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ABSTRACT. Let n > 1 and let cF,G be given real numbers defined for all
pairs of disjoint subsets F, G ⊂ {1, . . . , n}. We characterize commuting n-
tuples of operators T = (T1, . . . , Tn) acting on a Hilbert space H which have
a commuting unitary dilation U = (U1, . . . , Un) ∈ B(K)n, K ⊃ H such that
PHU∗βUα|H = csupp α, supp βT∗βTα for all α, β ∈ Zn

+, supp α ∩ supp β = ∅.
This unifies and generalizes the concepts of ρ-dilations of a single operator
and of regular unitary dilations of commuting n-tuples. We discuss also other
interesting cases.
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INTRODUCTION

There are many successful generalizations of the dilation theory of Hilbert
space contractions.

Let ρ > 0. An operator T on a Hilbert space H is said to have a ρ-dilation
if there exists a Hilbert space K ⊃ H and a unitary operator U ∈ B(K) such that
Tk = ρPHUk|H for all k > 1, where PH denotes the orthogonal projection onto H.
It is known [4] that T has a ρ-dilation if and only if

‖h‖2 + 2
(1

ρ
− 1
)

Re 〈zTh, h〉+
(

1− 2
ρ

)
‖zTh‖2 > 0

for all h ∈ H and z ∈ D.
The most important particular cases are ρ = 1 (which reduces to the classical

dilation theory of Hilbert space contractions) and ρ = 2. An operator has a 2-
dilation if and only if its numerical range is contained in the closed unit disc, see
[1], [4].

Let n > 1 and let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of
operators. T is said to have a unitary dilation if there exists a Hilbert space K ⊃
H and an n-tuple of commuting unitary operators U = (U1, . . . , Un) ∈ B(K)n
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such that Tα = PHUα|H for all α ∈ Zn
+. It is well known that every pair of

commuting contractions has a unitary dilation (the Ando dilation). However, the
Ando dilation is not unique, its structure is not clear and in general such a dilation
does not exist for more than two commuting contractions. The main difficulty is
that the values of compressions PHUα|H for α = (α1, . . . , αn) ∈ Zn, min αj < 0,
max αj > 0 are not prescribed and can be chosen arbitrarily.

The theory of regular unitary dilations overcomes this difficulty by requir-
ing that PHU∗βUα|H = T∗βTα for all α, β ∈ Zn

+, supp α ∩ supp β = ∅. It is known
that an n-tuple T = (T1, . . . , Tn) has a regular unitary dilation if and only if

∑
A⊂B

(−1)|A|
∥∥∥(∏

j∈A
Tj

)
h
∥∥∥2

> 0

for all B ⊂ {1, . . . , n} and h ∈ H, see [2], [4].
The aim of this paper is to unify and generalize these two approaches.
Let n > 1 and let cF,G be a system of real numbers defined for pairs of

disjoint subsets F, G ⊂ {1, . . . , n} satisfying natural conditions c∅,∅ = 1 and
cG,F = cF,G for all F, G. We characterize the n-tuples of commuting operators
T = (T1, . . . , Tn) ∈ B(H)n for which there exists a commuting unitary dilation
U = (U1, . . . , Un) ∈ B(K)n satisfying

PHU∗βUα|H = csupp α, supp β · T∗βTα

for all α, β ∈ Zn
+, supp α ∩ supp β = ∅. This includes the above described cases

of ρ-dilations of a single operator and of regular unitary dilations. We describe
also other interesting cases.

1. NOTATIONS

We denote by Z and Z+ the set of all integers and non-negative integers,
respectively. Denote by D and T the open unit disc and the unit circle in the
complex plane, respectively. Let n ∈ N. We use the standard multiindex notation.

For α, β ∈ Zn
+ we write α 6 β if αj 6 β j for all j = 1, . . . , n, |α| =

n
∑

j=1
αj, α + β =

(α1 + β1, . . . , αn + βn) and supp α = {j : αj 6= 0}. For α ∈ Zn write α+ =
(max{α1, 0}, . . . , max{αn, 0}) and α− = (max{−α1, 0}, . . . , max{−αn, 0}).

For F ⊂ {1, . . . , n} we define eF ∈ Zn
+ by (eF)j = 1 (j ∈ F) and (eF)j =

0 (j /∈ F). We denote by |F| the cardinality of F.
Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators acting

on a Hilbert space H. For α ∈ Zn
+ we write Tα =

n
∏
j=1

T
αj
j . For F ⊂ {1, . . . , n} write

TF = ∏
j∈F

Tj. In particular, T∅ = I, the identity operator on H.
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Let cF,G (F, G ⊂ {1, . . . , n}, F ∩ G = ∅) be a system of real numbers such
that

(1.1) c∅,∅ = 1 and cG,F = cF,G for all F, G.

Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting system of operators. We say that T
has a dilation determined by the system (cF,G) if there exist a Hilbert space K ⊃ H
and an n-tuple U = (U1, . . . , Un) ∈ B(K)n of commuting unitary operators such
that

(1.2) 〈Uαh, Uβg〉 = csupp α,supp β · 〈Tαh, Tβg〉

for all h, g ∈ H and α, β ∈ Zn
+ with supp α ∩ supp β = ∅. In particular,

〈Uαh, g〉 = csupp α,∅〈Tαh, g〉

for all h, g ∈ H and α ∈ Zn
+. Clearly (1.2) is equivalent to

PHUα−β|H = csupp α, supp βT∗βTα

for all α, β ∈ Zn
+, supp α ∩ supp β = ∅.

This definition includes the ρ-dilations of a single operator T1 (for n = 1
and c{1}, ∅ = ρ−1) and the regular unitary dilations (for cF,G = 1 for all F, G) of
n-tuples of commuting operators.

