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ON POLYNOMIAL n-TUPLES OF COMMUTING ISOMETRIES

EDWARD J. TIMKO

Communicated by Florian-Horia Vasilescu

ABSTRACT. We extend some of the results of Agler, Knese, and McCarthy in J.
Operator Theory 67(2012), 215–236, to n-tuples of commuting isometries for n >
2. Let V = (V1, . . . , Vn) be an n-tuple of a commuting isometries on a Hilbert
space and let Ann(V) denote the set of all n-variable polynomials p such that
p(V) = 0. When Ann(V) defines an affine algebraic variety of dimension 1
and V is completely non-unitary, we show that V decomposes as a direct sum
of n-tuples W = (W1, . . . , Wn) with the property that, for each i = 1, . . . , n, Wi
is either a shift or a scalar multiple of the identity. If V is a cyclic n-tuple of
commuting shifts, then we show that V is determined by Ann(V) up to near
unitary equivalence, as defined in J. Operator Theory 67(2012), 215–236.
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1. INTRODUCTION

Agler, Knese, and McCarthy [1] prove several results concerning pairs of
commuting shifts subject to a polynomial equation. Recall that V is a shift on a

Hilbert space H if V is an isometry and
∞⋂

j=0
V jH = {0}. We extend some of the

results in [1] to certain collections of n commuting isometries.
We begin by setting some notation and terminology. Let V = (V1, . . . , Vn) be

an n-tuple of commuting isometries on a Hilbert spaceH. Generally we suppose
that there are polynomials p1, . . . , pk ∈ C[X1, . . . , Xn] such that p1(V) = · · · =
pk(V) = 0 and p1, . . . , pk determine an algebraic variety of pure dimension 1. We
say that V is completely non-unitary if there is no non-zero subspace K ofH that is
reducing for each element of V such that Vi|K is a unitary operator for i = 1, . . . , n.
An arbitrary n-tuple of commuting isometries admits a decomposition as a direct
sum of an n-tuple of unitaries and a completely non-unitary n-tuple, and thus we
often focus on completely non-unitary n-tuples.
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Given a set S of polynomials in C[X1, . . . , Xn], we denote by Z(S) the variety
determined by S; that is, Z(S) = {z ∈ Cn : p(z) = 0 for all p ∈ S}. An ideal I
in C[X1, . . . , Xn] is said to be radical if it coincides with its radical; that is, pk ∈ I
implies p ∈ I . It is well known (see Theorem III.4.6 of [12]) that a radical ideal I
can be written as the irredundant intersection of a unique finite family of prime
ideals. These ideals are called the prime factors of I . The annihilator of V is the
ideal Ann(V) of all polynomials p ∈ C[X1, . . . , Xn] such that p(V) = 0. Below are
a few examples where the annihilator is non-zero.

EXAMPLE 1.1. Let (V1, V2) be a commuting pair of shifts so that dim ker V∗1
and dim ker V∗2 are finite; say k = dim ker V∗2 . Then we can represent (V1, V2) as a
pair of Toeplitz operators (TΘ, Tζ·Ik ) on the Ck-valued Hardy space H2(D)⊗Ck,
where ζ is the coordinate function on D, Ik the identity operator on Ck, and Θ is a
matrix valued rational inner function (see [2] for details). Then there are polyno-
mials P ∈ C[X1, X2] and Q ∈ C[X2] so that det(wIk −Φ(z)) = P(w, z)/Q(z) for
w, z ∈ D. It then follows that P(V1, V2) = 0.

EXAMPLE 1.2. Define the 4× 4 matrices Φ1(z), Φ2(z) by

Φ1(z)u = (u3, u4, zu2, z3u1)
t, Φ2(z)u = (u2, z2u1, u4, z2u3)

t,

where u= (u1, u2, u3, u4)
t. Then (V1, V2, V3) = (TΦ1 , TΦ2 , Tζ·I4) acting on H2(D)⊗

C4 is a triple of commuting shifts satisfying the equations V2
1 =V2V3 and V2

2 =V2
3 .

In general, however, the annihilator may be {0}, as is the case for the pair
(S⊗ 1, 1⊗ S) acting on `2(N)⊗ `2(N) where S is the unilateral shift on `2(N).

In what follows, assume V to be an n-tuple of commuting isometries on a
Hilbert space H. We proceed now to state the main results of this paper, and
begin by providing a description of the annihilator of a completely non-unitary
n-tuple.

THEOREM 1.3 (Theorem 3.4). Suppose V is completely non-unitary, and let I ⊆
Ann(V) be an ideal such that dim Z(I) = 1.

(i) I = Ann(V) if and only if I is radical with prime factors I1, . . . , Im such that⋂
i 6=j
Ii * Ann(V) for j = 1, . . . , m.

(ii) If I = Ann(V), then there exist non-zero mutually orthogonal V-invariant sub-
spacesH1, . . . ,Hm ofH such that Ij = Ann(V|Hj) for each j ∈ {1, . . . , m}.

An algebraic varietyW in Ck is said to be a distinguished variety if

W ⊆ Dk ∪Tk ∪Ek

where D is the open unit disc in C, T is the unit circle, E is the exterior of the
closed unit disc, and exponents indicate Cartesian powers. In the special case
that Ann(V) is a prime ideal, the n-tuple V has a particularly simple structure.
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THEOREM 1.4 (Theorem 4.4). Suppose V is completely non-unitary. If Ann(V)
is a prime ideal and Z(Ann(V)) has dimension 1, then, after a permutation of coordi-
nates, there exists an s ∈ {1, . . . , n} such that:

(i) V = (V1, . . . , Vs, λs+1 I, . . . , λn I) where V1, . . . , Vs are shifts and λs+1, . . . , λn
are scalars of absolute value 1; and

(ii) Z(Ann(V)) = W × {(λs+1, . . . , λn)} for some 1-dimensional distinguished
varietyW ⊆ Cs.

When Ann(V) is not prime, we have the following result.

THEOREM 1.5 (Theorem 5.4). Suppose V is completely non-unitary and
Z(Ann(V)) has dimension 1. There is a subset F ⊆ ({0} ∪ T)n and a collection of
non-zero V-reducing subspaces (Hz)z∈F such that H =

⊕
z∈F
Hz and, for each z =

(z1, . . . , zn) ∈ F , the following hold:
(i) If i∈{1, . . . , n} and zi =0, then Vi|Hz is a shift. If zi 6=0, then (Vi − zi I)|Hz =0.

(ii) Suppose exactly s components of z are 0, and let λs+1, . . . , λn denote the non-zero
components of z. Then there is a one dimensional distinguished variety W in Cs such
that, after a permutation of coordinates, Z(Ann(V|Hz)) =W × {(λs+1, . . . , λn)}.

Recall that a subset S of H is said to be cyclic for H if the set {p(V)h : p ∈
C[X1, . . . , Xn], h ∈ S} is total in H. When V is an n-tuple of shifts for which
dim Z(Ann(V)) = 1, there is a close relationship between finite multiplicity and
the presence of a finite cyclic set.

THEOREM 1.6 (Theorem 6.2). If V is an n-tuple of shifts and Z(Ann(V)) has
dimension 1, then the following assertions are equivalent:

(i) There is a finite cyclic set for V.
(ii) Vi has finite multiplicity for each i ∈ {1, . . . , n}.

(iii) Vi has finite multiplicity for some i ∈ {1, . . . , n}.
In fact, when V1, . . . , Vn each have finite multiplicity, the hypothesis that

dim Z(Ann(V)) = 1 is unnecessary.

THEOREM 1.7 (Proposition 6.3). If V is an n-tuple of shifts such that Vi has finite
multiplicity for i = 1, . . . , n, then Z(Ann(V)) has dimension 1.

We remark that this is essentially a corollary of Example 1.1.
Two n-tuples of commuting isometries, say V on a Hilbert space H and W

on a Hilbert space K, are said to be nearly unitarily equivalent if V is unitarily
equivalent to the restriction of W to a finite codimensional W-invariant subspace
and, similarly, W is unitarily equivalent to the restriction of V to a finite codimen-
sional V-invariant subspace.

THEOREM 1.8 (Theorem 7.2). Suppose V and W are cyclic n-tuples of commut-
ing shifts. If Ann(V) = Ann(W) and dim Z(Ann(V)) = 1, then V and W are nearly
unitarily equivalent.
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Many of the results listed here have direct analogues in [1]. In particular
Theorem 5.4 is based on Theorem 1.20 of [1], Theorem 6.2 is based on the proof
of Lemma 1.11 of [1], and Theorem 7.2 is analogous to Theorem 3.3 of [1].

2. PRELIMINARY MATERIAL

In this section we set down some notation and state a few results that we
use. Throughout this paper n denotes a positive integer, and V = (V1, . . . , Vn)
an n-tuple of commuting isometries on a Hilbert space H. A subspace K of H
is V-invariant if K is an invariant subspace for each Vi, while K is V-reducing if
K is a reducing for each Vi. In either case, we set V|K = (V1|K, . . . , Vn|K). With
this notation, the n-tuple V is completely non-unitary if there is no non-zero V-
reducing subspace K such that Vi|K is unitary for each i. If there is no non-zero
V-reducing subspace K such that Vi|K is unitary for some i, then we say that V
is pure.

PROPOSITION 2.1 ([16]). Given a pair of commuting isometries (V1, V2) on a
Hilbert spaceH,

(V1, V2) = (S1, S2)⊕ (U1, T2)⊕ (T1, U2)⊕ (W1, W2)

where U1, U2, W1, W2 are unitary, T1, T2 are shifts, and (S1, S2) is pure.

Here we are using the following notation. If, for each i ∈ I, A(i) is an n-
tuple on operators acting a Hilbert space Hi, then the following is an n-tuple of
operators acting on the Hilbert space

⊕
i∈I
Hi:

⊕
i∈I

A(i) =
(⊕

i∈I
A(i)

1 , . . . ,
⊕

i∈I
A(i)

n

)
.

We also require some notation for polynomial functions. Denote by C[X] =
C[X1, . . . , Xn] the ring of n-variable polynomials, and set X = (X1, . . . , Xn). As
is common practice, we frequently identify a given p ∈ C[X] with the corre-
sponding map z 7→ p(z) on Cn. Let N0 denote the set of non-negative integers
{0, 1, 2, . . . }, and set Xα = Xα1

1 · · ·X
αn
n whenever α = (α1, . . . , αn) ∈ Nn

0 . Given
an n-tuple V of commuting isometries, we set p(V) = p(V1, V2, . . . , Vn) for each
p ∈ C[X], Vα = Vα1

1 · · ·V
αn
n for each α ∈ Nn

0 , and V∗ = (V∗1 , . . . , V∗n ). The ideal
{p ∈ C[X] : p(V) = 0} is called the annihilator of V and is denoted by Ann(V).
Whenever L is a linear subspace of C[X], we set L(V) = {p(V) : p ∈ L}, and
when S is a subset of H we define L(V)S to be the (algebraic) linear span of
{p(V)u : p ∈ L, u ∈ S}.

