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ABSTRACT. We determine the essential spectrum of Hamiltonians with N-
body type interactions that have radial limits at infinity, which extends the
classical HVZ-theorem for potentials that tend to zero at infinity. Let E(X)
be the algebra generated by functions of the form v ◦ πY , where Y ⊂ X is a
subspace, πY : X → X/Y is the projection, and v : X/Y → C is continuous
with uniform radial limits at infinity. We consider Hamiltonians affiliated to
E (X) := E(X)oX. We determine the characters of E(X) and then we describe
the quotient of E (X)/K with respect to the ideal of compact operators, which
in turn gives a formula for the essential spectrum of any self-adjoint operator
affiliated to E (X).
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1. INTRODUCTION

1.1. Let X be a real, finite dimensional vector space and let X∗ denote its dual.
If Y ⊂ X is a subspace, πY : X → X/Y will denote the canonical projection. Let
E(X) be the closure in norm of the algebra of functions on X generated by all
functions of the form u ◦ πY, where Y runs over the set of all linear subspaces of
X and u : X/Y → C runs over the set of continuous functions that have uniform
radial limits at infinity. Since X acts continuously by translations on E(X), we can
define the crossed product C∗-algebra E (X) := E(X)oX, which will be regarded
as an algebra of operators on L2(X). Our main result on essential spectra gives
a description of the essential spectrum of any self-adjoint operator H on L2(X)
that is affiliated to E (X), i.e. such that (H + i)−1 ∈ E (X). To state this result,
we need first to introduce some notation. Thus, for x ∈ X, we let Tx denote the
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translation operator on L2(X), defined by (Tx f )(y) := f (y− x). Let SX be the set
of half-lines in X, that is

(1.1) SX := {â : a ∈ X, a 6= 0} where â := {ra : r > 0}.

We let
⋃

Sα denote the closure of the union of a family of sets Sα.

THEOREM 1.1. If H is a self-adjoint operator affiliated to E (X), then for each
a ∈ α ∈ SX , the limit τα(H) := α · H := s-lim

r→+∞
T∗raHTra exists and σess(H) =⋃

α∈SX

σ(α · H).

For the proof, see Subsection 6.4 (Theorem 6.20). The meaning of the limit
above is discussed in Remark 2.10. Here we note only that it is slightly more gen-
eral than the strong resolvent limit since the α · H could be not densely defined,
cf. Remark 5.5.

Theorem 1.1 is a consequence of Theorem 6.17 that is our main technical
result since it gives a description of the quotient C∗-algebra of E (X) with respect
to the ideal of compact operators, cf. Corollary 6.19. More precisely, let [α] denote
the one dimensional linear subspace generated by α ∈ SX and let E(X/[α]) be the
subalgebra of E(X) generated by the functions u ◦πY with Y ⊃ α and u as before.
Then E(X/[α]) is stable under translations, so the crossed product E(X/[α])o X
is well defined, and we have a canonical embedding

(1.2) E (X)/K (X) ↪→ ∏
α∈SX

E(X/[α])o X

defined as follows. For any A ∈ E (X) the limit s-lim
r→+∞

T∗ra ATra =: τα(A) ex-

ists, the map τα is a ∗-algebra morphism and a linear projection of E (X) onto
its subalgebra E (X/[α]), and an operator A ∈ E (X) is compact if and only if
τα(A) = 0 for all α ∈ SX . Then the injective morphism (1.2) is induced by the
map τ(A) := (τα(A))α∈SX .

1.2. In the next few subsections we give some concrete examples of self-adjoint
operators on L2(X) affiliated to E (X).

We recall first some facts concerning the spherical compactification of X (see
Section 3). The set SX is thought of as the sphere at infinity of X and X := X ∪ SX ,
equipped with a certain compact space topology, is the spherical compactification
of X. If f is a complex valued function on X and α ∈ SX , then lim

x→α
f (x) = c (or

lim
α

f = c) in the sense of the topology of X means the following: “for any ε > 0

there is an open truncated cone C such that α is eventually in C and | f (x)− c| < ε
if x ∈ C”. A subset of X is a cone if it is a union of half-lines. A truncated cone C
is the intersection of a cone with the complement of a bounded set. A half-line α
is eventually in such a C if there is a ∈ α such that ra ∈ C ∀r > 1. Functions f with
values in an arbitrary topological spaces are treated in exactly the same way.
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The algebra C(X) of continuous functions on X can be identified with the
set of continuous functions u on X such that lim

α
u exists for all α ∈ SX (this is

equivalent to the existence of the uniform radial limits at infinity). Then we can
regard C(X/Y) as an algebra of continuous functions on X/Y. Indeed, when
there is no danger of confusion, we will identify a function u on X/Y with the
function u ◦πY on X. Thus, we shall think of C(X/Y) as an algebra of continuous
functions on X. Then E(X) is the C∗-algebra generated by these algebras when Y
runs over the set of all subspaces of X.

The following notion of convergence in the mean at points α ∈ SX is natural
in our context (see Section 3). If u is a complex function on X and c is a complex
number then we write m-lim

α
u = c, or m-lim

x→α
u(x) = c, if lim

a→α

∫
a+Λ

|u(x)− c|dx = 0

for some (hence any) compact neighborhood of the origin Λ in X. This also makes
sense if u ∈ L1

loc(X).
Let B(X) be the set of functions u ∈ L∞(X) such that m-lim

α
u exists for

any α ∈ SX . This is clearly a C∗-subalgebra of L∞(X). Then B(X/Y) is well
defined for any subspace Y ⊂ X and we have an obvious C∗-algebra embedding
B(X/Y) ⊂ L∞(X).

Finally, let E ](X) ⊂ L∞(X) be the C∗-subalgebra generated by the algebras
B(X/Y) when Y runs over the set of all linear subspaces of X. The algebra E ](X)
is, in some sense, a natural extension of E(X), cf. Proposition 6.24.

1.3. We now give the several examples of operators affiliated to E (X). First,
consider pseudo-differential operators of the form

(1.3) H = h(p) + v

where h : X∗ → R is a continuous proper function and v ∈ E ](X) is a real
function. Here

(1.4) h(p) := F−1mhF ,

where F is a Fourier transform L2(X) → L2(X∗) and mh denotes the operator
of multiplication by h. Recall that a function h : X∗ → R is said to be proper
if |h(k)| → ∞ for k → ∞. It is clear that the operator H given by (1.3) is self-
adjoint on the domain of h(p), since h(p) is self-adjoint by spectral theory and v
is a bounded operator.

As a second example of affiliated operators, we consider differential opera-
tors on X = Rn of the form

(1.5) L = ∑
|µ|,|ν|6m

pµgµν pν

where m > 1 is an integer and gµν ∈ E ](X). The notations are standard: pj =
−i∂j, where ∂j is the derivative with respect to the j-th variable, and for µ =

(µ1, . . . , µn) ∈ Nn we set pµ = pµ1
1 · · · p

µn
n and |µ| = µ1 + · · · + µn. For real s,
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let Hs be the usual Sobolev space on X, in particular H0 ≡ H = L2(X). Then
L : Hm → H−m is a well defined operator and we assume that there exist γ, δ > 0
such that

(1.6) 〈u|Lu〉+ γ‖u‖2 > δ‖u‖2
m, for all u ∈ Hm.

Here ‖ · ‖ and ‖ · ‖m denote the usual norms on H and Hm. Note that, since the
gµν are bounded, this is a condition only on the principal part of L (i.e. the part
corresponding to |µ| = |ν| = m). Then L + γ : Hm → H−m is a symmetric iso-
morphism, and hence the restriction of L to (L + γ)−1H is a self-adjoint operator
inH that we will denote by H:

(1.7) H := L : (L + γ)−1H → H.

THEOREM 1.2. Both operators H defined above in equations (1.5) and (1.7) are
affiliated to E (X).

We make some remarks in connection with the Theorem 1.2.

(i) If H is given by (1.3) then the strong limit in Theorem 1.1 exists in the usual
sense of pointwise convergence on the domain of H. (Let us notice that in this
case, the domain of H is invariant for the action of Tra.) If H is associated to the
operator L from (1.5), then the limit holds in the strong topology of B(Hm,H−m).

(ii) The union that gives σess(H) in Theorem 1.1 may contain an infinite num-
ber of distinct terms even in simple N-body type cases. Indeed, an example can be
obtained by choosing X = R2, Y to be a countable set of lines (whose union could
be dense in X), and H := ∆+ ∑

Y
vY for some conveniently chosen vY ∈ Cc(X/Y)

satisfying ∑
Y

sup |vY| < ∞.

(iii) The coefficients gµν in the principal part of L are bounded Borel functions,
and locally this cannot be improved. But the other coefficients gµν and the po-
tential v are assumed bounded only for the sake of simplicity, see Remark 6.25
for more general results. Later on, we shall also treat unbounded, not necessarily
local perturbations. See for example Theorems 1.6 and 1.10.

(iv) We stated the applications of the abstract theorems in a way adapted to
elliptic operators, but the extension to hypoelliptic operators is easy: it suffices to
consider functions h ∈ Cm with bounded derivatives of order m and to replace
the Sobolev spaces by spaces associated to weights of the form ∑

|µ|6m
|h(µ)(k)|.

(v) Theorem 1.2 and the other results of the same nature remain true, with
essentially no change in the proof, if the space L2(X) is replaced by L2(X) ⊗ E
with E a finite dimensional complex Hilbert space and gµν and v are B(E)-valued
functions. For this it suffices to work with the algebra E (X)⊗ B(E) or the more
general and natural object E (X)⊗K(E) where E can be an infinite dimensional
Hilbert space. This covers matrix differential operators, e.g. the Dirac operator,
which are not semi-bounded, and hence the general affiliation criterion Theo-
rem 5.7 has to be used.
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Operators of the form (1.3) (and hence also Theorem 1.2 and its generaliza-
tions) cover many of the most interesting (from a physical point of view) Hamil-
tonians of N-body systems. Here are two typical examples. First, in the non-
relativistic case, X is equipped with a Euclidean structure and a typical choice
for h is h(ξ) = |ξ|2, which gives h(p) = ∆. Second, in the case of N relativistic
particles of spin zero and masses m1, . . . , mN , we take X = (R3)N and, writing
the momentum p as p = (p1, . . . , pN) where pj = −i∇j acts in L2(R3), we have

h(p) =
N

∑
j=1

(p2
j + m2

j )
1/2.

We refer to [12] for a thorough study of the spectral and scattering theory of the
non-relativistic N-body Hamiltonians with k-body potentials that tend to zero at
infinity. We also note that second order perturbations with an N-body structure of
the Laplacian, i.e. operators L of second order with non trivial gµν in the principal
part, are of physical interest in the context of pluristratified media [13].

1.4. The structure of the potential v and of the coefficients gµν considered above
is more complicated than in the usual case of N-body hamiltonians because it can
contain products of the form vE ◦πE · vF ◦πF, which cannot be written as vG ◦πG
as in the usual N-body case (here E, F, G are subspaces of X and in the usual N-
body situation one may take G = E ∩ F). If v has a simpler structure, similar to
that of the standard N-body potentials, then Theorem 1.2 may be reformulated
in a way that stresses the similarity with the usual HVZ theorem. Moreover, in
this case we will be able to treat a considerably more general class of nonlocal
potentials vY (see Subsection 1.5).

Assume that, for each subspace Y ⊂ X, a real function vY ∈ B(X/Y) is
given such that vY = 0 for all but a finite number of subspaces Y and let v =

∑
Y

vY ∈ E ](X) (recall the identification vY ≡ vY ◦πY). If α 6⊂ Y then πY(α) ∈ SX/Y

is a well defined half-line in the quotient and we may define vY(α) = m-lim
πY(α)

vY

(see Subsection 1.2 page 335).

PROPOSITION 1.3. For each α ∈ SX , let

(1.8) Hα := h(p) + ∑
Y⊃α

vY + ∑
Y 6⊃α

vY(α).

Then α · H = Hα and hence σess(H) =
⋃

α∈SX

σ(Hα).

REMARK 1.4. The usual N-body type Hamiltonians are characterized by
the condition that all the vY : X/Y → R vanish at infinity. Then we obtain
α · H = h(P) + ∑

Y⊃α
vY, so Proposition 1.3 becomes the usual version of the HVZ

theorem.
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1.5. We give now further examples of self-adjoint operators with nonlocal and
unbounded interaction affiliated to E (X). Let Mk be the multiplication operator
(Mk f )(x) = eik(x) f (x) for k ∈ X∗. Later we shall use the notation 〈x|k〉 := k(x).

If the perturbation V is bounded, then there are no restrictions on h besides
being proper and continuous. Indeed, we have the following result.

THEOREM 1.5. Let H = h(p) + V, where h : X∗ → R is a continuous, proper
function and V = ∑

Y
VY is a finite sum with VY bounded symmetric linear operators on

L2(X) satisfying:
(i) lim

k→0
‖[Mk, VY]‖ = 0;

(ii) [Ty, VY] = 0 for all y ∈ Y;
(iii) s-lim

a∈X/Y,a→α
T∗a VYTa exists for each α ∈ SX/Y.

Then H is affiliated to E (X).

Note that in the above Theorem 1.5, the operator T∗x VYTx depends a priori
on the point x in X, but if condition (ii) is satisfied, then it depends only on the
class πY(x) of x in X/Y. Therefore we may set T∗

πY(x)VYTπY(x) = T∗x VYTx, which
gives a meaning to T∗a VYTa for any a ∈ X/Y in condition (iii) above.

In order to treat unbounded interactions, we have to require more regularity
on the function h. We denote by | · | a Euclidean norm on X∗.

THEOREM 1.6. Let h : X∗ → [0, ∞) be locally Lipschitz with derivative h′ such
that for some real numbers c, s > 0 and all k ∈ X∗ with |k| > 1

(1.9) c−1|k|2s 6 h(k) 6 c|k|2s and |h′(k)| 6 c|k|2s.

Let V = ∑ VY be a finite sum with VY : Hs → H−s symmetric operators satisfying:
(i) there are numbers γ, δ with γ < 1 such that V > −γh(p)− δ;

(ii) lim
k→0
‖[Mk, VY]‖Hs→H−s = 0;

(iii) [Ty, VY] = 0 for all y ∈ Y;
(iv) s-lim

a∈X/Y,a→α
T∗a VYTa exists in B(Hs,H−s) for all α ∈ SX/Y.

Then h(p)+V is a symmetric operatorHs → H−s, which induces a self-adjoint operator
H in L2(X) affiliated to E (X).