If we assume the natural minimality condition K =
∨

α∈Zn
Uα H then it is

easy to see that conditions (1.2) determine the dilation uniquely up to a unitary
equivalence.

The aim of this paper is to characterize the n-tuples T = (T1, . . . , Tn) which
have dilation determined by (1.2). This will generalize the cases of ρ-dilations
of single operators as well as the case of regular unitary dilations of commuting
contractions.

2. NECESSARY CONDITIONS

In this section we fix a Hilbert space H, an n-tuple T = (T1, . . . , Tn) ∈ B(H)n

of commuting operators, real numbers cF,G (F, G ⊂ {1, . . . , n}, F ∩ G = ∅) and a
dilation U = (U1, . . . , Un) ∈ B(K)n satisfying (1.1) and (1.2).

For A ⊂ {1, . . . , n} define DA : H → K by DA = ∑
F⊂A

(−1)|F|UA\FTF. Thus

D∅ is the isometrical embedding of H into K and D{j} = Uj − Tj for all j ∈
{1, . . . , n}. If j ∈ A then DA = UjDA\{j} − DA\{j}Tj.

Write for short [1, n] = {1, . . . , n}.
Note that in the classical dilation theory for n = 1 the space (U1 − T1)H

plays an important role — it is a copy of the defect space (I − T∗1 T1)1/2H and it
is a wandering subspace for the unitary dilation U1. For ρ-dilations this space is
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not exactly wandering any more but it is “almost” wandering: U j
1(U1 − T1)H ⊥

Uk
1(U1 − T1)H if |j− k| > 2, see [3].

In our situation the space D[1,n]H may be viewed as an analogy of this defect
space.

Note that if α, β ∈ Zn
+, supp α ∩ supp β = ∅, j ∈ [1, n], αj > 2 and h, g ∈ H

then

〈Uαh, Uβg〉 = csupp α, supp β〈Tαh, Tβg〉 = csupp α, supp β〈Tα−ej Tjh, Tβg〉

= 〈Uα−ej Tjh, Uβ〉.

Consequently,

(2.1) 〈UαD[1,n]\{j}h, UβD[1,n]\{j}g〉 = 〈Uα−ej D[1,n]\{j}Tjh, UβD[1,n]\{j}g〉

if αj > 2.
The next proposition shows that in our situation the space D[1,n]H is also

“almost” wandering in the following sense.

PROPOSITION 2.1. Let α, β ∈ Zn
+ satisfy supp α∩ supp β = ∅ and max{αj, β j :

j = 1, . . . , n} > 2. Then

〈UαD[1,n]h, UβD[1,n]g〉 = 0

for all h, g ∈ H.

Proof. Without loss of generality we may assume that αj > 2 for some j ∈
[1, n]. We have

〈UαD[1,n]h, UβD[1,n]g〉

= 〈Uα(UjD[1,n]\{j} − D[1,n]\{j}Tj)h, Uβ(UjD[1,n]\{j} − D[1,n]\{j}Tj)g〉

= 〈UαD[1,n]\{j}h, UβD[1,n]\{j}g〉 − 〈Uα−ej D[1,n]\{j}Tjh, UβD[1,n]\{j}g〉

−〈Uα+ej D[1,n]\{j}h, UβD[1,n]\{j}Tjg〉+〈UαD[1,n]\{j}Tjh, UβD[1,n]\{j}Tjg〉 = 0

by (2.1).

Let α ∈ Zn
+ and max{αj : 1 6 j 6 n} 6 1. Then Uα = UF, where F =

supp α. For F, G ⊂ [1, n], F ∩ G = ∅ the spaces UFD[1,n]H and UGD[1,n]H are not
orthogonal in general. However, we can express their “angle”.

LEMMA 2.2. Let F, G, A ⊂ [1, n], F ∩ G = ∅, h, g ∈ H. Then

〈UFDAh, UGDAg〉

= ∑
F1⊂F∩A,
G1⊂G∩A

(−1)|F1|+|G1|〈UF\F1
DA\(F∪G)TF1 h, UG\G1

DA\(F∪G)TG1 g〉.

Proof. The statement is trivial if (F ∪ G) ∩ A = ∅. We prove it by induction
on |(F ∪ G) ∩ A|.
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Let (F ∪ G) ∩ A 6= ∅ and suppose that the statement is true for all F′, G′, A′

with F′ ∩ G′ = ∅ and |(F′ ∪ G′) ∩ A′| < |(F ∪ G) ∩ A|. Without loss of generality
we may assume that F ∩ A 6= ∅. Let j ∈ F ∩ A. We have

〈UFDAh, UGDAg〉
= 〈UF(UjDA\{j} − DA\{j}Tj)h, UG(UjDA\{j} − DA\{j}Tj)g〉
= 〈UFDA\{j}h, UGDA\{j}g〉 − 〈UFDA\{j}Tjh, UGUjDA\{j}g〉
− 〈UFUjDA\{j}h, UGDA\{j}Tjg〉+ 〈UFDA\{j}Tjh, UGDA\{j}Tjg〉

= 〈UFDA\{j}h, UGDA\{j}g〉 − 〈UF\{j}DA\{j}Tjh, UGDA\{j}g〉.

By the induction assumption this is equal to

∑
F1⊂(F∩A)\{j}
G1⊂(G∩A)\{j}

(−1)|F1|+|G1|〈UF\F1
DA\(F∪G∪{j})TF1 h, UG\G1

DA\(F∪G∪{j})TG1 g〉

− ∑
F1⊂(F∩A)\{j}
G1⊂(G∩A)\{j}

(−1)|F1|+|G1|〈UF\(F1∪{j})DA\(F∪G∪{j})TF1 Tjh, UG\G1
DA\(F∪G∪{j})TG1 g〉

= ∑
F1⊂F∩A
G1⊂G∩A

(−1)|F1|+|G1|〈UF\F1
DA\(F∪G)TF1 h, UG\G1

DA\(F∪G)TG1 g〉.

