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ABSTRACT. We introduce partially defined Schur multipliers and obtain nec-
essary and sufficient conditions for the existence of extensions to fully defined
positive Schur multipliers, in terms of operator systems canonically associated
with their domains. We use these results to study the problem of extending a
positive definite function defined on a symmetric subset of a locally compact
group to a positive definite function defined on the whole group.
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1. INTRODUCTION

The problem of completing a partially defined matrix to a fully defined pos-
itive matrix has attracted considerable attention in the literature (see e.g. [2], [8],
[12], [21]). Given an n by n matrix, only a subset of whose entries are specified,
this problem asks whether the remaining entries can be determined so as to yield
a positive matrix. The set κ of pairs (i, j) for which the (i, j)-entry is specified
is called the pattern of the initial matrix; to avoid trivialities, κ is assumed to be
symmetric and to contain the diagonal. One may then consider the operator sys-
tem S(κ) of all (fully specified) matrices supported by κ. The operator systems
arising in this way are precisely the operator subsystems of the space Mn of all
n by n complex matrices, which are also bimodules over the algebra of all diag-
onal matrices. In [21], using operator space methods, Paulsen, Power and Smith
formulated necessary and sufficient conditions for the existence of positive com-
pletions for a given pattern κ, in terms of S(κ), and related such completions to
positivity and extendability of associated Schur multipliers with domain κ.

In this paper, we study the corresponding extension problem in infinite
dimensions. More precisely, we replace the Hilbert space Cn with the Hilbert
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space L2(X, µ) for some measure space (X, µ), and the algebra of diagonal ma-
trices with the maximal abelian selfadjoint algebra D ≡ L∞(X, µ). Given a suit-
able measurable subset κ ⊆ X × X, we define a weak* closed D-bimodule S(κ),
canonically associated with κ, and introduce the notion of a Schur multiplier with
domain κ. We study the problem of extending such a (partially defined) Schur
multiplier to a positive Schur multiplier defined on all of X × X, and relate it to
the positivity structure of S(κ).

Our motivation is two-fold. Firstly, we will see in Section 5 that the problem
we consider is closely related to the problem of extending partially defined pos-
itive definite functions on locally compact groups. The latter problem has been
studied in a variety of contexts and there is a rich bibliography on its modern as-
pects as well as its connections with classical problems and applications (see [2],
[3], [4], [7], [11], [19] and the references therein). Since the main interest here lies
in infinite groups, the passage to infinite dimensions becomes necessary.

Secondly, bimodules over continuous maximal abelian selfadjoint algebras
(masas, for short) have been instrumental in a number of contexts in operator al-
gebras. Introduced by Arveson in [1], they have proved useful in topics as diverse
as spectral synthesis and uniqueness sets in harmonic analysis [27], closability of
multipliers on Fourier algebras [26], finite rank approximations [9] and structure
of idempotents [16], among others. They are also closely related to Schur multi-
pliers (see [20] and [23], as well as [29], where questions related to positivity of
Schur multipliers were studied). However, masa-bimodules that are simultane-
ously operator systems have not received attention to date, despite their impor-
tance in modern analysis [20].

The paper is organised as follows. In Section 2, we consider the discrete case
and formulate a straightforward generalisation of several results in [21], which
use a graph theoretic property of the pattern κ called chordality. We note that
extension results for partially defined functions that are not necessarily Schur
multipliers, in terms of chordality, were obtained in [30].

In Section 3, we study measurable versions of the patterns κ and their oper-
ator systems. Although these subsets κ can be thought of as measurable graphs,
the passage from a discrete to a general measure space leads to substantial differ-
ences (see e.g. Corollary 5.3).

In Section 4, we formulate necessary and sufficient conditions for the exis-
tence of an extension of a partially defined partially positive Schur multiplier to
a fully defined positive Schur multiplier, in terms of approximation of positive
operators by sums of rank one positive operators in the operator system S(κ).

In Section 5, we study the problem of extending a positive definite function
defined on a symmetric subset E of a locally compact group to a positive definite
function defined on the whole group.

The special case where E is a closed subgroup has attracted considerable
attention previously (see e.g. [15]). Closely related problems about extension of
Herz–Schur multipliers were recently considered in [6]. We use the results from
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Section 4 to give, in the case of discrete amenable groups, a different approach to
the result of Bakonyi and Timotin [4] concerning positive definite extensions of
partially defined functions. Our main result here (Theorem 5.6) concerns (classes
of non-discrete) locally compact groups, where we formulate a sufficient condi-
tion for the existence of positive definite extensions in terms of operator approxi-
mations.

For a Hilbert space H, we denote by B(H) (respectively K(H)) the space
of all bounded linear (respectively compact) operators on H. We will often use
basic concepts from operator space theory, such as complete positivity; we refer
the reader to [20] for the necessary background. As is customary, the closure of a
subset T in a topology τ will be denoted by T τ

, and if T ⊆ B(H), then we will
write T + for the set of all positive elements of T .

2. THE DISCRETE CASE

Let X be a set and let H = `2(X). With every element T of B(H), we asso-
ciate the matrix (tx,y)x,y∈X given by tx,y = (Tey, ex), where (ex)x∈X is the canonical
orthonormal basis of H. For x, y ∈ X, denote by Ex,y the corresponding matrix
unit in B(H) (so that Ex,yey = ex).