PROPOSITION 2.2 ([16]). Let V be an n-tuple of commuting isometries on a
Hilbert space H. Then

⋂
α∈Nn

0

VαH is a V-reducing subspace and the largest V-invariant
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subspace of H on which V is an n-tuple of unitary operators. Thus V is completely
non-unitary if and only if

⋂
α∈Nn

0

VαH = {0}.

As we can always isolate the completely unitary part of a given n-tuple, we
generally assume our n-tuple is completely non-unitary. If V is completely non-
unitary and K is a V-invariant subspace ofH, then

⋂
α∈Nn

0

VαK ⊆ ⋂
α∈Nn

0

VαH = {0}.

Thus the restriction of a completely non-unitary n-tuple is again completely non-
unitary. We also note the following. Suppose A is an operator on H commuting
with V and ker A = {0}. If V|ran A is completely non-unitary, then V is completely
non-unitary.

PROPOSITION 2.3 ([11]). Given an n-tuple of commuting isometries V on a
Hilbert space H, there exists an n-tuple of commuting unitaries Ṽ = (Ṽ1, . . . , Ṽn) on a
Hilbert space H̃ such that:

(i)H is a Ṽ-invariant subspace of H̃;
(ii) Ṽ|H = V; and

(iii) H̃ =
∨

α∈Nn
(Ṽ)∗αH.

These properties determine Ṽ up to unitary equivalence. We call Ṽ the minimal unitary
extension of V. Furthermore, if A is an operator on H commuting with V, then there
exists a unique operator Ã on H̃ that commutes with Ṽ such that Ã|H = A and ‖Ã‖ =
‖A‖. We call Ã the canonical extension of A.

For any p∈C[X], we have ‖p(V)‖=‖p(Ṽ)‖. It follows that Ann(V) is a radi-
cal ideal; that is, if pk∈Ann(V) for some positive integer k, then p∈Ann(V). The
following two propositions are based on results from Chapters V and VI of [17].

PROPOSITION 2.4. Let (V1, V2) be a pair of commuting shifts on a Hilbert spaceH.
(i) There is a Hilbert space E of dimension dim ker V∗2 and an L(E)-valued inner

function Θ on D such that (V1, V2) is unitarily equivalent to pair of Toeplitz operators
(TΘ, Tζ I) acting on H2(D)⊗ E .

(ii) In the case that both V1 and V2 have finite multiplicity, E is finite dimensional and
Θ is a matrix valued inner function with entries consisting of rational functions.

We remark that Proposition 2.4(ii) is a consequence of Theorem VI.3.1 of [17]
and Proposition VI.3.2 of [17].

PROPOSITION 2.5 ([6], Theorem 3.1). Let V be a shift on a Hilbert space E ,
and let A be a contraction on E commuting with V. Letting Ṽ denote the minimal
unitary extension of V and Ã the canonical extension of A, set D = (1− (Ã)∗ Ã)1/2

and D = ran D. We observe that D is a reducing subspace for Ṽ. On the Hilbert space
H⊕ [

⊕∞
i=0D], we define operators W1 and W2 by

W1(h, d0, d1, . . . ) = (Vh, Ṽd0, Ṽd1, . . . ), W2(h, d0, d1, . . . ) = (Ah, Dh, d0, d1, . . . ),
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where h ∈ H and d0, d1, . . . ∈ D. Then WA = (W1, W2) is a pair of commuting
isometries. Given a pair W′ of commuting isometries on a Hilbert spaceH′, the following
assertions are equivalent:

(i) There is no W′-reducing subspace K′ ofH′ such that W ′1|′K is unitary.
(ii) There exists a contraction A commuting with a shift V such that W′ is unitarily

equivalent to WA.
Additionally, the pair (V, A) is unique up to unitary equivalence, and thus it is

called the characteristic pair of W′.

We require a few results from elementary algebraic geometry, for which we
refer the reader to [8] and [12]. As we only concern ourselves with affine alge-
braic varieties in C`, for some positive integer `, we generally drop the adjectives
“affine” and “algebraic”. The following are some results we use repeatedly.

PROPOSITION 2.6 ([12], Theorem III.4.6). If I is a (non-zero) radical ideal of

C[X], then there is a unique finite collection of prime ideals I1, . . . , Im such that
m⋂

i=1
Ii =

I and
m⋂

i 6=j
Ii ) I for j = 1, . . . , m.

In other words, I is the irredundant intersection of the prime ideals I1, . . . ,
Im; we call these the prime factors of I . Similarly, if V is a variety in Cn, then there

exists a unique collection of irreducible varieties V1, . . . ,Vm so that V=
m⋃

i=1
Vi and V

)
⋃
j 6=i
Vj for every i∈{1, . . . , m}. We call V1, . . . ,Vm the irreducible components of V .

PROPOSITION 2.7 ([12], Theorem IV.3.1). If V and W are irreducible varieties
in Cn and V ∩W 6= ∅, then

dimV + dimW 6 n + dim(V ∩W).

PROPOSITION 2.8 ([12], Theorem IV.2.15). If V is an irreducible variety in Cn

andW is a proper subvariety, then dimW < dimV .

Thus, if V is an irreducible variety of dimension 1 andW is any variety in
Cn, thenW ∩V is either V or a finite set.

PROPOSITION 2.9 ([8], Corollary 9.5.4). Given an ideal I ⊆ C[X], the dimen-
sion of Z(I) is equal to the largest integer r for which there exist r distinct elements
i1, . . . , ir ∈ {1, . . . , n} such that

I ∩C[Xi1 , . . . , Xir ] = {0}.
In particular, if dim Z(I) = 1, then C[Xi, Xj] ∩ I contains a non-zero ele-

ment whenever i 6= j.

PROPOSITION 2.10 ([8], Theorem 5.3.6). Given an ideal I ⊆ C[X], the variety
Z(I) is a finite set if and only if C[X]/I has finite linear dimension.
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A corollary of this result is the following.

COROLLARY 2.11. Suppose I1, . . . , Im are the prime factors of a radical ideal,
m > 1, and dim Z(Ii) = 1 for i = 1, . . . , m. Then C[X]/J has finite linear dimension,

where J =
m
∑

i=1

⋂
j 6=i
Ij.

Proof. We observe that

Z(J ) =
m⋂

i=1

⋃
j 6=i

Z(Ij) =
⋃

16i,j6m, i 6=j

Z(Ii) ∩ Z(Ij).

Because the collection I1, . . . , Im is irredundant, Z(Ii)∩ Z(Ij) is a finite set when
i 6= j, and thus Z(J ) is a finite set.

Before concluding this section, we make the following observation about
distinguished varieties.

PROPOSITION 2.12. Suppose V is a distinguished variety in Cn and each irre-
ducible component of V meets D n

. Then V has dimension at most 1.

Proof. It suffices to consider the case where V is irreducible. We fix z ∈
V ∩ D n

and set H = {w ∈ Cn : wn = zn}. Because V is distinguished, H ∩
V ⊆ D n

. Since this is a bounded and therefore compact variety, it follows from
Proposition I.3.1 of [7] that H ∩ V is a finite set. By Proposition 2.7, dimV +
dim H 6 n + dim(H ∩ V). As dim(H ∩ V) = 0 and dim H = n− 1, we have that
dimV 6 1.

3. BASIC PROPERTIES OF Ann(V)

Throughout this section, assume that V is a completely non-unitary n-tuple
of commuting isometries. The main result is Theorem 3.4, which allows us to
recover Ann(V) from a given ideal I ⊆ Ann(V) with dim Z(I) = 1.

LEMMA 3.1. No component of Z(Ann(V)) has dimension 0.

Proof. Suppose Ann(V) 6= {0}, and let I1, . . . , Im be the prime factors of
Ann(V). We note that I2 ∩ · · · ∩ Im is strictly larger than Ann(V) and therefore it
cannot annihilate V. Suppose that Z(I1) has dimension 0, and thus is generated
by X1−λ1, . . . , Xn−λn for some λ1, . . . , λn∈C. LetH1 be the closure of (I2 ∩ · · · ∩
Im)(V) · H and note thatH1 6={0}. Since V|H1 is annihilated by I1, we have

V|H1 = (λ1, . . . , λn).

But this would mean that V is not completely non-unitary.

LEMMA 3.2. If I ⊆ Ann(V) is a prime ideal and Z(I) has dimension 1, then
Ann(V) = I .
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Proof. We observe that Z(Ann(V)) ⊆ Z(I) and that the latter is an irre-
ducible variety of dimension 1. Since V is completely non-unitary, it follows from
Lemma 3.1 that every irreducible component of Z(Ann(V)) must have dimen-
sion 1. By Proposition 2.8, Ann(V) = I .

Given p ∈ C[X], set δ(p) = (d1, . . . , dn), where di is the degree of Xi in p.
We define ρ : C[X]→ C[X] by setting

ρ(p)(z) = zδ(p)p(1/z), z ∈ (C\{0})n,

where 1/z = (1/z1, . . . , 1/zn). If we write p = ∑
α>0

cαXα, then

ρ(p) = ∑
α>0

cαXδ(p)−α.

Thus, when W is an n-tuple of commuting isometries and p a polynomial, we
have

ρ(p)(W) = p(W)∗Wδ(p),

and therefore ρ(Ann(W)) ⊆ Ann(W). When I is an ideal in C[X] with the prop-
erty that ρ(I) ⊆ I , then Z(I) has a certain reflection property. Specifically, if
z ∈ Z(I) and no coordinate of z is 0, then 1/z ∈ Z(I). A final remark concerning
ρ is the following lemma, which is based on Lemma 2.2 of [1].

LEMMA 3.3. Let W be an n-tuple of commuting isometries on a Hilbert space H,
and let I ,J be ideals in C[X] such that ρ(I) ⊆ I and I · J ⊆ Ann(W). Then I(W)H
and J (W)H are orthogonal subspaces ofH.

Proof. Let p ∈ I and q ∈ J . Then

p(W)∗q(W) = W∗δ(p)p(W)∗Wδ(p)q(W) = W∗δ(p)(ρ(p) · q)(W) = 0.

Thus 〈p(W)h, q(W)h′〉 = 0 for each p ∈ I , q ∈ J , and h, h′ ∈ H.

THEOREM 3.4. Let I ⊆ Ann(V) be an ideal such that dim Z(I) = 1.
(i) I = Ann(V) if and only if I is radical and

⋂
i 6=j
Ii * Ann(V) for every j ∈

{1, . . . , m}, where I1, . . . , Im are the prime factors of I .
(ii) If I = Ann(V), then there exist non-zero, mutually orthogonal V-invariant

subspacesH1, . . . ,Hm ofH such that Ij = Ann(V|Hj) for each j ∈ {1, . . . , m}.