LEMMA 2.3. Let R, S, B ⊂ [1, n] be mutually disjoint sets, h, g ∈ H. Then

〈URDBh, USDBg〉 = ∑
A⊂B
〈TR∪Ah, TG∪A〉 ∑

C1,C2⊂A
C1∩C2=∅

(−1)|C1|+|C2|cR∪C1,S∪C2 .

Proof. We have

〈URDBh, USDBg〉

= ∑
B1,B2⊂B

(−1)|B\B1|+|B\B2|〈URUB1 TB\B1
h, USUB2 TB\B2

g〉

= ∑
B1,B2⊂B

(−1)|B1|+|B2|〈URUB1\B2
TB\B1

h, USUB2\B1
TB\B2

g〉

= ∑
B1,B2⊂B

(−1)|B1|+|B2|〈TRTB\(B1∩B2)
h, TSTB\(B1∩B2)

g〉cR∪(B1\B2),S∪(B2\B1)

= ∑
A⊂B
〈TR∪Ah, TS∪Ag〉 ∑

B1,B2⊂B
A=B\(B1∩B2)

(−1)|B1|+|B2|cR∪(B1\B2),S∪(B2\B1)
.

Setting C1 = B1 \ B2 = B1 ∩ A and C2 = B2 \ B1 = B2 ∩ A we have

〈URDBh, USDBg〉 = ∑
A⊂B
〈TR∪Ah, TG∪A〉 ∑

C1,C2⊂A
C1∩C2=∅

(−1)|C1|+|C2|cR∪C1,S∪C2 .
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PROPOSITION 2.4. Let F, G ⊂ [1, n], F ∩ G = ∅. Let h, g ∈ H. Then

〈UFD[1,n]h, UGD[1,n]g〉 = ∑
A⊂[1,n]\(F∪G)

〈TF∪Ah, TG∪Ag〉r̃F, G,A,

where

r̃F, G,A = ∑
F′⊂F
G′⊂G

∑
C1,C2⊂A
C1∩C2=∅

(−1)|C1|+|C2|+|F\F′ |+|G\G′ |cF′∪C1, G′∪C2

(note that the subsets F, G, A ⊂ {1, . . . , n} are mutually disjoint).

Proof. We have

〈UFD[1,n]h, UGD[1,n]g〉

= ∑
F1⊂F
G1⊂G

(−1)|F1|+|G1|〈UF\F1
D[1,n]\(F∪G)TF1 h, UG\G1

D[1,n]\(F∪G)TG1 g〉

= ∑
F1⊂F
G1⊂G

(−1)|F1|+|G1| ∑
A⊂[1,n]\(F∪G)

〈T(F\F1)∪ATF1 h, T(G\G1)∪ATG1 g〉

· ∑
C1,C2⊂A
C1∩C2=∅

(−1)|C1|+|C2|c(F\F1)∪C1,(G\G1)∪C2

= ∑
A⊂[1,n]\(F∪G)

〈TF∪Ah, TG∪Ag〉r̃F, G,A,

where

r̃F, G,A = ∑
F′⊂F
G′⊂G

∑
C1,C2⊂A
C1∩C2=∅

(−1)|C1|+|C2|+|F\F′ |+|G\G′ |cF′∪C1, G′∪C2
.

THEOREM 2.5. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of oper-
ators having a dilation U = (U1, . . . , Un) ∈ B(K)n satisfying (1.2). Then

∑
F, G,A⊂[1,n]
mut.disjoint

r̃F, G,A〈TF∪Ah, TG∪Ah〉 > 0

for all h ∈ H.

Proof. Let h ∈ H and N ∈ N. Consider the element

x = ∑
α∈Zn

+
α6(N,...,N)

UαD[1,n]h ∈ K.

Then

0 6 N−n‖x‖2 = N−n ∑
α,β∈Zn

+
α,β6(N,...,N)

〈U(α−β)+D[1,n]h, U(β−α)+D[1,n]h〉.
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Setting γ = min{α, β} one gets

0 6 N−n ∑
F, G⊂[1,n]
F∩G=∅

〈UFD1,n]h, UGD[1,n]h〉 · |{γ ∈ Zn
+ : γ + eF, γ + eG 6 (N, . . . , N)}|

= N−n ∑
F, G⊂[1,n]
F∩G=∅

〈UFD[1,n]h, UGD[1,n]h〉 · N|F∪G|(N + 1)n−|F∪G|.

Letting N → ∞, we have

0 6 ∑
F, G⊂[1,n]
F∩G=∅

〈UFD[1,n]h, UGD[1,n]h〉 = ∑
F, G,A⊂[1,n]
mut.disjoint

r̃F, G,A〈TF∪Ah, TG∪Ah〉.

Instead of considering triples F, G, A of pairwise disjoint subsets of the set
{1, . . . , n} it is possible to simplify the notation by considering two sets F∪ A and
G ∪ A in a general position.

For F, G ⊂ {1, . . . , n} let

(2.2) rF,G = r̃F\G, G\F,F∩G = ∑
F′⊂F, G′⊂G

F′∩G′=∅

(−1)|F|+|G|+|F
′∪G′ |cF′ , G′ .

Then the condition from the previous theorem becomes

(2.3) ∑
F, G⊂[1,n]

rF,G〈TFh, TGh〉 > 0

for all h ∈ H.
Let ε = (ε1, . . . , εn) ∈ Tn. The n-tuple εT = (ε1T1, . . . , εnTn) has dilation

εU = (ε1U1, . . . , εnUn) satisfying (1.2). Thus we have

THEOREM 2.6. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of op-
erastors having a dilation U = (U1, . . . , Un) ∈ B(K)n satisfying (1.2). Then

∑
F, G⊂[1,n]

rF,G〈(εT)Fh, (εT)Gh〉 > 0

for all ε ∈ Tn and h ∈ H.