For κ ⊆ X× X, define

(2.1) S(κ) = span{Ex,y : (x, y) ∈ κ}w∗
.

It is easy to see that an operator T ∈ B(H) is in S(κ) if and only if the correspond-
ing matrix (tx,y) has tx,y = 0 whenever (x, y) is in the complement of κ.

Throughout this section, we fix an additional (non-trivial) Hilbert space K
and let H ⊗ K be the Hilbert space tensor product of H and K. The elements
T ∈ B(H⊗ K) can in a similar fashion be regarded as matrices (Tx,y)x,y∈X , where
Tx,y ∈ B(K) is determined by the identity

(Tx,yξ, η) = (T(ey ⊗ ξ), ex ⊗ η), x, y ∈ X, ξ, η ∈ K.

DEFINITION 2.1. A function ψ : κ → B(K) will be called an (operator valued)
Schur multiplier if the matrix (tx,yψ(x, y))x,y∈X defines an element of B(H⊗K) for
every (tx,y)x,y∈X ∈ S(κ) (here, we have set tx,yψ(x, y) = 0 provided (x, y) 6∈ κ).

Let

S0(κ) = span{Ex,y : (x, y) ∈ κ}‖·‖.
We have that S0(κ) ⊆ K(H); let ι : S0(κ)→ K(H) be the inclusion map.

LEMMA 2.2. (i) The second dual ι∗∗ of ι is a completely isometric weak* homeo-
morphism of S0(κ)

∗∗ onto S(κ).
(ii) Every bounded linear map Ψ : S0(κ)→ B(H ⊗ K) has a bounded weak* contin-

uous extension to a map Ψ̃ : S(κ)→ B(H ⊗ K).
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(iii) Every bounded linear map Ψ : K(H) → B(H) has a bounded weak* contin-
uous extension to a map Ψ̃ : B(H) → B(H). Moreover, if Ψ is completely positive
(respectively completely bounded) then Ψ̃ is completely positive (respectively completely
bounded).

Proof. (i) The map ι∗∗ is a surjective completely isometric weak* homeomor-

phism onto its range in B(H); since S0(κ)
w∗

= S(κ), we conclude that the range
of ι∗∗ is S(κ).

(ii) Let E : B(H ⊗ K)∗∗ → B(H ⊗ K) be the canonical (weak* continuous)
projection; thus, E(T) = T whenever T ∈ B(H ⊗ K). Set Ψ̃ = E ◦ Ψ∗∗ ◦ (ι∗∗)−1;
thus, Ψ̃ : S(κ) → B(H ⊗ K) is weak* continuous and its restriction to S0(κ)
coincides with Ψ.

(iii) The statement follows from (ii) after letting K = C and κ = X × X.
The remaining statements follow from the facts that E is unital and completely
positive (and hence completely bounded) and that Ψ∗∗ is completely positive
(respectively bounded) provided Ψ is so.

PROPOSITION 2.3. Let κ ⊆ X × X. If ψ : κ → B(K) is a Schur multiplier, then
the map

Sψ : S(κ)→ B(H ⊗ K), (tx,y) 7→ (tx,yψ(x, y))

is bounded and weak* continuous.

Proof. To show that Sψ is bounded, we use the closed graph theorem. Sup-
pose that Tn = (tn

x,y)x,y∈X are operators in S(κ) such that Tn → 0 and Sψ(Tn)→ S
in norm as n → ∞, for some S ∈ B(H ⊗ K). Letting S = (Sx,y)x,y∈X , we have
tn
x,y → 0 and tn

x,yψ(x, y)→ Sx,y in norm for each (x, y) ∈ κ. It follows that Sx,y = 0
for each x, y ∈ X, and hence S = 0. Thus, Sψ is bounded.

Let S0
ψ be the restriction of Sψ to the subspace S0(κ) defined before Lem-

ma 2.2. Let Ψ be the weak* continuous extension of S0
ψ guaranteed by Lem-

ma 2.2(ii). Fix T = (tx,y)x,y∈X ∈ S(κ). For a finite set F ⊆ X, let PF be the
projection on H whose range has basis {ex : x ∈ F} and set TF = PFTPF. The net
(TF)F lies in S0(κ) and TF →F T in the weak* topology. For all x, y ∈ X and all
ξ, η ∈ K, we have

(Ψ(T)(ey ⊗ ξ), ex ⊗ η) = w∗- lim
F
(Ψ(TF)(ey ⊗ ξ), ex ⊗ η)

= w∗- lim
F
(S0

ψ(TF)(ey ⊗ ξ), ex ⊗ η)

= (tx,yψ(x, y)ξ, η) = (Sψ(T)(ey ⊗ ξ), ex ⊗ η).

We conclude that Ψ = Sψ, and hence Sψ is weak* continuous.

Note that if ψ : κ → B(K) is a Schur multiplier then the range of the map Sψ,
defined in Proposition 2.3, is contained in the weak* closed spatial tensor product
S(κ)⊗B(K), of S(κ) and B(K).
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A Schur multiplier ϕ : X × X → B(K) will be called positive if the map Sϕ

is positive, that is, if for every positive operator T ∈ B(H), the operator Sϕ(T) ∈
B(H ⊗ K) is also positive. An application of Proposition 1.2 in [21] shows that if
ϕ is a positive Schur multiplier then the map Sϕ is in fact completely positive.

