 4 y, if

t∫
0

µs(x)ds 6
t∫

0

µs(y)ds, for all t > 0.

Recall the following terminology. Let I be one of the measure spaces [0, 1]
or [0, ∞) (with the natural measure). A quasi Banach lattice E of measurable
functions on I is called a symmetric quasi Banach space on I if E satisfies the fol-
lowing properties: if f ∈ E, g ∈ L0(I) and µ(g) 6 µ( f ) implies that g ∈ E and
‖g‖E 6 ‖ f ‖E.

Let E be a symmetric Banach space on I. If for every net (xi)i∈I in E sat-
isfying 0 6 xi ↑ and sup

i∈I
‖xi‖E < ∞ the supremum x = sup

i∈I
xi exists in E and

‖xi‖E ↑ ‖x‖E, we say E has the Fatou property.
A symmetric Banach space E on I is called fully symmetric if, in addition, for

x ∈ L0(I) and y ∈ E with x � y it follows that x ∈ E and ‖x‖E 6 ‖y‖E.
The Köthe dual of a symmetric Banach space E on I is the symmetric Banach

space E× defined by

E× =
{

x ∈ L0(I) : sup
{ ∫

I

|x(t)y(t)|dt : ‖x‖E 6 1
}
< ∞

}
;
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‖y‖E× = sup
{ ∫

I

|x(t)y(t)|dt : ‖x‖E 6 1
}

, y ∈ E×.

A symmetric Banach space E on I is separable if and only if E = E× isomet-
rically. Moreover, a symmetric Banach space which is separable or has the Fatou
property is automatically fully symmetric.

For any 0 < a < ∞, let the dilation operator Da on L0(I) defined by

(Da f )(s) = f (as)χI(as) (s ∈ I).

If E is a symmetric Banach space on I, then Da is a bounded linear operator.
Define the lower Boyd index pE of E by

pE = sup{p > 0 : ∃ c > 0 ∀ 0 < a 6 1‖Da f ‖E 6 ca−1/p‖ f ‖E}

and the upper Boyd index qE of E by

qE = inf{q > 0 : ∃ c > 0 ∀ a > 1‖Da f ‖E 6 ca−1/q‖ f ‖E}.

It is clear from the definitions that

1 6 pE 6 qE 6 ∞.

If E is a symmetric Banach space on I, then

(1.1)
1
pE

+
1

qE×
= 1,

1
pE×

+
1

qE
= 1.

For more details on symmetric Banach space we refer to [3], [5], [17], [19].
Let Ei be a quasi symmetric Banach space on I, i = 1, 2. We define the

pointwise product space E1 � E2 as

(1.2) E1 � E2 = {x : x = x1x2, xi ∈ Ei, i = 1, 2}

with a functional ‖x‖E1�E2 defined by

‖x‖E1�E2 = inf{‖x1‖E1‖x2‖E2 : x = x1x2, , xi ∈ Ei, i = 1, 2}.

By Theorem 2 in [18], we know that if Ei is a quasi symmetric Banach space
on I, i = 1, 2 then E1 � E2 is a quasi symmetric Banach space on I.

Let E and F be two Banach lattices on I and let 0 < θ < 1. Following
Calderòn, we define the lattice Eθ F1−θ as the space of those z in L0(I) such that
for some x ∈ E, y ∈ F with ‖x‖E 6 1, ‖y‖F 6 1 and for some λ > 0, we have

|z| 6 λ|x|θ |y|1−θ a.e. on I.

We equip this space with the norm ‖z‖Eθ F1−θ = inf{λ} where the infimum is
over all such representations. The space Eθ F1−θ is again a Banach lattice on I (see
Section 13.5 of [7]).
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1.2. NONCOMMUTATIVE SYMMETRIC SPACES. We use standard notation and no-
tions from the theory of noncommutative Lp-spaces. Our main references are
[23] and [13] (see also [23] for more historical references). Throughout this paper,
we denote byM a semi-finite (respectively finite) von Neumann algebra on the
Hilbert spaceHwith a faithful normal semi-finite (respectively normalized finite)
trace τ. We denote by L0(M) the linear space of all τ-measurable operators. One
can show that L0(M) is a ∗-algebra with sum and product being the respective
closure of the algebraic sum and product.