Note that rF,G = rG,F for all subsets F, G ⊂ {1, . . . , n}. So one can write

rF,G〈εT)Fh, (εT)Gh〉+ rG,F〈(εT)Gh, (εT)Fh〉 =2rF,GRe 〈(εT)Fh, (εT)Gh〉

for all ε ∈ Tn and h ∈ H.

3. SUFFICIENT CONDITIONS

We show that if the operators T1, . . . , Tn satisfy the vanishing condition
Tk

j → 0 in the strong operator topology for j = 1, . . . , n, then the condition in
Theorem 2.6 is also sufficient.
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THEOREM 3.1. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of opera-
tors satisfying SOT- lim

k→∞
Tk

j = 0 for j = 1, . . . , n. Let cF,G (F, G ⊂ {1, . . . , }, F ∩ G =

∅) be real numbers satisfying c∅,∅ = 1 and cG,F = cF,G for all F, G. The following
statements are equivalent:

(i) T has a dilation U = (U1, . . . , Un) ∈ B(K)n such that

PHU∗βUα|H = csupp α, supp βT∗βTα

for all α, β ∈ Zn
+, supp α ∩ supp β = ∅;

(ii)

(3.1) ∑
F, G⊂[1,n]

rF,G〈(εT)Fh, (εT)Gh〉 > 0

for all ε ∈ Tn and h ∈ H.

Proof. The implication (i)⇒ (ii) was proved in the previous section.
Let T satisfy (ii). It is sufficient to show that the function Φ : Zn → B(H)

defined by Φ(α) = csupp α+ , supp α−T∗α−Tα+ is a positive definite function on the
group Zn, i.e., for all finite subsets Λ ⊂ Zn and systems (hα)α∈Λ of vectors in H
we have

∑
α,α′∈Λ

〈Φ(α− α′)hα, hα′〉 > 0,

see [4].
Let (hα)α∈Λ be a finite system of vectors in H. Let N ∈ N satisfy N >

2 max{|αj| : α ∈ Λ, j = 1, . . . , n}.
For ε = (ε1, . . . , εn) ∈ Tn consider the vector

xN(ε) = ∑
α∈Λ

∑
β∈Z+

β6(N,...,N)

εβ−αTβhα.

Let m be the Lebesgue measure on Tn. Using (3.1) we have

06
1

(2π)n

∫
Tn

∑
F, G⊂[1,n]

rF,G〈(εT)FxN(ε), (εT)GxN(ε)〉dm(ε)

=
1

(2π)n

∫
Tn

∑
F, G⊂[1,n]

rF,G ∑
α,α′∈Λ

∑
β,β′∈Zn

+
β,β′6(N,...,N)

εβ−α+eF ε̄β′−α′+eG 〈TFTβhα, TGTβ′hα′〉dm(ε).

All terms with β− α + εF 6= β′− α′+ eG will disappear in the integration. For the
remaining terms let γ = β− α + εF = β′ − α′ + eG.

Thus we have

0 6 ∑
F, G⊂[1,n]

rF,G ∑
α,α′∈Λ

∑
γ:(0,...,0)6γ+α−eF6(N,...,N)

(0,...,0)6γ+α′−eG6(N,...,N)

〈Tγ+αhα, Tγ+α′hα′〉

= ∑
α,α′∈Λ

〈QN(α, α′)hα, hα′〉,
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where
QN(α, α′) = ∑

F, G⊂[1,n]
rF,G ∑

γ:eF6γ+α6(N,...,N)+eF
eG6γ+α′6(N,...,N)+eG

T∗γ+α′Tγ+α.

Write α̃ = min{α, α′} and α = α̃ + δ, α′ = α̃ + δ′. Then δ, δ′ ∈ Zn
+ and supp δ ∩

supp δ′ = ∅. Setting η = γ + α̃ we have

QN(α, α′) = ∑
F, G⊂[1,n]

rF,G ∑
η:eF6η+δ6(N,...,N)+eF
eG6η+δ′6(N,...,N)+eG

T∗η+δ′Tη+δ

= ∑
η∈Zn

+
η+δ+δ′6(N+1,...,N+1)

T∗η+δ′Tη+δsη ,

where

(3.2) sη = ∑
{j:ηj+δj=N+1}⊂F⊂supp (η+δ)

{j:ηj+δ′j=N+1}⊂G⊂supp (η+δ′)

rF,G.

We need the following lemma.

LEMMA 3.2. Let η, δ, δ′ ∈ Zn
+, supp δ∩ supp δ′ = ∅, max{ηj + δj, ηj + δ′j, j =

1, . . . , n} 6 N + 1. Write for short D = supp (η + δ), D′ = supp (η + δ′), E = {j :
ηj + δj = N + 1}, E′ = {j : ηj + δ′j = N + 1}. Then:

(i) if there exists j ∈ {1, . . . , n} such that j ∈ (D ∩ D′) \ (E ∪ E′) then

∑
E⊂F⊂D

E′⊂G⊂D′

rF,G = 0;

(ii) if D ∩ D′ = ∅ then

∑
F⊂D

G⊂D′

rF,G = cD,D′ .

Proof. (i) Using (2.2) we have

∑
E⊂F⊂D

E′⊂G⊂D′

rF,G = ∑
M⊂D,L⊂D′

M∩L=∅

cM,LaM,L,

where

aM,L = ∑
M∪E⊂F⊂D

L∪E′⊂G⊂D′

(−1)|M∪L|(−1)|F|+|G|

= (−1)|M∪L|
(

∑
M∪E⊂F⊂D

(−1)|F|
)(

∑
L∪E′⊂G⊂D′

(−1)|G|
)

.