Let κ ⊆ X × X. It is straightforward to verify that the subspace S(κ) is an
operator system (i.e. a selfadjoint unital subspace of B(H)) if and only if

(i) κ is symmetric (that is, (x, y) ∈ κ implies that (y, x) ∈ κ), and
(ii) κ contains the diagonal of X× X (that is, (x, x) ∈ κ for every x ∈ X).

Note that such subsets κ can be identified with (undirected) graphs with vertex
set X and no loops: for distinct elements x, y ∈ X, the subset {x, y} is an edge if,
by definition, (x, y) ∈ κ. Thus, subsets satisfying properties (i) and (ii) above will
hereafter be referred to as graphs.

DEFINITION 2.4. Let κ ⊆ X × X be a graph and let ψ : κ → B(K) be a
Schur multiplier. We say that ψ is partially positive if for every subset α ⊆ X with
α× α ⊆ κ, the Schur multiplier ψ|α×α is positive.

Let κ ⊆ X × X be a graph. A Schur multiplier ϕ : X × X → B(K) will be
called an extension of the Schur multiplier ψ : κ → B(K) if the restriction ϕ|κ of
ϕ to κ coincides with ψ. We will be interested in the question of when a Schur
multiplier ψ : κ → B(K) possesses a positive extension. Clearly, a necessary
condition for this to happen is that ψ be partially positive. In Theorem 2.5, we
will identify conditions which ensure that the converse implication holds true.

We say that the vertices x1, . . . , xn form a cycle of κ (of length n) if (xi, xi+1) ∈
κ for all i (where addition is performed mod n). A chord in such a cycle is an edge
of the form (xi, xk), where 2 6 |i − k| 6 n− 2. We say that κ is chordal (see e.g.
[21]) if every cycle of length at least four has a chord.

THEOREM 2.5. Let κ⊆X×X be a graph. The following conditions are equivalent:
(i) every partially positive Schur multiplier ψ : κ → B(K) has a positive extension;

(ii) the graph κ is chordal;
(iii) every positive operator in S(κ) is the weak* limit of sums of rank one positive

operators in S(κ).
Proof. We denote by F an arbitrary finite subset of X, and let κF =κ∩(F×F).
(i) ⇒ (ii) We claim that condition (i) is satisfied for the graph κF. Indeed,

given a partially positive Schur multiplier ψF : κF → B(K), let ψ : κ → B(K)
be the extension of ψF with ψ(x, y) = 0 if (x, y) ∈ κ \ κF. Since ψ has finite
support, ψ is a Schur multiplier on κ. If α ⊆ X is a set with α × α ⊆ κ, then
Sψ|α×α

= SψF |(α∩F)×(α∩F)
⊕ 0. Since ψF is partially positive, SψF |(α∩F)×(α∩F)

is positive,
so Sψ|α×α

is positive. Thus, ψ is partially positive. By assumption, ψ has a positive
extension, whose restriction to F× F is a positive extension of ψF. It now follows
from [21] that κF is chordal, and since this holds for every finite set F, we conclude
that κ is chordal.
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(ii) ⇒ (iii) Let PF be the projection from H onto `2(F) (when the latter is
viewed as a subspace of H in the natural way). If T ∈ S(κ) is a positive operator
then T = lim

F
PFTPF in the weak* topology. On the other hand, κF is chordal and

hence, by [21], PFTPF is the sum of rank one positive operators in S(κ).
(iii)⇒ (i) Suppose that ψ : κ → B(K) is a partially positive Schur multiplier.

It is clear that ψF := ψ|κF is a partially positive Schur multiplier on κF. Since
S(κF) = PFS(κ)PF ⊆ S(κ), every positive operator in S(κF) is the weak* limit of
sums of rank one positive operators in S(κF); since S(κF) is finite dimensional,
we have that, in fact, every positive operator in S(κF) is the norm limit of sums of
rank one positive operators in S(κF). Now [21] implies that there exists a positive
Schur multiplier ϕF : F × F → B(K) whose restriction to κF coincides with ψF.
Let ϕ̃F : X× X → B(K) be defined by

ϕ̃F(x, y) =

{
ϕF(x, y) if x, y ∈ F,
0 otherwise.

Then the map Sϕ̃F : B(H) → B(H ⊗ K) is completely positive. On the other
hand, since ψ is a Schur multiplier on κ and I ∈ S(κ), by Proposition 3.6 of [20],
we have that

‖Sϕ̃F‖cb = ‖Sϕ̃F (I)‖ = max
x∈F
‖ϕF(x, x)‖ = max

x∈F
‖ψF(x, x)‖

6 sup
x∈X
‖ψ(x, x)‖ = ‖Sψ(I)‖ < ∞.