Let x ∈ L0(M), and let e⊥s (|x|) = 1(s,∞)(x) be the spectral projection of |x|
corresponding to the interval (s, ∞). Define

λs(x) = τ(e⊥s (|x|)) s > 0, and µt(x) = inf{s > 0 : λs(x) 6 t} t > 0.

The function s 7→ λs(x) is called the distribution function of x and the µt(x) the
generalized singular numbers (decreasing rearrangement) of x. For more details on
generalized singular value function of measurable operators we refer to [13].

Let E be a symmetric Banach space on I. We define

LE(M) = {x ∈ L0(M) : µ·(x) ∈ E};
‖x‖LE(M) = ‖µ·(x)‖E, x ∈ LE(M).

Then (LE(M), ‖ · ‖LE(M)) is a Banach space (cf. [10], [25], [26]).
In what follows, unless otherwise specified, we always denote by E a sym-

metric Banach space on I.
Let a = (an)n>0 be a finite sequence in LE(M); define

‖a‖LE(M,`2
c )
=
∥∥∥( ∑

n>0
|an|2

)1/2∥∥∥
LE(M)

, ‖a‖LE(M,`2
r )
=
∥∥∥( ∑

n>0
|a∗n|2

)1/2∥∥∥
LE(M)

.

This gives two norms on the family of all finite sequences in LE(M). To see
this, denoting by B(`2) the algebra of all bounded operators on `2 with its usual
trace tr, let us consider the von Neumann algebra tensor productM⊗B(`2) with
the product trace τ ⊗ tr where τ ⊗ tr is a semi-finite normal faithful trace, and
the associated noncommutative LE space is denoted by LE(M⊗ B(`2)). Now,
any finite sequence a = (an)n>1 in LE(M) can be regarded as an element in
LE(M⊗B(`2)) via the following map

a 7−→ T(a) =

a1 0 . . .
a2 0 . . .
...

...
. . .

 ,

that is, the matrix of T(a) has all vanishing entries except those in the first column
which are the an’s. Such a matrix is called a column matrix, and the closure in
LE(M⊗B(`2)) of all column matrices is called the column subspace of LE(M⊗
B(`2)). Then

‖a‖LE(M,`2
c )
= ‖|T(a)|‖LE(M⊗B(`2))

= ‖T(a)‖LE(M⊗B(`2))
.
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Therefore, ‖ · ‖LE(M,`2
c )

defines a norm on the family of all finite sequences of
LE(M). The corresponding completion is a Banach space, denoted by LE(M, `2

c).
Similarly, we may show that ‖ · ‖LE(M,`2

r )
is a norm on the family of all finite

sequence in LE(M). As above, it defines a Banach space LE(M, `2
r ), which now

is isometric to the row subspace of LE(M⊗B(`2)) consisting of matrices whose
nonzero entries lie only in the first row.

We also need Ld
E(M), the space of all sequences a = (an)n>1 in LE(M) such

that
‖a‖Ld

E(M) = ‖diag(an)‖LE(M⊗B(`2))
< ∞,

where diag(an) is the matrix with the an on the diagonal and zeroes elsewhere.

1.3. NONCOMMUTATIVE MARTINGALES. Let us now recall the general setup for
noncommutative martingales. In the sequel, we always denote by (Mn)n>1 an
increasing sequence of von Neumann subalgebras of M whose union

⋃
n>1
Mn

generatesM (in the w∗-topology). (Mn)n>1 is called a filtration ofM. For n > 1,
we assume that there exists a trace preserving conditional expectation En from
M onto Mn. The restriction of τ to Mn is still denoted by τ. It is well-known
that En extends to a contractive projection from Lp(M, τ) onto Lp(Mn, τn) for all
1 6 p 6 ∞. More generally, if E is a symmetric Banach function space on I then
En is a contraction from LE(M, τ) onto LE(Mn, τ).

A noncommutative LE-martingale with respect to (Mn)n>1 is a sequence
x = (xn)n>1 such that xn ∈ LE(Mn) and

En(xn+1) = xn

for any n > 1. Set ‖x‖LE(M) = sup
n>1
‖xn‖LE(M). If ‖x‖LE(M) < ∞, then x is said to

be a bounded LE-martingale.
Let x be a noncommutative martingale. The martingale difference sequence

of x, denoted by dx = (dxn)n>1, is defined as

dx1 = x1, dxn = xn − xn−1, n > 2.

