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ABSTRACT. Truncated Toeplitz operators and their asymmetric versions are
studied in the context of the Hardy space Hp of the half-plane for 1 < p < ∞.
The question of uniqueness of the symbol is solved via the characterization of
the zero operator. It is shown that asymmetric truncated Toeplitz operators
are equivalent after extension to 2× 2 matricial Toeplitz operators, which al-
lows one to deduce criteria for Fredholmness and invertibility. Shifted model
spaces are presented in the context of invariant subspaces, allowing one to
derive new Beurling–Lax theorems.
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INTRODUCTION

Certain classes of truncated Toeplitz operators (TTO), also known as skew
Toeplitz operators, have been studied for many years [7], [8], [22], [30]. However,
it is the paper of Sarason [27] that stimulated the most recent research in this area:
see, for example [4], [10] and the recent survey [16]. Here we treat a more general
class of operators, known as asymmetric truncated Toeplitz operators (ATTO),
a natural generalisation of rectangular Toeplitz matrices. They appear in various
contexts, such as in the study of finite-time convolution equations, signal process-
ing, control theory, probability, approximation theory, and diffraction problems
(see for instance [1], [2], [3], [4], [17], [18], [28]).

Motivated by these applications, where the natural variables are often time
and frequency, we work mostly with the Hardy spaces H±p of the upper and lower
half-planes, for 1 < p < ∞, recalling the decomposition Lp(R) = H+

p ⊕ H−p
(full definitions and notation will be given later). Many of our results may be
rewritten for the disc, as we shall see later, although they may sometimes appear
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more complicated in this context. Most of the results we prove are new even for
“standard” TTO in the Hardy spaces Hp.

For an inner function θ ∈ H+
∞ the model space Kp

θ may be defined as

(0.1) Kθ = H+
p ∩ θH−p .

We will omit the superscript p unless it is necessary for the sake of clarity. We
then have

(0.2) Lp(R) = H−p ⊕ Kθ ⊕ θH+
p ,

and we write Pθ to denote the associated projection Pθ : Lp(R)→ Kθ .
Then for g ∈ L∞(R) the standard TTO Aθ

g is defined as follows:

(0.3) Aθ
g : Kθ → Kθ , Aθ

g = Pθ(gI)|Kθ
= Pθ(gI)|Pθ Lp

.

If α and θ are inner functions, we define the operator Aα,θ
g as

(0.4) Aα,θ
g := Pα(gI)|Kθ

= Pα(gI)|Pθ Lp
.

If α is an inner function that divides θ in H+
∞ (we write this α � θ), let Pα,θ

denote Pθ − Pα, a projection with range equal to the shifted model space Kα,θ :=
αKαθ . Then we can define

(0.5) Bα,θ
g := Pα,θ(gI)|Kθ

= Pα,θ(gI)|Pθ Lp
.

The operators Aα,θ
g and Bα,θ

g are particular cases of general WH operators (see
[28]) in Lp, of the form

(0.6) P1 A|P2 Lp
,

where P1 and P2 are projections and A is an operator in Lp. We say that Aα,θ
g and

Bα,θ
g are asymmetric truncated Toeplitz operators (ATTO) in Kθ (that is, general WH

operators where P1 and P2 are projections in Kθ and A is a Toeplitz operator).
In Section 1 we recall the definitions and basic properties of model spaces in

an Hp context, while also introducing the notion of partial conjugation. Section 2
analyses an isometric isomorphism between Lp spaces on the disc and half-plane,
which restricts to H+

p and indeed θH+
p . For p = 2 it has further properties which

aid in the study of ATTO. In Section 3 ATTO are treated in some detail, and we
solve the question of uniqueness of symbol, via the characterization of the zero
operator. In Section 4 we discuss the question which ATTO have finite rank.
Next, in Section 5 it is shown that ATTO are equivalent by extension to Toeplitz
operators with triangular 2 × 2 matrix symbol. This immediately enables one
to obtain new results about ATTO (and even TTO) from known results about
standard Toeplitz operators. In particular, we establish necessary and sufficient
conditions for an ATTO to be Fredholm or invertible, and illustrate these results
by describing the spectra of TTO in a particular class. Finally, Section 6 discusses
kernels of ATTO and the link with invariant subspaces.



ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS AND TOEPLITZ OPERATORS WITH MATRIX SYMBOL 457

1. MODEL SPACES, PROJECTIONS AND TOEPLITZ OPERATORS

Recall that we write Lp for Lp(R), H+
p and H−p for the Hardy spaces of the

upper and lower half-planes C+ and C− (here 1 6 p 6 ∞) and we denote by P±

the Riesz projections P+ : Lp → H+
p and P− : Lp → H−p for 1 < p < ∞.

For θ an inner function (in H+
∞), let Kθ = Kp

θ denote the model space defined
in (0.1), where we omit the superscript p unless it is necessary for clarity. If α
and θ are inner functions, we say that αKθ is a shifted model space. It is clear that
αKθ ⊂ Kαθ .

For any inner function θ, we have the decomposition (0.2), and

(1.1) H+
p = Kθ ⊕ θH+

p ,

where the sum is orthogonal in the case p = 2. Let Pθ : Lp → Kθ be the projection
from Lp onto Kθ defined by (0.2); we have

(1.2) Pθ = θP−θP+ = P+θP−θ I.

Let moreover Qθ be the operator defined in Lp, 1 < p < ∞, by

(1.3) Qθ := P+ − Pθ ,

and let us use the same notation Pθ , Qθ for Pθ|H+
p

, Qθ|H+
p

, respectively. For any

ϕ ∈ H+
p , we define

(1.4) ϕθ = Pθ ϕ.

Now take g ∈ L∞. The Toeplitz operator with symbol g is the operator

Tg : H+
p → H+

p , Tg = P+gI+,

where I+ denotes the identity operator in H+
p . This definition can be generalised

to the vectorial case straightforwardly, for a matricial symbol g ∈ Ln×n
∞ .

If α, θ ∈ H+
∞ are inner functions, we say that α � θ if and only if there exists

an inner function θ̃ such that θ = αθ̃, and α ≺ θ if and only if θ̃ is not constant. Of
course α � θ ⇒ αθ � θ. We also have

(1.5) α � θ ⇔ Kα ⊂ Kθ ⇔ ker Pθ ⊂ ker Pα.

As a consequence of this we can also define, for α � θ, a projection in Lp (or
H+

p ) by

(1.6) Pα,θ := Pθ − Pα,

and again we use the same notation for the operator defined by (1.6) in Lp and its
restriction to H+

p . We easily see that Pα,θ = QαPθ = PθQα = αPαθαI, and it follows
that the image of Pα,θ is the shifted model space

(1.7) Kα,θ := Kθ ∩ αH+
p = αKαθ .

Of course Kα,θ = Kθ if α is constant, and Kα,θ = Kθ 	 Kα if p = 2.
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We introduce now a class of conjugate-linear operators in H+
p by general-

ising the notion of a conjugation in a complex Hilbert space H (i.e., an isometric
conjugate-linear involution inH).