REMARK 1.7. If VY is the operator of multiplication by a measurable func-
tion, then condition (ii) of Theorem 1.6 is automatically satisfied. On the other
hand, condition (iii) gives that VY(x + y) = VY(x) for all x ∈ X and y ∈ Y.
This means that VY = vY ◦ πY for a measurable function vY : X/Y → R, which
has to be such that the operator of multiplication by VY is a continuous map
Hs(X) → H−s(X). For this it suffices that the operator vY(qY) of multiplication
by vY be a continuous map of Hs(X/Y) into H−s(X/Y) (here qY is the position
observable in L2(X/Y)). Then the last condition means that lim

a→α
vY(qY + a) exists

strongly in B(Hs(X/Y),H−s(X/Y)).
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EXAMPLE 1.8. Let us consider the case of non-relativistic Schrödinger op-
erators. Then X is a Euclidean space (so we may identify X/Y = Y⊥) and
H0 := ∆ = p2 is the (positive) Laplace operator, and hence s = 1. The total
Hamiltonian is of the form H = ∆+∑

Y
VY where the sum is finite and VY = 1⊗V◦Y

where V◦Y : H1(Y⊥) → H−1(Y⊥) is a symmetric linear operator whose relative
form bound with respect to the Laplace operator on Y⊥ is zero (this is much more
than we need). Then assume MkV◦Y = V◦Y Mk for all k ∈ Y⊥. For example, V◦Y
could be the operator of multiplication by a function vY : Y⊥ → R of Kato class
Kn(Y) with n(Y) = dim(Y⊥) (see Section 1.2 in [8], especially assertion (2) page
8) but it could also be a distribution of non zero order. Indeed, we may take as vY
the divergence of a vector field on Y⊥ whose components have squares of Kato
class (e.g. are bounded functions): this covers highly oscillating perturbations of
potentials that have radial limits at infinity. Note that this Kato class is convenient
because then vY ◦πY is of class Kdim(X), see p. 8 of [8]. To get (iv) of Theorem 1.6 it
suffices to assume lim

a→α
vY(·+ a) exists strongly in B(H1(Y⊥),H−1(Y⊥)) for each

α ∈ SY⊥ .

1.6. The spherical algebra S (X) := C(X) o X ⊂ E (X) has several interesting
properties. For example, it contains the ideal K (X) = C0(X)o X of compact op-
erators on L2(X). It is remarkable that both S (X) and its quotient S (X)/K (X)
may be described in quite explicit terms. In the next theorem and in what follows,
we adopt the following convention: if we write S(∗) in a relation, then it means
that relation holds for S(∗) replaced by either S or S∗. Let C∗(X) be the group
C∗-algebra of X, cf. Section 2.

THEOREM 1.9. A bounded operator S on L2(X) belongs to S (X) if and only if

lim
x→0
‖(Tx − 1)S(∗)‖ = 0, lim

k→0
‖[Mk, S]‖ = 0, and

s-lim
a→α

T∗a S(∗)Ta exists for any α ∈ SX .

If S ∈ S (X) and α ∈ SX , then τα(S) = s-lim
a→α

T∗a STa belongs to C∗(X). The map

τ(S) : α 7→ τα(S) is norm continuous, so τ : S (X)→ C(SX)⊗ C∗(X). This map τ is
a surjective morphism and its kernel is K (X). Hence we have a natural identification

(1.10) S (X)/K (X) ∼= C(SX)⊗ C∗(X) ∼= C0(SX × X∗).

If H is a self-adjoint operator affiliated to S (X), then the limit α · H := s-lim
a→α

T∗a HTa

exists for each α ∈ SX and σess(H) =
⋃
α

σ(α · H).

Note that in this theorem (as well as in the next), we consider the plain
union, not its closure. The next result is a general criterion of affiliation to S (X).

THEOREM 1.10. Let H be a bounded from below self-adjoint operator on L2(X)
such that its form domain G satisfies the following condition: the operators Tx and Mk
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leave G invariant, the operators Tx are uniformly bounded in G, and lim
x→0
‖Tx−1‖G→H =

0. Assume that ‖[Mk, H]‖G→G∗ → 0 as k→ 0 and that the limit α · H := lim
a→α

T∗a HTa

exists strongly in B(G,G∗), for all α ∈ SX . Then H is affiliated to S (X), for each α ∈
SX the operator in L2(X) associated to α · H is self-adjoint, and σess(H) =

⋃
α

σ(α · H).

Let us notice an important difference between the morphisms τα of Theo-
rems 1.1 and 1.10. (These morphisms appear in the computation of the quotients
in (1.2) and (1.10).) More precisely, in the definition of the first τ, we take limits
over ra, with r → ∞, that are limits along rays, whereas in the second one we
take general limits a → α (not just along the ray α). The stronger assumptions in
Theorem 1.10 then lead to a stronger result (in that we do not need the closure of
the union to obtain the spectrum).

1.7. Descriptions of the essential spectrum of various classes of Hamiltonians
in terms of limits at infinity of translates of the operators have already been ob-
tained before, see for example [27], [21], [43], [31], [47] (in historical order). Our
approach is based on the “localization at infinity” technique developed in [21],
[22] in the context of crossed-products of C∗-algebras by actions of abelian lo-
cally compact groups. This has been extended to noncommutative unimodular
amenable locally compact groups in [20], cf. Proposition 6.5 and Theorem 6.8
there. The case of noncommutative groups has also been considered recently in
[35]. See [8], [44] for a general introduction to the basics of the problems studied
here.

A homogeneous potential of degree zero outside of a compact set models
a force that is perpendicular to the line joining the particle to the origin, and
hence trying to force the particle to move on a sphere. Results on operators with
homogeneous potentials or similar potentials were obtained, for example, in [26],
[28], [29], [46], where further physical motivation is provided.

In fact, our results shed some new light even on the classical case when the
auxiliary functions vY that define VY converge to 0 at infinity, since in our case
the spectra of the relevant algebras are easier to compute and then can be used
to describe the spectra in the classical case. Compared to the classical approach
[8], [44] to the essential spectrum of the N-body problem, our approach has the
advantage that it is more conceptual, and, once a certain machinery has been
developed, one can obtain rather quickly generalizations of these results to other
operators. It also takes advantage of a rather well developed theory of crossed
products and representations of C∗-algebras. We also develop general techniques
that may be useful for the study of other types of operators and of other types of
questions, such as the study of the eigenvalues and eigenfunctions of H, even in
the case when the radial limits at infinity are zero. We mention that, by using
the expression (1.8) for the asymptotic operators, one could prove the Mourre
estimate as in Section 9.4 of [2] for the larger class of Hamiltonians considered in
Proposition 1.3.
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1.8. Let us briefly describe the contents of the paper. In Section 2, we recall some
facts concerning crossed products with X of translation invariant C∗-algebras of
bounded uniformly continuous functions on X and the role of operators with
the “position-momentum limit property” in this context. Then we discuss the
question of the computation of the quotient with respect to the compacts of such
crossed products. In Section 3, we briefly describe the topology and the con-
tinuous functions on the spherical compactification X of a real vector space X.
This allows us to introduce and study in Section 4 the spherical algebra S (X) :=
C(X)o X. We obtain an explicit description of the operators that belong to S (X)
(Theorem 4.2) and we give an explicit description of the quotient S (X)/K (X)
(Theorem 4.3). The canonical composition series of this algebra leads to Fredholm
conditions, and hence to a determination of the essential spectrum for the oper-
ators affiliated to it. In Section 5, we give some general criteria for a self-adjoint
operator to be affiliated to a general C∗-algebra and apply them to the case of
S (X). The algebras E(X) and E (X) are studied in Section 6. Subsections 6.3 and
6.4 contain the main technical results. At a technical level, the main result in this
section is the description of the spectrum of E(X) (Theorem 6.13). Subsection 6.4
is devoted to the study of the Hamiltonian algebra E (X) and we prove in this sec-
tion two of our main results, Theorems 6.17 and 6.20. In Subsection 6.5 we prove
Theorems 1.2, 1.5 and 1.6, which describe a general class of operators affiliated
to E (X) for which we obtain explicit descriptions of the essential spectrum. We
note that Theorem 6.26 gives descriptions of the algebras C(X/Y)o X generating
E (X) that are not relying on their definition as crossed products.

This paper contains the full proofs of the results announced in [23], as well
as several extensions of those results.

2. CROSSED PRODUCTS AND LOCALIZATIONS AT INFINITY

In this section, we review some needed results from [22] relating essential
spectra of operators and the spectrum (or character space) of some algebras.

If X is a finite dimensional vector space, we denote by Cb(X) the algebra
of bounded continuous functions on X, by C0(X) its ideal consisting of functions
vanishing at infinity, and by Cu

b (X) the subalgebra of bounded uniformly contin-
uous functions. Let B(X) := B(L2(X)) be the algebra of bounded operators on
L2(X) and K (X) := K(L2(X)) the ideal of compact operators.

If Y is a subspace of X, we identify a function u on X/Y with the function
u ◦ πY on X. In other terms, we think of a function on X/Y as being a function
on X that is invariant under translations by elements of Y. This clearly gives an
embedding Cu

b (X/Y) ⊂ Cu
b (X). The subalgebras of Cu

b (X/Y) can then be thought
of as subalgebras of Cu

b (X). Thus C0(X/Y) and the algebra C(X/Y) that we shall
introduce below are both embedded in Cu

b (X).
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For any function u, we shall denote by mu the operator of multiplication by
u on suitable L2 spaces. If u : X → C and v : X∗ → C are measurable functions,
then u(q) and v(p) are the operators on L2(X) defined as follows: u(q) = mu,
the multiplication operator by u, and v(p) = F−1mvF , where F is the Fourier
transform L2(X) → L2(X∗). If x ∈ X and k ∈ X∗, then the unitary operators Tx
and Mk are defined on L2(X) by

(2.1) (Tx f )(y) := f (y− x) and (Mk f )(y) := ei〈y|k〉 f (y),

and can alternatively be written in terms of p and q as Tx = e−ixp and Mk = eikq.
We shall denote by C∗(X) the group C∗-algebra of X: this is the closed sub-

space of B(X) generated by the operators of convolution with continuous, com-
pactly supported functions. The map v 7→ v(p) establishes an isomorphism be-
tween C0(X∗) and C∗(X).

We shall need the following general result about commutative C∗-algebras.
Let A be a commutative C∗-algebra and Â be its spectrum (or character space),
consisting of non-zero algebra morphisms χ : A → C. If A is unital, then Â
is a compact topological space for the weak topology. In general, it is locally
compact and the Gelfand transform ΓA : A → C0(Â), ΓA(u)(χ) := χ(u), defines
an isometric algebra isomorphism. In particular, any commutative C∗-algebra
is of the form C0(Ω) for some locally compact space (up to isomorphism). The
characters of C0(Ω) are of the form χω, ω ∈ Ω, where

(2.2) χω(u) := u(ω) u ∈ C0(Ω).

If X acts continuously on a C∗-algebra A by automorphisms, we shall denote by
A o X the resulting crossed product algebra, see [41], [51]. Here the real vec-
tor space X is regarded as a locally compact, abelian group in the obvious way.
Recall [21] that if A is a translation invariant C∗-subalgebra of Cu

b (X), then an
isomorphic realization of the cross-product algebra Ao X is the norm closed lin-
ear subspace of B(X) generated by the operators of the form u(q)v(p), where
u ∈ A and v ∈ C0(X∗). As a rule, we shall denote by τa the action of a ∈ X by
translations on our algebras of functions.

DEFINITION 2.1. Let A ∈ B(X). We say that A has the position-momentum
limit property if lim

x→0
‖(Tx − 1)A(∗)‖ = 0 and lim

k→0
‖[Mk, A]‖ = 0.

A characterization of operators having the position-momentum limit prop-
erty in terms of crossed products was given in [21]: it is shown that A has the
position-momentum limit property if and only if A ∈ Cu

b (X)o X.
If A is an operator on L2(X), then its translation by x ∈ X is defined by the

relation

(2.3) τx(A) := T∗x ATx.

The notation x · A := τx(A) will often be more convenient. If u is a function on
X we also denote τx(u) ≡ x · u its translation given by (x · u)(y) = u(x + y).
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The notations are naturally related: τx(u(q)) = (x · u)(q) ≡ u(x + q). Note that
τx(v(p)) = v(p).

By a “point at infinity” of X, we shall mean a point in the boundary of X
in a certain compactification of it. We shall next define the translation by a point
at infinity χ for certain functions u and operators A. This construction will be
needed for the description of the essential spectrum of operators of interest for us.

Let us fix a translation invariant C∗-algebra A of bounded uniformly con-
tinuous functions on X containing the functions that have a limit at infinity:
C0(X) + C ⊂ A ⊂ Cu

b (X). To every x ∈ X, there is an associated character
χx, defined by χx(u) := u(x) for u ∈ A, cf. (2.2). Since A ⊃ C0(X), X is naturally
embedded as an open dense subset in Â. Thus Â is a compactification of X and

(2.4) δ(A) := Â \ X,

the boundary of X in this compactification, is a compact set that can be character-
ized as the set of characters χ of A whose restriction to C0(X) is equal to zero.

Let us recall that if x, y ∈ X, then (x · u)(y) = u(x + y) = χx(y · u). If u ∈ A,
we extend the definition of x · u by replacing in this relation χx with a character
χ ∈ Â.

DEFINITION 2.2. Let u ∈ A and χ ∈ Â. Then we define (χ · u)(y) := χ(y · u)
for all y ∈ X.

Since u is uniformly continuous, it is easy to check that τχ(u) := χ · u ∈
Cu

b (X) and that τχ : A → Cu
b (X) is a unital morphism. We will say that τχ is the

morphism associated to the character χ. We note that if the character χ corresponds
to x ∈ X, then τχ = τx, so our notation is consistent.

In particular, we get “translations at infinity” of u ∈ A by elements χ ∈
δ(A). The function χ 7→ χ · u ∈ Cu

b (X) defined on Â is continuous if Cu
b (X)

is equipped with the topology of local uniform convergence, and hence χ · u =
lim
x→χ

x · u in this topology for any χ ∈ δ(A). One has u ∈ C0(X) if and only if

χ · u = 0 for all χ ∈ δ(A). We mention that a translation χ · u by a point at infinity
χ ∈ δ(A) does not belong to A in general. However, we shall see that this is true
in the case A = E(X) of interest for us, so in this case τχ is an endomorphism
of A.

If A ∈ Ao X, then we may also consider “translations at infinity” τχ(A) by
elements χ of the boundary δ(A) of X in Â and we get a useful characterization
of the compact operators. The following facts are proved in Subsection 5.1 of [22].

PROPOSITION 2.3. For each χ ∈ Â, there is a unique morphism τχ : Ao X →
Cu

b (X)o X such that

τχ(u(q)v(p)) = (χ · u)(q)v(p), for all u ∈ A, v ∈ C0(X).

If A ∈ Ao X, then χ 7→ τχ(A) is a strongly continuous map Â → B(X).
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As before, we often abbreviate τχ(A) = χ · A. This gives a meaning to the
translation by χ of any operator A ∈ Ao X and any character χ ∈ Â. Observe
that χ 7→ χ · A is just the continuous extension to Â of the strongly continuous map
X 3 x 7→ x · A. In particular,

(2.5) τχ(A) = s-lim
x→χ

T∗x ATx for all A ∈ Ao X and χ ∈ δ(A).

We have K (X) = C0(X) o X ⊂ A o X. Then Theorem 1.15 of [22] gives the
following.

THEOREM 2.4. An operator A ∈ A o X is compact if and only if τχ(A) =
0 for all χ ∈ δ(A). In other terms:

⋂
χ∈δ(A)

ker τχ = K (X). The map τ(A) =

(τχ(A))χ∈δ(A) induces an injective morphism

(2.6) Ao X/K (X) ↪→ ∏
χ∈δ(A)

Cu
b (X)o X.