For any finite martingale x = (xn)n>1 in LE(M), we set

Sc(x) =
(

∑
k>1
|dxk|2

)1/2
and Sr(x) =

(
∑
k>1
|dx∗k |

2
)1/2

,

and define

‖x‖Hc
E(M) = ‖Sc(x)‖LE(M) = ‖dx‖LE(M,`2

c )

(respectively ‖x‖Hr
E(M) = ‖Sr(x)‖LE(M) = ‖dx‖LE(M,`2

r )
).

Let Hc
E(M) (respectively Hr

E(M)) be the corresponding completions. Then
Hc

E(M) (respectively Hr
E(M)) is a Banach space.
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We now consider the conditioned versions of square functions and Hardy
spaces developed in [15]. Let a = (an)n>1 be a finite sequence inM. We define
(recalling E0 = E1)

‖a‖Lcond
E (M,`2

c )
=
∥∥∥( ∑

n>1
En−1(|an|2)

)1/2∥∥∥
LE(M)

.

It is shown in [24] that ‖ · ‖Lcond
E (M,`2

c )
is a norm on the vector space of all fi-

nite sequences in M. We define Lcond
E (M, `2

c) to be the corresponding comple-
tion. Similarly, we define the conditioned row space Lcond

E (M, `2
r ). Note that

Lcond
E (M, `2

c) (respectively Lcond
E (M, `2

r )) is the conditioned version of LE(M, `2
c)

(respectively LE(M, `2
r )). The space Lcond

E (M, `2
c) (respectively Lcond

E (M, `2
r )) can

be viewed as a closed subspace of the column (respectively row) subspace of
LE(M⊗B(`2(N2))). We refer to [14], [15], [24] for more details on this.

For a finite noncommutative LE-martingale x=(xn)n>1 define (with E0=E1)

‖x‖hc
E(M) = ‖dx‖Lcond

E (M,`2
c )

and ‖x‖hr
E(M) = ‖dx‖Lcond

E (M,`2
r )

.

Let hc
E(M) and hr

E(M) be the corresponding completions. Then hc
E(M) and

hr
E(M) are Banach spaces. We define the column and row conditioned square

functions as follows. For any finite martingale x = (xn)n>1 in LE(M), we set

sc(x) =
(

∑
k>1
Ek−1(|dxk|2)

)1/2
and sr(x) =

(
∑
k>1
Ek−1(|dx∗k |

2)
)1/2

.

Then
‖x‖hc

E(M) = ‖sc(x)‖LE(M) and ‖x‖hr
E(M) = ‖sr(x)‖LE(M).

Let x = (xn)n>0 be a finite LE-martingale, we set

sd(x) = diag(|dxn|)

We note that
‖sd(x)‖LE(M⊗B(`2))

= ‖dxn‖Ld
E(M)

Let hd
E(M) be the subspace of Ld

E(M) consisting of all martingale difference se-
quences.

Using Lemma 6.4 in [15], Theorem 2.3 in [22] and Theorem 3.4 in [11] we
obtain the following result.

PROPOSITION 1.1. Let E be a separable symmetric Banach space on I with 1 <
pE 6 qE < ∞. Then we have:

(i) hc
E(M), hr

E(M) are complemented in LE(M⊗B(`2(N2)));
(ii) Hc

E(M), Hr
E(M) are complemented in LE(M⊗B(`2)).

By Theorem 5.6 in [12] and Proposition 1.1, it follows the following propo-
sition.
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THEOREM 1.2. Let E be a separable symmetric Banach space on [0, 1] with 1 <
pE 6 qE < ∞. Then we have:

(i) (hc
E(M))∗ = hc

E×(M) with equivalent norms;
(ii) (Hc

E(M))∗ = Hc
E×(M) with equivalent norms.

Similarly, (Hr
E(M))∗ = hr

E×(M) and (Hr
E(M))∗ = Hr

E×(M) with equivalent
norms.