Proof. (i) If I = Ann(V), then I is radical and so Ann(V) (
⋂

i 6=j
Ii for j =

1, . . . , m.
Conversely, suppose I is a radical ideal and that Îj =

⋂
i 6=j
Ii does not annihi-

late V for any j∈{1, . . . , n}. We defineHj to be the closure of Îj(V)H; this is non-
zero and Ij⊆Ann(V|Hj). By Lemma 3.2, it follows that Ij =Ann(V|Hj) and so

Ann(V) ⊆ Ann(V|Hj) = Ij.
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Since this holds for every j, we have Ann(V) = I .
(ii) Given i ∈ {1, . . . , m}, we note that Ii = Ann(V|Hi ) implies ρ(Ii) ⊆ Ii,

and therefore ρ(Îj) ⊆ Îj for each j. Since Îi · Îj ⊆ Ann(V) when j 6= i, the
theorem now follows from Lemma 3.3.

Suppose I ⊆ Ann(V) is an ideal determining a variety of dimension 1.
In order to show that Ann(V) can be recovered from I , we first observe that√
I ⊆

√
Ann(V) = Ann(V). Let I1, . . . , Im be the prime factors of

√
I and

let J ⊆ {1, . . . , m} be a subset of minimal cardinality for which
⋂
j∈J
Ij ⊆ Ann(V).

Then
⋂
j∈J
Ij is radical with prime factors {Ij : j ∈ J}, and Z

( ⋂
j∈J
Ij

)
has dimension

1. Theorem 3.4 now asserts that Ann(V) =
⋂
j∈J
Ij.

4. THE STRUCTURE OF V WHEN Ann(V) IS PRIME

The purpose of this section is to establish Theorem 4.4, which is Theorem
5.4 in the special case that Ann(V) is a prime ideal of C[X]. When Z(Ann(V))
has dimension 1, Ann(V) contains an irreducible element of C[Xi, Xn] for i =
1, . . . , n− 1. This fact allows us to use results for pairs of commuting isometries
to extract information in the n-variable case.

We say that p ∈ C[X1, X2] has no single variable factors if there is no non-
constant q ∈ C[X1] ∪C[X2] so that q divides p.

LEMMA 4.1. Let V be a pair of commuting isometries on a Hilbert space H and
suppose that p ∈ C[X1, X2]\{0} satisfies p(V) = 0. If p has no single variable factors,
then

(4.1)
∞⋂

j=0

V j
1H =

∞⋂
j=0

V j
2H.

Thus the spaceK =
∞⋂

j=0
V j

1H is V-reducing, V|K is a pair of unitary operators, and V|K⊥

is a pair of shifts.

Proof. As seen before,

(V1, V2) = (S1, S2)⊕ (U1, T2)⊕ (T1, U2)⊕ (R1, R2)

where (S1, S2) is pure, U1, U2, R1, R2 are unitary, and T1, T2 are shifts. LetH0,H1,
H2, andH1,2 denote the corresponding reducing subspaces. We observe that both
(S1, S2) and (S2, S1) have the property that there is no reducing subspace for the
pair on which the first component is unitary. Thus there is a characteristic pair
associated to each.
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Let (V, A) be the characteristic pair associated with (S1, S2). Preserving the
notation used in Proposition 2.5, we set (W1, W2) = WA and note that p(WA) = 0
implies

0 = p(WA)(0, d0, 0, 0, . . . ) = (0, p0(Ṽ)d0, p1(Ṽ)d0, . . . )

where p(X1, X2) =
N
∑

j=0
pj(X1)X j

2 and d0 ∈ D is arbitrary. Fix j0 ∈ {0, . . . , N} so

that pj0 6= 0. Since V is a shift, pj0(Ṽ) is one-to-one and therefore d0 = 0. Thus
D = {0}, and so W1 = V and W2 = A. In other words, W1, and hence S1, is a
shift. Applying the same argument to the characteristic pair for (S2, S1) shows
that S2 is a shift.

We also have
N
∑

j=0
pj(U1)T

j
2 = 0. Since T2 is a shift commuting with U1, it

follows that pj(U1) = 0 for j = 0, 1, . . . , N. Indeed, let f ∈ ker T∗2 and note

that U1 commutes with T∗2 . Thus pN(U1) f = T∗N
2

( N
∑

j=0
pj(U1)T

j
2

)
f = 0, and so

pN(U1)T
j
2 f = 0 for every j ∈ N0. Since ker T∗2 is a cyclic set for T2, it follows

that pN(U1) = 0. By the obvious induction argument, we see that p0(U1) =
· · · = pN−1(U1) = 0. Thus the spectrum of U1 is finite, and if q1 is the minimal
annihilating polynomial of U1, then q1 divides p0, p1, . . . , pN . However, p has no
single variable factors, and therefore q1 is constant. This can only occur if the
spectrum of U1 is empty, and thus H1 = {0}. In a similar way, we deduce that
H2 = {0}.

We proceed to prove (4.1). Recall that
∞⋂

j=0
V j

1H is the largest V1-reducing

subspace on which V1 is unitary. Thus,H1,2 is contained in
∞⋂

j=0
V j

1H. We also note

that
( ∞⋂

j=0
V j

1H
)⊥

is the largest V1-reducing subspace on which V1 is a shift. Thus

H1,2 =
∞⋂

j=0
V j

1H. In a similar manner we find thatH1,2 =
∞⋂

j=0
V j

2H.

We remark that the “no single variable factors” hypothesis is only used to
eliminate the mixed summands (U1, T2) and (T1, U2). In the case where p does
have single variable factors, then the middle two summands may remain, but in
this case U1 and U2 will have finite spectra.

When V is an n-tuple such that the pairs (V1, Vn), . . . , (Vn−1, Vn) are alge-
braic, the preceding lemma implies the following.

COROLLARY 4.2. Let V be an n-tuple of commuting isometries on a Hilbert space
H, and suppose there are polynomials p1(X1, Xn), . . . , pn−1(Xn−1, Xn) ∈ Ann(V),
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each of which has no single variable factors. ThenK =
∞⋂

j=0
V j

nH is a V-reducing subspace

ofH such that V|K⊥ is an n-tuple of shifts and V|K is an n-tuple of unitaries.

We recall from [1] that a polynomial p ∈ C[X1, X2] is inner toral if {z ∈ C2 :
p(z1, z2) = 0} is a distinguished variety in C2. When a given ideal in C[X] has an
“enough” inner toral two-variable polynomials, we can conclude that Z(I) is a
distinguished variety. More precisely, we have the following.

LEMMA 4.3. Let I be an ideal in C[X], and suppose there is an inner toral poly-
nomial pj(Xj, Xn)∈I for each j∈{1, . . . , n−1}. Then Z(I) is a distinguished variety.

Proof. Let J denote the ideal generated by p1(X1, Xn), . . . , pn−1(Xn−1, Xn)
and note that Z(I) ⊆ Z(J ). Thus, it suffices to prove that Z(J ) is distinguished.
Fix w ∈ Z(J ) and note that we have wn ∈ K for some K ∈ {D,T,E}. As
p1(w1, wn) = 0, . . . , pn−1(wn−1, wn) = 0 and p1, . . . , pn−1 are inner toral, it fol-
lows that each coordinate of w is in K.

THEOREM 4.4. Let V be a completely non-unitary n-tuple of commuting isome-
tries. If Ann(V) is a prime ideal and Z(Ann(V)) has dimension 1, then there exists an
s ∈ {1, . . . , n} such that, after a permutation of coordinates,

(i) V = (V1, . . . , Vs, λs+1 I, . . . , λn I) where V1, . . . , Vs are shifts and λs+1, . . . , λn
are scalars of absolute value 1; and

(ii) Z(Ann(V)) = W × {(λs+1, . . . , λn)} for some 1-dimensional distinguished
varietyW ⊆ Cs.

Proof. For each i ∈ {1, . . . , n}, let Qi be the set of irreducible polynomi-
als in C[Xi] ∩ Ann(V). After some permutation of coordinates, there is an s ∈
{0, 1, . . . , n} so that Qi = ∅ if i 6 s while Qi is non-empty if i > s. In fact, when
i > s, there is a λi ∈ C such that Xi − λi ∈ Qi, and thus Vi = λi I.

As V is completely non-unitary, s > 0. In the case that s = 1, we have
V = (V1, λ2 I, . . . , λn I), and so V1 is a shift and Z(Ann(V)) is C× {(λ2, . . . , λn)}.

Now we suppose s > 1. For each i < s, it follows from Proposition 2.9 that
there is a non-zero pi(Xi, Xs) ∈ Ann(V). Since Ann(V) is prime, we may and
shall assume that pi is irreducible. Since Qi = Qs = ∅, pi is non-constant in both
variables. Corollary 4.2 now implies that V1, . . . , Vs are shifts.

We easily see that Z(Ann(V)) =W × {(λs+1, . . . , λn)}, where

W = {z ∈ Cs : p(z) = 0 for every p ∈ Ann(V) ∩C[X1, . . . , Xs]}.

It follows from Theorem 1.20 of [1] that, for each i < s, there is an inner toral poly-
nomial qi(Xi, Xs) ∈ Ann(V) which divides any element of C[Xi, Xs] ∩Ann(V).
As pi is irreducible, it follows that qi is proportional to pi and thus that pi is inner
toral. Lemma 4.3 now implies that Ann(V) ∩C[X1, . . . , Xs] determines a distin-
guished variety in Cs.
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5. A DECOMPOSITION THEOREM

We can now describe the structure of a completely non-unitary n-tuple of
commuting isometries when Z(Ann(V)) has dimension 1. To accomplish this,
we first decompose V into a direct sum based on the individual eigenvalues of
V1, . . . , Vn. This decomposition is easily derived, but we provide the details for
completeness.

LEMMA 5.1. Let (V1, V2) be a pair of commuting isometries on a Hilbert spaceH.
Given an eigenvector λ of V1, let Eλ denote the corresponding eigenspace. Then

(i) Eλ is a V2-reducing subspace; and
(ii) Eλ⊥Eη if λ and η are distinct eigenvalues of V1.

Proof. (ii) is a triviality, so we only prove (i). Certainly Eλ is V2-invariant.
Relative to the decompositionH = Eλ ⊕ E⊥λ , we write

V1 =

(
λ 0
0 W

)
, V2 =

(
A B
0 C

)
.

Since λ is an eigenvalue of an isometry, |λ| = 1. Note that W does not have λ as an
eigenvalue, and therefore W∗ does not have λ as an eigenvalue. Commutativity
implies B(W − λ) = 0 and so (W∗ − λ)B∗ = 0. Therefore B∗ = 0 and thus
V2 = A⊕ C.