DEFINITION 1.1. Let X, Y be closed subspaces of H+
p such that x⊥y for all

x ∈ X ∩ H+
2 , y ∈ Y ∩ H+

2 , and let A = X ⊕ Y. We say that a conjugate-linear
operator in H+

p , C, is a partial conjugation in A if and only if C|X is an isometric
involution on X and C|Y = 0. If Y = {0} then C is a conjugation in A.

Let now Cθ be the conjugate-linear operator defined in H+
p , for each inner

function θ, by

(1.8) Cθ(ϕ+) = θPθ ϕ+, ϕ+ ∈ H+
p .

It is easy to see that (Cθ)
2 = Pθ , Cθ maps Kθ onto Kθ isometrically, and Cθ(θH+

p ) =

{0}. Thus Cθ is a partial conjugation in H+
p and, analogously Cα is a partial con-

jugation in Kθ if α � θ. Of course Cα is a conjugation in Kα.
We will also use the following simple relations. Let r denote the function

defined by

(1.9) r(ξ) =
ξ − i
ξ + i

for ξ ∈ C and let ϕ± ∈ H±p . Then

(1.10) P+r−1 ϕ+ = r−1 ϕ+ − 2i
ϕ+(i)
ξ − i

, P−rϕ− = rϕ− + 2i
ϕ−(−i)

ξ + i
.

Moreover, if θ is an inner function, taking into account that ϕ+ = ϕθ
+ + θϕ̃+ with

ϕ̃+ ∈ H+
p , we have

(1.11) Pθh+ϕ+ = Pθh+ϕθ
+

whenever h+ is such that h+ϕ+ ∈ Lp and h+Qθ ϕ+ ∈ θH+
p (in particular, if h+ ∈

H+
∞), and

(1.12) Qθh−ϕθ
+ = 0, Pθh−ϕθ

+ = P+h−ϕθ
+

whenever h− is such that h−ϕθ
+ ∈ Lp and h−θϕθ

+ ∈ H−p (in particular, if h− ∈
H−∞). As a consequence of (1.11) and (1.12), we also have

(1.13) α � θ ⇒ Pθh−ϕα
+ = Pαh−ϕα

+, Pαh+ϕθ
+ = Pαh+ϕα

+.

2. EQUIVALENCE BETWEEN OPERATORS ON THE DISC AND HALF-PLANE

We now recall the details of the isometric isomorphism between the Hardy
spaces H+

p on the upper half-plane C+ and Hp(D) on the unit disc D. It will be
seen that this leads to an isometric bijective equivalence (i.e., an unitary equiva-
lence in the case p = 2) between model spaces on the disc and half-plane; in the
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case p = 2 this leads to a unitary equivalence between (A)TTO on the disc and
half-plane, enabling us to give an immediate translation of our results to the disc
context. Our convention in this section is that lower case letters such as f denote
functions on the disc, whereas capital letters denote functions on the half-plane.

Let m : D→ C+ be the conformal bijection given by

m(z) = i
(1− z

1 + z

)
, m−1(ξ) =

i− ξ

i + ξ
,

(other choices are possible) and V : Hp(D)→ Hp(C+) the isometric isomorphism
given by

(2.1) (V f )(ξ) =
1

π1/p
1

(i + ξ)2/p f (m−1(ξ)), ( f ∈ Hp(D)),

(see, for example, [20], [23], [24]). The inverse mapping is given by

(V−1F)(z) = π1/p
( 2i

1 + z

)2/p
F(m(z)), (F ∈ Hp(C+)).

Now for n ∈ Z the function zn is mapped by V to the function en given by

e(p)
n (ξ) =

1
π1/p

(i− ξ)n

(i + ξ)n+2/p .

The same formula (2.1) extends V to an isometric mapping from Lp(T) onto

Lp(R), and for p = 2 it also maps Hp
0 (D) into H−p .

Let θ be an inner function in H∞(C+); then the function Θ := θ ◦m−1 is an
inner function in H∞(D). Now for f = θg with g ∈ Hp(D) we have

(V f )(ξ) = Θ(ξ)(Vg)(ξ),

so V takes θHp(D) onto ΘHp(C+). Letting q be the conjugate index to p, we also
have that (V∗)−1 maps Hq(D) onto Hq(C+) and takes its subspace Kθ to KΘ.

The situation is better for p = 2, since V is unitary, and it maps Kθ =

H2(D) ∩ θH2
0(D) onto KΘ = H+

2 ∩ΘH−2 ; hence, the decomposition

L2(T) = H2
0(D)⊕ Kθ ⊕ θH2(D)

is mapped by V term-wise into

L2(R) = H−2 ⊕ KΘ ⊕ΘH+
2 .

This situation does not hold for p 6= 2.
Suppose now that p = 2 and g ∈ L∞(D). We write G := g ◦ m−1 and

A = α ◦ m−1. Then, we have the following commutative diagram, where Aα,θ
g

denotes an ATTO on the disc, as defined analogously to (0.3):

(2.2)
Kθ

Aα,θ
g−→ Kα

V ↓ ↓ V

KΘ

AA,Θ
G−→ KA
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We see that this diagram commutes, since for k ∈ Kθ we have

V(gk)(ξ) =
1

π1/2
1

(i + ξ)
g(m−1(ξ))k(m−1(ξ)) = G(ξ)(Vk)(ξ);

now, since PAV = VPα we get

VPα(gk) = PAV(gk) = PAG(Vk),

so we have the required unitary equivalence between ATTO on the disc and half-
plane.

3. ASYMMETRIC TRUNCATED TOEPLTZ OPERATORS

Let g ∈ L∞ and let α, θ ∈ H+
∞ be inner functions. As in Section 1, we define

the asymmetric truncated Toeplitz operators (abbreviated to ATTO) Aα,θ
g and, for α �

θ, Bα,θ
g as follows:

Aα,θ
g = αgPθ ,(3.1)

Bα,θ
g = Pα,θ gPθ ,(3.2)

where Aα,θ
g and Bα,θ

g can be seen as operators in H+
p , or operators in Kθ if α � θ,

or as operators from Kθ into Kα and Kα,θ , respectively. We will assume the latter
unless stated otherwise. If α = θ then Aα,θ

g is the truncated Toeplitz operator Aθ
g.

It is easy to see that Aθ
g = Aα,θ

g + Bα,θ
g and that an ATTO of the form (3.2) can

be expressed in terms of ATTO of type (3.1), since we have

(3.3) Bα,θ
g = Pα,θTg|Kθ

= αPαθαTg|Kθ
= αPαθTαg|Kθ

= αAαθ,θ
αg .

We will therefore focus here on ATTO of type (3.1). Moreover, considering that

(Aα,θ
g )
∗
= Aθ,α

g ,

we will assume in what follows that α � θ.
We will use the following generalisation of the notion of a complex sym-

metric operator in a Hilbert space.