REMARK 2.5. We emphasize the relation between this result and some facts
from the theory of crossed products. The operation of taking the crossed product
by the action of an amenable group transforms exact sequences in exact sequences
([51], Proposition 3.19), and hence we have an exact sequence

(2.7) 0→ C0(X)o X → Ao X → (A/C0(X))o X → 0.

Since C0(X)o X ' K (X), we get Ao X/K (X) ' (A/C0(X))o X, which re-
duces the computation of the quotientAoX/K (X) to a description ofA/C0(X).
This is convenient since A/C0(X) ' C(δ(A)). Moreover, we have τχ = τχ o idX,
where the morphisms τχ on the right hand side are those corresponding toA. We
complete this remark by noticing that if χ and χ1 are obtained from each other
by a translation by x ∈ X, then the corresponding morphisms τχ and τχ1 are uni-
tarily equivalent by the unitary corresponding to x. In particular, in the above
theorem and in the following corollary, it suffices to use one χ from each orbit of
X acting on δ(A).

REMARK 2.6. Let us notice that in view of the results in [14], [51], the above
theorem provides nontrivial information on the cross-product algebra C(δ(A))o
X, and hence on the action of X on δ(A). It would be interesting to study the cor-
responding properties for a general Lie group G acting on Cu

b (G) [35]. Morphisms
analogous to the τχ can be defined also in a groupoid framework [32], [38], but
they do not have a similar, simple interpretation as strong limits. It would be
interesting to understand the connections between the above theorem and the
representation theory of groupoids [6], [7], [15], [30], [45]. Similar structures arise
also in the representation theory of solvable Lie groups [4]. Moreover, several im-
portant examples of non-compact manifolds that arise in other problems lead to
groupoids that are locally of the form studied in this paper (but possibly replacing
X by a general Lie group G, see [24], [25], [36] and many other papers).
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Let A be a bounded operator. By definition, λ /∈ σess(A) if and only if A− λ
is Fredholm. For a self-adjoint operator A, this is equivalent to the usual defini-
tion: “λ ∈ σess(A) if and only if λ is an accumulation point of σ(A) or an isolated
eigenvalue of infinite multiplicity”. The advantage of this second definition is
that it extends right away to unbounded, normal operators (see, for instance, Re-
mark 2.9). A crucial observation then is that λ /∈ σess(A) if and only if the image
Â− λ of A− λ in the quotient B(X)/K (X) is invertible, by Atkinson’s theorem.
So σess(A) = σ(Â). On the other hand, the spectrum of a normal operator in a
product of C∗-algebras is equal to the closure of the union of the spectra of its
components. Thus the theorem above gives right away the following corollary.

COROLLARY 2.7. If A ∈ Ao X is normal, then σess(A) =
⋃

χ∈δ(A)
σ(τχ(A)).

If A ∈ B(X), then the element Â ∈ B(X)/K (X) may be called the lo-
calization at infinity of A. If A ∈ A o X, then its localization at infinity can
be identified with the element τ(A) = (τχ(A))χ∈δ(A). Then the component
τχ(A) ∈ Cu

b (X) o X is called localization of A at χ ∈ δ(A). Thus the essential
spectrum of A ∈ Ao X is the closure of the union of the spectra of all its localizations at
infinity, where the “infinity” is determined by A.

We extend now the notion of localization at infinity and the formula for the
essential spectrum to certain unbounded self-adjoint operators related to Ao X.
Recall that a self-adjoint operator H on a Hilbert space H is affiliated to a C∗-
algebra C ⊂ B(H) if (H − z)−1 ∈ C for some number z outside the spectrum
of H [9]. Clearly, this implies ϕ(H) ∈ C for all ϕ ∈ C0(R). We shall make some
more comments on this notion after the next corollary.

COROLLARY 2.8. If H is a self-adjoint operator on L2(X) affiliated to A o X,
then, for each χ ∈ δ(A), the limit τχ(H) := s-lim

x→χ
T∗x HTx exists and σess(H) =⋃

χ∈δ(A)
σ(τχ(H)).

The meaning of the limit above will be discussed below.

REMARK 2.9. Corollary 2.8 is an immediate consequence of Theorem 2.4 if
one thinks in terms of the functional calculus associated to H. Indeed, a real λ
does not belong to σess(H) if and only if there is ϕ ∈ C0(R) with ϕ(λ) 6= 0 such
that ϕ(H) is compact.

For a detailed discussion of the notion of affiliation that we use in this paper
we refer to Section 8.1 of [2] (or Appendix A of [9]). This notion is inspired by the
quantum mechanical concept of observable as introduced by J. von Neumann
in the 1930s (see e.g. Section 3.2 of [49] for a general and precise mathematical
formulation) and later (1940s) developed in the von Neumann algebra setting. A
notion of affiliation in the C∗-algebra setting has also been introduced by S. Baaj
and S.L. Woronowicz [3], [52] but it is different from that we use here: the contrary
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was erroneously stated in p. 534 of [21], but has been corrected in p. 278 of [9]. For
example, any self-adjoint operator on a Hilbert spaceH is affiliated to the algebra
of compact operators K(H) in the sense of Baaj–Woronowicz, but a self-adjoint
operator is affiliated to K(H) in our sense if and only if it has purely discrete
spectrum.

According to our definition, a self-adjoint operator affiliated to an “abstract”
C∗-algebra C is the same thing as a real valued observable affiliated to C , i.e. it
is just a morphism Φ : C0(R) → C . If C ⊂ B(H), then a densely defined self-
adjoint operator H defines an observable by Φ(ϕ) = ϕ(H) for ϕ ∈ C0(R), and
we say that H is affiliated to C if this observable is affiliated to C . But there are
observables affiliated to C that are not of this form: they are associated to self-
adjoint operators K acting in closed subspaces K ⊂ H as explained in the next
remark. See Section 8.1.2 of [2] for a precise statement and proof.

We now explain the meaning of s-lim
x→χ

T∗x HTx for an arbitrary self-adjoint

operator H.

REMARK 2.10. Let Y be a topological space, z a point in Y, and let {Hy}
be a set of self-adjoint operators (possibly unbounded) on a Hilbert space H,
parametrized by Y \ {z}. The example that we have in mind is Hx := T∗x HTx,
x ∈ X, and Y obtained from X by adding some point of a compactification. We
say that s-lim

y→z
Hy exists if the strong limit Φ(ϕ) := s-lim

y→z
ϕ(Hy) exists for each

function ϕ ∈ C0(R). It is easy to see that this is equivalent to the existence of
s-lim
y→z

(Hy − λ)−1 for some λ ∈ C \ R. But we emphasize that this does not mean

that there is a self-adjoint operator K on H such that Φ(ϕ) = ϕ(K) for all ϕ ∈ C0(R)
if the notion of self-adjointness is interpreted in the usual sense, which requires
the domain to be dense in H. However, the following is true: there is a closed
subspace K ⊂ H and a self-adjoint operator (in the usual sense) K in K such
that Φ(ϕ)ΠK = ϕ(K)ΠK and Φ(ϕ)Π⊥K = 0, where ΠK is the projection onto
K. The couple (K, K) is uniquely defined and we write s-lim

y
Hy = K. One may

have K = {0}, in which case we write s-lim
y

Hy = ∞. See the Remark 5.5 for an

example.

3. SPHERICAL COMPACTIFICATION

As before, X is a finite dimensional real vector space. We now briefly dis-
cuss the definition of the spherical compactification X of X, its topology, and the
definition of continuous functions on X. Recall that the sphere at infinity SX of
X is the set of all half-lines α = â := R+a, with R+ = (0, ∞) and a ∈ X \ {0},
equipped with the following topology: the open sets in SX are the sets of the
form {â : a ∈ O} with O open in X \ {0}. Let us denote by X the disjoint union
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X ∪ SX . If | · | is an arbitrary norm on X, then SX is homeomorphic to the unit
sphere SX := {|ξ| = 1} in X and X = X ∪ SX can be endowed with a natural
topology that makes it homeomorphic to the closed unit ball in X. The resulting
topological space X will be referred to as the spherical compactification of X and is
discussed in detail in this subsection, since we need a good understanding of the
continuous functions on X.

It is convenient to have an explicit description of the topology of X inde-
pendent of the choice of a norm. A cone C (in X) is a subset of X stable under the
action of R+ by multiplication. Put differently, C is a union of half-lines. A trun-
cated cone (in X) is the intersection of a cone with the complement of a bounded
set. A half-line α is eventually in the truncated cone C if there is a ∈ α such that
λa ∈ C if λ > 1. Let C† ⊂ SX be the set of half-lines that are eventually in C.
Then the sets of the form C†, with C an open truncated cone, form a base of the
topology of SX . For any open truncated cone C in X, we denote C‡ := C ∪ C†.
Then the open sets of X and the sets of the form C‡ form a base of the topology
of X. It is easy to see that X is a compact topological space in which X is densely
and homeomorphically embedded. Moreover, X induces on SX the (compact)
topology we defined before.

By definition, a neighborhood of α ∈ SX in X is a set that contains a subset
of the form C‡. We denote by α̃ the set of traces on X of the neighborhoods of α in
X. Thus, a set belongs to α̃ if and only if it contains an open truncated cone that
eventually contains α. Let Y be a topological space and let u : X → Y. If α ∈ SX
and y ∈ Y, then the limit lim

x→α
u(x) (or lim

α
u) exists and is equal to y if and only if

for each neighborhood V of y, there is a truncated cone C that eventually contains
α such that u(x) ∈ V if x ∈ C. We shall need the following simple lemma.

LEMMA 3.1. Let u : X → C be such that the limit U(α) := lim
x→α

u(x) exists for
each α ∈ SX . Then U is a continuous function on SX . If u is continuous on X, then its
extension by U on SX is continuous on X.

Proof. Let us notice first that lim
λ→∞

u(λa) = U(α) for each a ∈ α ∈ SX . Fix

α ∈ SX and ε > 0. There is an open truncated cone C with α ∈ C† such that
|u(x) − U(α)| < ε for all x ∈ C. If β ∈ C†, then, for each b ∈ β, we have
lim

λ→∞
u(λb) = U(β). Since λb ∈ C for large λ, we get that |U(β) − U(α)| < ε.

Since the sets C† form a basis of the topology of SX , we see that U is continuous.
To prove the last statement and thus to complete the proof, let us extend u

to X to be equal to U on SX . Then the argument used in the first half of the proof
implies that |u(x)− u(α)| < ε for all x ∈ C‡. Since the sets of the form C‡ form
a basis for the system of neighborhoods of α ∈ SX in SX and α is arbitrary, the
extension of u to X by U is continuous on SX . Hence if u is continuous on X, then
its extension to X is continuous everywhere.
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Since X is a dense subset of X, we may identify the algebra C(X) of continu-
ous functions on X with a subalgebra of C(X). We now give several descriptions
of this subalgebra that are independent of the preceding construction of X. De-
note by Ch(X) the subalgebra of Cu

b (X) consisting of functions homogeneous of
degree zero outside a compact set:

(3.1) Ch(X) :={u∈C(X) : ∃K⊂X compact with u(λx)= u(x) if x /∈K, λ>1}.

LEMMA 3.2. The algebra C(X) coincides with the closure of Ch(X) in Cb(X).
A function u ∈ C(X) belongs to C(X) if, for any compact A ⊂ X \ {0}, the limit

lim
λ→+∞

u(λa) exists uniformly in a∈A and, in this case, for any compact B⊂X, we have

(3.2) lim
λ→+∞

u(λa + b) = u(â) uniformly in a ∈ A and b ∈ B.

Moreover:

(3.3) C(X) =
{

u ∈ C(X) : lim
x→α

u(x) exists for each α ∈ SX

}
.

The proof is an exercise. Observe that the topology we introduced on X
could be introduced directly in terms of Ch(X): for example, α̃ is the filter on X
defined by the sets {x ∈ X : |u(x)− u(α)| < 1} when u runs over Ch(X).

The space Ch(X) is not stable under translations if the dimension of X is
larger than one. However, equation (3.2) — or a direct argument — immediately
gives that C(X) is invariant under translations, and hence we may consider its
crossed product S (X) := C(X) o X by the action of X. This crossed product
is the spherical algebra of X and we shall study it in the next section. Before do-
ing that, however, let us describe an abelian C∗-algebra of the same nature, but
larger than C(X), which is naturally involved in the construction of self-adjoint
operators affiliated to E (X). In more technical terms, this new algebra is the
Gagliardo completion of C(X) with respect to B(Hs,H) for some (hence for all)
s > 0, where Hs is the Sobolev space of order s on X, H = L2(X), and we em-
bed C(X) ⊂ B(H) ⊂ B(Hs,H) by identifying a function with the corresponding
multiplication operator. One may find in Section 2.1 of [2] a discussion of the
Gagliardo completion in a general setting, but this is not necessary for what fol-
lows.

The following notion of convergence in the mean will be useful. Let Λ be a
compact neighborhood of the origin in X and α ∈ SX . If u ∈ L1

loc(X) and c ∈ C
then m-lim

α
u = c, or m-lim

x→α
u(x) = c, means lim

a→α

∫
a+Λ

|u(x)− c|dx = 0. Then we

shall have lim
a→α

∫
a+K
|u(x)− c|dx = 0 ∀K ⊂ X compact: indeed, K can be covered

by a finite number of translates of Λ and the filter α̃ is translation invariant and
coarse (see page 351).

Obviously B0(X) =
{

u ∈ L∞(X) : m-lim
α

u = 0
}

is a closed self-adjoint

ideal of L∞(X). We also have Cu
b (X) ∩ B0(X) = C0(X) as a consequence of
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Lemma 4.1 that will be proved later on for a general class of filters. The alge-
bra of interest for us is:

(3.4) B(X) = C(X) + B0(X).

This is a C∗-algebra because the sum of a C∗-subalgebra and a closed self-adjoint
ideal is always a C∗-algebra. We have the following alternative description of
B(X).

LEMMA 3.3. The set B(X) consists of the functions u ∈ L∞(X) that have the
following property: for any α ∈ SX , there is c ∈ C such that m-lim

α
u = c.

Proof. It is clear that the functions in B(X) have the required property, so it
suffices to prove that a function u as in the statement of the lemma may be written
as a sum u = v + w with v ∈ C(X) and w ∈ B0(X). Observe that the number c is
uniquely defined by α, and hence we may define a function V : SX → C by the
condition V(α) = c. Thus we have

(3.5) lim
a→α

∫
a+Λ

|u(x)−V(α)|dx = 0, ∀α ∈ SX .

Note that (3.5) means that, for any ε > 0, there is an open truncated cone C that
eventually contains α such that

∫
a+Λ

|u(x)− V(α)|dx < ε if a ∈ C. In particular,

if we fix a ∈ α, then we get lim
r→+∞

∫
ra+Λ

|u(x)−V(α)|dx = 0. Let us show now, as

in the proof of Lemma 3.1, that V is a continuous function. Let us fix α, ε and C
and consider some β ∈ C†. By what we just proved, we have lim

r→+∞

∫
rb+Λ

|u(x)−

V(β)|dx = 0 for an arbitrary b ∈ β. On the other hand, since C is a truncated
open cone and β is eventually in C, we have rb ∈ C for all large enough r, and
hence

∫
rb+Λ

|u(x)−V(α)|dx < ε. Then

|V(α)−V(β)||Λ| 6
∫

rb+Λ

|V(α)− u(x)|dx +
∫

rb+Λ

|u(x)−V(β)|dx < 2ε

for large r, where |Λ| is the measure of Λ. Since these C† are a basis of the neigh-
borhoods of α in SX , this proves the continuity of V at the point α.