LEMMA 5.2. Let V be an n-tuple of commuting isometries on a Hilbert space H.
There exists a subset F ⊆ ({0} ∪ T)n and a collection of non-zero pairwise orthogonal
V-reducing subspaces (Hz)z∈F such that H =

⊕
z∈F
Hz, and for every z ∈ F and i ∈

{1, . . . , n}
(i) if zi = 0, then Vi|Hz has no eigenvalues; else

(ii) if zi 6= 0, then (Vi − zi I)|Hz = 0.

Proof. Given i ∈ {1, . . . , n} and λ ∈ T, we denote by Pi,λ the orthogonal pro-
jection onto ker(Vi − λI). Then Pi,λPi,η = 0 when λ and η are distinct elements
of T, and ViPi,λ = λPi,λ. We define Pi,0 to be a projection onto

⋂
λ

ker(Vi − λI)⊥.

Equivalently, Pi,0 = I − ∑
λ∈σp(V1)

Pi,λ, where the sum converges in the strong oper-

ator topology and σp(V1) denotes the point spectrum of V1.
Lemma 5.1(i) implies that Vi commutes with Pj,λ for every i, j ∈ {1, . . . , n}

and λ ∈ T. We also note that (Vi − η I)Pj,λPi,η = 0 and therefore Pi,η Pj,λPi,η =
Pj,λPi,η . Thus Pj,λ and Pi,η commute, and so Pi,w1 and Pj,w2 commute for w1, w2 ∈
{0}∪T. Given z ∈ ({0}∪T)n, we set Pz = P1,z1 · · · Pn,zn . Then Pz is an orthogonal
projection that commutes with V. Let F be the set of all z ∈ ({0} ∪T)n such that
Pz 6= 0. Since I = ∑

λ
Pi,w for each i, we have I = ∑

z∈F
Pz. If z, z′ ∈ F are distinct

then Pz is orthogonal to Pz′ , and if zi 6= 0 then ViPz = ziPz.
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Finally, suppose z ∈ F and i ∈ {1, . . . , n} are such that zi = 0, and suppose
that h ∈ ran Pz so that Vih = λh for some λ ∈ T. Then Pi,λh = h and Pzh = h, and
so PzPi,λh = h. However, Pz = PzPi,0 and Pi,0Pi,λ = 0. Thus h = 0 and therefore
Vi|ran Pz has no eigenvalues.

Notice that if V = V(1) ⊕ V(2), then Z(Ann(V(1))) ⊆ Z(Ann(V)). Thus,
when Z(Ann(V)) has dimension 1, each summand of the preceding decomposi-
tion does likewise. Furthermore, when V is completely non-unitary, each sum-
mand is also completely non-unitary. As such, we can restrict our attention to the
following case.

LEMMA 5.3. Let V = (V1, . . . , Vs, λs+1 I, . . . , λn I) be a completely non-unitary
n-tuple of isometries on a Hilbert space H, where λs+1, . . . , λn ∈ T. If V1, . . . , Vs have
no eigenvalues and Z(Ann(V)) has dimension 1, then V1, . . . , Vs are shifts and there is
a distinguished varietyW in Cs of dimension 1 such that

Z(Ann(V)) =W × {(λs+1, . . . , λn)}.
Proof. If Ann(V) is prime, then the conclusion follows from Theorem 4.4.

Suppose that Ann(V) has prime factors I1, . . . , Im and m > 1. For each i, set Îi =⋂
j 6=i
Ij, and let Hi be the closure of Îi(V)H. Then Hi 6= {0} and Ii = Ann(V|Hi ).

By Theorem 4.4 we have that Z(Ii) = Wi × {(λs+1, . . . , λn)}, whereWi is a dis-
tinguished variety. Thus

Z(Ann(V)) =
m⋃

i=1

Z(Ii) =
( m⋃

i=1

Wi

)
× {(λs+1, . . . , λn)}.

For i ∈ {1, . . . , m} and ` ∈ {1, . . . , s−1}, we see in the proof of Theorem 4.4 that
there is an irreducible polynomial p(i)` (X`, Xs)∈Ii which is non-constant in both

variables. Setting p`(X`, Xs)=
m
∏
i=1

p(i)` (X`, Xs), we see that p`(X`, Xs) is in Ann(V)

and has no single variable factors. By Corollary 4.2, V1, . . . , Vs are shifts.

We now summarize the results of this section in the following.

THEOREM 5.4. Let V be a completely non-unitary n-tuple of commuting isome-
tries, and suppose Z(Ann(V)) has dimension 1. There is a subset F ⊆ ({0} ∪T)n and
a collection of non-zero V-reducing subspaces (Hz)z∈F such that H =

⊕
z∈F
Hz, and for

each z ∈ F the following hold:
(i) If i ∈ {1, . . . , n} and zi = 0, then Vi|Hz is a shift. If zi 6=0, then (Vi−zi I)|Hz =0.

(iii) Suppose exactly s components of z are 0, and let λs+1, . . . , λn denote the non-
zero components of z. After a permutation of coordinates, there is a distinguished variety
W ⊆ Cs of pure dimension 1 so that

Z(Ann(V|Hz)) =W × {(λs+1, . . . , λn)}.
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6. FINITE MULTIPLICITY

In this section we suppose V is an n-tuple of commuting shifts. When
the dimension of Z(Ann(V)) is 1, we show in Lemma 7.2 that V has a finite
cyclic set if and only if Vi has finite multiplicity for some i. When each Vi is
known to have finite multiplicity, we show in Proposition 6.3 that the condition
dim Z(Ann(V)) = 1 is automatically satisfied.

In what follows, we set X′ = (X1, . . . , Xn−1).

LEMMA 6.1. Let V be an n-tuple of commuting shifts and suppose that the dimen-
sion of Z(Ann(V)) is 1. Then {p(X′, 0) : p ∈ Ann(V)} has finite linear codimension
in C[X′].

Proof. Let I1, . . . , Im be the prime factors of Ann(V). It follows from Theo-
rem 3.4 that Xn /∈ Ij for any j. This implies that Z(Ij) ∩ {z : zn = 0} is a proper
subvariety of Z(Ij) and thus of dimension 0. Since this holds for each j, we see
that Z(Ann(V)) meets {z : zn = 0} only at finitely many points.

We set J = {p(X′, 0) : p ∈ Ann(V)} and note that this is an ideal of C[X′]
isomorphic to (Ann(V) + 〈Xn〉)/〈Xn〉, where 〈Xn〉 is the ideal generated by Xn
in C[X]. Because C[X′]/J is isomorphic to C[X]/(Ann(V) + 〈Xn〉), it follows
that J has finite linear codimension in C[X′].

Recall that a shift V has a finite cyclic set if and only if V has finite multiplic-
ity. In particular, any basis for ker V∗ provides such a cyclic set. Thus, when V
is an n-tuple of shifts of finite multiplicity, it follows that any basis for ker V∗n is a
finite cyclic set for V. When Z(Ann(V)) has dimension 1, we have the following.

THEOREM 6.2. Let V be an n-tuple of commuting shifts and suppose that the
dimension of Z(Ann(V)) is 1. Then the following assertions are equivalent:

(i) There is a finite cyclic set for V.
(ii) Vi has finite multiplicity for each i.

(iii) Vi has finite multiplicity for at least one i.

Proof. Clearly (ii)⇒(iii)⇒(i). Suppose that (i) is true, and let {h1, . . . , hk}
be a cyclic set for V. We only show that Vn has finite multiplicity, as the same
argument applies to an arbitrary permutation of V1, . . . , Vn. Fix an f ∈ ker V∗n
and note that

k

∑
i=1
〈Qi(V)hi, f 〉 =

k

∑
i=1
〈Qi(V′, 0)hi, f 〉, Q1, . . . , Qk ∈ C[X]

where V′ = (V1, . . . , Vn−1). By Lemma 6.1, there are r1, . . . , r` ∈ C[X′] so that
C[X′] = C · r1 + · · ·+C · r` + {p(X′, 0) : p ∈ Ann(V)}. Given Q1, . . . , Qk ∈ C[X],
there are ai1, . . . , ai` ∈ C and pi ∈ Ann(V) such that

Qi(X′, 0) = pi(X′, 0) +
`

∑
j=1

aijrj, i = 1, . . . , k.
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As 〈pi(V′, 0)hi, f 〉 = 〈pi(V)hi, f 〉 = 0, we have
k

∑
i=1
〈Qi(V)hi, f 〉 =

`

∑
j=1

k

∑
i=1

aij〈rj(V′)hi, f 〉.

Let L be the space spanned by rj(V′)hi as j goes from 1 to ` and i from 1 to k. If
f⊥L, then cyclicity implies that f = 0, and thus we see that L⊥ ∩ ker V∗n = {0}.
Since L has finite dimension, it follows that ker V∗n does as well.

Let V be as above. Using the notation of Theorem 3.4 and its proof, recall
that the spaces H1, . . . ,Hm in the statement of Theorem 3.4 are equal to the clo-
sures of Î1(V)H, . . . , Îm(V)H, respectively. Since V has a finite cyclic set S and
m
∑

i=1
Îi has finite linear codimension in C[X], it follows that K = H1 ⊕ · · · ⊕ Hm

has finite codimension in H. Thus there is a finite codimensional V-invariant
subspace K ofH so that

V|K = (V|H1)⊕ · · · ⊕ (V|Hm)

with Ann(V|Hi ) = Ii for i = 1, . . . , m.
We also observe that when each Vj has finite multiplicity, it is unnecessary to

assume dim Z(Ann(V)) = 1, as we see in the following proposition. We remark,
as before, that this result is essentially a corollary of work in [2].

PROPOSITION 6.3. Let V be an n-tuple of commuting shifts of finite multiplicity.
Then Z(Ann(V)) has dimension 1.

Proof. Let k = dim ker V∗n , and represent V as an n-tuple of Toeplitz opera-
tors (TΘ1 , . . . , TΘn−1 , Tζ·I) on H2(D)⊗ Ck, where Θ1, . . . , Θn−1 are matrix valued
inner functions. Since dim ker V∗i < ∞ for i = 1, . . . , n − 1 as well, the matrix
entries of Θi are rational functions. There are then polynomials Pi ∈ C[Xi, Xn]
and Qi ∈ C[Xn] so that det(w · I −Θi(z)) = Pi(w, z)/Qi(z). Let I denote the
ideal generated by P1, . . . , Pn−1, and note that I ⊆ Ann(V). As dim Z(I) 6 1, the
proposition follows.