2. INTERPOLATION

In this section (M; τ) always denotes a semi-finite von Neumann algebra
equipped with a faithful semi-finite trace, and (Mn)n>1 an increasing filtration
of subalgebras of M which generateM. We keep all notations introduced in the
first section.

We recall interpolation of noncommutative symmetric spaces. Let E1, E2 be
fully symmetric spaces on [0, ∞) and 0 < θ < 1. If E is complex interpolation of
E1 and E2, i.e. E = (E1, E2)θ , then

(2.1) LE(M) = (LE1(M), LE2(M))θ .

Since {diag(an) : (an) ⊂ M} is a von Neumann subalgebra of M⊗B(`2), we
have that

(2.2) Ld
E(M) = (Ld

E1
(M), Ld

E2
(M))θ .

For more details on interpolation of noncommutative symmetric spaces we refer
to [11].

This section is devoted to showing the analogue of (2.1) for the Hardy spaces
and conditioned Hardy spaces of noncommutative martingales.

PROPOSITION 2.1. Let Ej be a fully symmetric Banach spaces on [0, ∞) with 1 <
pEj 6 qEj < 2 (j = 1, 2). If 0 < θ < 1 and E = (E1, E2)θ , then:

(i) hc
E(M) = (hc

E1
(M), hc

E2
(M))θ , hr

E(M) = (hr
E1
(M), hr

E2
(M))θ ;

(ii) Hc
E(M) = (Hc

E1
(M), Hc

E2
(M))θ , Hr

E(M) = (Hr
E1
(M), Hr

E2
(M))θ .

Proof. By Theorem 3.4 in [11], we have that

LE(M⊗B(`2(N2))) = (LE1(M⊗B(`2(N2))), LE2(M⊗B(`2(N2))))θ and

LE(M⊗B(`2)) = (LE1(M⊗B(`2)), LE2(M⊗B(`2)))θ .

Using Proposition 1.1 we obtain the desired result.

LEMMA 2.2. Let Ej be a symmetric Banach space on [0, ∞) with 1 < pEj 6 qEj <

∞ (j = 1, 2) and 0 < θ < 1. Suppose that E = (E1, E2)θ , then the following holds with
equivalent norms:

(hd
E1
(M), hd

E2
(M))θ = hd

E(M).
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Proof. Since hd
E(M) consists of martingale difference sequences in Ld

E(M),
hd

E(M) is 2-complemented in Ld
E(M)) via the projection

P :
{

Ld
E(M)) −→ hd

E(M),
(an)n>1 7−→ (En(an)− En−1(an))n>1.

By (2.2), we obtain (hd
E1
(M), hd

E2
(M))θ = hd

E(M).

We define the Hardy space of noncommutative martingales and its condi-
tioned version as follows. For 1 6 pE 6 qE < 2,

HE(M) = Hc
E(M) + Hr

E(M),

equipped with the norm

‖x‖HE(M)= inf{‖y‖Hc
E(M)+‖z‖Hr

E(M) : x=y+z, y∈Hc
E(M), z∈Hr

E(M)} and

hE(M) = hc
E(M) + hr

E(M) + hd
E(M),

equipped with the norm

‖x‖hE(M) = inf{‖y‖hc
E(M) + ‖z‖hr

E(M) + ‖w‖hd
E(M) :

x = y + z + w, y ∈ hc
E(M), z ∈ hr

E(M), w ∈ hd
E(M)}.

For 2 6 pE 6 qE < ∞,

HE(M) = Hc
E(M) ∩ Hr

E(M),

equipped with the norm

‖x‖ = max{‖x‖Hc
E(M), ‖x‖Hr

E(M)} and hE(M) = hc
E(M) ∩ hr

E(M) ∩ hd
E(M),

equipped with the norm

‖x‖hE(M) = max{‖x‖hc
E(M), ‖x‖hr

E(M), ‖x‖hd
E(M)}.

THEOREM 2.3. Let Ej be a symmetric Banach space on [0, ∞) satisfying the Fatou
property, and let 1 < pEj 6 qEj < 2 (j = 1, 2). Suppose that either E1 or E2 has order
continuous norm. If 0 < θ < 1 and E = (E1, E2)θ , then:

(i) hE(M) = (hE1(M), hE2(M))θ holds with equivalent norms;
(ii) HE(M) = (HE1(M), HE2(M))θ holds with equivalent norms.