Now let θ : X → R be a continuous function such that θ(x) = 0 on a
neighborhood of zero and θ(x) = 1 for large x. Then the function defined by
v(x) = θ(x)V(x̂) for x 6= 0 and v(0) = 0 belongs to Ch(X), and hence it belongs
to C(X) as well. On the other hand, w := u − v ∈ L∞ and, if we set W(a) =∫
a+Λ

|w|dx, then lim
a→α

W(a) = 0 for each α ∈ SX . This is because

W(α) 6
∫

a+Λ

|u(x)−V(α)|dx + sup
x∈a+Λ

|v(x)−V(α)||Λ|
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and the function v extended by V on SX is continuous on X, and hence the last
term above tends to zero when a → α. If ε > 0, then for each α ∈ SX there is
an open truncated cone Cα such that W(a) < ε if a ∈ Cα. Since {C†

α}α∈SX is an
open cover of the compact SX , there is a finite set A ⊂ SX such that SX =

⋃
α∈A

C†
α.

Finally, it is clear that
⋃

α∈A
Cα is a neighborhood of infinity in X on which we have

W(a) < ε, so lim
a→∞

W(a) = 0.

Now we give a description of B(X) as a Gagliardo completion of C(X).
Recall that u(q) is the operator of multiplication by the function u and Hs are
Sobolev spaces.

PROPOSITION 3.4. The set B(X) consists of the functions u ∈ L∞(X) with the
following property: there is a sequence of functions un ∈ C(X) such that
(3.6)

sup
n
‖un‖L∞ < ∞ and lim

n
‖un(q)− u(q)‖Hs→H = 0 for some real s > 0.

Proof. We begin by noticing that the condition (3.6) is independent of s. In
fact, if it holds for some s then clearly it remains true if we replace s by any t> s
and it will also hold for 0< t< s because if we set T=un(q)−u(q) then we have

‖T‖Ht→H 6 ‖T‖µ
Hs→H‖T‖

ν
H→H with µ =

t
s

, ν = 1− t
s

.

It is clear that what we really have to prove is the same assertion, but with B(X)
replaced by B0(X) and C(X) replaced by C0(X). Assume first that u ∈ L∞

can be approximated with functions un ∈ C0 as in (3.6) and let εn = ‖un(q) −
u(q)‖Hs→H. Let η ∈ C∞

c such that η(x) is a constant, c 6= 0 on Λ and ‖η‖Hs = 1
and let us denote ηa(x) = η(x− a). Then ‖(u− un)ηa‖H 6 εn‖ηa‖Hs = εn, and
hence ‖uηa‖H 6 εn + ‖unηa‖H. Since un ∈ C0, there is a neighborhood Un of in-
finity in X such that ‖unηa‖H 6 εn if a ∈ Un, and then we get

∫
a+Λ

|u|2dx 6 4c−2ε2
n

for a ∈ Un. This clearly implies u ∈ B0.
Reciprocally, let u ∈ B0. Choose a positive function θ ∈ C∞

c (X) with∫
θ(x)dx = 1 and let θε(x) = θ(x/ε)/εd if the dimension of X is d. Then it is clear

that the convolution product = u ∗ θε belongs to C0(X) and ‖u ∗ θε‖L∞ 6 ‖u‖L∞ .
Hence it suffices to prove that there is s > 0 such that ‖u ∗ θε(q)− u(q)‖Hs→H → 0
if ε→ 0. But this is easy because, for s > d/2, we have an estimate

‖ f (q)‖2
Hs→H 6 C sup

a

∫
a+Λ

| f |2dx 6 C‖ f ‖L∞ sup
a

∫
a+Λ

| f |dx.

We take here f = u ∗ θε − u and note that
∫
K
|u ∗ θε − u|dx → 0 for any compact K

while, for large a, we use the relation lim
a→∞

∫
a+Λ

|u|dx = 0.
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4. THE SPHERICAL ALGEBRA

We study now the spherical algebra S (X) := C(X)oX defined in the Intro-
duction. We begin with a lemma that will be needed in the proof of Theorem 4.2.
In order to clarify the statement of the following lemma and in order to prepare
the ground for the use of filters in other proofs, we recall now some facts about
filters [5].

A filter on X is a set ξ of subsets of X such that: (1) X ∈ ξ, (2) ∅ /∈ ξ, (3) if
ξ 3 F ⊂ G, then G ∈ ξ, and (4) if F, G ∈ ξ then F ∩ G ∈ ξ. If Y is a topological
space and u : X → Y, then lim

ξ
u = y, or lim

x→ξ
u(x) = y, means that u−1(V) ∈ ξ

for any neighborhood V of y. The filter ξ on X is called translation invariant if, for
each F ∈ ξ and x ∈ X, we have x + F ∈ ξ. We say that ξ is coarse if, for each F ∈ ξ
and each compact K in X, there is G ∈ ξ such that G + K ⊂ F. Recall that we have
denoted by α̃ the set of traces on X of the neighborhoods of α in X. Clearly α̃ is a
translation invariant and coarse filter on X for each α ∈ SX .

LEMMA 4.1. Let ξ be a translation invariant filter in X, let Λ be a compact neigh-
borhood of the origin, and u ∈ Cu

b (X). Then

(4.1) lim
ξ

u = 0⇔ lim
a→ξ

∫
a+Λ

|u(x)|dx = 0⇔ s-lim
a→ξ

u(q + a) = 0.

Proof. Recall that u(q) denotes the operator of multiplication by u and u(q+
a) is its translation by a. We have s-lim

a→ξ
u(q + a) = 0 if and only if

∫
|u(x + a) f (x)|2dx → 0 as a→ ξ for all f ∈ L2(X),

by the definition of the strong limit. By taking f to be the characteristic function
of the compact set Λ and by using the Cauchy–Schwartz inequality, we obtain
lim
a→ξ

∫
a+Λ

|u(x)|dx = 0. Reciprocally, if this relation is satisfied then it is also sat-

isfied with Λ replaced by any of its translates because ξ is translation invariant.
By summing a finite number of such relations, we get lim

a→ξ

∫
a+K
|u(x)|dx = 0 for

any compact K. Since u is bounded, we also obtain lim
a→ξ

∫
a+K
|u(x)|2dx = 0 and so

lim
a→ξ

∫
|u(x + a) f (x)|2dx = 0, for any simple function f . Using again the bound-

edness of u, we then obtain

lim
a→ξ

∫
|u(x + a) f (x)|2dx = 0 for f ∈ L2(X)

.
We now show that lim

ξ
u = 0 is equivalent to lim

a→ξ

∫
a+Λ

|u(x)|dx = 0. We

may assume u > 0, and since u and a 7→
∫

a+Λ

u(x)dx are bounded uniformly
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continuous functions, we may also assume that ξ is coarse. (This follows from
Lemma 2.2 of [22] and a simple argument, which shows that the round envelope
of a translation invariant filter is coarse. We do not include the details since in
our applications ξ = α̃, which is coarse.) If lim

ξ
u = 0, then {u < ε} ∈ ξ, for any

ε > 0. Since ξ is coarse, there is F ∈ ξ such that F + Λ ⊂ {u < ε}, and hence,
if a ∈ F, then

∫
a+Λ

u(x)dx 6 ε|a + Λ| = ε|Λ|. Thus we have lim
a→ξ

∫
a+Λ

u(x)dx = 0.

Conversely, assume that this last condition is satisfied and let ε > 0. Since u is
uniformly continuous, there is a compact symmetric neighborhood L ⊂ Λ of zero
such that |u(x)− u(y)| < ε if x, y ∈ L. Then

u(a)|L| =
∫

a+L

(u(a)− u(x))dx +
∫

a+L

u(x)dx 6 ε|L|+
∫

a+L

u(x)dx,

and hence lim sup
a→ξ

u(a) 6 ε|L|.

Recall that τa(S) = T∗a STa, where the unitary translation operators Ta are
defined in (2.1).

THEOREM 4.2. The algebra S (X) := C(X) o X consists of the S ∈ B(X)

that have the position-momentum limit property and are such that s-lim
a→α

τa(S)(∗) exists
∀α ∈ SX .

Proof. Let A be the set of bounded operators that have the properties in
the statement of the theorem. We first show that S (X) ⊂ A . Recall that in the
concrete realization we mentioned above, Cu

b (X)o X is identified with the norm
closed linear space generated by the operators S = u(q)v(p) with u ∈ Cu

b (X) and
v ∈ C0(X∗), while C(X)o X is the norm closed subspace generated by the same
type of operators, but with u ∈ C(X). It follows that an operator S = u(q)v(p),
with u ∈ C(X), has the position-momentum limit property and

(4.2) s-lim
a→α

T∗a STa = s-lim
a→α

u(q + a)v(p) = u(α)v(p),

because of relation (3.2). Thus S (X) ⊂ A and it remains to prove the opposite
inclusion.

It is clear that A is a C∗-algebra. From Theorem 3.7 of [22] it follows that A
is a crossed product A = Ao X with A ⊂ Cu

b (X) if and only if A ⊂ Cu
b (X)o

X and

(4.3) x ∈ X, k ∈ X∗, S ∈ A ⇒ TxS ∈ A and MkSM∗k ∈ A .

By the definition of A , the condition A ⊂ Cu
b (X) o X is obviously satisfied.

Moreover, we have T∗a TxSTa = TxT∗a STa and T∗a MkSM∗k Ta = MkT∗a STa M∗k , and
hence the last two conditions in (4.3) are also satisfied. Therefore A is a crossed
product. Theorem 3.7 form [22] gives more: the unique translation invariant C∗-
subalgebra A ⊂ Cu

b (X) such that A = Ao X is the set of u ∈ Cu
b (X) such that
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u(q)v(p) and u(q)v(p) belong to A if v ∈ C0(X∗). In our case, we see that A
is the set of all u ∈ Cu

b (X) such that s-lim
a→α

T∗a u(q)(∗)Tav(p) exists for all α ∈ SX

and v ∈ C0(X∗). But the operators T∗a u(q)(∗)Ta = u(∗)(q + a) are normal and
uniformly bounded and the union of the ranges of the operators v(p) is dense in
L2(X), and hence

A = {u ∈ Cu
b (X) : ∃ s-lim

a→α
u(q + a) ∀α ∈ SX}.

Let us fix α and let u ∈ Cu
b (X) be such that the limit s-lim

a→α
u(q + a) exists. This

limit is a function, but since the filter α̃ is translation invariant, this function must
be in fact a constant c. Applying Lemma 4.1 to u− c we get lim

α
u = c. Lemma 3.2

then gives the following which proves the theorem:

A =
{

u ∈ Cu
b (X) : ∃ lim

x→α
u(x) ∀α ∈ SX

}
= C(X).

For each α ∈ SX and S ∈ S (X) := C(X)o X, we then define

(4.4) τα(S) := s-lim
a→α

T∗a STa.

THEOREM 4.3. If S ∈ S (X) and α ∈ SX , then τα(S) ∈ C∗(X) and the map
τ(S) : α 7→ τα(S) is norm continuous, and hence τ : S (X) → C(SX) ⊗ C∗(X).
The resulting morphism τ is a surjective morphism and its kernel is the set K (X) =
C0(X)o X of compact operators on L2(X). Hence we have a natural identification

(4.5) S (X)/K (X) ∼= C(SX)⊗ C∗(X) ∼= C0(SX × X∗).

Proof. If S = u(q)v(p), then, from (4.2), we get τα(u(q)v(p)) = u(α)v(p),
and thus τ(S) = ũ⊗ v(p), where ũ is the restriction of u : X → C to SX . The first
assertion of the theorem then follows from the density in S (X) of the linear space
generated by the operators of the form u(q)v(p). The fact that τα are morphisms
follows from their definition as strong limits, and it implies the fact that τ is a
morphism. Since the range of a morphism is closed and u 7→ ũ is a surjective
map C(X) → C(SX), we get the surjectivity of τ. It remains to show that ker τ =
C0(X)o X. By what we have proved, A0 = ker τ is the set of operators S that
have the position-momentum property and are such that s-lim

a→α
TaSTa = 0 for

all α ∈ SX . The argument of the proof of Theorem 4.2 with A replaced by A0
shows that A0 = A0 o X, with A0 equal to the set of all u ∈ Cu

b (X) such that
lim
x→α

u(x) = 0 for all α ∈ SX . Therefore A0 = C0(X).

REMARK 4.4. The fact that τα(S) belongs to C∗(X) can be understood more
generally as follows. Since the filter α̃ is translation invariant, if S is an arbitrary
bounded operator such that the limit Sα := s-lim

a→α
T∗a STa exists, then Sα commutes

with all the Tx, and hence S is of the form v(p), for some v ∈ L∞(X∗). If S has the
position-momentum limit property, then it is clear that Sα also has the position-
momentum limit property, which forces v ∈ C0(X∗).
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We have the following consequences of the above theorem. We notice that
we do not need closure in the union in the following results since τα(S) depends
norm continuously on α. See [39] for a general discussion of the need of closures
of the unions in results of this type.

COROLLARY 4.5. If S ∈ S (X) is a normal element, then σess(S) =
⋃
α

σ(τα(S)).

Similarly, we have the following.

COROLLARY 4.6. Let H be a self-adjoint operator affiliated to S (X). Then for
each α ∈ SX the limit α · H := s-lim

a→α
T∗a HTa exists and σess(H) =

⋃
α

σ(α · H).

For the proof and for the meaning of the limit above, see Remark 2.10.
We give now the simplest concrete application of Corollary 4.6. The bound-

edness condition on V can be eliminated, but this requires some technicalities,
which will be discussed in the next section.

PROPOSITION 4.7. Let H = h(p)+V, where h : X∗ → R is a continuous proper
function and V is a bounded symmetric linear operator on L2(X) satisfying:

(i) lim
k→0
‖[Mk, V]‖ = 0;

(ii) α ·V := s-lim
a→α

T∗a VTa exists for each α ∈ SX .

Then H is affiliated to S (X), we have α ·H = h(p) + α ·V, and σess(H) =
⋃
α

σ(α ·H).

Moreover, for each α ∈ SX , there is a function vα ∈ Cu
b (X∗) such that α ·V = vα(p).

Proof. First we have to check that the self-adjoint operator H is affiliated to
S (X). For this, it suffices to prove that there is a number z such that the operator
S = (H − z)−1 satisfies the conditions of Theorem 4.2. To check the position-
momentum limit property we have to prove that (Tx − 1)S and [Mk, S] tend to
zero in norm when x → 0 and k → 0 (the condition involving S∗ will then also
be satisfied since S∗ is of the same form as S). Since the range of S is the domain
of h(p), the first condition is clearly satisfied. If we denote S0 = (h(p) − z)−1

and choose z such that ‖VS0‖ < 1, then we have S = S0(1 + VS0)
−1 and S0 ∈

C∗(X), and hence [Mk, S0] tends to zero in norm as k→ 0. It remains to be shown
that (1 + VS0)

−1 also satisfies this condition: but this is clear because the set of
bounded operators A such that ‖[Mk, A]‖ → 0 is a C∗-algebra, and hence a full
subalgebra of B(X).