7. NEAR UNITARY EQUIVALENCE

Suppose V is an n-tuple of commuting isometries on a Hilbert spaceH and
W an n-tuple of commuting isometries on a Hilbert space K. If there exists a W-
invariant subspace K′ of finite codimension in K and a unitary operator U from
H onto K′ so that UVi = WiU for i = 1, . . . , n, then we write V . W. If V . W
and W . V, we say that V and W are nearly unitarily equivalent and write V ≈W.

EXAMPLE 7.1. Let V1 and V2 denote multiplication by
(

z 0
0 z

)
and

(
0 z
z 0

)
on the C2-valued Hardy space H2(D) ⊗ C2, respectively. We denote by H0 the
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cyclic subspace generated by (1, 0)t. As (V1, V2) is not cyclic, (V1, V2) and
(V1, V2)|H0 are not unitarily equivalent. However, H⊥0 = C · (0, 1)t, and thus
(V1, V2)|H0 . (V1, V2). In fact, it follows from Lemma 7.5 that these two pairs are
nearly unitarily equivalent.

The purpose of this section is to prove the following result.

THEOREM 7.2. Let V and W be two cyclic n-tuples of commuting shifts. If
Ann(V) = Ann(W) and dim Z(Ann(V)) = 1, then V and W are nearly unitarily
equivalent.

The proof is divided into three parts, approximately following what is done in
[1]. First we show, by Lemma 7.8, that it is sufficient to consider the case where
Ann(V) is prime. We then construct an n-tuple of commuting shifts in Lemma 7.17
based on the desingularization of Z(Ann(V)) ∩ D n

that serves as a common
model for all n-tuples with annihilator equal to Ann(V). The proof is finally
completed with Lemma 7.18 by showing that V is nearly unitarily equivalent to
this model. Before this, however, we require a few additional facts.

LEMMA 7.3. Let V be an n-tuple of commuting shifts of finite multiplicity. For
any zn ∈ D, there exist z1, . . . , zn−1 ∈ D so that (z1, . . . , zn) is in the joint point
spectrum of V∗.

Proof. Since Vn is a shift of finite multiplicity, and V1, . . . , Vn−1 commute
with Vn, we represent V as an n-tuple of matrix valued Toeplitz operators

V = (TΘ1 , . . . , TΘn−1 , Tζ·Ik )

on H2(D)⊗Ck, where k = dim ker V∗n , Ik is the identity on Ck, ζ is the coordinate
function on D, and Θ1, . . . , Θn−1 are matrix valued inner functions on D. Let g be a
non-zero vector in H2(D) so that T∗ζ g = zng. Then T∗Θi

(g⊗ u) = g⊗Θi(zn)∗u for
any u ∈ Ck. Since Θ1(zn)∗, . . . , Θn−1(zn)∗ are commuting matrices, they have a
common eigenvector v, say with Θ1(zn)∗v = z1v, . . . , Θn−1(zn)∗v = zn−1v. Thus
we have the following, for i = 1, . . . , n− 1:

T∗Θi
(g⊗ v) = zi · (g⊗ v).

We remark that when dim Z(Ann(V)) = 1, the preceding lemma holds
without the assumption of finite multiplicity. This is due to the fact that each
operator Θj(z) will, in this case, have a non-zero annihilating polynomial.

Item (ii) of the following lemma is well-known, but we sketch the proof
nevertheless.

LEMMA 7.4. Let V be an n-tuple of commuting isometries on a Hilbert space H,
and let Q ∈ C[Xn]\{0}.

(i) If Vn has no eigenvalues, then V|Q(Vn)H is unitarily equivalent to V.

(ii) If Vn is a shift of finite multiplicity, then Q(Vn)H has finite codimension inH.
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Proof. (i) Since Vn has no eigenvalues, V∗n has no eigenvalues in T. Thus
ran(Vn − λ) is dense whenever |λ| > 1. We therefore suppose that Q(Xn) =

k
∏
j=1

(Xn − λk) where λ1, . . . , λk ∈ D. The operator B =
k

∏
j=1

(Vn − λk)/(1− λkVn)

is an isometry that commutes with V, and BH = ran Q(Vn).
(ii) We show that Q(Vn)∗ has a finite dimensional kernel. For this, it suffices

to note that if K is a finite dimensional subspace, then { f ∈ H : (Vn − λ)∗ f ∈ K}
is finite dimensional for any λ ∈ C.

LEMMA 7.5. Let V and W be n-tuples of commuting isometries. Suppose W . V
and at least one element of V has no eigenvalues. Then:

(i) Ann(V) = Ann(W); and
(ii) W is an n-tuple of commuting shifts of finite multiplicity if and only if V is an

n-tuple of commuting shifts of finite multiplicity, in which case V ≈W.

Proof. We may (and do) suppose that there is a V-invariant finite codimen-
sional subspace K ofH such that W = V|K. By a permutation of coordinates, we
also suppose that Vn has no eigenvalues. Denote by A the compression of Vn to
K⊥. Since K⊥ has finite dimension, there is a non-zero polynomial Q ∈ C[Xn]
so that Q(A) = 0 and thus Q(Vn)H ⊆ K. By Lemma 7.4, V|Q(Vn)H is unitarily
equivalent to V, and so

Ann(V) ⊆ Ann(V|K) ⊆ Ann(V|Q(Vn)H) = Ann(V).

For any i ∈ {1, . . . , n},
∞⋂

j=0

V j
i Q(Vn)H ⊆

∞⋂
j=0

V j
i K ⊆

∞⋂
j=0

V j
iH.

As Vi|Q(Vn)H is unitarily equivalent to Vi, it follows that Vi is a shift if and only if
Vi|K is a shift. We also have the following inclusions;

ViQ(Vn)K ⊆ ViK ⊆ K ⊆ H and(7.1)

ViQ(Vn)K ⊆ ViQ(Vn)H ⊆ Q(Vn)H ⊆ H.(7.2)

As K has finite codimension in H, we know that ViQ(Vn)K has finite codimen-
sion in ViQ(Vn)H. When each Vj has finite multiplicity, it follows that every sub-
space in (7.2) has finite codimension in the next. Thus ViK has finite codimension
inK. When each Vj|K has finite multiplicity, it follows that every subspace in (7.1)
has finite codimension in the next. Then Vi|Q(Vn)H has finite multiplicity. Because
Vi|Q(Vn)H is unitarily equivalent to Vi, it follows that Vi has finite multiplicity.

Finally, we note that Q(Vn)K ⊆ Q(Vn)H ⊆ K ⊆ H. Thus, if either V or V|K
is an n-tuple of shifts of finite multiplicity, then Q(Vn)H has finite codimension
in K. In other words,

V|Q(Vn)H . V|K . V.
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Because V|Q(Vn)H is unitarily equivalent to V, we have V ≈ V|K.

COROLLARY 7.6. Let V be an n-tuple of commuting shifts of finite multiplicity
on a Hilbert space H such that Z(Ann(V)) has dimension 1. Denote by I1, . . . , Im

the prime factors of Ann(V) and set J =
m
∑

i=1

⋂
j 6=i
Ij. Then V|J (V)H is nearly unitarily

equivalent to V.

Proof. By Corollary 2.11, there is a finite linear dimensional subspace L of
C[X] so that C[X] = L + J . Since each Vi has finite multiplicity, there is a finite
cyclic set C in H for V. Thus L(V)C + J (V)H is dense in H, and so J (V)H has
finite codimension inH. The corollary now follows from Lemma 7.5.

Let I be a radical ideal of C[X] with dim Z(I) = 1, and let I1, . . . , Im the

prime factors of I . We set Îi =
⋂
j 6=i
Ij for each i and J =

m
∑

i=1
Îi. Suppose there are

two n-tuples of commuting shifts of finite multiplicity, V on H and W on K, so
that Ann(V) = Ann(W) = I . We define Hi to be the closure of Îi(V)H and Ki
to be the closure of Îi(W)K. Theorem 3.4 then states that

V|J (V)H =
m⊕

i=1

V|Hi , W|J (W)K =
m⊕

i=1

W|Ki .

Thus, to show that V and W are nearly unitarily equivalent, it suffices to prove
that V|Hi is nearly unitarily equivalent to W|Ki for i = 1, . . . , n. However, we
note that even if V and W are both cyclic, it may be that neither V|Hi nor W|Ki
is cyclic. The purpose of Lemma 7.8 is to address this issue. First, however, we
recall a result from the theory of subnormal operators, for which we need the
following notation. Given a finite positive Borel measure µ on Tn, we denote by
P2(µ) the L2-closure of C[X], where here for i = 1, . . . , n we identify Xi with the
coordinate function z 7→ zi. If f is a bounded Borel function on Tn, we denote
by M f ,µ the operator of multiplication by f acting on P2(µ), and set MX,µ =
(MX1,µ, . . . , MXn ,µ).

LEMMA 7.7. Let V be a cyclic n-tuple of commuting shifts on a Hilbert space H.
There is a diffuse finite positive Borel measure µ concentrated in Z(Ann(V)) ∩ Tn so
that V is unitarily equivalent to MX,µ.

Proof. Denote by v0 a cyclic vector for V. We set V = Z(Ann(V)), and de-
note by Ṽ the minimal unitary extension of V and σ(Ṽ) the Taylor joint spectrum
of V. By Theorem IV.7.26 of [18], there is a projection valued measure E supported
on σ(Ṽ) such that Ṽi =

∫
σ(Ṽ)

zidE(z) for each i. As Ṽ|H = V, for any p, q ∈ C[X]

〈p(V)v0, q(V)v0〉 =
∫

σ(Ṽ)

p(z)q(z)dµ(z) where µ(·) = 〈E(·)v0, v0〉.
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It follows from Theorem III.10.4 of [18] that σ(Ṽ) ⊆ V ∩Tn.
Suppose f ∈ H̃ and z ∈ Tn so that E({z}) f = f . For any g ∈ H and

α, β ∈ Nn
0 we have

|〈 f , Ṽ∗αg〉| = |〈 f , g〉| = |〈PH f ,Vβg〉|.
Here PH is projection ontoH. Because Vk

1 g tends weakly to 0 as k→ ∞, it follows
that 〈 f , Ṽ∗αg〉 = 0 for any g ∈ H and α ∈ Nn

0 . Since {Ṽ∗αg : g ∈ H, α ∈ Nn
0} is

dense in H̃, we have f = 0. Thus E({z}) = 0 and therefore µ has no atoms.

LEMMA 7.8. Let V be a cyclic n-tuple of commuting shifts on a Hilbert space
H, and suppose dim Z(Ann(V)) = 1. We set V = Z(Ann(V)), and take µ to be
the measure provided by the preceding lemma. Denote by V1, . . . ,Vm the irreducible
components of V and I1, . . . , Im the corresponding prime ideals. Suppose m > 1, and
let ν be another finite diffuse positive Borel measure on V ∩Tn. For each i ∈ {1, . . . , m}
we write µi and νi for the restriction of µ and ν to Vi ∩Tn, respectively. Then:

(i) MX,µi is an n-tuple of shifts of finite multiplicity with Ann(MX,µi ) = Ii for
i = 1, . . . , n; and

(ii) if MX,µi . MX,νi for each i, then MX,µ ≈ MX,ν.