Let j ∈ (D ∩ D′) \ (E ∪ E′). Since M ∩ L = ∅, either j /∈ M or j /∈ L. If
j /∈ M then ∑

M∪E⊂F⊂D
(−1)|F| = 0, and so aM,L = 0. Similarly, if j /∈ L then
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∑
L∪E′⊂G⊂D′

(−1)|G| = 0, and so aM,L = 0. Hence

∑
E⊂F⊂D

E′⊂G⊂D′

rF,G = 0.

(ii) Let D ∩ D′ = ∅. Again

∑
F⊂D

G⊂D′

rF,G = ∑
M⊂D,L⊂D′

M∩L=∅

cM,LaM,L,

where
aM,L = (−1)|M∪L|

(
∑

M⊂F⊂D
(−1)|F|

)(
∑

L⊂G⊂D′)
(−1)|G|

)
.

If M 6= D then ∑
M⊂F⊂D

(−1)|F| = 0 and so aM,L = 0. Similarly, if L 6= D′ then

∑
L⊂G⊂D′

(−1)|G| = 0, and so aM,L = 0. If M = D and L = D′ then aM,L = 1. So

∑
F⊂D

G⊂D′

rF,G = cD,D′ .

Recall that

QN(α, α′) = ∑
η∈Zn

+
η+δ+δ′6(N+1,...,N+1)

T∗η+δ′Tη+δsη ,

where
sη = ∑

{j:ηj+δj=N+1}⊂F⊂supp (η+δ)

{j:ηj+δ′j=N+1}⊂G⊂supp (η+δ′)

rF,G.

If there exists j ∈ supp η with max{ηj + δj, ηj + δ′j} 6 N, then sη = 0 by Lem-
ma 3.2(i). So

QN(α, α′) = ∑ T∗η+δ′Tη+δsη ,

where the sum is taken over all η ∈ Zn
+ such that max{ηj + δj, ηj + δ′j} = N + 1

for all j ∈ supp η. Note that the number of nonzero terms in this sum does not
depend on N (for N large enough). Moreover, the coefficients sη are bounded in-
dependently of N. Since TN

j → 0 in the strong operator topology for j = 1, . . . , n,
we have

lim
N→∞

〈QN(α, α′)hα, hα′〉 = s(0,...,0)〈T∗δ
′
Tδhα, hα′〉 = csupp δ, supp δ′〈T∗δ

′
Tδhα, hα′〉.

Hence

0 6 lim
N→∞

∑
α,α′∈Λ

〈QN(α, α′)hα, hα′〉

= ∑
α,α′∈Λ

csupp (α−α′)+ , supp (α−α′)−〈T
∗(α−α′)−T(α−α′)+hα, hα′〉.
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Hence the function
Φ(α) = csupp α+ , supp α−T∗α−Tα+

defined on the group Zn is positive definite and there exists a unitary dilation
U = (U1, . . . , Un) ∈ B(K)n such that

〈Uαh, Uβg〉 = csupp α, supp β〈Tαh, Tβg〉
for all h, g ∈ H and α, β ∈ Zn

+ with supp α ∩ supp β = ∅.

REMARK 3.3. Conditions Tk
j → 0 (SOT) in Theorem 3.1 are necessary. Even

in the classical case of regular unitary dilations condition (3.1) is not sufficient
(for details see below).

If we do not assume that Tk
j → 0, then it is possible to modify condition

(3.1) in the following way.

THEOREM 3.4. Let cF,G (F, G ⊂ {1, . . . , }, F ∩ G = ∅) be real numbers satisfy-
ing (1.1). Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators. Suppose
that

(3.3) ∑
F, G⊂[1,n]

rF,G〈(zT)Fh, (zT)Gh〉 > 0

for all h ∈ H, z = (z1, . . . , zn) ∈ Dn. Then T has a dilation U = (U1, . . . , Un) ∈
B(K)n such that

〈Uαh, Uβg〉 = csupp α, supp β〈Tαh, Tβg〉
for all h, g ∈ H, α, β ∈ Zn

+, supp α ∩ supp β = ∅.

Proof. Let 0 < r < 1. The n-tuple rT = (rT1, . . . , rTn) satisfies conditions
of Theorem 3.1. Therefore the function Φr(α) = csupp α+ , supp α−(rT)∗α−(rT)α+ is
positive definite on the group Zn. Letting r → 1− we get that the function

Φ(α) = csupp α+ , supp α−T∗α−Tα+

is positive definite on the group Zn. So T has a unitary dilation satisfying

〈Tαh, Tβg〉 = csupp α, supp β〈Uαh, Uβg〉
for all h, g ∈ H, α, β ∈ Zn

+, supp α ∩ supp β = ∅.

Recall that a commuting n-tuple T = (T1, . . . , Tn) ∈ B(H)n is polynomially
bounded if there exists a constant K > 0 such that

‖p(T)‖ 6 K‖p‖
for all polynomials p of n variables, where ‖p‖ = sup{|p(z)| : z ∈ Dn}.

THEOREM 3.5. Let cF,G (F, G ⊂ {1, . . . , n}, F∩G = ∅) be real numbers satisfy-
ing c∅,∅ = 1, cF,∅ 6= 0 and cG,F = cF,G for all F, G. Let T = (T1, . . . , Tn) ∈ B(H)n be
a commuting n-tuple of operators having a unitary dilation U determined by the system
(cF,G). Then T is polynomially bounded.
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Proof. Let p(z)= ∑
α∈Zn

+

aαzα be a polynomial in n variables. For F⊂{1, . . . , n}

let
pF(z) = ∑

α∈Zn
+

supp α⊂F

aαzα.