Proof. We prove only the first equivalence. The proof of the second one is
similar. From the definition of complex interpolation, it follows that

(hd
E1
(M), hd

E2
(M))θ + (hc

E1
(M), hc

E2
(M))θ + (hr

E1
(M), hr

E2
(M))θ

⊂ (hd
E1
(M) + hc

E1
(M) + hr

E1
(M), hd

E2
(M) + hc

E2
(M) + hr

E2
(M))θ .

By Proposition 2.1 and Lemma 2.2, we deduce that

hE(M) = hd
E(M) + hr

E(M) + hc
E(M) ⊂ (hE1(M), hE2(M))θ .
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On the other hand, it was shown by Calderòn [7] (see also [17], Theorem 4.1.14)
that

(E1, E2)θ = E1−θ
1 Eθ

2

holds with equality of norms. Using the result in [20] we obtain that

E×× = ((E1−θ
1 Eθ

2)
×)× = ((E×1 )1−θ(E×2 )θ)× = (E××1 )1−θ(E××2 )θ = E.

i.e., E has the Fatou property. By definition of the Boyd indices and interpolation,
we deduce that 1 < pE 6 qE < 2. Hence, by Theorem 3.1 in [24], it follows that
hE(M) = LE(M). Therefore, (2.1) gives the reverse inclusion

(hE1(M), hE2(M))θ ⊂ hE(M).

THEOREM 2.4. Let Ej be a fully symmetric Banach space on [0, ∞) with 2 <
pEj 6 qEj < ∞ (j = 1, 2). If 0 < θ < 1 and E = (E1, E2)θ , then

(i) hE(M) = (hE1(M), hE2(M))θ holds with equivalent norms;
(ii) HE(M) = (HE1(M), HE2(M))θ holds with equivalent norms.

Proof. (i) By definition, we have that

(hE1(M), hE2(M))θ

⊂ (hd
E1
(M), hd

E2
(M))θ ∩ (hc

E1
(M), hc

E2
(M))θ ∩ (hr

E1
(M), hr

E2
(M))θ .

Using Proposition 2.1 and Lemma 2.2 we obtain that

(hE1(M), hE2(M))θ ⊂ hd
E(M) ∩ hr

E(M) ∩ hc
E(M) = hE(M).

On the other hand, by Theorem 6.2 in [9] we have hEj(M) = LEj(M) (j = 1, 2).
Hence (2.1) gives the reverse inclusion (hE1(M), hE2(M))θ ⊃ hE(M).

3. AN EQUIVALENT QUASI-NORM

In this sectionM always denotes a finite von Neumann algebra equipped
with a normalized faithful trace τ, and (Mn)n>1 an increasing filtration of sub-
algebras of M which generate M. We keep all notations introduced in the first
section.

Let E be a symmetric quasi Banach space on [0, 1]. For 0 < p < ∞, we define

E(p) = {x : |x|p ∈ E},

equipped with the quasi-norm

‖x‖E(p) = ‖|x|p‖1/p
E ,

then E(p) is a symmetric quasi Banach space on [0, 1] (see [19]).
We need the following results ([1], Lemma 2.1).
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LEMMA 3.1. Let E, E1, E2 be symmetric Banach spaces on [0, 1] such that E =
E1 � E2. If x ∈ LE(M)+, then for ε > 0, there exist a ∈ L+

E1
(M) and b ∈ L+

E2
(M)

such that x = ab = ba, ‖a‖LE1 (M)‖b‖LE2 (M) < ‖x‖LE(M) + ε and a is invertible with
bounded inverse.

Let E be a separable symmetric Banach space on [0, 1] with 1 < pE 6 qE < 2
and suppose that F = (E×(1/2))× is separable. From the proof of Proposition 1.3
in [1], it follows that E = F� E×.

For an L2-martingale x we set

nc
E(x) = inf

{[
τ
(

∑
n>1
En−1(a)−1|dxn|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

and a is invertible with bounded inverse
}

and

nr
E(x) = inf

{[
τ
(

∑
n>1
En−1(a)−1|dx∗n|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

and a is invertible with bounded inverse
}

.