DEFINITION 3.1. Let A be a closed subspace of H+
p . An operator T : A →

H+
p is a complex partially symmetric operator (respectively, a complex symmetric

operator) if and only if there exists a partial conjugation (respectively, a conjuga-
tion) in A, C, such that CTC = T̃, where T̃ coincides with T∗ in H+

p ∩ H+
q , 1/p +

1/q = 1. In this case we say that T is PC-symmetric (respectively, C-symmetric).

PROPOSITION 3.2. If g ∈ L∞, then

Cα Aα,θ
g Cα = Aα

g.
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Proof. Let ϕ+ ∈ Kθ . Then, for all ϕ+ ∈ H+
p ,

Cα Aα,θ
g Cα ϕ+ = αAα,θ

g Cα ϕ+ = αPαgPθαPα ϕ+ = αPαgαPα ϕ+

= α(αP+αP−gαPα ϕ+) = P+αP−α(P+ + P−)gPα ϕ+

= αP−αP+gPα ϕ+ = PαgPα ϕ+.

COROLLARY 3.3. For g ∈ L∞, Aθ
g is Cθ-symmetric in Kθ and we have

(3.4) Cθ Aθ
g = Aθ

gCθ .

Let us consider now the case of analytic symbols g+ ∈ H+
∞ .

PROPOSITION 3.4. (i) If g+ ∈ H+
∞ and α, θ are inner functions with α � θ, then

Aα,θ
g+ ϕ+ = Aα

g+ ϕ+, Aθ,α
g+

ϕ+ = Aα
g+

ϕ+,

for all ϕ+ ∈ H+
p .

(ii) If α � β and β � θ, then Aα,β
g+ Aβ,θ

f+
= Aα,θ

g+ f+
.

Proof. (i) follows from (1.13).
(ii) Aα,β

g+ Aβ,θ
f+

=Pαg+Pβ f+Pθ =Pαg+(P+ −Qβ) f+Pθ =Pαg+ f+Pθ =Aα,θ
g+ f+

.

As an immediate consequence we have, for g+ ∈ H+
∞ , n ∈ N,

(3.5) (Aθ
g+)

n
= Aθ

gn
+

.

From Propositions 3.2 and 3.4 we also have the following.

PROPOSITION 3.5. If g+ ∈ H+
∞ , then Aα,θ

g+ and Aθ,α
g+

are PCα-symmetric and

Cα Aα,θ
g+ = Aα

g+
Cα = Aθ,α

g+
Cα.

Proof. By Proposition 3.2 we have Cα Aα,θ
g+ =Aα

g+
Cα and, by Proposition 3.4(i),

Aθ,α
g+

= Aα
g+

.

Let us now consider the functions kθ
w and k̃θ

w defined, for each w ∈ C+, by

kθ
w(ξ) :=

1− θ(w)θ(ξ)

ξ − w
,(3.6)

k̃θ
w(ξ) :=

θ(ξ)− θ(w)

ξ − w
,(3.7)

which will play an important role in this section. We have kθ
w, k̃θ

w ∈ Kθ , with

(3.8) kθ
w = Pθ

1
ξ − w

, k̃θ
w = Pθ

θ

ξ − w
= Cθkθ

w.

If α � θ, the functions kα
w, k̃α

w are related to kθ
w, k̃θ

w, respectively, by

(3.9) Pαkθ
w = kα

w, Pα k̃θ
w = (αθ)(w)k̃α

w.
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PROPOSITION 3.6. kθ
i is a cyclic vector for Aθ

r and k̃θ
i is a cyclic vector for Aθ

r−1 .

Proof. By (3.5) and (1.11),

(Aθ
r )

nkθ
i = Aθ

rn kθ
i = PθrnPθ

1
ξ + i

= Pθ

(
rn 1

ξ + i

)
,

so {(Aθ
r )

nkθ
i : n∈N} is dense in Kθ . On the other hand, since TθTθTθ =Tθ , we have

(Aθ
r−1)

n k̃θ
i = Aθ

r−nCθkθ
i = Cθ Aθ

rn kθ
i

and, since Cθ is an isometry in Kθ , it follows that k̃θ
i is a cyclic vector for Aθ

r−1 .

PROPOSITION 3.7. The operators Pα−Aα,θ
r Aθ,α

r−1 and Pα−Aθ,α
r−1 Aα,θ

r on H+
p are rank

-one operators, with range equal to span{kα
i }and span{k̃α

i }, respectively, and we have

(Pα − Aα,θ
r Aθ,α

r−1)ϕ+ = 2iϕα
+(i)k

α
i ,(3.10)

(Pα − Aθ,α
r−1 Aα,θ

r )ϕ+ = −2iϕα
−(−i)k̃α

i ,(3.11)

where ϕα
− = αϕα

+ = Cα ϕα
+.

Proof. We have

Aα,θ
r Aθ,α

r−1 ϕ+=PαrPθr−1 ϕα
+=PαrP+r−1 ϕα

+= ϕα
+−2iϕα

+(i)Pα
1

ξ+i
= ϕα

+−2iϕα
+(i)k

α
i ,

where we used (1.10), and (3.10) follows from this equality. On the other hand,
by Proposition 3.4, Proposition 3.5, (3.8) and (3.10),

Aθ,α
r−1 Aα,θ

r ϕ+ = Aα
r−1(Cα)

2 Aα
r ϕ+ = Cα Aα

r Aα
r−1Cα ϕ+

= Cα Aα,θ
r Aθ,α

r−1Cα ϕ+ = −2iα(Cα ϕ+)(i)k
α
i = −2iϕα

−(−i)k̃α
i .

In particular, for α = θ, we have the defect operators ([27]) IKθ
− Aθ

r Aθ
r−1

and IKθ
− Aθ

r−1 Aθ
r in Kθ , where IKθ

denotes the identity operator in Kθ , with

(IKθ
− Aθ

r Aθ
r−1)ϕθ

+ = 2iϕθ
+(i)k

θ
i(3.12)

(IKθ
− Aθ

r−1 Aθ
r )ϕθ

+ = −2iϕθ
−(−i)k̃θ

i .(3.13)

Next we address the question when an ATTO is zero, which is equivalent to
obtaining conditions for two ATTO to be equal. For this purpose, it will be useful
to note that a symbol g ∈ L∞ admits the following decompositions:

g = G+ + G−, with G± = (ξ + i)P±
g

ξ + i
,(3.14)

g = g+ + g−, with g± = (ξ − i)P±
g

ξ − i
,(3.15)

g = γ+ + γ− + C, with γ± = (ξ ± i)P±
g

ξ ± i
, C ∈ C.(3.16)
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The third decomposition can easily be related to any of the other two; for
instance,

G+ = γ+, G− = γ− + C, with C = −2iP−
( g

ξ − i

)
(−i).

It is clear that an ATTO does not have a unique symbol, since we can have
Aα,θ

g = 0 with g 6= 0. In fact, using the previous results and defining H±p :=
λ±H±p where λ±(ξ) = ξ ± i, we have the following.