Clearly ‖pF‖ 6 ‖p‖. We have

∑
F⊂[1,n]

pF(U) ∑
F⊂G⊂[1,n]

(−1)|G\F|c−1
G,∅

= ∑
F⊂[1,n]

∑
F′⊂F

∑
supp α=F′

aαUα ∑
G:F⊂G⊂[1,n]

(−1)|G\F|c−1
G,∅

= ∑
F′⊂[1,n]

∑
supp α=F′

aαUα
(

∑
G:F′⊂G⊂[1,n]

c−1
G,∅ ∑

F:F′⊂F⊂G
(−1)|G\F|

)
= ∑

F′⊂[1,n]
∑

α : supp α=F′
aαUαc−1

F′ ,∅ .

So

‖p(T)‖ =
∥∥∥PH ∑

F′⊂[1,n]
∑

supp α=F′
aαUαc−1

supp α, ∅|H
∥∥∥

6
∥∥∥ ∑

F′⊂[1,n]
∑

supp α=F′
aαUαc−1

supp α,∅

∥∥∥
=
∥∥∥ ∑

F⊂[1,n]
pF(U) ∑

G:F⊂G⊂[1,n]
(−1)|G\F|c−1

G, ∅

∥∥∥
6 ‖p‖ · ∑

F⊂[1,n]

∣∣∣ ∑
G:F⊂G⊂[1,n]

(−1)|G\F|c−1
G, ∅

∣∣∣.
Hence T is polynomially bounded with the polynomial bound

K 6 ∑
F⊂[1,n]

∣∣∣ ∑
G:F⊂G⊂[1,n]

(−1)|G\F|c−1
G,∅

∣∣∣.

4. EXAMPLES

4.1. Let n = 1 and ρ > 0. Set c{1}, ∅ = c∅,{1} = ρ−1. We have r{1}, ∅ = r∅,{1} =
c{1}, ∅ − c∅,∅ = (1/ρ) − 1 and r{1},{1} = 1 − (2/ρ). Clearly r∅,∅ = 1. Hence
condition (3.1) becomes

‖h‖2 + 2
(1

ρ
− 1
)

Re 〈εTh, h〉+
(

1− 2
ρ

)
‖Th‖2 > 0

for all h ∈ H, |ε| = 1. Similarly condition (3.3) becomes

‖h‖2 + 2
(1

ρ
− 1
)

Re 〈zTh, h〉+
(

1− 2
ρ

)
‖zTh‖2 > 0
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for all h ∈ H, z ∈ D, which is the well-known characterization of ρ-contractions.
The condition becomes simpler for either ρ = 1 or ρ = 2. For ρ = 1 it

reduces to ‖h‖2 − ‖Th‖2 > 0, i.e., T is a contraction. For ρ = 2 it reduces to
‖h‖2 − Re 〈zTh, h〉 > 0, i.e., the numerical range of T is contained in the closed
unit disc.

4.2. Let n = 1. The parameter c{1}, ∅ may be any real number, not only positive.
The case c{1}, ∅ = 0 is rather trivial. In this case rF,G = (−1)|F|+|G|. Condi-

tion (3.3) then becomes

‖h‖2 − 2Re 〈zTh, h〉+ ‖zTh‖2 > 0,

which is satisfied for any operator T ∈ B(H). The corresponding dilation is
U = IH ⊗ S acting in the space H ⊗ `2(Z), where S is the bilateral shift in `2(Z).

If c{1}, ∅ < 0, then r{1}, ∅ = c{1}, ∅ − 1 and r{1},{1} = 1− 2c{1}, ∅. Thus (3.3)
becomes

‖h‖2 + 2(c{1}, ∅ − 1)Re 〈zTh, h〉+ (1− 2c{1}, ∅)‖zTh‖2 > 0.

This enables to define ρ-contractions for negative values of ρ := c−1
{1}, ∅.

4.3. Let n > 1 and cF,G = 0 for all F, G with F∪G 6= ∅. This case is again trivial.
We have rF,G = (−1)|F|+|G| and condition (3.3) becomes

∑
F, G⊂[1,n]

(−1)|F|+|G|〈(zT)Fh, (zT)Gh〉 > 0

for all h ∈ H and z ∈ Dn. However, this condition is satisfied for any commuting
n-tuple T since the left-hand side of the condition is equal to∥∥∥ ∑

F⊂[1,n]
(−1)|F|(zT)Fh

∥∥∥2
.

4.4. Let n > 1 and cF,G = 1 for all F, G ⊂ [1, n], F ∩ G = ∅. Then

rF,G = (−1)|F|+|G| ∑
F′⊂F, G′⊂G

F′∩G′=∅

(−1)|F
′∪G′ |

= (−1)|F|+|G|
(

∑
F1⊂F\G

(−1)|F1|
)(

∑
G1⊂G\F

(−1)|G1|
)(

∑
F2, G2⊂F∩G

F2∩G2=∅

(−1)|F2∪G2|
)

.

If F 6= G then either F \ G 6= ∅ or G \ F 6= ∅. In both cases rF,G = 0.
Furthermore,

rF,F = ∑
F2, G2⊂F
F2∩G2=∅

(−1)|F2∪G2| = (−1)|F|.

Hence condition (3.1) becomes

(4.1) ∑
F⊂[1,n]

(−1)|F|‖TFh‖2 > 0
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for all h ∈ H. So if T saisfies (4.1) and Tk
j → 0 in the strong operator topology for

all j, then T has the regular unitary dilation. However, condition (4.1) is satisfied
for example if one of the operators Tj is an isometry and the remaining operators
are arbitrary. The classical Brehmer conditions state that T has a regular unitary
dilation if and only if

(4.2) ∑
F⊂B

(−1)|F|‖TFh‖2 > 0

for all h ∈ H, B ⊂ [1, n]. This is in fact equivalent to (3.3) which becomes

(4.3) ∑
F⊂[1,n]

(−1)|F|‖(rT)Fh‖2 > 0

for all h ∈ H, r ∈ [0, 1]n. Indeed, if (4.3) is satisfied and B ⊂ [1, n], then set rj = 1
for all j ∈ B and rj = 0 for all j /∈ B. Thus one gets (4.2).