The fact that s-lim
a→α

T∗a STa exists and is equal to α · S = (α · H− z)−1 for each

α ∈ SX is an easy consequence of the relation T∗a STa = S0(1 + T∗a VTaS0)
−1.

Finally, to show that α · V = vα(p), for some vα ∈ Cu
b (X∗), we use the argu-

ment of Remark 4.4. Indeed, we shall have this representation for some bounded
Borel function vα, which is uniformly continuous because lim

k→0
‖[Mk, α ·V]‖=0.

EXAMPLE 4.8. A typical example is when V is the operator of multiplication
by a bounded Borel function V : X → R such that V(α) := lim

x→α
V(x) exists for
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each α ∈ SX . Then α · V is the operator of multiplication by the number V(α).
Note that by Lemma 3.1 the limit function α 7→ V(α) is continuous on SX , even if
V is not continuous on X.

REMARK 4.9. The constructions in this section are related to the ones involv-
ing the so called “SG-calculus” or “scattering calculus”, see [10], [11], [26], [37],
[40], [42] and the references therein. In fact, the closure in norm of the algebra of
order −1, SG-pseudodifferential operators coincides with the algebra C(X)o X.

5. AFFILIATION CRITERIA

We now recall, for the benefit of the reader, a little bit of the formalism that
we shall use below. If H is a self-adjoint operator on a Hilbert space H, then the
domain of |H|1/2 equipped with the graph topology is called the form domain of
H. If we denote it G, then we have a natural continuous embedding G ⊂ H ⊂ G∗,
where G∗ is the space adjoint of G (space of conjugate linear continuous forms on
G). The operator H : D(H) → H extends to a continuous symmetric operator
Ĥ ∈ B(G,G∗), which has the following property: a complex number z belongs
to the resolvent set of H if and only if Ĥ − z is a bijective map G → G∗. In this
case, (H − z)−1 coincides with the restriction of (Ĥ − z)−1 to H. Conversely, let
G be a Hilbert space densely and continuously embedded in H. If L : G → G∗
is a symmetric operator, then the operator induced by L in H is the operator H in
H whose domain is the set of u ∈ G such that Lu ∈ H given by H = L|D(H).
If L − z : G → G∗ is a bijective map for some complex z, then D(H) is a dense
subspace of H, the operator H is self-adjoint, and Ĥ = L. If L is bounded from
below, then G coincides with the form domain of H. From now on, we shall drop
the “hat” from the notation Ĥ and write simply H for the extended operator when
there is no danger of confusion.

LEMMA 5.1. Let G be a Hilbert space densely and continuously embedded in
L2(X). Then the following conditions are equivalent:

(i) The operators Tx and Mk leave invariant G, we have ‖Tx‖B(G) 6 C for a number
C independent of x, and lim

x→0
‖Tx − 1‖G→H = 0.

(ii) G = D(w(p)) for some proper Borel function w : X∗ → [1, ∞) that has the
following property: there exists a compact neighborhood Λ of zero in X∗ and a number
c > 0 such that sup

`∈Λ

w(k + `) 6 cw(k) for all k ∈ X∗.

Proof. We discuss only the nontrivial implication. DenoteH = L2(X). Since
{Tx}x∈X is a strongly continuous unitary group in H that leaves G invariant,
the restrictions Tx|G form a C0-group in G, which by assumption is (uniformly)
bounded. It is well known that this implies that there is a Hilbert structure on
G, equivalent to the initial one, for which the operators Tx|G are unitary (indeed,
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R is amenable). Thus, from now on, we may assume that the operators Tx are
unitary in G. Then, by the Friedrichs theorem, there exists a unique self-adjoint
operator G onH with the following properties:

(i) G > c > 0 for some number c;
(ii) G = D(G);

(iii) for all g ∈ G, we have ‖g‖G = ‖Gg‖.
By hypothesis, the unitary operator Tx leaves invariant the domain of G and

‖g‖G = ‖GTxg‖ = ‖T∗x GTxg‖ for all g ∈ D(G) and x ∈ X. By the uniqueness of
G, we have T∗x GTx = G, and hence G commutes with all translations. It follows
that there is a Borel function w : X∗ → [c, ∞) such that G = w(p). We have

‖(Tx − 1)‖G→H = ‖(Tx − 1)G−1‖H→H = ‖(eixP − 1)w−1(P)‖H→H
= esssup

p∈X∗
|(eixp − 1)w−1(p)|

and w−1 is a bounded Borel function. It follows that w−1 tends to zero at infinity.
Now we shall use the fact that the operators Mk also leave invariant G. Then

the group induced by {Mk} in G is of class C0. In particular, ‖w(p)M`g‖ 6
C‖w(p)g‖ if ` ∈ Λ and g ∈ G. Since M∗`w(p)M` = w(p + `), we get ‖w(p +

`)w(p)−1 f ‖ 6 C‖ f ‖ for ` ∈ Λ and f ∈ H, which means that w(k + `)w(k)−1 6 C
for all k ∈ X∗ and ` ∈ Λ. Thus for each fixed k, w is bounded on k +Λ, and hence
w is bounded on any compact.

The next result is a general criterion of affiliation to S (X) for semi-bounded
operators.

THEOREM 5.2. Let H be a self-adjoint operator on L2(X) that is bounded from
below and its form domain G satisfies the conditions of Lemma 5.1. Assume that we have
‖[Mk, H]‖G→G∗ → 0 as k→ 0 and that the limit α · H := lim

a→α
T∗a HTa exists strongly

in B(G,G∗), for all α ∈ SX . Then H is affiliated to S (X), for each α ∈ SX the operator
in L2(X) associated to α · H is self-adjoint, and σess(H) =

⋃
α

σ(α · H).

Proof. We shall use Theorem 4.2 and then Corollary 4.6. We first check that
the first condition of Theorem 4.2 is satisfied. Denote R = (H + i)−1. We have
‖(Tx − 1)‖G→H = ‖(Tx − 1)|R|1/2‖, and hence lim

x→0
‖(Tx − 1)R‖ = 0. As ex-

plained above, R extends uniquely to an operator R̂ ∈ B(G∗,G). The operators
Mk leave G invariant and thus extend continuously to G∗. Consequently, we have
[Mk, R̂] = R̂[H, Mk]R̂. Hence we get lim

k→0
‖[Mk, R̂]‖G∗→G = 0, which is more than

enough to show that H has the position-momentum limit property.
To finish the proof of the proposition, it is enough to check the last condi-

tion of Theorem 4.2 and then use Corollary 4.6. Clearly α · H : G → G∗ satisfies
〈g|α · Hg〉 = lim

a→α
〈Tag|HTag〉 for each g ∈ G. Note that since we assumed H
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bounded from below, we may assume that H > 1 (otherwise we add to it a suf-
ficiently large number). Then, if w is as in Lemma 5.1, the norm ‖w(p)g‖ defines
the topology of G, and hence 〈u|Hu〉 > c‖w(p)u‖2 for some number c and all
u ∈ G. This implies 〈Tag|HTag〉 > c‖w(p)Tag‖2 = c‖w(p)g‖2. Thus we get
〈g|α · Hg〉 > c‖w(p)g‖2, and hence α · H is a bijective map G → G∗. Next, to
simplify the notation, we set Ha = T∗a HTa, Hα = α · H, and note that since these
operators are isomorphisms G → G∗, we have H−1

a − H−1
α = H−1

a (Hα − Ha)H−1
α

as operators G∗ → G, which clearly implies s-lim
a→α

T∗a H−1Ta = H−1
α in B(G∗,G),

which is more than enough to prove the convergence of the self-adjoint opera-
tors T∗a HTa to the self-adjoint operator α · H in L2(X) in the sense required in
Corollary 4.6.

In the next theorem, we consider operators of the form h(p) + V, with V
unbounded, and impose on h the simplest conditions that ensure that the form
domain of h(p) is stable under the operators Mk. Obviously, much more general
conditions could have been used to obtain the same result, however, these condi-
tions are well adapted to elliptic operators with non-smooth coefficients. For any
real number s, let Hs ≡ Hs(X) be the Sobolev space of order s on X. Also, let | · |
be any norm on X∗.

THEOREM 5.3. Let h : X∗ → [0, ∞) be a locally Lipschitz function with deriva-
tive h′ such that, for some real numbers c, s > 0 and all k ∈ X∗ with |k| > 1, we have:

(5.1) c−1|k|2s 6 h(k) 6 c|k|2s and |h′(k)| 6 c|k|2s.

Let V : Hs → H−s symmetric such that V > −γh(p)− δ, for some numbers γ, δ, with
γ < 1. We assume that V satisfies the following two conditions:

(i) lim
k→0
‖[Mk, V]‖Hs→H−s = 0;

(ii) ∀α ∈ SX the limit α ·V := s-lim
a→α

T∗a VTa exists strongly in B(Hs,H−s).

Then h(p) + V and h(p) + α ·V are symmetric operatorsHs → H−s and the operators
H and α · H associated to them in L2(X) are self-adjoint and affiliated to S (X) :=
C(X)o X. Moreover, the essential spectrum of H is given by the relation σess(H) =⋃
α

σ(α · H).

Proof. If we denote w =
√

1 + h, then the form domain G of h(p) is G =
D(w(p)) = Hs. The second condition of Lemma 5.1 is satisfied if sup

|`|<1
h(k + `) 6

c(1 + h(k)) for some number c > 0, which is clearly true under our assumptions
on h. Then note that we have h(p) + V + δ + 1 > (1− γ)h(p) + 1 as operators
G → G∗ and this estimate remains true if V is replaced by α · V. It follows that
h(p) + V + δ + 1 : G → G∗ is bijective, and hence the operator H induced by
h(p) + V in L2(X) is self-adjoint. The same method applies to α · H. Thus the
conditions of Theorem 5.2 are satisfied and we may use it to get the results of the
present theorem.
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EXAMPLE 5.4. The simplest examples that are covered by the preceding
result are the usual elliptic symmetric operators ∑

|µ|,|ν|6m
pµgµν pν with bounded

measurable coefficients gµν such that lim
a→α

gµν(x + a) = gα
µν exists for each x ∈ X

and α ∈ SX . Here X = Rn and the notations are as in (1.5) and we assume (1.6).
Then the localizations at infinity will be the operators α ·H, which are of the same
form, but with the functions gµν replaced by the numbers gα

µν. Note that α 7→ gα
µν

are continuous functions. We can also allow the lower order coefficients gµν to be
suitable singular functions or even suitable non-local operators.

REMARK 5.5. The examples considered above could give the wrong impres-
sion that the localizations at infinity α · H are self-adjoint operators in the usual
sense on L2(X). The following example shows that this is not true even in simple
situations. Let H = p2 + v(q) in L2(R) with v(x) = 0 if x < 0 and v(x) = x if
x > 0. It is clear that H has the position-momentum limit property and, if R =
(H + 1)−1, it is not difficult to check that s-lim

a→+∞
T∗a RTa = 0 and s-lim

a→−∞
T∗a RTa =

(p2 + 1)−1. Indeed, the translated potentials va(x) = (T∗a v(q)Ta)(x) = v(x + a)
form an increasing family, i.e. va 6 vb if a 6 b, such that va(x)→ +∞ if a → +∞
and va(x) → 0 if a → −∞. Thus H+∞ = ∞, in the sense that its domain is equal
to {0}, and H−∞ = p2.

REMARK 5.6. In view of the Remark 5.5, it is tempting to see what happens
in the case of the Stark Hamiltonian H = p2 + q. In fact, the situation in the case
of the Stark Hamiltonian is much worse: H has not the position-momentum limit
property (both conditions of Definition 2.1 are violated by the resolvent of H) and we
have s-lim

|a|→∞
T∗a HTa = ∞ and s-lim

|k|→∞
M∗k HMk = ∞, while the essential spectrum of

H is R. So the localizations of H in the regions |p| ∼ ∞ and |q| ∼ ∞ say nothing
about the essential spectrum of H.

We now recall some definitions and a result that can be used for operators
that are not semi-bounded and that will be especially useful in the general context
of N-body Hamiltonians.

Let H0 be a self-adjoint operator on a Hilbert spaceH with form domain G.
We say that a continuous sesquilinear form V on G (i.e. a symmetric linear map
V : G → G∗) is a standard form perturbation of H0 if there are positive numbers γ, δ
with γ < 1 such that either ±V 6 γ|H0|+ δ or H0 is bounded from below and
V > −γH0 − δ. In this case, the operator H in H associated to H0 + V : G → G∗
is self-adjoint (see the comments at the beginning of this section).

We do not recall the definition of strict affiliation, but we use the following
fact: a self-adjoint operator H is strictly affiliated to a C∗-algebra C of operators on
H if and only if there is θ∈C0(R) with θ(0)=1 such that lim

ε→0
‖θ(εH)C−C‖=0, for

all C∈C . The following is a consequence of Theorem 2.8 and Lemma 2.9 in [9].
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THEOREM 5.7. Let H0 be a self-adjoint operator, V a standard form perturbation of
H0, and H = H0 + V the self-adjoint operator defined above. Assume that H0 is strictly
affiliated to a C∗-algebra C of operators onH. If there is φ ∈ C0(R) with φ(x) ∼ |x|−1/2

for large x such that φ(H0)
2Vφ(H0) ∈ C , then H is also strictly affiliated to C .

We may of course replace φ(H0)
2Vφ(H0) ∈ C by the more symmetric and

simpler looking condition φ(H0)Vφ(H0) ∈ C , but this will not cover in the ap-
plications the case when the operator V is of the same order as H0. For operators
bounded from below we have:

THEOREM 5.8. Let H0 be a positive operator strictly affiliated to a C∗-algebra of
operators C on a Hilbert space H. Let V be a continuous sesquilinear form on D(H1/2

0 )

such that V > −γH0 − δ with γ < 1. If ϕ(H0)V(H0 + 1)−1/2 ∈ C for any ϕ ∈
Cc(R), then the form sum H = H0 + V is a self-adjoint operator strictly affiliated to C .

The next proposition is an immediate consequence of Theorem 5.8. Note
that below the form domain of h(p) is the domain of k(p), where k is the function
|h|1/2. It is clear that if h is a proper continuous function, then h(p) is strictly
affiliated to S (X).

PROPOSITION 5.9. Let H = h(p) + V, where h : X∗ → R is a continuous
proper function and V is a standard form perturbation of h(p). If (1 + |h(p)|)−1V(1 +
|h(p)|)−1/2 belongs to S (X), then H is strictly affiliated to S (X).

We may replace above (1+ |h|)−1/2 by any function of the form θ ◦ h with θ
as in Theorem 5.8. Indeed, Cb(X∗) is obviously included in the multiplier algebra
of S (X).

For 0 6 s 6 1, let Gs := D(|h(p)|s) equipped with the graph topology
and let G−s be its adjoint space. So G1 = G, G0 = H, and G−1 = G∗. If V is a
continuous symmetric form on G such that VG1 ⊂ G−s for some s < 1, then for
each γ > 0 there is a real δ such that±V 6 γ|h(p)|+ δ, and hence V is a standard
form perturbation of h(p) and H is well defined.