Proof. Write Îi =
⋂
j 6=i
Ij for each i, and note that if p ∈ Îi then p(Vj) = 0

whenever j 6= i. For any p, q ∈ Îi we have∫
pqdµ =

∫
pqdµi.

Thus MX,µ restricted to the L2(µ)-closure of Îi is equal to MX,µi restricted to the
L2(µi)-closure Hi of Îi. Likewise, MX,ν restricted to the L2(ν)-closure of Îi is
equal to MX,νi restricted to the L2(νi)-closure Ki of Îi.

(i) Since the argument is essentially identical for the other components of V ,
we consider only i = 1. Let p ∈ Î1\I1 and note that p has only finitely many
zeros on V1. Because µ1 has no atoms, Mp,µ1 is injective. Thus, as MX,µ|ran Mp,µ

=

MX,µ1 |ran Mp,µ1
is completely non-unitary, it follows that MX,µ1 is completely non-

unitary. Since Ann(MX,µ1) ⊇ I1, Lemma 3.2 implies that Ann(MX,µ1) = I1, and
so by Theorem 4.4 we see that MX,µ1 is an n-tuple of shifts. As MX,µ1 is also cyclic,
Theorem 6.2 dictates that each MXj ,µ1 has finite multiplicity.

(ii) By the comments that follow Corollary 7.6, it suffices to prove that
MX,µi |Hi and MX,νi |Ki are nearly unitarily equivalent for each i. Again, we only
consider i = 1.

Since MX,µ1 . MX,ν1 , there is a unitary operator U from P2(µ1) onto a
finite codimensional subspace of P2(ν1) so that UMXj ,µ1 = MXj ,ν1U for each
j ∈ {1, . . . , n}. Let g1, . . . , gN be a basis for P2(ν1)	UP2(µ1), and let p1, . . . , pk

generate Î1. We note that H1 is the closure of
k
∑

j=1
pj(MX,µ1)P2(µ1), and K1 is the
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closure of
k
∑

j=1
pj(MX,ν1)P2(ν1). Thus, as

k

∑
j=1

pj(MX,ν1)P2(ν1) =
k

∑
j=1

N

∑
`=1

C · pj(MX,ν1)g` + U
( k

∑
j=1

pj(MX,µ1)P2(µ1)
)

,

it follows that UH1 has finite codimension in K1, and so

MX,µ1 |H1 . MX,ν1 |K1 .

Because MX,µ1 |H1 is an n-tuple of shifts with annihilator I1 and a finite cyclic
set, it follows from Theorem 6.2 that MXi ,µ1 |H1 has finite multiplicity for each i.
Since ν1 has no atoms, it follows that no element of MX,ν1 |K1 is multiplication by
a scalar, and thus MX,µ1 |H1 ≈ MX,ν1 |K1 by Lemma 7.5.

Thus we restrict ourselves to the case where Ann(V) is prime and V is of
the form MX,µ, for µ a diffuse finite positive Borel measure on Z(Ann(V)) ∩ Tn.
In what follows, we use the following properties of V = Z(Ann(V)):

(1) V is a distinguished variety; and
(2) if z ∈ V and zi 6= 0 for each i, then (1/z1, . . . , 1/zn) ∈ V .

Property (1) follows from Theorem 4.4, while property (2) follows from com-
ments in Section 3.

Before moving onto the desingularization process, we make the following
observation about the set V ∩Tn, where we denote by V∗ the regular set of V .

LEMMA 7.9. V ∩Tn = V ∩Dn\(V ∩Dn), and for each point y ∈ V∗ ∩Tn there
is a neighborhood U of y in Cn such that V ∩Tn ∩U is a simple smooth curve.

Proof. Plainly V ∩ D n ⊇ V ∩Dn. Since V is distinguished, it follows that
V ∩ Tn ⊇ V ∩Dn\(V ∩Dn) and thus it suffices to show that V ∩ Tn is contained
in V ∩Dn. Let z ∈ V ∩ Tn, and first suppose that z is a regular point of V . By the
implicit function theorem it follows, possibly after a permutation of coordinates,
that there exists a disc ∆n about zn in C, a polydisc ∆′ about (z1, . . . , zn−1) in Cn−1,
and a holomorphic function φ : ∆n → ∆′ so that

V ∩ (∆′ ×∆n) = {(φ(w), w) : w ∈ ∆n}.
Let w1, w2, . . . ∈ ∆n ∩ D so that wi → zn. As V is distinguished, (φ(wi), wi) ∈
V ∩Dn for each i and thus z is a limit point of V ∩Dn. We also observe that the pre-
ceding parametrization shows V ∩Tn ∩ (∆′ ×∆n) to be of the form {(φ(eit), eit) :
a < t < b} for some a, b ∈ R. That is, V ∩Tn ∩ (∆′×∆n) is a simple smooth curve
through z.

Now suppose that z is a singular point and z(1), z(2), . . . ∈ V∗ are such that
z(i) → z. Since w ∈ V implies (1/w1, . . . , 1/wn) ∈ V , we assume that z(i) ∈ D n

for
each i. Since each point of V∗ ∩ Tn is a limit point of V ∩Dn, whenever z(i) ∈ Tn

we can replace z(i) with a point in Dn that is within a distance 1/i of the original
point. Thus we produce a sequence in V ∩Dn converging to z.
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We remark that the last part of the proof can also be proved using the
parametrization of V given by the desingularization discussed below without
using the fact that z ∈ V ∩ (C\{0})n implies 1/z ∈ V .

7.1. DESINGULARIZING V ∩ D n
. Our next objective is to construct a Riemann

surface S with boundary, and a continuous map h from S onto V ∩ D n
so that

∂S = h−1(V ∩Tn) and h is injective over V∗ ∩D n
. Suppose we have such a map

and let µ be a diffuse finite positive Borel measure on V ∩ Tn, as in Lemma 7.7.
Since h is injective on the complement of a finite set, the pullback measure ν =
µ ◦ h is also a diffuse finite positive Borel measure and∫

V∩Tn

pqdµ =
∫

∂S

(p ◦ h)(q ◦ h)dν, p, q ∈ C[X].

Given a finite positive Borel measure τ on ∂S , we denote by A2
h(τ) the L2(τ)-

closure of C[h1, . . . , hn]. If f is a bounded Borel function on ∂S , then we write
M f ,τ for multiplication by f on A2

h(τ). Thus the preceding comments show that
MX,µ is unitarily equivalent to Mh,ν = (Mh1,ν, . . . , Mhn ,ν).

After constructing S and h, we find a diffuse finite positive Borel measure
ω on ∂S so that Mh,ω is an n-tuple of shifts with annihilator I . We then show
that whenever ν is as above, then Mh,ν ≈ Mh,ω. Once this done in Lemma 7.18,
Theorem 7.2 is proved.

The construction of S requires two steps. First we desingularize V to pro-
duce a Riemann surfaceM and a holomorphic map H fromM onto V . The set
R = H−1(V ∩ Dn) may not, as a subset ofM, have the structure of a Riemann
surface with boundary. Thus in the second step we embed R into another Rie-
mann surface whereR has the appropriate structure; we call this set S .

We note that desingularization often requires a rotation of the variety before
the surface can be constructed. In our case, however, we wish to use the fact that
V is a distinguished variety, and a generic rotation may not preserve this property
of V . We therefore carry out the desingularization V without such rotations, and
thus require some material from the theory of analytic sets. For this, we follow
Chapter I of [7]. We say that A ⊆ Cn is an analytic subset of Cn if for each point
x ∈ A there is a neighborhood U about x and functions f1, . . . , fN holomorphic
on U such that

A ∩U = {z ∈ U : f1(z) = · · · = fN(z) = 0}.

An analytic set A is irreducible if it cannot be written as the union of two analytic
subsets distinct from A. Every analytic set is the union of an at most countable
number of irreducible analytic sets, which are called the irreducible components
of A. Near any point x in an analytic set A, there is a neighborhood U′ of x so
that A ∩U′ can be written as a finite union of irreducible analytic sets. We note
that any algebraic variety is an analytic set, but the restriction of an irreducible
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algebraic variety to an open subset may not be an irreducible analytic set. As an
example, consider the complex curve X2

2 = X2
1(1 + X1) near the origin.

Recall that a map f from a topological space X into a topological space Y
is proper if f−1(K) is compact whenever K is a compact subset of Y. In addition
to the preceding, we use the following results. The first of these follows from
Section 1.3.1 of [7], while the second is a special case of results in Section 1.3.2
of [7].

PROPOSITION 7.10. Assume that X and Y are Hausdorff, locally compact spaces,
and D ⊂ X, G ⊂ Y with G compact. If A is a relatively closed subset of D×G that does
not have limit points in D× ∂G, then the restriction of the projection (x, y) 7→ x to A is
a proper map.

PROPOSITION 7.11. Let G = G′ × G′′, where G′ ⊂ Cp, G′′ ⊂ Cm are open, set
n = p + m, and let π : (z′, z′′) 7→ z′. If A is an analytic subset of G such that π|A is a
proper map, then π(A) is an analytic subset of G′. Furthermore, if π is also finite, then
dim A = dim π(A).

Let U = U1 ×U′ be a polydisc in Cn centered at 0 with U1 ⊆ C and U′ ⊆
Cn−1. Suppose that A is an irreducible 1-dimensional analytic subset of U and 0
is the only singular point of A. If π : A∩U → U1 is a proper projection onto U1, it
follows from Section 1.3.7 of [7] that there is an integer k > 0 so that π|A∩U\{0} is
a locally biholomorphic k-sheeted cover of U1\{0}. Starting from this, it is shown
in Section 1.6 of [7] (see also Section 1.2 of [13]) that there is a number η > 0 and
a holomorphic homeomorphism σ from D onto S ∩U such that π(σ(w)) = ηwk

for each w ∈ D while σ sends D\{0} biholomorphically onto S∩U\{0}. In order
to produce the appropriate projection, we prove the following.

LEMMA 7.12. Suppose 0 ∈ V , and let U be a neighborhood of 0. Denote by
π the projection (z1, . . . , zn) 7→ z1. If S is an irreducible analytic component of V ∩
U containing 0, then there is a polydisc ∆ centered at 0 so that π|(S ∩ ∆) is a proper
projection onto the disc π(∆).