THEOREM 3.8. Aα,θ
g = 0 if and only if g = θ g̃− + αg̃+ with g̃± ∈ H±p .

Proof. First we prove that Aα,θ
g = 0 if g = θ g̃− + αg̃+. For z+ ∈ C+, let

kθ
z+ := (1− θ(z+)θ)/(ξ − z+) = Pθ(1/(ξ − z+)); then

Aα,θ
g kθ

z+ = Pα

[
g

1− θ(z+)θ
ξ − z+

]
= Pα

[
(θ g̃− + αg̃+)

1− θ(z+)θ
ξ − z+

]
= Pα

[
g̃−

θ − θ(z+)
ξ − z+

]
+ Pα

[
αg̃+

1− θ(z+)θ
ξ − z+

]
= 0

since g̃−(θ − θ(z+))/(ξ − z+) ∈ H−p and αg̃+(1− θ(z+)θ)/(ξ − z+) ∈ αH+
p . The

converse will be proved in several steps. Assuming that Aα,θ
g = 0, we show that:

(i) Aα,θ
G+

Aα,θ
r Aθ,α

r−1 kα
i = Aα,θ

r Aθ,α
r−1 Aα,θ

G+
kα

i ;
(ii) γ+ = α f+ + C1 for some f+ ∈ H+

p and some C1 ∈ C;
(iii) γ− = θ f− + C2 for some f− ∈ H−p and some C2 ∈ C;
(vi) C1 + C2 + C = 0, where C is the constant in (3.16);

so that g = α f+ + θ f− with f± ∈ H±p .
(i) Let G± be defined as in (3.14). We have, from (3.10),

Aα,θ
G+

Aα,θ
r Aθ,α

r−1 kα
i = (1− 2ikα

i (i))PαG+kα
i .

Now, if Aα,θ
g = 0 then Aα,θ

G++G− = 0 and

(3.17) Aα,θ
G+

ϕ+ = −Aα,θ
G−ϕ+

for all ϕ+ such that G±ϕθ
+ ∈ H+

p (where we define Aα,θ
G±ϕ+ = PαG±ϕθ

+). Also
note that

(3.18) PαG−kα
i = P+G−kα

i .

Using (3.17), (3.18), (1.12), (1.13), and taking into account that

Pθr−1kα
i = Pαr−1kα

i = P+r−1kα
i = r−1kα

i − 2i
kα

i (i)
ξ − i

,
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we have

Aα,θ
r Aθ,α

r−1 Aα,θ
G+

kα
i = −Aα,θ

r Aθ,α
r−1 Aα,θ

G−kα
i = −Aα,θ

r (Pαr−1G−kα
i )

= −Aα,θ
r

[
PαG−(r−1kα

i − 2i
kα

i (i)
ξ − i

)
]
= −Aα

r Aα,θ
G−r−1kα

i

= Aα
r Aα,θ

G+
r−1kα

i = PαrPαG+Pθr−1kα
i = PαrG+Pθr−1kα

i

= PαrG+Pαr−1kα
i = PαG+kα

i − 2ikα
i (i)PαG+Pα

1
ξ + i

= (1− 2ikα
i (i))PαG+kα

i .

Thus, Aα,θ
G+

Aα,θ
r Aθ,α

r−1 kα
i = Aα,θ

r Aθ,α
r−1 Aα,θ

G+
kα

i .
(ii) From (i) we get

(Aα,θ
G+
− Aα,θ

G+
Aα,θ

r Aθ,α
r−1)k

α
i = (Aα,θ

G+
− Aα,θ

r Aθ,α
r−1 Aα,θ

G+
)kα

i

and thus
Aα,θ

G+
(Pα − Aα,θ

r Aθ,α
r−1)k

α
i = (Pα − Aα,θ

r Aθ,α
r−1)Aα,θ

G+
kα

i

which, by Proposition 3.7, is equivalent to

Aα,θ
G+

2ikα
i (i)k

α
i = 2i(Aα,θ

G+
kα

i )(i)k
α
i .

Therefore,

Aα,θ
G+

kα
i = C1kα

i where C1 ∈ C \ {0}, and

Aα,θ
G+

kα
i = C1kα

i ⇔ Pα(G+ − C1)kα
i = 0⇔ Pα

G+ − C1

ξ + i
= 0⇔ G+ − C1

ξ + i
∈ αH+

p .

Since G+ = γ+, we have γ+ = α f+ + C1 with f+ ∈ H+
p and C1 ∈ C.

(iii) Since g = (g)+ + (g)−, where

(g)± = (ξ + i)P±
g

ξ + i
,

so that (g)+ = γ−, to study the condition on γ− we use the equivalence Aα,θ
g =

0⇔ Aθ,α
g = 0⇔ Pθ gPα = 0, where the equality on the right-hand side means that

(3.19) PαgPα = 0 and Pα,θ gPα = 0.

From the first equality in (3.19) and from (ii) we conclude that, for some
constant C2 ∈ C,

(3.20)
(g)+ − C2

ξ + i
∈ αH+

p .

On the other hand we have, from the second equality in (3.19),

(3.21) Pα,θ(g)+kα
i = −Pα,θ(g)−kα

i = −αPαθα(I − P−)(g)−kα
i = 0.
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Since we also have Pα,θC2kα
i = 0, taking this and (3.21) into account we get

0 = Pα,θ((g)+ − C2)kα
i = Pα,θ

( (g)+ − C2

ξ + i
(1− α(i)α)

)
which, by (3.20), implies that

0 = Pθ( f + (1− α(i)α)) with f+ =
(g)+ − C2

ξ + i
.

Now,

Pθ [ f+(1− α(i)α)] = 0⇒ Pθ f+ = 0,

because Pθ [ f+(1− α(i)α)] = 0 implies that f+(1− α(i)α) = θ f̃+, with f̃+ ∈ H+
p

and, if f̃ i
+, f̃ o

+ are the inner and outer factors of f̃+, respectively, that is equivalent
to having f i

+ f o
+(1− α(i)α) = θ f̃+. Since 1− α(i)α is an outer function in H+

∞ , we
conclude that θ divides f i

+ and thus Pθ f+ = 0. Thus f+ ∈ θH+
p and we conclude

that γ− = (g)+ = θ f− + C2 with f− ∈ H−p .
(iv) It follows from (ii), (iii) and (3.16) that g = α f+ + θ f− + B where B is a

constant. Since Aα,θ
g = 0, it follows from the first part of the proof that we must

then have Aα,θ
B = 0, which implies that B = 0.

For p = 2 we may use the unitary equivalence derived earlier to obtain
a generalisation of Sarason’s result for TTO in [27], which, it seems, cannot be
proved directly using his techniques. It seems natural to conjecture that an anal-
ogous result holds in the disc for all 1 < p < ∞, although no direct translation of
the half-plane result seems to be possible for p 6= 2.

COROLLARY 3.9. In the case of p = 2 and for Hardy spaces on D, the asymmetric
truncated Toeplitz operator Aα,θ

g is zero if and only if g ∈ αH2(D) + θH2(D).