PROPOSITION 3.2. Let E be a separable symmetric Banach space on [0, 1] with
1 < pE 6 qE < 2 and suppose that F = (E×(1/2))× is separable. Then for any
x ∈ L2(M) we have nc

E(x) ≈ ‖x‖hc
E(M). A similar statement holds for nr

E(x) and
hr

E(M).

Proof. Applying Corollary 2.3 of [8] we obtain that En−1(a−1) > En−1(a)−1,
for all n > 1. Hence

nc
E(x) = inf

a

[
τ
(

∑
n>1
En−1(a)−1|dxn|2

)]1/2
6 inf

a

[
τ
(

∑
n>1

a−1En−1(|dxn|2)
)]1/2

.

By Lemma 3.1, for any ε > 0, there exist a ∈ L+
F (M) and b ∈ L+

E×(M) such that
sc(x) = ab, ‖a‖LF(M) = 1, ‖b‖LE× (M) < ‖sc(x)‖LE(M) + ε and a is invertible with
bounded inverse. Using Hölder inequality we find that

nc
E(x) 6

[
τ
(

∑
n>1

a−1En−1(|dxn|2)
)]1/2

=
[
τ
(

a−1 ∑
n>1
En−1(|dxn|2)

)]1/2

= [τ(a−1(sc(x))2)]1/2 = [τ(ab2)]1/2 6 [‖a‖LF(M)‖b2‖L
E×(1/2) (M)]

1/2

= ‖a‖1/2
LF(M)

‖b‖LE× (M) 6 ‖x‖hc
E(M) + ε.

Applying Theorem 1.2 we obtain that

(3.1) ‖x‖hc
E(M) . sup

‖y‖hc
E×

(M)61
|τ(y∗x)|.
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By the Cauchy–Schwarz inequality and the tracial property of τ, we have

|τ(y∗x)| =
∣∣∣ ∑

n>1
τ(dy∗ndxn)

∣∣∣ = ∣∣∣ ∑
n>1

τ(En−1(a)1/2dy∗ndxnEn−1(a)−1/2)
∣∣∣

6
[

∑
n>1

τ(En−1(a)1/2|dyn|2En−1(a)1/2)
]1/2

·
[

∑
n>1

τ(En−1(a)−1/2|dxn|2En−1(a)−1/2)
]1/2

=
[

∑
n>1

τ(aEn−1(|dyn|2))
]1/2[

∑
n>1

τ(En−1(a)−1|dxn|2)
]1/2

.

On the other hand, by Theorem 5.6 in [12], we have

∑
n>1

τ(aEn−1(|dyn|2)) = τ
(

a ∑
n>1
En−1(|dyn|2)

)
6 ‖a‖LF(M)

∥∥∥ ∑
n>1
En−1(|dyn|2)

∥∥∥
L

E×(1/2) (M)

= ‖a‖LF(M)

∥∥∥( ∑
n>1
En−1(|dyn|2)

)1/2∥∥∥2

LE× (M)

= ‖a‖LF(M)‖y‖2
hc

E× (M) 6 1.

Hence, ‖x‖hc
E(M) . nc

E(x). Passing to adjoints yields nr
E(x) ≈ ‖x‖hr

E(M).

For an L2-martingale x we define two norms:

mc
E(x) = sup

{[
τ
(

∑
n>1
En−1(a)|dxn|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

}
and

mr
E(x) = sup

{[
τ
(

∑
n>1
En−1(a)|dx∗n|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

}
.

The space
wc

E(M) = {x ∈ L2(M) : mc
E(x) < ∞}

equipped with the norm mc
E is a Banach space. Similarly, we set

wr
E(M) = {x : x∗ ∈ wc

E(M)}

equipped with the norm mr
E.

THEOREM 3.3. Let E be a separable symmetric Banach space on [0, 1] with 1 <

pE 6 qE < 2 and suppose that F = (E×(1/2))× is separable. Then we have:
(i) (hc

E(M))∗ = wc
E(M) with equivalent norms;

(ii) (hr
E(M))∗ = wr

E(M) with equivalent norms.