Conversely, suppose that T satisfy (4.2). Let rn ∈ [0, 1] and S be the n-tuple
of operators defined by S = (T1, . . . , Tn−1, rnTn). Then

∑
F⊂[1,n]

(−1)|F|‖SFh‖2 = ∑
n/∈F⊂[1,n]

(−1)|F|‖TFh‖2 + ∑
n∈F⊂[1,n]

(−1)|F|r2
n‖TFh‖2

= a + r2
nb,

where
a = ∑

n/∈F⊂[1,n]
(−1)|F|‖TFh‖2 > 0

and
b = ∑

n∈F⊂[1,n]
(−1)|F|‖TFh‖2 = ∑

F⊂[1,n−1]
(−1)|F|+1‖TFTnh‖2 6 0.

Since T satisfies (4.2), we have a + b > 0, and so a + r2
nb > 0 for all rn ∈ [0, 1].

Thus (4.3) is satisfied for r = (1, . . . , 1, rn). Inductively, we get that T satisfies (4.3)
for any r ∈ [0, 1]n.

4.5. Let ρ1, . . . , ρn > 0. Set cF,G = ∏
j∈F∪G

ρ−1
j (F, G ⊂ [1, n], F ∩ G = ∅). Then

(−1)|F|+|G|rF,G = ∑
F′⊂F, G′⊂G

F′∩G′=∅

(−1)|F
′∪G′ | ∏

j∈F′∪G′
ρ−1

j

=
(

∑
F1⊂F\G

(−1)|F1| ∏
j∈F1

ρ−1
j

)(
∑

G1⊂G\F
(−1)|G1| ∏

j∈G1

ρ−1
j

)
·
(

∑
F2, G2⊂F∩G

F2∩G2=∅

(−1)|F2∪G2| ∏
j∈F2∪G2

ρ−1
j

)

= ∏
j∈F÷G

(
1− 1

ρj

)
· ∏

j∈F∩G

(
1− 2

ρj

)
,
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where F÷ G = (F \ G) ∪ (G \ F) denotes the symmetrical difference of F and G.
Hence

rF,G = ∏
j∈F÷G

( 1
ρj
− 1
)
· ∏

j∈F∩G

(
1− 2

ρj

)
.

Conditions (3.1) and (3.3) then unify the characterizations of ρ-dilations of single
contractions and of regular unitary dilations of n-tuples.

4.6. The previous conditions get simplified if ρ1 = · · · = ρn = 1: this is the case
of regular unitary dilations. Another interesting case is for ρ1 = · · · = ρn = 2. In
this case rF,G = 0 if F ∩ G 6= ∅. If F ∩ G = ∅ then

rF,G = ∏
j∈F∪G

( 1
ρj
− 1
)
=
(
− 1

2

)|F∪G|
.

Condition (3.1) then becomes

∑
F, G⊂[1,n],F∩G=∅

(
− 1

2

)|F∪G|
〈(εT)Fh, (εT)Gh〉 > 0

for all h ∈ H and ε ∈ Tn.

4.7. Let ρ1, . . . , ρn > 0, let cF,G = 0 if F 6= ∅ 6= G, and cF,∅ = ∏
j∈F

ρ−1
j . Then

(−1)|F|+|G|rF,G = ∑
F′⊂F

(−1)|F
′ | ∏

j∈F′
ρ−1

j + ∑
G′⊂G

(−1)|G
′ | ∏

j∈G′
ρ−1

j − 1

= ∏
j∈F

(
1− 1

ρj

)
+ ∏

j∈G

(
1− 1

ρj

)
− 1.

Condition (3.1) becomes simpler if ρ1 = · · · = ρn = 1 (note that this is not
the case of regular unitary dilations). Then rF,G = (−1)|F|+|G|+1 if F 6= ∅ 6= G,
rF,∅ = 0 if F 6= ∅ and r∅,∅ = 1. For details see Subsection 4.10 below.

4.8. Let ρ > 0 and cF,G = ρ−1 for all F, G ⊂ [1, n], F ∩ G = ∅, F ∪ G 6= ∅. Then

(−1)|F|+|G|rF,G = ρ−1 ∑
F′⊂F, G′⊂G

F′∩G′=∅

(−1)|F
′ |+|G′ | + (1− ρ−1).

If F \ G 6= ∅ or G \ F 6= ∅ then rF,G = (1 − ρ−1)(−1)|F|+|G|. If F 6= ∅ then
rF,F = ρ−1(−1)|F| + (1− ρ−1). Then

∑
F, G⊂[1,n]

rF,G〈TFh, TGh〉=(1−ρ−1)
∥∥∥ ∑

F⊂[1,n]
(−1)|F|TFh

∥∥∥2
+ρ−1 ∑

F⊂[1,n]
(−1)|F|‖TFh‖2.

Condition (3.1) then becomes

(1− ρ−1)
∥∥∥ ∑

F⊂[1,n]
(εT)Fh

∥∥∥2
+ ρ−1 ∑

F⊂[1,n]
(−1)|F|‖TFh‖2 > 0

for all h ∈ H and ε ∈ Tn.
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In particular, if ρ = 1 then this reduces to

∑
F⊂[1,n]

(−1)|F|‖TFh‖2 > 0

for all h ∈ H, which is again condition (4.1) for regular unitary dilations.

4.9. Let ρ > 0 and cF,∅ = ρ−1 (F 6= ∅), cF,G = 0 (F 6= ∅ 6= G). Then

(−1)|F|+|G|rF,G = ρ−1 ∑
F′⊂F

(−1)|F
′ | + ρ−1 ∑

G′⊂G
(−1)|G

′ | + (1− 2ρ−1).