Proof. Note that g ∈ αH2(D) if and only if g ◦ m−1 ∈ (α ◦ m−1)λ+H+
2 and

g ∈ θH2(D) if and only if g ◦ m−1 ∈ (θ ◦ m−1)λ−H−2 . Now the result follows
directly from Theorem 3.8 using the equivalence given in (2.2).

4. FINITE RANK ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS

In this section we assume again that α, θ are inner functions with α � θ.
It is clear from any of the decompositions (3.14)–(3.16) of g ∈ L∞ that we can
represent g in the form

(4.1) g = a+θ + a−α
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with a± ∈ H±p . If a± ∈ C, then by Theorem 3.8 we have Aα,θ
g = 0. It now seems

natural to consider symbols of the form

(4.2) g =
α

ξ − z+
and g =

θ

ξ − z+
(z+ ∈ C+)

as being the simplest corresponding to a non-zero ATTO Aα,θ
g .

Some other symbols seem equally simple. Let θ have a non-tangential limit
θ(ξ0) at ξ0 ∈ R and suppose, in addition, that the functions

(4.3)
α(ξ)− α(ξ0)

ξ − ξ0
and

θ(ξ)− θ(ξ0)

ξ − ξ0
lie in L∞,

in which case the functions in (4.3) lie in Kα and Kθ respectively, and hence in H+
p .

We can then consider bounded symbols of the form (4.1) with

a− =
θ − θ(ξ0)

ξ − ξ0
, a+ =

α(ξ0)− α

ξ − ξ0
,

i.e.,

(4.4) g =
α(ξ0)θ − θ(ξ0)α

ξ − ξ0
.

Analogously, if θ admits a non-tangential limit θ(∞) at ∞, i.e., the inner
function θ(i(1 + z)/(1− z)) in the unit disc has a non-tangential limit θ(∞) at 1,
and in addition the functions

(4.5) ξ[α(ξ)− α(∞)] and ξ[θ(ξ)− θ(∞)] lie in L∞,

then we can consider bounded symbols of the form

(4.6) g = ξ[α(∞)θ − θ(∞)α].

We remark that, if (4.5) holds, then

k̃α
∞ := α− α(∞) ∈ Kα and k̃θ

∞ := θ − θ(∞) ∈ Kθ .

THEOREM 4.1. The asymmetric truncated Toeplitz operators Aα,θ
g with g of the

form (4.2), (4.4) and (4.6), are rank-one operators.

Proof. Suppose that g = α/(ξ − z+) with z+ ∈ C+. Then for any w ∈ C+

and kθ
w given by (3.6), we have

Aα,θ
g kθ

w = αP−αP+ α

ξ − z+
kθ

w = αP−α
(αkθ

w − α(z+)kθ
w(z+)

ξ − z+

)
= kθ

w(z+)
α− α(z+)

ξ − z+
= kθ

w(z+)k̃
α
z+ ,

where k̃α
z+ is defined in (3.7). Analogously, if g = θ/(ξ − z+) with z+ ∈ C+, then

Aα,θ
g kθ

w = −(θkθ
w)(z+)kθ

z+ for all w ∈ C+. Suppose now that g takes the form (4.4).
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Then, taking into account the fact that, for all w ∈ C+

kθ
w − kθ

w(ξ0)

ξ − ξ0
=
(

C1 + C2
θ − θ(ξ0)

ξ − ξ0

) 1
ξ − w

∈ H+
p ,

where

C1 =
1 + θ(w)θ(ξ0)

ξ0 − w
and C2 = − ξ0θ(w)

ξ0 − w
, and

θkθ
w − (θkθ

w)(ξ0)

ξ − ξ0
=
(

C̃1 + C̃2
θ − θ(ξ0)

ξ − ξ0

) 1
ξ − w

∈ H−p ,

where

C̃1 =
θ(w)− θ(ξ0)

ξ0 − w
and C̃2 =

ξ0 − w
ξ0 − w

,

we have

Aα,θ
g kθ

w =Pα
α(ξ0)θ − θ(ξ0)α

ξ − ξ0
kθ

w

=Pα

[
α(ξ0)

θkθ
w−(θkθ

w)(ξ0)

ξ−ξ0︸ ︷︷ ︸
∈H−p

−θ(ξ0)α
kθ

w − kθ
w(ξ0)

ξ−ξ0︸ ︷︷ ︸
∈H+

p

−(θkθ
w)(ξ0)

α−α(ξ0)

ξ − ξ0︸ ︷︷ ︸
∈Kα

]

=−(θkθ
w)(ξ0)k̃α

ξ0
,

where k̃α
ξ0

:= (α− α(ξ0))/(ξ − ξ0).
Let now g take the form (4.6). Then, for all w ∈ C+, we have

Aα,θ
g kθ

w =Pα

[
ξ[α(∞)θ − θ(∞)α]

1− θ(w)θ

ξ − w

]
=Pα

[
α(∞)

ξ(θ−θ(w))

ξ − w
+

θ(w)−θ(∞)

ξ − w
ξ[α−α(∞)]+θ(∞)θ(w)α

ξ(θ−θ(∞))

ξ − w︸ ︷︷ ︸
∈H+

p

]

=αP−αP+
[
α(∞)

ξ(θ − θ(∞))

ξ − w

]
+ αP−α

ξ[α− α(∞)]

ξ − w
(θ(w)− θ(∞))

=α(∞)αP−α
(

w
θ(w)− θ(∞)

ξ − w

)
+ (θ(w)− θ(∞))α(∞)α

[ ξ(α(∞)− α)− w(α(∞)− α(w))

ξ − w

]
= α(∞)(θ(w)−θ(∞))

[
w

1−α(w)α

ξ − w
+

αξ(α(∞)−α)−αwα(∞)+αwα(w)

ξ − w

]
= α(∞)(θ(w)− θ(∞))(−1 + αα(∞))

= (θ(w)− θ(∞))(α− α(∞)) = (θ(w)− θ(∞))kα
w.
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Since the span of {kθ
w : w ∈ C+} is dense in Kθ , we have proved the result.

One can show analogously that if

(i) g = α/(ξ − z+)n or g = θ/(ξ − z+)n, with n ∈ N, or
(ii) θ, θ′, . . . , θ(n−1) have non-tangential limits at ξ0 ∈ R, while the functions a+

and a− are given by

a+(ξ)=

α(ξ)−
n−1
∑

j=0
α(j)(ξ0)(ξ−ξ0)

j/j!

(ξ − ξ0)n and a−(ξ)=

θ(ξ)−
n−1
∑

j=0
θ(j)(ξ0)(ξ−ξ0)

j/j!

(ξ − ξ0)n

lie in L∞, and g = a+θ + a−α, or
(iii) θ, θ′, . . . , θ(n−1) have non-tangential limits at ∞, while the functions a+ and

a− satisfying

a+(ξ)= ξn
[

a(ξ)−
n−1

∑
j=0

a(j)(∞)ξ−j/j!
]

and a−(ξ)= ξn
[
θ(ξ)−

n−1

∑
j=0

θ(j)(∞)ξ−j/j!
]

lie in L∞, and g = a+θ + a−α, then Aα,θ
g is a finite-rank operator.