So {Sϕ̃F}F is a uniformly bounded family of completely positive maps from B(H)

into B(H ⊗ K). By Theorem 7.4 of [20], there exist a subnet (ΦF′)F′ and a com-
pletely positive map Φ : B(H) → B(H ⊗ K) such that ΦF′(T) → Φ(T) along
F′ in the weak* topology, for every T ∈ B(H). We have that Φ(ATB) = (A ⊗
I)Φ(T)(B⊗ I) for all diagonal operators A, B and all T ∈ B(H), and this easily
implies that Φ(Ex,y) = Ex,y ⊗ ϕ(x, y) for some ϕ(x, y) ∈ B(K). Since ΦF′(Ex,y) =
Ex,y ⊗ ψ(x, y) for (x, y) ∈ κF′ , the map ϕ : X × X → B(K) extends ψ. Now, for
T = (tx,y)x,y∈X ∈ B(H), ξ, η ∈ K and x, y ∈ X, we have

(Φ(T)(ey ⊗ ξ), ex ⊗ η) = ((Ex,x ⊗ I)Φ(T)(Ey,y ⊗ I)(ey ⊗ ξ), ex ⊗ η)

= (Φ(tx,yEx,y)(ey ⊗ ξ), ex ⊗ η) = (tx,y ϕ(x, y)ξ, η),

so Φ(T) = (tx,y ϕ(x, y))x,y. It follows that ϕ is a Schur multiplier and Φ = Sϕ;
since Φ is completely positive, ϕ is positive.

3. POSITIVITY DOMAINS

In this section, we study the domains of Schur multipliers over arbitrary
standard σ-finite measure spaces. To set the stage, we recall some measure the-
oretic terminology [9]. Let (X, µ) be a standard σ-finite measure space. The set
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X × X will be equipped with the product σ-algebra and the product measure
µ× µ. A subset E ⊆ X × X is called marginally null if E ⊆ (M× X) ∪ (X ×M),
where M ⊆ X is null. We call two subsets E, F ⊆ X × X marginally equivalent
(respectively equivalent), and write E ∼= F (respectively E ∼ F), if their symmetric
difference is marginally null (respectively null with respect to product measure).
We say that E is marginally contained in F (and write E ⊆ω F) if the set difference
E \ F is marginally null. A subset κ ⊆ X× X will be called

(i) a rectangle if κ = α× β where α, β are measurable subsets of X;
(ii) a square if κ = α× α where α is a measurable subset of X;

(iii) ω-open if it is marginally equivalent to a countable union of rectangles, and
(iv) ω-closed if its complement κc is ω-open.

Recall that, by [25], if E is any collection of ω-open sets, then there exists a small-
est, up to marginal equivalence, ω-open set

⋃
ω E , called the ω-union of E , such

that every set in E is marginally contained in
⋃

ω E . Given a measurable set κ, one
defines its ω-interior to be

intω(κ) =
⋃

ω
{R : R is a rectangle with R ⊆ κ}.

The ω-closure clω(κ) of κ is defined as the complement of intω(κc). For a set
κ ⊆ X× X, we write κ̂ = {(x, y) ∈ X× X : (y, x) ∈ κ}.

Unless otherwise stated, we use the symbol H to denote the Hilbert space
L2(X, µ). For each a ∈ L∞(X, µ), let Ma : H → H be the multiplication operator
given by Ma f = a f and let D = {Ma : a ∈ L∞(X, µ)} be the multiplication
algebra of L∞(X, µ); we have that D is a masa in B(H). For a measurable subset
α ⊆ X, we let χα denote the characteristic function of α, and set P(α) = Mχα , a
projection inD. AD-bimodule (or simply a masa-bimodule) is a subspace S ⊆ B(H)
such that DSD ⊆ S .

Let κ be a measurable subset of X × X. An operator T ∈ B(H) is said to
be supported by κ if P(β)TP(α) = 0 whenever (α× β) ∩ κ ∼= ∅. Given any masa-
bimodule U , there exists a unique (up to marginal equivalence) smallest ω-closed
set κ ⊆ X × X such that every operator in U is supported by κ [9]. The set κ is
denoted by suppU and is called the support of U .

For k ∈ L2(X × X), the Hilbert–Schmidt operator Tk : H → H with integral
kernel k is defined by

Tk f (y) =
∫
X

k(y, x) f (x)dµ(x), f ∈ H, y ∈ X.

For any measurable, ω-closed subset κ ⊆ X× X, let

S(κ) = {Tk : k ∈ L2(κ)}
w∗

,

where L2(κ) is the space of functions in L2(X × X) which are supported on κ. It
is easy to see that every operator T ∈ S(κ) is supported by κ̂, so suppS(κ) ⊆ω κ̂.
Note that the latter inclusion may be strict. Indeed, if κ has product measure
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zero then S(κ) = {0} and hence suppS(κ) ∼= ∅; however, κ does not need to be
marginally null.

Suppose that X is equipped with the counting measure. Then D is the alge-
bra of all diagonal operators on `2(X) and S(κ) is the weak* closure of the linear
span of the matrix units Ex,y, with (x, y) ∈ κ; it thus coincides with the space
defined in Section 2 (see (2.1)). In particular, S(κ) is generated, as a weak* closed
subspace, by the rank one operators it contains. In view of Proposition 3.2 below,
in this general context it is therefore natural to restrict attention to sets κ which
contain “plenty of rectangles”. We will now make this intuitive idea precise.