Proof. Let L = {01} ×Cn−1 where here 01 denotes the origin in C. Since V
is a distinguished variety, it follows that V ∩ L is a compact variety and thus a
finite set. By shrinking U, we arrange that V ∩ L∩U contains only the point 0. In
particular, we have S ∩ L = {0}. Since S is a relatively closed subset of U, there
is a polydisc D = D1 × D′ centered at 0, with D′ ⊆ Cn−1 and D1 ⊆ C, so that
D ⊆ U and S is bounded away from D1 × ∂D′. By Proposition 7.10, π|(S∩D) is a
proper map into D1.

The analytic set S ∩ D has dimension 1, and so it follows from Proposi-
tion 7.11 that π(S ∩ D) has dimension 1. But the only analytic subsets of C with
dimension 1 are open subsets. In particular, there is an open disc ∆1 centered
at 01 in C that is contained in π(S ∩ D). We set ∆ = ∆1 × D′, and claim that
π|S∩∆ is also proper. Indeed, if K is a compact subset of π(S ∩ ∆) = ∆1, then K
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is also a compact subset of π(S ∩ D) and thus (π|S∩D)
−1(K) is compact. How-

ever, (π|S∩D)
−1(K) is a subset of S ∩∆, and thus (π|S∩∆)

−1(K) = (π|S∩D)
−1(K)

is compact.

We can now produce the desingularization H : M → V . Let Σ denote
the set of singular points of V . For each z ∈ Σ, we fix a neighborhood Uz of z
such that Uz ∩ V has finitely many irreducible analytic components, any two of
which meet only at z, and Uz ∩Σ = {z}. For each irreducible analytic component
S of Uz ∩ V , let Dz,S be a copy of D and denote by xz,S the center of Dz,S. By
Lemma 7.12 and the comments preceding it, there is a polydisc ∆z,S centered at
z and a holomorphic homeomorphism σz,S from Dz,S onto S ∩∆z,S such that σz,S
sends Dz,S\{xz,S} biholomorphically onto S ∩∆z,S\{z}. Furthermore, there is an
integer k > 0 and a number η > 0 so that π(σz,S(w)) = zn + ηwk for each w ∈ D,
where π is projection onto the n-th coordinate. Let X be the disjoint union of V∗
with all of the Dz,S, and define G : X → V by setting G(x) = x when x ∈ V∗
and G(x) = σz,S(x) if x ∈ Dz,S. Finally, we defineM to be the Riemann surface
that results from identifying x, x′ ∈ X when G(x) = G(x′) and denote by H the
resulting map fromM onto V . Note that H is a proper finite holomorphic map
and H is biholomorphic over V∗.

Our next objective is to describe the setR = H−1(V ∩Dn).

LEMMA 7.13. R is connected.

Proof. SinceM consists of discs glued to V∗, it suffices to show that V∗ ∩Dn

is path-connected. Fix x, y ∈ V∗. Because V is irreducible, V∗ is path-connected
and so there is a path γ : [0, 1]→ V∗ connecting x and y. Then

β(t) =

{
γ(t) γ(t) ∈ V ∩D n

,
1/γ(t) γ(t) ∈ V ∩En,

defines a path in V ∩D n
connecting x and y. Here 1/z = (1/z1, . . . , 1/zn) when

z = (z1, . . . , zn) ∈ (C\{0})n. Since the singular set of V is finite, we modify γ so
that β is contained in V∗ ∩ D n

. The path β meets V ∩ Tn only at regular points
of V , and so, by making the obvious modifications to β near these points, we
produce a path joining x and y entirely contained in V∗ ∩Dn.

LEMMA 7.14. ∂R = H−1(V ∩Tn).

Proof. We immediately see thatR ⊆ H−1(V ∩D n
) and so, by Lemma 7.9,

∂R ⊆ H−1(V ∩Tn).

Thus it suffices to show that H−1(V∩Tn)⊆R. Since H is essentially the identity
map over V∗, we restrict our attention to singular points. Suppose x∈H−1(V∩Tn)
so that z=H(x) is singular, and let x correspond to the center of Dz,S for an irre-
ducible analytic component S of V∩Uz. For some neighborhood W of x, the map
H|W is a homeomorphism of W onto S∩∆z,S. We recall that π : (w1, . . . , wn) 7→wn
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sends S∩∆z,S onto π(∆z,S), and that there is a number η > 0 and an integer k> 0
so that π(σz,S(w)) = zn+ηwk for every w ∈ Dz,S. Thus we can find a sequence
z(1), z(2), . . .∈ S∩∆z,S∩Dn so that z(j)→ z. Since H|W is a homeomorphism onto
S∩∆z,S, the sequence {(H|W)−1(z(i))}i inR converges to x.

We can say more about the boundary of R. If x ∈ ∂R is such that H(x) ∈
V∗, then we easily see that there is a neighborhood W of x so that R∩W is dif-
feomorphic to {w ∈ D : =(z) > 0}, with ∂R ∩W being sent smoothly onto the
interval (−1, 1). Now suppose x ∈ ∂R so that z = H(x) is a singular point of
V , and let π : (w1, . . . , wn) 7→ wn on Cn. There exists a neighborhood W of x, a
biholomorphic map σ : D→W with σ(0) = x, a positive integer k, and a number
η > 0 so that π(H(σ(w))) = zn + ηwk and π sends H(W) onto the disc ∆n of
radius η about zn. In particular, π(H(R∩W)) = D∩∆n and

(π ◦ H ◦ σ)−1(D∩∆n) = {w ∈ D : |zn + ηwk| < 1}.

Thus R ∩W is conformally equivalent to this subset of the plane. For W and
thus η sufficiently small, we find that R ∩W is the union of k disjoint simply
connected open sets W1, . . . , Wk. For each j = 1, . . . , k, the set W ∩ ∂Wj consists of
two simple smooth curves meeting only at x, and Wi ∩W j = {x}whenever i 6= j.
When k > 1, we call such an x a star point of R. Note that the set of star points of
R is a finite subset of ∂R.

In proving Theorem 7.2, we use some results concerning finite Riemann
surfaces. A finite Riemann surface is a domain Ω in a Riemann surface with the
property that Ω is compact and ∂Ω consists of a finite number of disjoint simple
closed smooth curves. Due to the possible existence of star points, our domainR
may not be a finite Riemann surface as a subset ofM. We can, however, embed
R into another Riemann surface where the star points are absent. This is done
as follows. Let B denote the set of star points of R, and for a given b ∈ B let
W be a coordinate neighborhood of b inM so that W ∩ B = {b} and W ∩ R =
W1 ∪ · · · ∪Wk, as above. Glue Wi toR\W along their intersection ∂Wi ∩ ∂(R\W)
for each i ∈ {1, . . . , k}.

Repeating this process for each b ∈ B, we produce a topological space S
and a quotient map θ : S → R such that θ−1(B) is finite and θ sends S\θ−1(B)
homeomorphically onto R\B. Because of this, we define S = θ−1(R) and equip
S with the structure of a Riemann surface. Since the boundary of R near each
point in ∂R\B is given by a simple smooth curve, we can make S into a Riemann
surface with boundary once we provide a boundary chart at each point of θ−1(B).
To do this, let b, W1, . . . , Wk, and W be as before. For a given i, let xi be the point
in θ−1(b) corresponding to the connected component Wi. As Wi is biholomorphic
to a simply connected subset of C, there is a biholomorphic map φ from Wi onto
the open upper half-disc D+ that sends W ∩ ∂Wi onto the interval (−1, 1) and b
to 0. We then take φ ◦ θ to the boundary chart at xi. By Section I.13.H of [5], the
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surface S can be embedded into a compact (closed) Riemann surface, the double
of S , thus making S into a finite Riemann surface.

We define h : S → V ∩ D n
to be the composition h = H ◦ θ. Then h is a

proper finite continuous map, and h is a diffeomorphism over V∗ ∩D n
. We also

see from Lemma 7.14 that ∂S = h−1(V ∩Tn), as desired.

7.2. PROOF OF THEOREM 7.2. Let Ω be a domain in a Riemann surface so that
Ω is compact. We denote by A(Ω) the algebra of functions continuous on Ω and
analytic on Ω. With h : S → V ∩ D n

as above, we denote by Ah(S) the closed
unital subalgebra of A(S) generated by the coordinate functions h1, . . . , hn of h.

As discussed in the beginning of Section 3 of [1], it follows from [3] that
there is a finite subset Y of S such that any function in A(S) which vanishes
to sufficiently high order on Y also belongs to Ah(S). It follows from this that
Ah(S) has finite codimension in A(S), and if g ∈ Ah(S) vanishes to sufficiently
high order on Y, then g · A(S) ⊆ Ah(S). In particular, there exists a one variable
polynomial Q so that Q(hn) · A(S) ⊆ Ah(S).

When Ω is a finite Riemann surface and τ is a finite positive Borel mea-
sure supported on ∂Ω, we denote by A2(Ω, τ) the L2(τ)-closure of A(Ω). When
Ω = S , we write instead A2(τ) and define A2

h(τ) to be the L2(τ)-closure of
Ah(S). Given a bounded Borel function f on ∂S , we denote by M f ,τ and N f ,τ

the operators for multiplication by f on A2
h(τ) and A2(τ), respectively. If F =

( f1, . . . , fn) is an n-tuple of bounded Borel functions on ∂S , then we set MF,κ =
(M f1,κ , . . . , M fn ,κ) and NF,κ = (N f1,κ , . . . , N fn ,κ).

COROLLARY 7.15. Let τ be a diffuse finite positive measure on ∂S . If Mh,τ is an
n-tuple of shifts with finite multiplicity, then the same holds for Nh,τ , and Mh,τ ≈ Nh,τ .

Proof. Since τ has no atoms, Nhn ,τ has no eigenvalues. Indeed, if Nhn ,τ f =

λ f for some f ∈ A2(τ) and λ ∈ T, then
∫
|hn − λ|2| f |2dτ = 0. Since hn − λ has

only finitely many zeros in S , it follows that f = 0 τ-a.e. Thus, as A2
h(τ) has finite

codimension in A2(µ), the corollary now follows from Lemma 7.5.

Let Ω be a finite Riemann surface, and denote by u f the harmonic function
on Ω with boundary values given by f ∈ C(∂Ω). For each a ∈ Ω there is a Borel
probability measure ωa on ∂Ω such that

u f (a) =
∫

∂Ω

f dωa.

In particular, when v is a continuous function on Ω that is harmonic on Ω, we
have v(a) =

∫
∂Ω

vdωa. By [19], A(Ω) is a hypo-Dirichlet algebra, implying in par-

ticular that the set {log |g| : g invertible in A(Ω)} has dense span in C(∂Ω). Thus
the measure ωa is unique; it is called the harmonic measure of Ω corresponding to
a. Note that ωa is a representing measure for the character f 7→ f (a) on A(Ω),
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and if f ∈ A(Ω) is invertible, then

log | f (a)| =
∫

∂Ω

log | f |dωa;

that is, ωa is an Arens–Singer measure.
As seen in [15], every finite Riemann surfaces posses a Green’s function Ga

for the point a, and an application of Green’s formula shows that dωa is equal
to − ∗ dGa, where ∗ is the conjugation operator (compare with Corollary 2.6 in
Chapter II of [10]). The following two statements concerning harmonic measure
on finite Riemann surfaces seem to be well known, but we lack a good reference
and thus sketch a proof of each.