Finite-rank truncated Toeplitz operators (α = θ) were completely charac-
terized by Sarason [27] and Bessonov [9] in the setting of the disk, for p = 2.
Whether, in our case, every rank-one ATTO with symbol in L∞ is of the form con-
sidered in Theorem 4.1, or every finite-rank ATTO with symbol in L∞ is a linear
combination of those given above is an open question, whose study necessarily
involves a characterization of ATTO with Lp symbols, which is beyond the scope
of the present paper.

5. EQUIVALENCE AFTER EXTENSION OF ATTO AND TOEPLITZ OPERATORS
WITH TRIANGULAR MATRIX SYMBOLS

In this section we show that asymmetric truncated Toeplitz operators are
equivalent after extension to Toeplitz operators with triangular symbols of a cer-
tain form.

Recall that here, as in the previous sections, by an operator we mean a
bounded linear operator acting between complex Banach spaces.

DEFINITION 5.1 ([5], [19], [29]). The operators T : X → X̃ and S : Y → Ỹ
are said to be (algebraically and topologically) equivalent if and only if T = ESF
where E, F are invertible operators. More generally, T and S are equivalent after
extension if and only if there exist (possibly trivial) Banach spaces X0, Y0, called
extension spaces, and invertible bounded linear operators E : Ỹ ⊕ Y0 → X̃ ⊕ X0
and F : X⊕ X0 → Y⊕Y0, such that

(5.1)
(

T 0
0 IX0

)
= E

(
S 0
0 IY0

)
F.
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In this case we say that T ∗∼ S.

The relation ∗∼ is an equivalence relation. Operators that are equivalent after
extension have many features in common. In particular, using the notation X ' Y
to say that two Banach spaces X and Y are isomorphic, i.e., that there exists an
invertible operator from X onto Y, and the notation Im A to denote the range of
an operator A, we have the following.

THEOREM 5.2 ([5]). Let T : X → X̃, S : Y → Ỹ be operators and assume that
T ∗∼ S. Then

(i) ker T ' ker S;
(ii) Im T is closed if and only if Im S is closed and, in that case, X̃/ Im T ' Ỹ/ Im S;

(iii) if one of the operators T, S is generalised (left, right) invertible, then the other is
generalised (left, right) invertible too;

(iv) T is Fredholm if and only if S is Fredholm and in that case dim ker T = dim ker S,
codim Im T = codim Im S.

More properties can be found in [5], [29], for instance.
Now let us consider the operator Aα,θ

g : Kθ → Kα and the operator

(5.2) PαgPθ + Qθ : H+
p → Kα ⊕ θH+

p .

It is easy to see that

(5.3) Aα,θ
g
∗∼ PαgPθ + Qθ

because

(5.4)

(
Aα,θ

g 0
0 IθH+

p

)
= E1

(
PαgPθ + Qθ 0

0 I{0}

)
F1

where

F1 : Kθ ⊕ θH+
p → H+

p ⊕ {0},(5.5)

E1 : (Kα ⊕ θH+
p )⊕ {0} → Kα ⊕ θH+

p ,(5.6)

are invertible operators (defined in an obvious way). On the other hand, it is clear
that

(5.7) PαgPθ + Qθ
∗∼
(

PαgPθ + Qθ 0
0 P+

)
where the operator on the right-hand side is defined from (H+

p )
2 into (Kα ⊕

θH+
p )× H+

p . Now, from (5.2) we have

(5.8) PαgPθ + Qθ = (P+ − PαTgQθ)(PαTg + Qθ)

where we have the following.
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LEMMA 5.3. The following operator is invertible:

(5.9) P+ − PαTgQθ : Kα ⊕ θH+
p → Kα ⊕ θH+

p .

Proof. First we prove that P+ ± PαTgQθ maps Kα ⊕ θH+
p into Kα ⊕ θH+

p .
Indeed, let ϕα ∈ Kα, ϕ+ ∈ H+

p ; then

(P+ ± PαTgQθ)(ϕα + θϕ+) = ϕα + θϕ+ ± PαTg(θϕ+)

because Qθ ϕα = 0. For the same reason (Qθ Pα = 0), we have

(P+ ± PαTgQθ)(P+ ∓ PαTgQθ) = P+ ∓ PαTgQθ ± PαTgQθ = P+

and therefore the operator (5.9) is invertible, with inverse

P+ + PαTgQθ : Kα ⊕ θH+
p → Kα ⊕ θH+

p .

Thus, with

T =

(
P+ − PαTgQθ 0

0 P+

)
,

we can write(
PαgPθ + Qθ 0

0 P+

)
= T

(
PαTg + Qθ 0

0 P+

)
= T

(
Tθ Pα

−P+ Tα

)(
Tθ 0

Tg −Qα(Tg − Tαθ) Tα

)
= T

(
Tθ Pα

−P+ Tα

)(
Tθ 0
Tg Tα

)(
P+ 0

−Tα(Tg − Tαθ) P+

)
.(5.10)

On the right-hand side of the last equality,

(i) the first factor, T, is invertible in (Kα ⊕ θH+
p )× H+

p by Lemma 5.3;
(ii) the second factor is invertible as an operator from (H+

p )
2 into (Kα⊕ θH+

p )×
H+

p by Lemma 5.4 below;
(iii) the last factor is invertible in (H+

p )
2 by Lemma 5.5 below.

LEMMA 5.4. The operator T1 : (H+
p )

2 → (Kα ⊕ θH+
p ) × H+

p defined by the
following equation is invertible:

(5.11) T1(ϕ1+, ϕ2+) =

(
Tθ Pα

−P+ Tα

)(
ϕ1+
ϕ2+

)
.

Proof. Given any (ψ1+, ψ2+) ∈ (Kα⊕ θH+
p )×H+

p , it follows from (5.11) that

T1(ϕ1+, ϕ2+) = (ψ1+, ψ2+)(5.12)

⇔
{

θϕ1+ + Pα ϕ2+ = ψ1+,
−ϕ1+ + Tα ϕ2+ = ψ2+.

(5.13)

The first equation in (5.13) implies that

(5.14) θϕ1+ = Qθψ1+, Pα ϕ2+ = Pαψ1+
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and from the second equation in (5.13) we have

(5.15) ϕ1+ + ψ2+ = αQα ϕ2+;

therefore

(5.16) Qα ϕ2+ = αϕ1+ + αψ2+ = αθQθψ1+ + αψ2+.

From (5.14) and (5.16) we see that (5.12) implies that

(5.17) ϕ1+ = θQθψ1+, ϕ2+ = (Pα + αθQθ)ψ1+ + Tαψ2+.

It follows that T1 is injective (replacing ψ1+ and ψ2+ by 0) and surjective (since
for any ψ1+ ∈ Kα ⊕ θH+

p and any ψ2+ ∈ H+
p there exist ϕ1+, ϕ2+ ∈ H+

p , given by
(5.17), such that (5.12) holds.