COROLLARY 5.10. Let H = h(p) + V, where h : X∗ → R is a continuous
proper function, and let V be a continuous symmetric form on G such that VG1 ⊂ G−s

with s < 1. Let φ be a smooth function such that φ(x) ∼ |x|−1/2 for large x and
denote L = φ(H0)Vφ(H0). If lim

k→0
‖[Mk, L]‖ = 0 and α · V = s-lim

a→α
T∗a VTa exists in

B(G,G∗) for each α ∈ SX , then H is affiliated to S (X), we have α · H = h(p) + α ·V,
and σess(H) =

⋃
α

σ(α · H).

6. N-BODY TYPE INTERACTIONS

In this section we introduce and study the algebra of potentials (or elemen-
tary interactions) in the N-body case. We will implicitly assume X of dimension
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> 2, because in the one dimensional case the algebra E (X) defined in (6.14) coin-
cides with S (X).

6.1. N-BODY FRAMEWORK. The framework that we introduce here allows us to
define and classify N-body Hamiltonians in terms of the complexity of the inter-
actions inside subsets of particles.

Assume that for each finite dimensional real vector space E a translation
invariant C∗-subalgebra P(E) of Cu

b (E) has been specified (the letter P should
suggest “potentials”). Then, for each subspace Y ⊂ X, we get a translation invari-
ant subalgebra P(X/Y) ⊂ Cu

b (X). Let us denote by 〈Aα, α ∈ I〉 the norm closed
subalgebra generated by a family {Aα}α∈I of sets Aα ⊂ Cu

b (X). Then we let

(6.1) RP (X) := 〈P(X/Y), Y ⊂ X〉 and RP (X) := RP (X)o X.

Thus RP (X) is the norm-closed subalgebra of Cu
b (X) generated by the P(X/Y),

where Y runs over the set of all linear subspaces of X. Clearly this is a translation
invariant C∗-subalgebra of Cu

b (X). We shall regard the crossed product RP (X) :=
RP (X)o X, as a C∗-subalgebra of B(X). Its structure will play a crucial role in
what follows. For instance, for our approach, it will be convenient to assume that
C0(E) ⊂ P(E) and P(0) = C. Clearly then RP (X) contains C∗(X) and K (X).

It will be natural to callRP (X) the algebra of elementary interactions of type P
and RP (X) := RP (X)oX the algebra of N-body type Hamiltonians with interactions
of typeP . Indeed, RP (X) is the C∗-algebra of operators on L2(X) generated by the
resolvents of the self-adjoint operators of the form h(p) + V, with h : X∗ → R+

continuous and proper, and V ∈ RP (X) ([22], Proposition 3.3). The self-adjoint
operators affiliated to RP (X) will be called N-body Hamiltonians with interactions
of type P .

We give three examples of possible choices for P , in increasing order of
difficulty.

First, the “standard” N-body situation, as described for example in Section 4
of [9] and Section 6.5 of [22], corresponds to the choice P(E) = C0(E). The alge-
bra of elementary interactions RP (X) = RC0(X) in this case has a remarkable
feature: it is graded by the ordered set of all linear subspaces of X, more pre-
ciselyRC0(X) is the norm closure of ∑

Y⊂X
C0(X/Y), this sum is direct, and we have

C0(X/Y)C0(X/Z) ⊂ C0(X/(Y ∩ Z). Then the corresponding algebra RC0(X) of
N-body Hamiltonians with interactions of type C0 inherits a graded C∗-algebra
structure [33], [34]. The usual N-body Hamiltonians are self-adjoint operators af-
filiated to RC0(X), and their analysis is greatly simplified by the existence of the
grading.

Let us now discuss the choice of the space of potential functions P(X/Y)
that will used in this paper. Namely, for any real finite dimensional vector space
E we consider the spherical compactification E of E and denote C(E) = C(E). Our
main goal in this paper is to treat the larger class of interactions P(E) = C(E) and
to analyze the N-body Hamiltonians associated to them. We recall the notations
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already used in the introduction:

E(X) := RC(X) := 〈C(X/Y), Y ⊂ X〉 ⊂ Cu
b (X),(6.2)

E (X) := RC(X) := E(X)o X ⊂ B(X).(6.3)

One of the main difficulties now comes from the absence of a grading of the alge-
bra E(X) of elementary interactions, which requires more care in understanding
its spectrum. Observe that, besides the ideal C0(X)o X ' K (X) of compact op-
erators, E (X) also contains the spherical algebra S (X) := C(X)o X consisting
of two-body type operators.

A third natural choice, which gives an even larger class of elementary inter-
actions and of N-body type Hamiltonians, is to take P(E) as the algebra of slowly
oscillating functions on E, a class of functions whose importance has been pointed
out by H.O. Cordes (see Section 6.2 in [22] for a discussion of this point and sev-
eral references). In this context, we mention M.E. Taylor’s thesis [48] where hy-
poelliptic operators with slowly oscillating coefficients of two-body type are con-
sidered: this is one of the first papers where Fredholmness criteria are obtained
in a general setting by using the comparison C∗-algebras introduced by Cordes.
In fact, his C∗-algebra A is just the crossed product of the C∗-algebra of slowly
oscillating functions by the action of X.

6.2. THE ALGEBRA OF ELEMENTARY INTERACTIONS. The algebra E(X) will play
a leading role in our approach. From the definition, it follows that E(X) is a
translation invariant subalgebra since the generating subspaces C(X/Y) are al-
ready translation invariant. The algebra E(X) is not graded, as in the standard
N-body framework of the algebra RC0(X), but has a natural filtration that plays
an important role in our analysis.

Let us fix a linear subspace Z ⊂ X. Then X/Z is a finite dimensional
real vector space, and hence the C∗-algebra E(X/Z) ⊂ Cu

b (X/Z) is well defined
and the embedding Cu

b (X/Z) ⊂ Cu
b (X) allows us to identify E(X/Z) with a C∗-

subalgebra of E(X). If Y ⊃ Z is another linear subspace then Y/Z ⊂ X/Z and
we may identify X/Y = (X/Z)/(Y/Z). Therefore we can identify

(6.4) E(X/Z) = C∗-subalgebra of E(X) generated by
⋃

Z⊂Y
C(X/Y).

Thus, the C∗-algebra E(X) is equipped with a family of C∗-subalgebras E(X/Y),
where Y runs over the set of linear subspaces of X, such that, for 0 ⊂ Z ⊂ Y ⊂ X,
we have

(6.5) C = E(0) = E(X/X) ⊂ E(X/Y) ⊂ E(X/Z) ⊂ E(X).

Recall now that SX consists of the half-lines of X. We shall denote by [α] the one
dimensional subspace generated by a half-line α ∈ SX . Observe that the algebras
E(X/[α]) are maximal among the non-trivial subalgebras of E(X) of the form
E(X/Y).
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Translation at infinity along a direction α = R+a ∈ SX gives us a linear
projection τα of E(X) onto the subalgebra E(X/[α]) as follows. For u ∈ E(X) we
define

(6.6) τα(u)(x) := lim
r→+∞

u(ra + x).

LEMMA 6.1. Let Y ⊂ X be a real, linear subspace and u ∈ C(X/Y). Then

τα(u) =

{
u(πY(α)) ∈ C if α 6⊂ Y,
u if α ⊂ Y.

Proof. If α 6⊂ Y, πY(α) is a half line in X/Y, and hence u(πY(α)) is defined.
The fact that the limit is as stated follows from the definition.

Note that, in the above lemma, τα(u) is a constant if α 6⊂ Y. The lemma
gives right away the following.

PROPOSITION 6.2. If α ∈ SX and u ∈ E(X), then the limit in (6.6) exists for
all x ∈ X, is independent of the choice of a ∈ α, and τα(u) ∈ E(X). The map τα :
E(X) → E(X) is an algebra morphism with range E(X/[α]) and τα(u) = u for all
u ∈ E(X/[α]).

Proof. Lemma 6.1 shows that the map τα maps C(X/Y) to itself if α ⊂ Y,
and maps C(X/Y) to C otherwise. The subspace of B ⊂ E(X), for which the limit
τα(u)(x) exists for any x is a norm closed, conjugation invariant subalgebra of
E(X). Since B contains the generators of E(X), we obtain that B = E(X). Con-
sequently, the limit τα(u)(x) exists for all u ∈ E(X) and all x ∈ X. Also, we ob-
tain that τα maps the generators of E(X) to a system of generators of E(X/[α]) ⊂
E(X), and hence τα maps E(X) onto E(X/[α]) surjectively. To complete the proof,
we notice that τα ◦ τα = τα on the standard system of generators of E(X), and
hence τα = id on the range of τα, that is, on E(X/[α]).

REMARK 6.3. The proof of Proposition 6.2 gives that, for each α ∈ SX , the
relation (6.6) defines a unital endomorphism τα of E(X), which is also a linear projection
of E(X) onto the subalgebra E(X/[α]). We note that τα does not commute with τβ in
general: if a subspace Z does not contain α and β and u ∈ C(X/Z) then τατβ(u) =
u(πZ(β)) and τβτα(u) = u(πZ(α)).

REMARK 6.4. For the purpose of this paper, the elements of E(X) should
be thought as multiplication operators on the space L2(X). If, according to the
notational conventions from the beginning of Section 2, we denote by u(q) the
operator of multiplication by u ∈ E(X) and, if we set τα(u(q)) = τα(u)(q), then
we get an expression similar to (4.4):

(6.7) τα(u(q)) = s-lim
r→+∞

T∗rau(q)Tra = s-lim
r→+∞

u(ra + q).

We emphasize however that s-lim
a→α

T∗a u(q)Ta does not exist for general u ∈ E(X).
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The next few results concern the subalgebras E(X/Y).

PROPOSITION 6.5. Let α = (α1, α2, . . . , αn) be a system of half-lines, which gen-
erate a subspace Y of X. Then

(6.8) E(X/Y) = E(X/[α1]) ∩ · · · ∩ E(X/[αn]).

The morphism τα := τα1 τα2 · · · ταn is a linear projection of E(X) onto E(X/Y).

Proof. If u ∈ C(X/Z), for some Z, then Lemma 6.1 gives τα(u) = u if Y ⊂ Z
and τα(u) ∈ C otherwise. In any case, τα(u) ∈ E(X/Y). Since τα is a morphism,
the range of τα is included in E(X/Y) and τα(u) = u if u ∈ E(X/Y). Thus
τα is a linear projection of E(X) onto E(X/Y). Let u ∈ E(X). We obtain that
u ∈ E(X/Y) if and only if τα(u) = u. If u belongs to the right hand side of (6.8),
then τα(u) = u, so u ∈ E(X/Y).

Note that a permutation of the α1, α2, . . . , αn will give a different projection
onto E(X/Y) (see Remark 6.3). More generally, if β = (β1, . . . , βm) is a second
system of half-lines that generates Y, then τβ is a projection E(X) → E(X/Y)
distinct from τα in general.

By using (6.5) and (6.8) we get

(6.9) E(X/Y) =
⋂

α⊂Y
E(X/[α]) = {u ∈ E(X) : τα(u) = u ∀α ⊂ Y},

from which we get

(6.10) E(X/Y) = {u ∈ E(X) : u(x + y) = u(x) ∀y ∈ Y} = E(X) ∩ Cu
b (X/Y).

Indeed, if C is the middle term in (6.10), then E(X/Y) ⊂ C, by the definition of
E(X/Y) and the definition of τα shows that C is included in the right hand side
of (6.9).

PROPOSITION 6.6. If Y, Z are subspaces of X then E(X/(Y + Z)) = E(X/Y)∩
E(X/Z).

Proof. Let Y′, Z′ be supplements of Y ∩ Z in Y and Z respectively. Choose
a basis a1, . . . , an of Y + Z such that a1, . . . , ai is a basis of Y′, then ai+1, . . . , aj is a
basis of Y ∩ Z, and aj+1, . . . , an is a basis of Z′. Denote αk the half-line determined
by ak. From (6.8) we get

E(X/Y) =
⋂
k<j

E(X/[αk]) and E(X/Z) =
⋂
k>i

E(X/[αk]),

and hence E(X/Y) ∩ E(X/Z) =
n⋂

k=1
E(X/[αk]), which is equal to E(X/(Y + Z)),

by (6.8). This completes the proof.
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6.3. THE CHARACTER SPACE. We now turn to the study of the spectrum (or char-
acter space) of the algebra E(X) of elementary interactions. We begin with an
elementary remark.

Let x ∈ X. Then x there corresponds to the character χx(u) = u(x) on
Cu

b (X). The character χx is completely determined by its restriction to the ideal
C0(X) of Cu

b (X). Similarly, if α ∈ X, then α defines a character χα : C(X) → C by
χα(u) = u(α).

The following lemma and its corollary will provide a crucial ingredient in
the proof of Theorem 6.13 identifying the spectrum of E(X), which is one of our
main results.

LEMMA 6.7. Let Y ⊂ X be a subspace, let B be the C∗-algebra generated by C(X)

and C(X/Y) in Cu
b (X), and let α ∈ SX \ SY. Then the character χα of C(X) extends to

a unique character of B. This extension is the restriction of τα to B.

Proof. Recall that the canonical projection πY : X → X/Y extends to a
continuous map πY : X \ SY → X/Y, which sends SX \ SY onto SY. Thus
β := πY(α) ∈ SY and χβ is a character of C(X/Y). Let χ be a character of B
such that χ|C(X) = χα. We shall verify now that χ|C(X/Y) = χβ.

To prove that χ|C(X/Y) = χβ, it suffices to show that the kernel of χβ is

included in that of χ, which means that for u ∈ C(X/Y) with u(β) = 0, we
should have χ(u) = 0. By a density argument, it suffices to assume that u = 0 on
a neighborhood V of β in X/Y. It is clear that we can find v ∈ C(X) with v(α) = 1
with support in the π−1

Y (V), and hence uv = 0. Since u, v ∈ B, we have

0 = χ(uv) = χ(u)χ(v) = χ(u)χα(v) = χ(u)v(α) = χ(u).

This proves that χ|C(X/Y) = χβ, as claimed.
From the relation χ|C(X/Y) = χβ just proved, we obtain the uniqueness of

χ, since C(X) and C(X/Y) generate B. To complete the proof, let us notice that
the restriction of τα to C(X) is χα and its restriction to C(X/Y) is also a character,
because α 6⊂ Y. Thus τα is a character on B and we get χ = τα|B by uniqueness.
This completes the proof.

COROLLARY 6.8. Let χ1 and χ2 be characters of E(X). Let us assume that there
exists α ∈ SX such that χ1(u) = χ2(u) = u(α) for all u ∈ C(X) and that χ1 = χ2 on
E(X/[α]). Then χ1 = χ2.

Proof. It is enough to show that χ1 = χ2 on each of the algebras C(X/Y),
since the later generate E(X), by definition. Since χ1 = χ2 = χα on C(X), we
obtain χ1 = χ2 on all C(X/Y) with α 6⊂ Y, by Lemma 6.7. Since C(X/[α]) contains
(indeed, it is generated by) all C(X/Y) with α ⊂ Y, the result follows.
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We now proceed to the construction of the characters of E(X). We begin
with a remark concerning the simplest nontrivial case that helps to understand
the general case.