If F 6= ∅ 6= G then (−1)|F|+|G|rF,G = 1 − 2ρ−1. If F 6= ∅ then (−1)|F|rF,∅ =

1− ρ−1. Finally, r∅,∅ = 1 as in all cases.
Hence condition (3.1) becomes

‖h‖2 + 2(1− ρ−1) ∑
∅ 6=F⊂[1,n]

(−1)|F|Re 〈(εT)Fh, h〉

+ (1− 2ρ−1) ∑
F, G⊂[1,n]
F 6=∅ 6=G

(−1)|F|+|G|〈(εT)Fh, (εT)Gh〉 > 0,

or, equivalently,

(4.4) ‖h‖2+2(1−ρ−1)Re
〈

∑
∅ 6=F⊂[1,n]

(εT)Fh, h
〉
+(1−2ρ−1)

∥∥∥ ∑
F⊂[1,n],F 6=∅

(εT)Fh
∥∥∥2

>0

for all h ∈ H and ε ∈ Tn. Clearly (4.4) is the multivariable analogy of the charac-
terization of ρ-dilations of single operators.

4.10. Condition (4.4) becomes simpler for ρ = 1 and ρ = 2.
For ρ = 1 we have the following characterization.

THEOREM 4.1. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of oper-
ators. The following conditions are equivalent:

(i) there exists a unitary dilation U = (U1, . . . , Un) ∈ B(K)n, K ⊃ H such that

Tα = PHUα|H (α ∈ Zn
+)

and

PHU∗βUα|H = 0 (α, β ∈ Zn
+, supp α ∩ supp β = ∅, |α| 6= 0 6= |β|);

(ii)
∥∥∥ ∑

F⊂[1,n],F 6=∅
(εT)Fh

∥∥∥ 6 ‖h‖ for all h ∈ H and ε ∈ Tn.

Clearly (ii) is equivalent to
∥∥∥ ∑

F⊂[1,n],F 6=∅
(zT)Fh

∥∥∥ 6 ‖h‖ for all h ∈ H and z ∈ Dn,

so it is possible to omit the condition Tk
j → 0 (SOT) for j = 1, . . . , n.

For ρ = 2 condition (4.4) becomes

‖h‖2 + ∑
F⊂[1,n],F 6=∅

Re 〈(εT)Fh, h〉 > 0
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for all h ∈ H and ε ∈ Tn. Equivalently,

Re 〈(I + ε1T1) · · · (I + εnTn)h, h〉 > 0

for all h ∈ H and ε ∈ Tn. Similarly, (3.3) becomes

Re 〈(I + z1T1) · · · (I + znTn)h, h〉 > 0

for all h ∈ H and z ∈ Dn, which is equivalent to the previous condition.
This condition seems to be the proper generalization of operators with 2-

dilation, i.e., with numerical radius 6 1.
Thus we have the following theorem.

THEOREM 4.2. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of oper-
ators. The following conditions are equivalent:

(i) there exists a unitary dilation U = (U1, . . . , Un) ∈ B(K)n, K ⊃ H such that

Tα = 2PHUα|H (α ∈ Zn
+)

and

PHU∗βUα|H = 0 (α, β ∈ Zn
+, supp α ∩ supp β = ∅, |α| 6= 0 6= |β|);

(ii) Re 〈(I + ε1T1) · · · (I + εnTn)h, h〉 > 0 for all h ∈ H and ε ∈ Tn.

5. CONCLUDING REMARKS

REMARK 5.1. It is possible to consider complex values of numbers cF,G,
such that c∅,∅ = 1 and cG,F = cF,G for all F, G. One can show that in this case
rG,F = rF,G. Conditions (3.1) and (3.3) remain unchanged.

REMARK 5.2. The vanishing conditions Tk
j → 0 (SOT) appear frequently in

the dilation theory and usually simplify the situation. In our situation, without
this assumption we proved that conditions (3.3) are sufficient for the existence of
the unitary dilation satisfying (1.2). We do not know whether (3.3) is also neces-
sary. Equivalently, suppose that T = (T1, . . . , Tn) has a dilation U satisfying (1.2)
and r = (r1, . . . , rn) ∈ [0, 1]n. Does it follow that rT = (r1T1, . . . , rnTn) has also a
unitary dilation satisfying (1.2)? This is the case for ρ-dilations of single operators
as well as for regular unitary dilations. We do not know if it is true in general in
our setting.

Another possibility is to consider condition (3.1) for all subsets of {1, . . . , n},
i.e.,

(5.1) ∑
F, G⊂B

rF,G〈(εT)Fh, (εT)Gg〉 > 0

for all B ⊂ {1, . . . , n}, h ∈ H, ε ∈ Tn. Such a condition is usually considered for
regular unitary dilations. Condition (5.1) is clearly necessary. We do not know if
it is also sufficient.
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[4] B. SZ.-NAGY, C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, Akadémiai
Kiadó, Budapest; North Holland Publ. Cmp., Amsterdam-London 1970.

VLADIMIR MÜLLER, MATHEMATICAL INSTITUTE, CZECH ACADEMY OF SCI-
ENCES, ZITNA 25, 115 67 PRAGUE 1, CZECH REPUBLIC

E-mail address: muller@math.cas.cz

Received May 3, 2016.


	INTRODUCTION
	1. NOTATIONS
	2. NECESSARY CONDITIONS
	3. SUFFICIENT CONDITIONS
	4. EXAMPLES
	4.1. 
	4.2. 
	4.3. 
	4.4. 
	4.5. 
	4.6. 
	4.7. 
	4.8. 
	4.9. 
	4.10. 

	5. CONCLUDING REMARKS
	REFERENCES