Moreover (5.17) yields an expression for the inverse operator:

T−1
1 : (Kα ⊕ θH+

p )× H+
p → (H+

p )
2,

(5.18) T−1
1

(
ψ1+
ψ2+

)
=

(
Tθ 0

Pα + αθQθ Tα

)(
ψ1+
ψ2+

)
.

LEMMA 5.5. The operator

(5.19) T2 : (H+
p )

2 → (H+
p )

2, T2 =

(
P+ 0

−Tα(Tg − Tαθ) P+

)
is invertible, with inverse given by

(5.20) T−1
2 =

(
P+ 0

Tα(Tg − Tαθ) P+

)
.

Proof. This follows from the fact that T2 is of the form(
P+ 0
A P+

)
where A is an operator in H+

p which commutes with P+.

From (5.3), (5.7), (5.10) and Lemmas 5.3, 5.4 and 5.5 we now conclude the
following.

THEOREM 5.6. Aα,θ
g
∗∼ TG where G =

(
θ 0
g α

)
.

As an immediate consequence of Theorem 5.6, one may study properties
of ATTO (or TTO), such as Fredholmness and invertibility, using known results
for Toeplitz operators with matricial symbols and vice-versa. For the simplest
inner functions, such as θ(z) = zn on T and θ(ξ) = eiµξ on R, old results linking
the invertibility of Aθ,θ

g and TG may be found in [11], for example. However,
we are now able to consider all the properties listed in Theorem 5.2. It is well
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known, for instance, that TG is Fredholm if and only if G admits a Wiener–Hopf
(or generalized) p-factorization ([11], [12], [21])

(5.21) G = G−DG−1
+

where, taking λ±(ξ) = ξ ± i and 1/p′ = 1− 1/p, we have

D = diag
{(λ−

λ+

)−k
,
(λ−

λ+

)k
}

with k ∈ Z,(5.22)

λ−1
± G± ∈ (H±p )

2×2, λ−1
± G−1

± ∈ (H±p′ )
2×2,(5.23)

G+P+G−1
− I is defined in a dense subset of (Lp(R))2

and admits a bounded extension to Lp(R)2.
(5.24)

Moreover, TG is invertible if and only if k=0 in (5.22). We have thus the following.

COROLLARY 5.7. The operator Aα,θ
g is Fredholm in Kp

θ if and only if the matrix
symbol G admits a Wiener–Hopf p-factorization, and it is invertible if and only if k = 0
in (5.22).

As an illustration, we consider the following class of TTO. Let θ(ξ) = eiξ ,
eλ(ξ) = eiλξ for λ ∈ R, and

gλ = be−β − λ +
n

∑
k=1

(akekα)

where α, β ∈ (0, 1), α + β > 1, α/β /∈ Q, b, λ, ak ∈ C for k = 1, . . . , n, and
n = [1/α] is the integer part of 1/α. For p = 2 this can be seen as corresponding,
via the Fourier transform, to a finite interval delay equation, involving shifts in
opposite directions in the time domain.

By Theorem 5.6, Aθ
gλ

is invertible, or Fredholm, if and only if the same holds
for TGλ

with

Gλ =

(
e−1 0
gλ e1

)
.

For λ 6= 0, TGλ
is invertible by Theorem 5.1 in [13]. For λ = 0 we have GλH+ =

H− with H± ∈ (H±∞)2 given by

H+ =
(

eβ,−eα+β−1 ∑n
k=1(ake(k−1)α)

)
, H− = (eβ−1, b),

and by Theorem 5.3 in [12] it follows that dim ker TG0 = ∞, so that TG0 (and,
consequently, Aθ

g0
) is not Fredholm. Since Aθ

gλ
= Aθ

g0−λ, we conclude that

σess(Aθ
g0
) = σ(Aθ

g0
) = σp(Aθ

g0
) = {0}.
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6. KERNELS OF ATTO WITH ANALYTIC SYMBOLS AND INVARIANT SUBSPACES

TTO have generated much interest, and so have T-kernels (kernels of Toeplitz
operators) — see, for example [15], [26] and the references therein. We are there-
fore led to consider kernels of ATTO. If we do so, we immediately see that, given
an inner function θ and any inner function α such that α � θ, we have

(6.1) ker Aθ
g ⊂ ker Aα,θ

g

(see Figure 1).
More precisely,

(6.2) ker Aθ
g = ker Aα,θ

g ∩ ker Bα,θ
g

where all the spaces involved are kernels of ATTO of different kinds (considering
that the TTO Aθ

g is a particular case of an ATTO).

Since, according to (6.2), ker Aα,θ
g is “bigger” than ker Aθ

g, it is natural to
think that it may be simpler to characterize. Thus, determining the former can be
seen as a first step towards determining the latter; the elements ϕ+ ∈ ker Aθ

g may
then be singled out by adding the condition

Bα,θ
g ϕ+ = 0.

This line of reasoning was used in [14] to study Toeplitz operators with 2 × 2
triangular matrix symbols with almost periodic entries.

By Theorems 5.6 and 5.2, ker Aα,θ
g ' ker TG where g ∈ L∞ and

(6.3) G =

(
θ 0
g α

)
.

Denoting by Pj the projection defined by

Pj(ϕ1, ϕ2) = ϕj (j = 1, 2),

we have ker TG ' P1(ker TG). Indeed, ϕ+ = (ϕ1+, ϕ2+) ∈ ker TG if and only if
we have

Gϕ+ = ϕ− with ϕ− ∈ (H−p )
2,

which is equivalent to

(6.4) θϕ1+ = ϕ1− and gϕ1+ + αϕ2+ = ϕ2−,

and it is clear from (6.4) that ϕ1+ uniquely defines ϕ1−, ϕ2+ and ϕ2−, since we
have

ϕ1− = θϕ1+, ϕ2− = P−(gϕ1+) = 0, and ϕ2+ = −α(gϕ1+).

It is also easy to see that

(6.5) ϕ1+ ∈ ker Aα,θ
g+ ⇔ ϕ1+ ∈ P1(ker TG),

i.e., the elements of ker Aα,θ
g+ are the first components of the elements of ker TG,

where G is given by (6.3).
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FIGURE 1.

Let us now consider asymmetric truncated Toeplitz operators with symbols
in H+

∞ , of the form Aα,θ
g+ , where α and θ are inner functions such that α � θ and

g+ ∈ H+
∞ .

In what follows recall that Kα,θ = αKαθ , the shifted model space that is the
image of the projection Pα,θ = Pθ − Pα, and that

Kθ = Kα ⊕ Kα,θ ,

where the sum is orthogonal if p = 2. The next theorem shows that shifted model
spaces are the kernels of ATTO with analytic symbols. First, however, we prove
an auxiliary result.

LEMMA 6.1. Given g+ ∈ H+
∞ \ {0} and an inner function θ,

g+ϕ+ ∈ θH+
p ⇔ ϕ+ ∈ θβH+

p

with β = GCD(gi
+, θ), where gi

+ is the inner factor of the inner-outer factorization
g+ = gi

+go
+.