REMARK 6.9. If α ∈ SX and β ∈ SX/[α], then [β] is the one dimensional
subspace generated by β in X/[α], and hence π−1

[α]
([β]) is a two dimensional sub-

space of X that we shall denote by [α, β]. Note that we may and shall iden-
tify (X/[α])/[β] with X/[α, β]. Then Proposition 6.2 gives us two morphisms
τα : E(X) → E(X/[α]) and τβ : E(X/[α]) → E(X/[α, β]) that are linear projec-
tions. Thus τβτα : E(X) → E(X/[α, β]) is a morphism and a projection, and if
a ∈ X/[α, β], then u 7→ (τβταu)(a) is a character of E(X).

We now extend the construction of the above remark to an arbitrary num-
ber of half-lines. However, it will be convenient first to introduce the following
notations.

Notation. Our construction involves finite sequences −→α := (α1, α2, . . . , αn)
with 0 6 n 6 dim(X) and linear subspaces [−→α ] := [α1, α2, . . . , αn] of X asso-
ciated to them. If n = 0, then we define −→α as the empty set and we associate
to it the subspace of X reduced to zero: [∅] = {0}. If n = 1 then −→α = (α1)
with α1 ∈ SX and, as before, [α1] is the one dimensional subspace of X generated
by α1. The case n = 2 is treated in the Remark 6.9 and we extend the notation
to n > 3 by induction: αn ∈ SX/[α1,...,αn−1]

and [α1, . . . , αn] = π−1
Y ([αn]) is an

n-dimensional subspace of X (here Y = [α1, . . . , αn−1]). Note that we may iden-
tify X/[α1, . . . , αn] = (X/[α1, . . . , αn−1])/[αn]. We denote Ω̃

(n)
X the set of the just

defined finite sequences −→α of length n and

Ω
(n)
X := {(a,−→α ) : −→α = (α1, α2, . . . , αn) ∈ Ω̃

(n)
X , a ∈ X/[α1, . . . , αn]}.

In particular, Ω
(0)
X ≡X and Ω

(N)
X ≡ Ω̃

(N)
X if N=dim(X), since [α1, . . . , αN ]=X. Let

(6.11) ΩX =
dim(X)⋃

n=0
Ω

(n)
X .

DEFINITION 6.10. If (a,−→α ) ∈ Ω
(n)
X , then we define

(6.12) τ−→α = ταn ταn−1 · · · τα1 and τa,−→α = τaτ−→α ,

which are endomorphisms of E(X). We agree that τ∅ is the identity of E(X).

In particular, the range of τ−→α is E(X/[−→α ]) and τ−→α is an endomorphism of
E(X) and a linear projection of E(X) onto the subalgebra E(X/[−→α ]). The mor-
phisms of the form τα considered in Proposition 6.5 also have these properties,
but they may be distinct from the τ−→α , the objects α and −→α being different in
nature. Note also that, since a ∈ X/[−→α ], translation by a is a morphism τa of
E(X/[−→α ]), and hence τa,−→α is well defined.



366 VLADIMIR GEORGESCU AND VICTOR NISTOR

We now introduce what will turn out to be a parametrization of the charac-
ters of E(X).

DEFINITION 6.11. If (a,−→α ) ∈ ΩX , we define the character χa,−→α of E(X) by
the formula

(6.13) χa,−→α (u) := χa(τ−→α (u)) = τ−→α (u)(a).

We need to explain what happens in the limit case n = dim(X).

REMARK 6.12. Let n = dim(X) and (a,−→α ) ∈ Ω
(n)
X . Then [−→α ] = X, and

hence X/[−→α ] = 0, so the only possible choice for a is a = 0. Moreover, τ−→α :
E(X)→ C is already a character. Since τ0 = id, we get χ0,−→α = τ−→α .

We are ready now to prove one of our main results, which is a description of

all the characters of the algebra E(X). Recall that we denote by Ê(X) the character
space of E(X).

THEOREM 6.13. The map ΩX → Ê(X) defined by (a,−→α ) 7→ χa,−→α is bijective.

Proof. The preceding construction shows that χa,−→α is a character, therefore
we only need to show that every character χ of E(X) is of this form and that the
pair (a,−→α ) is uniquely determined. To this end, we look at the restriction of χ to
the subalgebra C(X) and proceed by induction on the dimension of X.

Every character of C(X) is of the form u 7→ u(x) = χx for some x ∈ X.
Hence there is a unique x ∈ X such that χ|C(X) = χx. We distinguish two cases:
x ∈ X and x ∈ X \X. In the first case, we have x = a ∈ X; that is, χ(u) = u(a) for
all u ∈ E(X). In our terminology, this means χ = χa,∅. The characters χ of this
form are characterized by the fact that the restriction of χ to C0(X) is non-zero.
The value of a is then determined by restriction to C0(X), since there is a one-to-
one correspondence between the characters of C0(X) and the points of X. Thus
all the characters χa,∅, a ∈ X, are distinct.

Now let us assume that x /∈ X, that is, x = α ∈ SX := X \ X, and that the
assertion of the theorem is true for all vector spaces of dimension strictly less than
that of X (induction hypothesis). Then the theorem holds for the space X/[α], so
there is

−→
β = (β1, . . . , βk) with

β1 ∈ X/[α], β2 ∈ X/[α, β1], . . . , βk ∈ X/[α, β1, . . . , βk−1],

such that the restriction of χ to E(X/[α]) is given by χ(u) = (τ−→
β

u)(b) for some

b ∈ (X/[α])/
−→
β . That is, χ = χ

b,
−→
β

on E(X/[α]). Let a = b and let −→α be ob-

tained by including α in front of the sequence
−→
β , thus −→α = (α, β1, . . . , βk). Then

χa,−→α (u) = (τ−→
β
◦ ταu)(b) and the characters χ and χa,−→α coincide on E(X/[α]). On

the other hand, on C(X), the characters χ and χa,−→α coincide with the character
χα : E(X/[α])→ C. Therefore χ = χa,−→α by Corollary 6.8.
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The same argument can be used to show that we obtain a one-to-one para-
metrization of all these characters. We shall proceed once more by induction
on the length of −→α . If χa,−→α = χ

b,
−→
β

, we have two possibilities: first that their

restrictions to C0(X) is non-zero and, second, that their restrictions to C0(X) is
zero. In the first case, we must have−→α = ∅ and

−→
β = ∅, by the discussion earlier

in the proof. By restricting to C0(X), we also obtain a = b ∈ X. Let us assume
that −→α 6= ∅, then χa,−→α restricts to zero on C0(X), and hence

−→
β 6= ∅ as well.

Since the restrictions of χa,−→α and χ
b,
−→
β

to C(X/Y) are χα1 and χβ1 respectively,
we obtain α1 = β1. The proof is completed by induction using the restrictions of
these characters to E(X/[α1]), as in the first part of the proof.

We shall describe now the morphism τχ on E(X) defined as the translation

by a character χ = χa,−→α ∈ Ê(X), see Section 2, Definition 2.2.

THEOREM 6.14. The translation morphism associated to the character χa,−→α by
Definition 2.2 is the unital endomorphism τa,−→α of E(X) introduced in Definition 6.10.

Proof. If χ = χa ≡ τa,∅ for some a ∈ X, then this is just the usual translation
by a, i.e. τχa(u) = τa(u) = a · u is the function x 7→ u(a + x). In general, we have
to use the definition in Definition 2.2, that is, (τχ(u))(y) = χ(y · u) for all y ∈ X.
Thus, if χ = χa,−→α as above, then from Definition 6.11 we get

(τχ(u))(x) = χa,−→α (x · u) = χa(τ−→α (x · u)).

It is clear that X acts by translation on each of the algebras E(X/Y) and that the
morphism τ−→α : E(X)→ E(X/−→α ) is covariant for this action, that is, τ−→α (x · u) =
x · (τ−→α (u)). Thus

(τχ(u))(x) = χa(x · (τ−→α (u))) = (x · (τ−→α (u)))(a) = (τ−→α (u))(x + a),

and hence we get τχ(u) = τaτ−→α (u), which is (6.12).

REMARK 6.15. Although we shall not use this here, let us mention that in
view of Remark 2.5 and of Theorem 6.14, it is interesting to notice that the action
of X on the space of characters of E(X) is given by τx(χa,−→α ) = χa−π−→α (x),−→α , where

π−→α is the canonical map X → X/[−→α ]. Hence, for the determination of the es-
sential spectrum, it is enough to consider the characters χ0,−→α and their associated
translations τχ0,−→α = τ0,−→α = τ−→α .

6.4. THE HAMILTONIAN ALGEBRA. We now apply the results we have proved to
the study of essential spectra. Since E(X) is a translation invariant C∗-subalgebra
of Cu

b (X) such that C0(X) +C ⊂ E(X), we may take A = E(X) in Section 2. The
algebra generated by the Hamiltonians that are of interest for us is the crossed
product

(6.14) E (X) := E(X)o X.
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As explained in Section 2, E (X) can be thought as the closed linear subspace of
B(X) generated by the operators of the form u(q)v(p) with u ∈ E(X) and v ∈
C0(X∗). On the other hand, since C(X/Y) is a translation invariant C∗-subalgebra
of Cu

b (X), we may also consider the crossed product C(X/Y)o X and we clearly
have

(6.15) E (X) = C∗-subalgebra of B(X) generated by
⋃

Y⊂X
C(X/Y)o X.

Similarly, for any subspace Y ⊂ X, we may consider the crossed product E (X/Y)
= E(X/Y) o X. We thus obtain a family of C∗-subalgebras of E (X) that, as a
consequence of (6.5), has the following property: if Z ⊂ Y then

(6.16) C∗(X) = E (0) = E (X/X) ⊂ E (X/Y) ⊂ E (X/Z) ⊂ E (X).

From the general facts described in Section 2, and by taking into account the
properties of E(X) established in the preceding subsection, we see that for any
A ∈ E (X) the map x 7→ τx(A) = T∗x ATx extends to a strongly continuous map
χ 7→ τχ(A) ∈ E (X) on the spectrum of E(X) such that

τχ(u(q)v(p)) = τχ(u(q))v(p) for all u ∈ E(X) and v ∈ C0(X∗).

Here χ ∈ Ê(X), and hence it is of the form described in Theorem 6.13 and the
associated endomorphism τχ of E(X) is described in (6.12). Note that, in virtue of
Theorem 2.4, we are only interested in the characters that belong to the boundary

δ(E(X)) of X in Ê(X), which are those with −→α 6= ∅. Then Proposition 2.3 and
Theorem 6.13 imply the following.

PROPOSITION 6.16. Let χ = χa,−→α ∈ δ(E(X)). Then there is a unique continu-
ous linear map τa,−→α : E (X)→ E (X) such that τa,−→α (u(q)v(p)) = (τa,−→α u)(q)v(p) for
all u ∈ E(X) and v ∈ C0(X∗). This map is a morphism and a linear projection of E (X)
onto its subalgebra E(X/[−→α ])o X.

Now we shall use the special form of the morphisms τa,−→α in order to im-
prove the compactness criterion of Theorem 2.4.

THEOREM 6.17. Let A ∈ E (X). Then for each α ∈ SX and a ∈ α the limit
τα(A) ≡ α · A := s-lim

r→+∞
T∗ra ATra exists and is independent of the choice of a. The map

τα is a morphism and a linear projection of E (X) onto its subalgebra E(X/[α])o X. The
operator A is compact if and only if τα(A) = 0 for all α ∈ SX .

Proof. The first assertion follows from the preceding results, but it is easier
to prove it directly. Indeed, it suffices to consider A of the form A = u(q)v(p)
with u ∈ E(X) and v ∈ C0(X∗). Then T∗ra ATra = τra(A) = τra(u(q))v(p), which
converges to (α · u)(q)v(p) by Proposition 6.2 (or see Remark 6.4). The properties
of the endomorphism τα are consequences of the same proposition. Everything
follows also by using general properties of crossed products and the fact that at
the abelian level τα : E(X) → E(X/[α]) is a covariant morphism. To prove the
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compactness assertion, note first that τα(A) = 0 if A is compact because Tra → 0
weakly as r → ∞. Then if A ∈ E (X) and τα(A) = 0 for all α ∈ SX then it is clear
by (6.12) that τa,−→α (A) = 0 if −→α 6= ∅, and hence τχ(A) = 0 for all χ ∈ δ(E(X)),
and so A is compact by Theorem 2.4.

REMARK 6.18. If Y is a linear subspace of X, then the algebras E(X/Y)
and E (X/Y) are a priori defined by our formalism as algebras of operators on
L2(X/Y). In Section 6.2, we have defined E(X/Y) as a subalgebra of Cu

b (X) satis-
fying the relation (6.10); this definition is natural because of our general conven-
tion to identify subalgebras of Cu

b (X/Y) with subalgebras of Cu
b (X). On the other

hand, we note that the algebras E (X/Y) = E(X/Y)o (X/Y) and E(X/Y)o X
are quite different objects: indeed

(6.17) E(X/Y)o X ' E (X/Y)⊗ C∗(Y)

by a general fact from the theory of crossed products, namely

(6.18) (A⊗B)o (G× H) ' (Ao G)⊗ (Bo H)

if (A, G) and (B, H) are amenable C∗-dynamical systems. In particular:

(6.19) E(X/[α])o X ' E (X/[α])⊗ C∗([α]).

COROLLARY 6.19. The map τ(A)=(τα(A))α∈SX induces an injective morphism

(6.20) E (X)/K (X) ↪→ ∏
α∈SX

E(X/[α])o X.

The following theorem is an immediate consequence of the preceding corol-
lary.

THEOREM 6.20. Let H be a self-adjoint operator on L2(X) affiliated to E (X).
Then for each α ∈ SX and a ∈ α the limit τα(H) ≡ α · H = s-lim

r→+∞
T∗raHTra exists and

is independent of the choice of a. We have σess(H) =
⋃

α∈SX

σ(α · H).

The question whether the union
⋃

α∈SX

σ(α · H) is closed or not will not be

treated in this paper (see [39] for related results). That the union is closed if E (X)
is replaced by the standard N-body algebra EC0(X) is shown in Theorem 6.27 of
[22] and is a consequence of the fact that {τα(A) : α ∈ SX} is a compact subset of
EC0(X) for each A ∈ EC0(X). Unfortunately this is not true in the present case.

LEMMA 6.21. If A ∈ E (X), then {τα(A) : α ∈ SX} is a relatively compact
subset of E (X), but is not compact in general.

Proof. We first show that {τα(A) : α ∈ SX} is a relatively compact set in
E (X). Since the product and the sum of two relatively compact subsets is rela-
tively compact, it suffices to prove this for A in a generating subset of the algebra
E (X), so we may assume that A = u(q)v(p) with u ∈ C(X/Y) and v ∈ C0(X∗)
for some subspace Y. Then τα(A) = A if α ⊂ Y and τα(A) = τα(u)v(p) if α 6⊂ Y.
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In the second case we have τα(u) ∈ C and |τα(u)| 6 ‖u‖, so it is clear that the set
of the τα(A) is relatively compact.