(1) Let b ∈ ∂Ω, U a coordinate neighborhood about b, and φ : U → D a chart
sending b to 0. Since ∂Ω is smooth, we suppose U ∩ ∂Ω is sent smoothly onto the
interval (−1, 1). If E ⊆ U ∩ ∂Ω, then ω(E) = 0 if and only if φ(E) has Lebesgue
measure 0.

To prove this, we modify the argument found in Section II.2 of [10]. We
suppose φ sends U ∩ Ω onto the upper half-disc D+ and U is small enough
that a /∈ U. The push-forward of − ∗ dGa from U ∩ ∂Ω to (−1, 1) is given by
((∂(Ga ◦ φ−1))/(∂y))dx, where x + iy is the coordinate function on D. Since
Ga ◦ φ−1 is harmonic on D+ and zero on (−1, 1), there is a real valued har-
monic function u on D given by u(z) = Ga(φ−1(z)) when =(z) > 0 and by
u(z) = −Ga(φ−1(z)) when =(z) < 0. There is then an analytic function f on
D with =( f ) = u and f (0) = 0. Since f sends D+ into D+, it follows that
(∂u/∂y)(0) = f ′(0) > 0. A similar argument may be carried out for any point
in (−1, 1), and therefore

∫
φ(E)

(∂(Ga ◦ φ−1)/(∂y))dx = 0 if and only if φ(E) has

Lebesgue measure 0.
(2) If a, b ∈ Ω, then ωa and ωb are mutually absolutely continuous. Further-

more, there is a number c > 1 (depending on a and b) so that

1
c
<

dωa

dωb
< c.

Since ∂Ω is compact, it suffices to verify these statements locally. Let φ and
U be as above. By (1), (ωa|U) ◦φ−1 and (ωb|U) ◦φ−1 are both mutually absolutely
continuous with respect to Lebesgue measure on (−1, 1). In particular, we see
that d((ωa|U) ◦ φ−1)/dx, for example, is a strictly positive continuous function
on (−1, 1).

We remark that (2) can also be proved using Harnack’s inequality together
with the observation that a 7→ ωa(E) is a harmonic function for any Borel E ⊆ ∂Ω.
The following lemma is now a consequence of (1).

LEMMA 7.16. Let ω be harmonic measure for a point in S and E a Borel subset of
∂S . If ω(E) = 0, then hn(E) ⊆ T has Lebesgue measure 0.
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Proof. We assume E is contained in the domain of a single boundary chart φ.
Since hn is smooth except possibly at a finite number of points, the map hn ◦ φ−1

determines a piecewise smooth map from an interval of R into T. As ω(E) = 0, it
follows from the preceding remarks that φ(E) has Lebesgue measure 0, and thus
hn ◦ φ−1 sends φ(E) to a set in T of Lebesgue measure 0.

LEMMA 7.17. Let ω be harmonic measure for a point x0 ∈ S . Then Mh,ω and
Nh,ω are both n-tuples of shifts of finite multiplicity, and

Ann(Mh,ω) = Ann(Nh,ω) = I .

Proof. For each i, we define gi = (hi− hi(x0))/(1− hi(x0)hi). Then Mg,ω is a
completely non-unitary n-tuple if and only if Mh,ω is also. We fix f ∈⋂

α∈Nn
0

Mα
g,ω A2

h(ω)

and note that for each α ∈ Nn
0 there is an fα ∈ H so that f = gα fα. Thus, when

α, β ∈ Nn
0 such that α− β ∈ Nn,

〈 f , gβ〉 = 〈gα−β fα, 1〉 = g(x0)
α−β fα(x0) = 0.

As {gα : α ∈ Nn
0} is total in A2

h(ω), it follows that f = 0. Thus Mh,ω is completely
non-unitary.

Since I ⊆ Ann(Mh,ω) and I is prime, it follows from Lemma 3.2 that I =
Ann(Mh,ω). Because Mhi ,ω is not multiplication by a scalar for any i, Theorem 4.4
implies that Mh,ω is an n-tuple of shifts, and thus, as Mh,ω is cyclic, we have by
Theorem 6.2 that Mhj ,ω has finite multiplicity for each j. The lemma now follows
from Corollary 7.15.

Let Ω be a finite Riemann surface with harmonic measure ω. It is shown in
Lemma 3.9 of [1] that if u is log-integrable with respect to ω, then there exists an
f ∈ A2(Ω, ω) so that u = | f |2 and the closure of A(Ω) f has finite codimension
in A2(Ω, ω). We remark that while this result is stated in [1] for the desingular-
ization of a distinguished variety in C2, their argument is carried in the case we
have just described. The following lemma is based on Lemma 3.4 of [1].

LEMMA 7.18. Suppose ν is a diffuse finite positive measure on ∂S and ω is har-
monic measure for S . If Mh,ν is an n-tuple of shifts of finite multiplicity, then Mh,ν ≈
Mh,ω.

Proof. Suppose ν is absolutely continuous with respect to harmonic mea-
sure ω, and

∫
log(dν/dω)dω > −∞. As we have just seen, there then exists an

f ∈ A2(ω) so that | f |2 = dν/dω and the L2(ω)-closure K of A(S) f has finite
codimension in A2(ω). We denote by K0 the L2(ω)-closure of Ah(S) f and note
that K0 has finite codimension in K. Thus

Mh,ω |K0 = Nh,ω |K0 . Nh,ω |K . Nh,ω.
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For g1, g2 ∈ Ah(S) we have

〈g1 f , g2 f 〉 =
∫

g1g2| f |
2dω =

∫
g1g2dν.

Thus Mh,ω |K0 is unitarily equivalent to Mh,ν, and so Mh,ν . Nh,ω. Lemma 7.5
now implies that Mh,ν ≈ Nh,ω, and so Mh,ν ≈ Mh,ω by Lemma 7.15. To prove the
lemma, it therefore suffices to show that ν is absolutely continuous with respect
to ω and log(dν/dω) ∈ L1(ω).

We first show that ν is absolutely continuous with respect to harmonic mea-
sure ω for a point x0 ∈ S . By Corollary 7.15, Nh,ν is an n-tuple of shifts of finite
multiplicity. Denote by φ the character of A(S) given by evaluation at x0. As
mentioned before, A(S) is a hypo-Dirichlet algebra and ω is an Arens–Singer
measure. Thus, by the first corollary of Theorem 3.1 in [4], every represent-
ing measure for φ is absolutely continuous with respect to ω. We denote by
νs the part of ν that is singular with respect to ω, and note that there is an Fσ-
subset E of ∂S such that ω(E) = 0 and νs(Ec) = 0. By Forelli’s lemma (see
Lemma II.7.3 of [9]), the characteristic function χE of E is contained in A2(ν). We
set g = (hn − hn(x0))/(1− hn(x0)hn), τ = νs ◦ g−1, and denote by H0 the cyclic
subspace of A2(ν) generated Ng,ν and χE. For any p, q ∈ C[Xn],

〈p(g)χE, q(g)χE〉 =
∫

∂S

(p ◦ g)q ◦ gdνs =
∫
T

p(w)q(w)dτ(w),

where we have used the fact that g(∂S) = T. Thus the algebra generated by
Ng,ν|H0 is unitarily equivalent to the disc algebra A(D) acting on its L2(τ)-closure.
It follows from Lemma 7.16 that g(E) ⊆ T has Lebesgue measure 0, and we easily
see that τ(g(E)c) = 0. That is, τ is singular with respect to Lebesgue measure on
T. It now follows from the Kolmogorov–Krein theorem on the disc that

inf
f∈A(D)

∫
T

|1− w f (w)|2dτ(w) = 0.

Thus Ng,νH0 = H0, implying that Nhn ,ν|H0 is a unitary operator and soH0 = {0}.
In particular, νs(E) = ‖χE‖2 = 0 and therefore ν is absolutely continuous with
respect to ω.

Suppose there is a harmonic measure ω1 for some point in S so that we have∫
log(dν/dω1)dω1 > −∞. For any other choice of harmonic measure ω2, there

is a constant c > 1 so that 1/c < dω1/dω2 < c, and thus∫ ∣∣∣ log
( dν

dω2

)∣∣∣dω2 6 c
∫ ∣∣∣ log

( dν

dω1

)∣∣∣dω1 + | log(c)|.

It therefore suffices to show that
∫

log(dν/dω)dω > −∞ for just one choice of
harmonic measure ω.
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Let Q ∈ C[Xn] such that (Q ◦ hn)A(S) ⊆ Ah(S) and let zn ∈ D satisfy
Q(zn) 6= 0. By Lemma 7.3, there is a z ∈ Z(I) ∩Dn so that

inf
p∈J

∫
|1− p ◦ h|2dν > 0

where J is the ideal in C[X] generated by X1 − z1, . . . , Xn − zn. Choose x0 so
that z = h(x0) and let ω denote the corresponding harmonic measure. We again
denote by φ the character on A(S) given by evaluation at x0. In order to show that∫

log(dν/dω)dω > −∞ for some ω, it suffices to show, according the corollary of
Theorem 10.1 in [4], that inf

f∈ker φ

∫
|1− f |2dν > 0. We note that ker(φ) ∩ Ah(S) ⊇

(Q ◦ hn) ker φ, and so

inf
f∈Ah(S)∩ker φ

∫
|Q ◦ hn − f |2dν 6 inf

f∈ker φ

∫
|1− f |2|Q ◦ hn|2dν

6 M · inf
f∈ker φ

∫
|1− f |2dν,

where M = sup
w∈T
|Q(w)|2. As C[h1, . . . , hn] is dense in Ah(S), it follows that J (h)

is dense in Ah(S) ∩ ker φ. Since Q ◦ hn −Q(zn) ∈ Ah(S) ∩ ker φ, we have

|Q(zn)|2 · inf
p∈J

∫
|1− p ◦ h|2dν 6 M · inf

f∈ker φ

∫
|1− f |2dν.

Thus inf
f∈ker φ

∫
|1− f |2dν > 0.

Proof of Theorem 7.2. By Lemma 7.8, it suffices to consider the case where
I = Ann(V) is prime. By the comments at the beginning of Section 7.1, we may
(and do) suppose that V = Mh,ν for some diffuse finite positive Borel measure ν
on ∂S . The theorem now follows from Lemma 7.18.
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