Proof. Let g+ϕ+ = θψ+ with ψ+ ∈ H+
p . Using the superscripts i and o to

denote the inner and outer factors respectively, we have

gi
+go

+ϕi
+ϕo

+ = −θψi
+ψo

+,

so that gi
+ϕi

+ = Cθψi
+ for some C ∈ C with |C| = 1. Dividing both sides of this

equation by β = GCD(θ, gi
+) we obtain

gi
+

β
ϕi
+ = C

θ

β
ψi
+

and since gi
+/β and θ/β are relatively prime, it follows that θ/β divides ϕi

+;
thus ϕ+ ∈ θβH+

p . Conversely, if ϕ+ = θβψ+ with ψ+ ∈ H+
p , then g+ϕ+ =

(gi
+β)go

+θψ+ ∈ θH+
p .
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THEOREM 6.2. Let α and θ be inner functions with α � θ, and suppose that
g+ ∈ H+

∞ \ {0}. Then ker Aα,θ
g+ = Kγ,θ , with γ = α/β where, denoting by gi

+ the inner
factor in an inner-outer factorization of g+, we have β = GCD(α, gi

+).

Proof. We have ϕ1+ ∈ ker Aα,θ
g+ if and only if

(6.6)
(

θ 0
g+ α

)(
ϕ1+
ϕ2+

)
=

(
ϕ1−
ϕ2−

)
,

where as usual ϕ±j ∈ H±p for j = 1, 2. Thus g+ϕ1+ + αϕ2+ = ϕ2− = 0, and
therefore g+ϕ1+ = −αϕ2+. By Lemma 6.1, we have ϕ1+ ∈ γH+

p and thus ϕ1+ ∈
γH+

p ∩ Kθ = Kγ,θ .
Conversely, if ϕ1+ ∈ Kγ,θ ⊂ γH+

p , then by Lemma 6.1 we have g+ϕ1+ ∈
αH+

p , so that we can write g+ϕ1+ + αϕ2+ = ϕ2− with ϕ2+ ∈ H+
p and ϕ2− = 0.

Hence (6.6) is satisfied and ϕ1+ ∈ ker Aα,θ
g+ .

COROLLARY 6.3. Let α and θ be inner functions with α � θ. Then Kα,θ =

ker Aα,θ
1 and Kθ = ker Aα,θ

α .

COROLLARY 6.4. With the same assumptions as in Theorem 6.2, if p = 2 we have

ker Aα,θ
g+ = Kθ 	 Kγ = γH+

2 	 θH+
2 .

This holds, in particular for the TTO Aθ
g+ , where α = θ, in which case we

have ([22])

ker Aθ
g+ =

θ

β
H+

2 	 θH+
2 .

Moreover, for all p ∈ (1, ∞), we have the following.

COROLLARY 6.5. With the same assumptions as in Theorem 6.2 we have the fol-
lowing:

(i) Aα,θ
g+ = 0 if and only if g+ ∈ αH+

∞ ;
(ii) Aα,θ

g+ is injective if and only if α = θ and β is a constant;
(iii) dim ker Aα,θ

g+ < ∞ if and only if αθ and β are finite Blaschke products and, in
that case, dim ker Aα,θ

g+ = n1 + n2 where n1 and n2 are the number of zeroes of αθ and
β, respectively.

(iv) for α = θ, dim ker Aθ
g+ < ∞ if and only if β is a finite Blaschke product and, in

that case, dim ker Aθ
g+ is equal to the number of common zeroes of gi

+ and θ.

As an immediate consequence we see that, in the particular case of the trun-
cated shift with symbol r given by (1.9), we have ker Aθ

r = {0} if θ(i) 6= 0, and
ker Aθ

r = (θ/r)Kr = span{θ/(ξ − i)} if θ(i) = 0.
Shifted model spaces are also associated with ATTO in a different way: they

are the (closed) invariant subspaces of the truncated shift Aθ
r .

THEOREM 6.6. The lattice Lat(Aθ
r ) consists of the spaces Kα,θ , where α � θ.
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Proof. For α � θ and β = θα, we have Kα,θ = αKβ; let k+ be any function in
Kβ. Then k+ = Pβ ϕ+ for some ϕ+ ∈ H+

p and

Pθr(αk+) = Pθr(αPβ ϕ+) = PθrPθαϕ+ = Pθrαϕ+ = αPβ(rϕ+) ∈ αKβ.

Thus every space Kα,θ is invariant for Aθ
r . To show the converse, we begin with

the observation that for the Hardy space Hp(D) of the unit disc, we have a version
of Beurling’s theorem for each 1 < p < ∞; namely that the nontrivial invariant
subspaces of the shift Tz are all of the form αHp for some inner function α. See, for
example, Corollary C.2.1.20 of [23]. By means of the standard isometric isomor-
phism between Hp(D) and H+

p given in (2.1) we see that the same result holds for
the shift Tr on H+

p .
Next, using the duality between H+

p and H+
q (up to isomorphism), we see

that the T∗r -invariant subspaces in H+
q are the annihilators of the invariant sub-

spaces for Tr, i.e., the model spaces

Kq
α =

{
f ∈ H+

q :
∫
R

f g = 0 ∀g ∈ αHp
}
= αH−q ∩ H+

q .

Now if Aθ
r is a restricted shift on H+

p , then its Banach space adjoint is the
restriction of T∗r to its invariant subspace Kq

θ , so that its adjoint has invariant sub-
spaces Kq

α where α � θ.
Using duality once more we conclude that the invariant subspaces of Aθ

r
take the form {

f ∈ Kp
θ :
∫
R

f g = 0 ∀g ∈ Kq
α

}
= Kp

θ ∩ αHp = Kα,θ ,

where α � θ.

COROLLARY 6.7. Lat(Aθ
r ) = {ker Aα,θ

g+ : α � θ, g+ ∈ H+
∞}.

We may now prove a theorem of Lax–Beurling flavour for the “truncated
shift” semigroup on Kθ given by T(t) = Aθ

et , (t > 0), where et ∈ H+
∞ is the inner

function given by et(ξ) = eitξ .

THEOREM 6.8. The common invariant subspaces of the semigroup (T(t))t>0 are
the shifted model spaces Kα,θ , where α � θ.

Proof. It is easy to see that these subspaces are all invariant under the semi-
group, since if α divides a function f ∈ Kθ then it also divides T(t) f .

The converse is proved as in Theorem 3.1.5 of [25], the standard Lax
–Beurling theorem. By writing

1
ξ + i

=
1
i

∞∫
0

e−teitξdt,
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and approximating the integral by Riemann sums, we see that the ATTO operator
with symbol 1/(ξ + i) is the strong limit of a sequence of finite linear combina-
tions of the ATTO with symbols et. Hence any closed subspace invariant under
the semigroup is also invariant under Aθ

r , and thus is a shifted model space, as
required.
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