DEFINITION 3.1. A measurable subset κ ⊆ X× X is said to be:
(i) generated by rectangles if κ ∼= clω(intω(κ));

(ii) symmetric if κ ∼= κ̂.

For ξ, η ∈ H, we denote by ξ ⊗ η∗ the rank one operator on H given by (ξ ⊗
η∗)(ζ) = (ζ, η)ξ. We denote by S1(κ) the set of all rank one operators in S(κ).

PROPOSITION 3.2. Let κ ⊆ X× X be an ω-closed set.
(i) If ξ, η ∈ H, then the rank one operator ξ ⊗ η∗ belongs to S(κ) if and only if

(supp ξ)× (supp η) is marginally contained in κ.
(ii) The set S1(κ) generates S(κ) as a weak* closed subspace of B(H) if and only if κ

is equivalent to clω(intω(κ)).

Proof. (i) Suppose that ξ⊗ η∗ ∈ S(κ). Then the operator ξ⊗ η∗ is supported

by κ̂. Writing α = supp ξ, β = supp η and κc ∼=
∞⋃

i=1
αi × βi, where αi, βi ⊆ X are

measurable for i ∈ N, we have, in particular, that (βi × αi) ∩ κ̂ ∼= ∅, so

(χαi ξ)⊗ (χβi η)
∗ = P(αi)(ξ ⊗ η∗)P(βi) = 0,

hence either αi ∩ α or βi ∩ β is null, for each i ∈ N. It follows that (α× β)∩ κc ∼= ∅,
so α× β ⊆ω κ.

Conversely, if α × β ⊆ω κ then the integral kernel of ξ ⊗ η∗ is clearly in
L2(κ), and thus ξ ⊗ η∗ ∈ S(κ).

(ii) Set λ = clω(intω(κ)). Let V = span(S1(λ))
w∗

and let U = Ref(V) be the
reflexive hull of V in the sense of [18]. By Theorem 5.2 of [9], suppU ∼= λ̂; since
suppV ∼= suppU [9], we conclude that suppV ∼= λ̂. Thus,

V ⊆ S(λ) ⊆ U .

Since Hilbert–Schmidt operators are pseudo-integral in the sense of [1], we have
that both V and S(λ) are masa-bimodules, generated as weak* closed subspaces
by pseudo-integral operators supported by λ̂. It follows from [1] that V = S(λ).

If κ ∼ λ then

S(κ) = S(λ) = V = span(S1(κ))
w∗

.
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Conversely, suppose that span(S1(κ))
w∗

= S(κ). By (i), S1(λ) = S1(κ), and

the previous paragraph implies that span(S1(κ))
w∗

= span(S1(λ))
w∗

= S(λ).
Thus, S(κ) = S(λ) and it now easily follows that κ ∼ λ.

Let ∆ = {(x, x) : x ∈ X} denote the diagonal of X.

PROPOSITION 3.3. If κ ⊆ X × X is generated by rectangles, then the following
are equivalent:

(i) S(κ) is an operator system;
(ii) κ is symmetric and ∆ ⊆ω κ.

Proof. (i) ⇒ (ii) By Proposition 3.2 and its proof, S(κ) = span(S1(κ))
w∗

and suppS(κ) ∼= κ̂. Similarly, letting S(κ)∗ = {T∗ : T ∈ S(κ)}, we have that
suppS(κ)∗ ∼= κ; thus κ̂ ∼= κ. On the other hand, by assumption, I ∈ S(κ); since
S(κ) is a masa-bimodule, we have that D ⊆ S(κ). Thus, ∆ ∼= suppD ⊆ω κ.

(ii) ⇒ (i) If k ∈ L2(κ) then the function k∗ given by k∗(x, y) = k(y, x) is in
L2(κ̂). Since κ ∼= κ̂, we have that k∗ ∈ L2(κ) and thus T∗k = Tk∗ ∈ S(κ). Hence,
S(κ)∗ = S(κ).

Since D consists of pseudo-integral operators in terms of [1] and suppD ∼=
∆, by Proposition 3.2 and its proof we have that D ⊆ S(κ).

DEFINITION 3.4. A measurable set κ ⊆ X × X will be called a positivity
domain if κ is generated by rectangles, κ is symmetric and ∆ ⊆ω κ.

By Proposition 3.2 and Proposition 3.3, an ω-closed set κ ⊆ X× X is equiv-
alent to a positivity domain if and only if S(κ) is an operator system which is
generated (as a weak* closed linear space) by the rank one operators it contains.
Note that every operator system is generated, as a linear space, by the positive
operators it contains. However, as we will show in Corollary 5.3, S(κ) does not
need to contain a positive rank one operator. It is worth noting that this phenome-
non does not occur in the case of a discrete measure space X; indeed, in this case,
any diagonal matrix unit belongs to S(κ).