We shall give now an example when this set is not closed. Let X = R2,
Y = {0} ×R, and let us identify X/Y = R× {0}. The operator A will be of the
form A = u(q)v(p) so that τα(A) = τα(u)(q)v(p) with u = u0 + uY for some
u0 ∈ C(X) and uY ∈ C(X/Y). We have X/Y = R× {0} ≡ [−∞,+∞], and hence
SX/Y consists of two points ±∞. If α ∈ SX then τα(u) = u0(α) + τα(uY) where
τα(uY) = uY if α ⊂ Y and τα(uY) = uY(πY(α)) if α 6⊂ Y. In the last case we have
only two possibilities: τα(uY) = uY(+∞) if α is in the open right half-plane and
τα(uY) = uY(−∞) if α is in the open left half-plane.

Let β be the upper half-axis, i.e. β = {(0, y) : y > 0}, and let us choose
u0 such that u0(γ) 6= u0(β) for all γ ∈ SX , γ 6= β. Then choose uY such that
uY(+∞) − uY(−∞) be strictly larger than u0(γ) − u0(β) for all γ ∈ SX . Then
{τα(u) : α ∈ SX} consists of the following elements:

u0(β) + uY, u0(−β) + uY, u0(α) + uY(+∞),

if α is in the open right half-plane, and

u0(α) + uY(−∞)

if α is in the open left half-plane. We shall prove that this set is not closed. In-
deed, let {αn} be a sequence of rays in the open right half-plane that converges
to β. Then ταn(u) = u0(αn) + uY(+∞) is a sequence of complex numbers that
converges to u0(β) + uY(+∞). This number cannot be of the form τγ(u) for some
γ ∈ SX because, if γ ⊂ Y, then τγ(u) = u0(γ) + uY is not a number. If γ is in
the open right half-plane, then τγ(u) = u0(γ) + uY(+∞), which cannot be equal
to u0(β) + uY(+∞), because u0(γ) 6= u0(β). On the other hand, if γ is in the
open left half-plane, then τγ(u) = u0(γ) + uY(−∞), which cannot be equal to
u0(β) + uY(+∞) because u0(γ)− u0(β) < uY(+∞)− uY(−∞).

REMARK 6.22. It is important to notice that finding good compactifications
of X related to the N-body problem is useful for the problem of approximat-
ing numerically the eigenvalues and eigenfunctions of N-body Hamiltonians [1],
[16], [17], [18], [19], [50]. In particular, this gives a further justification for trying
to find the structure of the character space of E(X).

6.5. SELF-ADJOINT OPERATORS AFFILIATED TO E (X). Our purpose here is to
show that the class of self-adjoint operators affiliated to E (X) is quite large. As
mentioned at the beginning of Section 6, we may and shall assume dim X > 2.

We first prove Theorem 1.2. We recall the definition of E ](X) in terms of
the algebras B(X/Y) defined as in (3.4) and Lemma 3.3. Note that, according to
our notational conventions, B(X/Y) is identified with a C∗-algebra of functions
on X.
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DEFINITION 6.23. E ](X) is the C∗-subalgebra of L∞(X) generated by the
functions of the form v ◦ πY, where Y runs over the set of linear subspaces of X
and v ∈ B(X/Y).

PROPOSITION 6.24. u ∈ E ](X) if and only if there is a sequence of functions
un ∈ E(X) such that sup

n
‖un‖L∞(X) < ∞ and lim

n
‖un(q)− u(q)‖Hs(X)→H(X) = 0

for some s > 0.

Proof. We need the following consequence of Proposition 3.4: u ∈ B(X/Y)
if and only if there is a sequence of functions un ∈ C(X/Y) such that ‖un‖L∞ 6 C
with C independent of n and lim

n
‖un(q)− u(q)‖Hs(X)→H(X) = 0 for some s > 0.

For the proof, it is useful to distinguish between the function u on X and the func-
tion u′ on X/Y related to it by u = u′ ◦ πY. Then Proposition 3.4 gives us func-
tions u′n : X/Y → C of class C(X/Y) such that ‖u′n‖L∞(X/Y) 6 C and u′n(q) →
u′(q) in norm in the space of bounded operators Hs(X/Y) → H(X/Y). Thus, if
we set un = u′n ◦ πY, it suffices to show that lim

n
‖un(q)− u(q)‖Hs(X)→H(X) = 0.

But this is clear because, if Z is a subspace supplementary to Y in X, then we have
X/Y ' Z, H(X) ' H(Y) ⊗ H(Z) and Hs(X) ' (Hs(Y) ⊗ H(Z)) ∩ (H(Y) ⊗
Hs(Z)).

Since E ] is the norm closure in L∞ of the space of linear combinations of
products of functions in B(X/Y) with Y running over all subspaces of X, it re-
mains to prove that if u is a finite product u = u1 · · · uk of functions ui ∈ B(X/Yi),
then one may construct a sequence {un} as in the statement of the proposition.
By what we have proved, such a sequence {ui

n} exists for each i and clearly it
suffices to take un = u1

n · · · uk
n.

Proof of Theorem 1.2. We consider first the operator H defined in (1.3). Since
dim X > 2, the function h is either lower or upper semi-bounded, and hence
we may assume h > 0. In Theorem 5.8 we take H0 = h(p), so H0 is a positive
operator strictly affiliated to E (X). Then, according to Theorem 5.8, if V is a
bounded self-adjoint operator onH such that

(6.21) ϕ(H0)V(H0 + 1)−1/2 ∈ E (X) for all ϕ ∈ Cc(R)

then H = H0 + V is a self-adjoint operator strictly affiliated to E (X). Since h is
a proper, continuous function we have ϕ ◦ h ∈ Cc(R), and hence for any s > 0
the function ψ(k) = ϕ(h(k))〈k〉s also belongs to Cc(R), so ψ(p) ∈ E (X). Then
ϕ(H0) = ψ(p)〈p〉−s hence (6.21) is satisfied if 〈p〉−sV ∈ E (X). This last fact
is clearly true if V = u(q) with u ∈ E(X) and remains true if u ∈ E ](X) by
Proposition 6.24.

Now let H be the self-adjoint operator associated to the operator L : Hm →
H−m defined by (1.5). Then we take H0 = 1 + ∑

|µ|=m
p2µ and equip Hm with the

scalar product 〈u|H0u〉. If we set V = L − H0, then (1.6) implies V > −(1 −
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δ)H0− γ. Since δ > 0 we see that the conditions on V in Theorem 5.8 are satisfied
(with a change of notation). The second condition on V is clearly satisfied if
H−1

0 VH−1/2
0 ∈ E (X). Observe that the operator V has the same form as L, only

the coefficients gµν in the principal part being changed in an irrelevant manner
(replaced by gµν − δµν and g00 − 1 respectively). Thus it remains only to check
that pµH−1

0 gµν pν H−1/2
0 belongs to E (X) if |µ|, |ν| 6 m. Since pν H−1/2

0 belongs to
the multiplier algebra of E (X), it suffices to have pµH−1

0 gµν ∈ E (X). Since H0 is
of order 〈p〉2m and pµ is of order at most m, this follows from what we proved
before in the case H = h(p) + V.

REMARK 6.25. One may treat, by the technique of the preceding proof, op-
erators L with unbounded coefficients in the terms of lower order. Assume that
for each µ, ν the operator of multiplication by gµν mapsHm−|ν| intoH|µ|−m. Then
L : Hm → H−m is well defined and the condition (1.6) ensures the existence of
the self-adjoint operator H associated to it. It has been shown in Example 4.13 of
[22] that this operator is affiliated to the crossed product Cu

b (X)o X, and hence
its essential spectrum can be described in terms of localizations at infinity of H.
However, its affiliation to the smaller algebra E (X) would give a much more pre-
cise characterization of the essential spectrum. For this, by the argument of the
preceding proof, it suffices to have pµH−1

0 gµν pν H−1/2
0 ∈ E (X) for all µ, ν. And

this is satisfied if the operator gµν(q) is the norm limit in B(Hm−|ν|,H|µ|−m−1) of
a sequence of operators gk

µν(q) with gk
µν ∈ E(X).

In the rest of this section we consider only potentials that have a simpler
N-body type structure, as explained in Subsection 1.4 (page 337), and we shall
prove Theorems 1.5 and 1.6. We will be able to cover a large class of such inter-
actions by using a more explicit description of the algebras C(X/Y)o X that we
describe now.

Observe first that if Z is a supplement of Y in X, so Z is a linear subspace of
X such that Y ∩ Z = {0} and Y + Z = X, then:

(6.22) C(X/Y)o X = C∗(Y)⊗S (Z) relatively to L2(X) = L2(Y)⊗ L2(Z).

Indeed, C(X/Y)o X is the norm closed subspace generated by the operators of
the form u(q)v(p) with u ∈ C(X/Y) and v(p) ∈ C∗(X). But once Z is chosen, we
may identify C(X/Y) = 1⊗C(Z) and C∗(X) = C∗(Y)⊗C∗(Z), and hence (6.22).
Of course, this is a particular case of the relation (6.18) from Remark 6.18.

It is useful to express (6.22) in an intrinsic way, independent of the choice of
Z. This is in fact an extension of Theorem 4.2 to the present setting.

Observe first that if A is a bounded operator on L2(X) and [A, Ty] = 0 for
all y ∈ Y, then T∗x ATx depends only on the class z = πY(x) of x in X/Y. Thus we
have an action τ of X/Y on the set of operators A in the commutant of {Ty}y∈Y
such that τz(A) = T∗x ATx if πY(x) = z. Later on we shall keep the notation
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τa(A) = T∗a ATa for a ∈ X/Y since the correct interpretation should be clear from
the context.

THEOREM 6.26. The set C(X/Y)o X consists of the operators A ∈ B(X) that
have the position-momentum limit property and are such that:

(i) [A, Ty] = 0 for all y ∈ Y;
(ii) for each α ∈ SX/Y the limit s-lim τa(A)(∗) with a→ α in X/Y exists.

Proof. Let α̌ = π−1
Y (α̃) be the inverse image of the filter α̃ through the map

πY, i.e. the set of subsets of X of the form π−1
Y (F) with F ∈ α̃. This is a translation

invariant filter of subsets of X and, if f is a function defined on X/Y with values
in a topological space B, then lim

z→α
f (z) = b if and only if lim

x→α̌
f ◦ πY(x) = b. It is

then clear that the condition (ii) above is equivalent to the fact that s-lim
x→α̌

T∗x ATx

exists for each α ∈ SX/Y. Now the proof is essentially a repetition of the proof of
Theorem 4.2, the filter α̃ on X/Y being replaced by the translation invariant filter
α̌ on X.

There is no simple analogue of Theorem 5.2 in the present context, but one
can extend Proposition 4.7 and Theorem 5.3. Indeed, both Theorems 1.5 and 1.6
follow from Theorems 5.7, 5.8 and 6.26. To prove Theorem 1.6 for example, let
us set 〈p〉 = (1 + |p|2)1/2. Since we have 1 + h(p) ∼ 〈p〉2s, it suffices to prove
that for each Y the operator 〈p〉−2sVY〈p〉−s is in C(X/Y)o X. This clearly follows
from Theorem 6.26.
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[12] J. DEREZIŃSKI, C. GÉRARD, Scattering Theory of Classical and Quantum N-Particle Sys-
tems, Texts Monogr. Phys., Springer-Verlag, Berlin 1997.

[13] Y. DERMEMJIAN, V. IFTIMIE, Méthodes à N corps pour un problème de milieux
pluristratifiés perturbés, Publ. Res. Inst. Math. Sci. 35(1999), 679–709.

[14] S. ECHTERHOFF, Crossed products with continuous trace, Mem. Amer. Math. Soc.
123(1996), no. 586.

[15] T. FACK, G. SKANDALIS, Sur les représentations et idéaux de la C∗-algèbre d’un feuil-
letage, J. Operator Theory 8(1982), 95–129.

[16] J. FAUPIN, J.S. MØLLER, E. SKIBSTED, Regularity of bound states, Rev. Math. Phys.
23(2011), 453–530.

[17] H.-J. FLAD, G. HARUTYUNYAN, R. SCHNEIDER, B.-W. SCHULZE, Explicit Green op-
erators for quantum mechanical Hamiltonians. I. The hydrogen atom, Manuscripta
Math. 135(2011), 497–519.

[18] H.-J. FLAD, R. SCHNEIDER, B.-W. SCHULZE, Asymptotic regularity of solutions to
Hartree–Fock equations with Coulomb potential, Math. Methods Appl. Sci. 31(2008),
2172–2201.

[19] S. FOURNAIS, M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, T. ØSTER-
GAARD SØRENSEN, Analytic structure of solutions to multiconfiguration equations,
J. Phys. A 42(2009), no. 31.

[20] V. GEORGESCU, On the structure of the essential spectrum of elliptic operators on
metric spaces, J. Funct. Anal. 260(2011), 1734–1765.

[21] V. GEORGESCU, A. IFTIMOVICI, Crossed products of C∗-algebras and spectral analy-
sis of quantum Hamiltonians, Comm. Math. Phys. 228(2002), 519–560.

[22] V. GEORGESCU, A. IFTIMOVICI, Localizations at infinity and essential spectrum of
quantum Hamiltonians. I. General theory, Rev. Math. Phys. 18(2006), 417–483.

[23] V. GEORGESCU, V. NISTOR, The essential spectrum of N-body systems with asymp-
totically homogeneous order-zero interactions, C. R. Math. Acad. Sci. Paris 352(2014),
1023–1027.



ESSENTIAL SPECTRUM OF N-BODY HAMILTONIANS WITH INTERACTIONS 375

[24] C. GÉRARD, M. WROCHNA, Hadamard states for the linearized Yang–Mills equation
on curved spacetime, Comm. Math. Phys. 337(2015), 253–320.

[25] C. GUILLARMOU, S. MOROIANU, J. PARK, Eta invariant and Selberg zeta function of
odd type over convex co-compact hyperbolic manifolds, Adv. Math. 225(2010), 2464–
2516.

[26] A. HASSELL, R. MELROSE, A. VASY, Spectral and scattering theory for symbolic po-
tentials of order zero, Adv. Math. 181(2004), 1–87.

[27] B. HELFFER, A. MOHAMED, Caractérisation du spectre essentiel de l’opérateur de
Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble) 38(1988), 95–
112.

[28] I. HERBST, E. SKIBSTED, Quantum scattering for potentials homogeneous of degree
zero, in Mathematical Results in Quantum Mechanics (Taxco, 2001), Contemp. Math.,
vol. 307, Amer. Math. Soc., Providence, RI 2002, pp. 163–169.

[29] I. HERBST, E. SKIBSTED, Quantum scattering for potentials independent of |x|: as-
ymptotic completeness for high and low energies, Comm. Partial Differential Equations
29(2004), 547–610.

[30] M. IONESCU, D.P. WILLIAMS, Irreducible representations of groupoid C∗-algebras,
Proc. Amer. Math. Soc. 137(2009), 1323–1332.

[31] Y. LAST, B. SIMON, The essential spectrum of Schrödinger, Jacobi, and CMV opera-
tors, J. Anal. Math. 98(2006), 183–220.

[32] R. LAUTER, B. MONTHUBERT, V. NISTOR, Pseudodifferential analysis on continuous
family groupoids, Doc. Math. 5(2000), 625–655 (electronic).

[33] A. MAGEIRA, Graded C∗-algebras, J. Funct. Anal. 254(2008), 1683–1701.

[34] A. MAGEIRA, Some examples of graded C∗-algebras, Math. Phys. Anal. Geom.
11(2008), 381–398.
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