Proof. (i) Let x ∈ wc
E(M). Then x defines a continuous linear functional

on hc
E(M) by φx(y) = τ(yx∗) for y ∈ L2(M). To see this let a ∈ LF(M)+,
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‖a‖LF(M) 6 1 and a be invertible with bounded inverse. We fix it and the Cauchy–
Schwarz inequality gives

|φx(y)| =
∣∣∣ ∑

n>1
τ(dyndx∗n)

∣∣∣ = ∣∣∣ ∑
n>1

τ(En−1(a)−1/2dy∗ndxn)En−1(a)1/2
∣∣∣

6
[

∑
n>1

τ(En−1(a)−1|dyn|2)
]1/2[

∑
n>1

τ(En−1(a)|dxn|2)
]1/2

6
[

∑
n>1

τ(En−1(a)−1|dyn|2)
]1/2

mc
E(x).

Taking the infimum over a we obtain |φx(y)| 6 nc
E(y)m

c
E(x). Conversely, let

φ ∈ hc
E(M)∗ of norm one. As L2(M) ⊂ hc

E(M), it follows that φ induces a
continuous functional φ̃ on L2(M). Consequently, φ̃ is given by an element x of
L2(M),

φ̃(y) = τ(yx∗), ∀ y ∈ L2(M).

By the density of L2(M) in hc
E(M), we have ‖φ‖hc

E(M)∗ = sup
y∈L2(M),‖y‖hc

E(M)61
|τ(yx∗)|

= 1. Hence, by Proposition 3.2 we have

(3.2) ‖φ‖hc
E(M)∗ = sup

y∈L2(M),nc
E(y)61

|τ(yx∗)| . 1.

We want to show that mc
E(x) . 1. Let a ∈ LF(M)+, ‖a‖LF(M) 6 1 and a be

invertible with bounded inverse. We fix a, and let y be the martingale defined by
dyn = En−1(a)−1dxn. By (3.2), it follows that

τ(yx∗) = ∑
n>1

τ(En−1(a)−1|dxn|2) 6 nr
E(y) 6

[
∑
n>1

τ(En−1(a)−1|dxn|2)
]1/2

.

Hence
[

∑
n>1

τ(En−1(a)−1|dxn|2)
]1/2

6 1. Taking the supremum over a we obtain

mc
E(x) . 1.

(ii) Passing to adjoint, we obtain the desired result.

Similarly, for the Hardy spaces of noncommutative martingales HE, we
have the following results: for an L2-martingale x we set

Nc
E(x) = inf

{[
τ
(

∑
n>1
En(a)−1|dxn|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

and a is invertible with bounded inverse
}

and

Nr
E(x) = inf

{[
τ
(

∑
n>1
En(a)−1|dx∗n|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

and a is invertible with bounded inverse
}

.
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PROPOSITION 3.4. Let E be a separable symmetric Banach space on [0, 1] with
1 < pE 6 qE < 2 and suppose that F = (E×(1/2))× is separable. Then for any
x ∈ L2(M) we have Nc

E(x) ≈ ‖x‖hc
E(M). A similar statement holds for Nr

E(x) and
Hr

E(M).

The proof is similar to the proof of Proposition 3.2.
For an L2-martingale x we define two norms:

Mc
E(x) = sup

{[
τ
(

∑
n>1
En(a)|dxn|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

}
and

Mr
E(x) = sup

{[
τ
(

∑
n>1
En(a)|dx∗n|2

)]1/2
: a ∈ LF(M)+, ‖a‖LF(M) 6 1

}
.

The space
Wc

E(M) = {x ∈ L2(M) : Mc
E(x) < ∞}

equipped with the norm Mc
E is a Banach space. Similarly, we set

Wr
E(M) = {x : x∗ ∈Wc

E(M)}

equipped with the norm Mr
E.

We use Proposition 3.4 and the same method as in the proof Theorem 3.3 to
obtain the following result.

THEOREM 3.5. Let E be a separable symmetric Banach space on [0, 1] with 1 <

pE 6 qE < 2 and suppose that F = (E×(1/2))× is separable. Then we have:
(i) (Hc

E(M))∗ = Wc
E(M) with equivalent norms;

(ii) (Hr
E(M))∗ = Wr

E(M) with equivalent norms.
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