REMARK 3.5. Recall that a Schur idempotent is a weak* continuous D-bimo-
dule map Φ ∈ B(B(H)) such that Φ ◦Φ = Φ. Suppose that Φ is a (completely)
positive Schur idempotent; in this case, the range Ran Φ of Φ is selfadjoint. Triv-
ially, Ran Φ is an operator system if and only if Φ is unital, that is, if and only if
Φ(I) = I. By Proposition 3.6 of [20], ‖Φ‖ = ‖Φ(I)‖, and it follows that if Ran Φ
is an operator system then Φ is contractive. Conversely, if ‖Φ‖ = 1 then, by [16],

Ran Φ = S(κ), where κ ∼=
∞⋃

i=1
αi × αi for some sequence (αi)

∞
i=1 of pairwise dis-

joint measurable subsets of X with
∞⋃

i=1
αi = X, and hence S(κ) is in this case an

operator system.
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We next introduce a way to quantify the amount of positive rank one opera-
tors contained in S(κ), where κ is a positivity domain. To this end, we define the
square interior sqintω(κ) of κ by

sqintω(κ)
def
=

⋃
ω{Q : Q is a square with Q ⊆ κ}.

By Proposition 3.2 (i), S(κ) contains a positive rank one operator if and only if
sqintω(κ) 6∼= ∅. We will say that κ is generated by squares if κ ∼= clω(sqintω(κ)).
Theorem 3.6 below characterises the positivity domains with this property. For
a positivity domain κ ⊆ X × X, let S+1 (κ) denote the set of positive rank one
operators in S(κ), and set

[S+1 (κ)] =
{ k

∑
i=1

Ri : k ∈ N and Ri ∈ S+1 (κ) for 1 6 i 6 k
}

.

THEOREM 3.6. Let κ⊆X×X be a positivity domain. The following are equivalent:
(i) there is a unital contractive Schur idempotent Φ with Ran Φ ⊆ S(κ);

(ii) there is a countable partition X =
∞⋃

i=1
αi of X into measurable subsets αi so that

αi × αi ⊆ω κ for each i ∈ N;

(iii) I ∈ [S+1 (κ)]
w∗

;
(iv) ∆ ⊆ω sqintω(κ);
(v) κ is generated by squares.

Proof. (i) ⇔ (ii) follows from [16] (see also Remark 3.5), while the implica-
tion (ii)⇒ (iv) follows from the inclusions

∆ ⊆
∞⋃

i=1

αi × αi ⊆ω sqintω(κ).

(ii) ⇒ (iii) Clearly, P(αj) ∈ [S+1 (αj × αj)]
w∗

; thus P(αj) ∈ [S+1 (κ)]
w∗

and
hence

I = w∗- lim
N→∞

N

∑
j=1

P(αj) ∈ [S+1 (κ)]
w∗

.

(iii)⇒ (i) Let Σ be the collection of all countable sets {Ψi}i∈N where each Ψi
is a contractive Schur idempotent with Ran Ψi ⊆ S(κ) and ΨiΨj = 0 for all i 6= j.
We order Σ by inclusion. The set Σ is non-empty, since it contains the singleton
consisting of the zero map. Suppose that Λ ⊆ Σ is a non-empty chain. Since H
is separable, Λ is countable, and hence its union is its upper bound. By Zorn’s
lemma, there exists a maximal element in Σ, say {Φi}i∈N. Define Φ by

Φ(T) =
∞

∑
i=1

Φi(T), T ∈ B(H)

(where the sum converges in the strong operator topology), so that Φ is a con-
tractive Schur idempotent with range contained in S(κ). It remains to show that
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Φ is unital, or equivalently, that I ∈ Ran(Φ). Let (αi)i∈N be a (countable) family

of mutually disjoint measurable subsets of X such that Φ(T) =
∞
∑

i=1
P(αi)TP(αi),

T ∈ B(H) (see [16] or Remark 3.5). Set P =
∞
∑

i=1
P(αi) (where the sum converges

in the strong operator topology). We claim that P = I. To see this, suppose
that P⊥ = P(α) for some measurable subset α of X and note that P⊥S(κ)P⊥ =
S((α× α) ∩ κ) is an operator system on the Hilbert space P⊥H. Since S(κ) sat-
isfies the assumption in (iii), so does P⊥S(κ)P⊥; so if P⊥ 6= 0, then S+1 ((α ×
α) ∩ κ) 6= ∅. Hence by Proposition 3.2, there exists a non-trivial square β × β,
marginally contained in (α × α) ∩ κ. Letting Φ0 be the Schur idempotent given
by Φ0(T) = P(β)TP(β), we see that the family {Φi}∞

i=0 strictly contains {Φi}∞
i=1,

a contradiction. It follows that P = I and hence I ∈ Ran Φ.
(iv)⇒ (ii) Suppose that ∆ ⊆ω sqintω(κ). By Lemma 2.1 of [25] there exists

a family (βi)i∈N of measurable (not necessarily mutually disjoint) subsets of X
such that

∆ ⊆ω

∞⋃
i=1

βi × βi ⊆ω κ.

This implies that, up to a null set,
∞⋃

i=1
βi = X. Let α1 = β1 and αn = βn \ (

⋃n−1
j=1 αj).

Then αn × αn ⊆ βn × βn ⊆ω κ and
∞⋃

n=1
αn = X, up to a null set which we may

adjoin to (say) α1.
(ii)⇒ (v) Let (αi)i∈N be the partition from (ii). Given a rectangle β×γ ⊆ω κ,

observe that γ× β ⊆ω κ̂ ∼= κ since κ is symmetric, and for i, j ∈ N let βi = β ∩ αi
and γj = γ ∩ αj. Then

βi × γj ⊆ (βi ∪ γj)× (βi ∪ γj) = (βi × βi) ∪ (βi × γj) ∪ (γj × βi) ∪ (γj × γj)

⊆ (αi × αi) ∪ (β× γ) ∪ (γ× β) ∪ (αj × αj) ⊆ω κ.

It follows that

β× γ =
∞⋃

i,j=1

βi × γj ⊆ω κ.

Taking the ω-union over all such rectangles, we conclude that

intω(κ) ∼= sqintω(κ).

Since κ is generated by rectangles, we have

κ ∼= clω(intω(κ)) ∼= clω(sqintω(κ)),

and hence κ is generated by squares.

(v)⇒ (iv) By Lemma 2.1 of [25], we can write sqintω(κ)
∼=

∞⋃
i=1

(αi × αi), for

some sequence (αi)i∈N of measurable subsets of X. Set Y =
⋃

i∈N
αi. We have that
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sqintω(κ) ⊆ Y×Y and, since Y×Y is ω-closed,

κ ∼= clω(sqintω(κ)) ⊆ Y×Y.

Since ∆ ⊆ω κ, we have Y ∼ X. It follows that ∆ ⊆ω sqintω(κ).

REMARK 3.7. It is easy to see that if κ ⊆ X× X is a positivity domain and λ
= clω(sqintω(κ)) then the operator system S(λ) coincides with the weak* closure
of the linear span of [S+1 (κ)]. Thus, the square interior of κ can be viewed as a
measure of the quantity of the positive rank one operators in S(κ).

4. PARTIALLY DEFINED SCHUR MULTIPLIERS

Let (X, µ) be a standard measure space. Recall that a function ϕ ∈ L∞(X ×
X) is called a Schur multiplier if the map Sϕ defined on the space of all Hilbert–
Schmidt operators on H = L2(X, µ) by

(4.1) Sϕ(Tk) = Tϕk, k ∈ L2(X× X),

is bounded in the operator norm.
If ϕ is a Schur multiplier, we denote again by Sϕ the bounded weak* con-

tinuous extension of this map to B(H); note that Sϕ is a masa-bimodule map in the
sense that Sϕ(BTA) = BSϕ(T)A, for all T ∈ B(H), A, B ∈ D. By Theorem 2.1 of
[28], Sϕ is automatically completely bounded.

We denote the set of all Schur multipliers on X× X by S(X). A Schur mul-
tiplier ϕ is called positive if the map Sϕ : B(H) → B(H) is positive. In this case,
Sϕ is automatically completely positive (see Theorem 2.1 of [28] and Lemma 4.3
of [29]). We write S(X)+ for the set of positive Schur multipliers on X× X.

We record the following well-known fact, which follows from results of
Haagerup [13] and Smith [28].

THEOREM 4.1. Let Φ : B(H) → B(H) be a linear map. The following are
equivalent:

(i) Φ is a bounded weak* continuous D-bimodule map;
(ii) Φ is a completely bounded weak* continuous D-bimodule map;

(iii) Φ = Sϕ for some ϕ ∈ S(X);
(iv) there exist families (ai)i∈N, (bi)i∈N ⊆ L∞(X) such that

esssup
x∈X

∞

∑
i=1
|ai(x)|2 < ∞, esssup

y∈X

∞

∑
i=1
|bi(y)|2 < ∞, and

ϕ(x, y) =
∞

∑
i=1

ai(x)bi(y), a.e. (x, y) ∈ X× X.

We extend the definition of a Schur multiplier given above to functions de-
fined on proper subsets of X × X. Let κ ⊆ X × X be a measurable set, equipped
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with the induced σ-algebra and, as before, identify L2(κ) with the space of all
functions in L2(X× X) supported on κ.

DEFINITION 4.2. Let κ ⊆ X × X be a measurable subset generated by rect-
angles. A measurable function ϕ : κ → C will be called a Schur multiplier if there
exists C > 0 such that ‖Tϕk‖ 6 C‖Tk‖, for every k ∈ L2(κ).

Let
S0(κ) = {Tk : k ∈ L2(κ)}

‖·‖
;

thus, S0(κ) ⊆ S(κ) ∩ K(H) and S0(κ)
w∗

= S(κ). If κ is a positivity domain,
we equip S0(κ) with the structure of a matrix ordered space (see e.g. [31]), arising
from its inclusion into the operator system S(κ); thus, it makes sense to talk about
positive or completely positive maps on S0(κ).

For functions ϕ, ψ : κ → C, we write ϕ ∼ ψ if {(x, y) : ϕ(x, y) 6= ψ(x, y)} is
a null set.

PROPOSITION 4.3. Let κ ⊆ X× X be generated by rectangles and let ϕ : κ → C
be a measurable function. The following are equivalent:

(i) ϕ is a Schur multiplier;
(ii) there exists a Schur multiplier ψ : X× X → C such that ψ|κ ∼ ϕ;

(iii) there exists a unique completely bounded map Φ0 : S0(κ) → S0(κ) such that
Φ0(Tk) = Tϕk, for each k ∈ L2(κ);

(iv) there exists a unique completely bounded weak* continuous map Φ : S(κ) →
S(κ) such that Φ(Tk) = Tϕk, for each k ∈ L2(κ).

Proof. (i)⇒ (ii) Let

S2(κ) = {Tk : k ∈ L2(κ)}.
Since ϕ is a Schur multiplier, the map Φ2 : S2(κ)→ S2(κ), given by Φ2(Tk) = Tϕk,
extends to a bounded linear map Φ0 : S0(κ)→ S0(κ). Moreover, since Φ2 is a D-
bimodule map, Φ0 is such as well. By Smith’s theorem ([28], Theorem 2.1), Φ0 is
completely bounded. By Exercise 8.6(ii) of [20], there exists a completely bounded
D-bimodule map Ψ0 : K(H)→ B(H) such that Ψ0|S0(κ)

= Φ0. Let Ψ be the weak*
continuous extension of Ψ0 whose existence is guaranteed by Lemma 2.2(iii); we
have that Ψ is a completely bounded weak* continuous D-bimodule map. By
Theorem 4.1, there exists ψ ∈ S(X) such that Ψ = Sψ. For every k ∈ L2(κ) we
have

Tψk = Sψ(Tk) = Sϕ(Tk) = Tϕk.
It follows that

ψk ∼ ϕk for each k ∈ L2(κ),
and hence ψ|κ ∼ ϕ.

(ii)⇒ (iv) Take Φ = Sψ|S(κ). The uniqueness of Φ follows from the fact that
the Hilbert–Schmidt operators with integral kernels in L2(κ) are dense in S(κ).

(iv)⇒ (iii)⇒ (i) are trivial.



58 RUPERT H. LEVENE, YING-FEN LIN AND IVAN G. TODOROV

If ϕ : κ → C is a Schur multiplier, then we write Sϕ : S(κ) → S(κ) for the
map Φ appearing in (iv) above, and let S0

ϕ be the restriction of Sϕ to S0(κ).

DEFINITION 4.4. Let κ ⊆ X × X be a positivity domain. A Schur multiplier
ϕ : κ → C will be called partially positive if ϕ|α×α is a positive Schur multiplier
whenever α ⊆ X is a measurable set with α× α ⊆ κ.

We can characterise partial positivity in this context using rank one opera-
tors, extending Lemma 4.2 of [21], as follows.

PROPOSITION 4.5. Let κ be a positivity domain. A Schur multiplier ϕ : κ → C
is partially positive if and only if Sϕ(S+1 (κ)) ⊆ B(H)+.

Proof. Suppose that Sϕ(S+1 (κ)) ⊆ B(H)+ and that α× α ⊆ κ for a measur-
able set α ⊆ X. If T is a positive rank one operator supported by α × α then,
by assumption, Sϕ(T) > 0. Since Sϕ is weak* continuous and the weak* closed
span of the positive rank one operators supported by α× α equals B(P(α)H)+,
we conclude that ϕ|α×α is a positive Schur multiplier.

Conversely, suppose that ϕ is partially positive and that T ∈ S(κ) is a pos-
itive rank one operator, say T = η ⊗ η∗ for some η ∈ H. If supp η = α then, by
Proposition 3.2, α× α ⊆ω κ. By deleting a null set from α, we may in fact suppose
that α× α ⊆ κ. The assumption now implies that Sϕ(T) > 0.

We note that the main interest in Proposition 4.5 is when κ is generated by
squares; however, we formulate it in its present generality in view of Theorem 4.9.

DEFINITION 4.6. Let κ ⊆ X × X be a positivity domain and ϕ : κ → C be a
Schur multiplier. We say that a measurable function ψ : X × X → C is a positive
extension of ϕ if ψ is a positive Schur multiplier and ψ|κ ∼ ϕ.

REMARK 4.7. (i) If a Schur multiplier ϕ : κ → C has a positive extension
then ϕ is necessarily partially positive.

(ii) Recall [9] that a function ϕ : X × X → C is called ω-continuous if ϕ−1(U)
is an ω-open set for every open subset U ⊆ C. We note that if ϕ : κ → C has a
positive extension, then ϕ has an ω-continuous positive extension. This follows
from the fact that if ψ : X× X → C is a positive Schur multiplier then there exists
an ω-continuous positive Schur multiplier ψ′ : X × X → C such that ψ and ψ′

differ on a set of product measure zero (see Corollary 4.5 of [29]).

THEOREM 4.8. Let κ be a positivity domain. The following are equivalent, for a
partially positive Schur multiplier ϕ : κ → C:

(i) ϕ has a positive extension;
(ii) the map Sϕ : S(κ)→ S(κ) is positive;

(iii) the map Sϕ : S(κ)→ S(κ) is completely positive;
(iv) the map S0

ϕ : S0(κ)→ S0(κ) is positive;
(v) the map S0

ϕ : S0(κ)→ S0(κ) is completely positive.



POSITIVE EXTENSIONS OF SCHUR MULTIPLIERS 59

Proof. (i)⇒ (ii) If ψ is a positive extension of ϕ then Sψ is positive and hence
so is its restriction to S(κ); it is easily seen that this restriction coincides with Sϕ.

(ii) ⇒ (iii) and (iv) ⇒ (v) follow from the operator system version of
R.R. Smith’s theorem [28] on automatic complete boundedness (see Lemma 4.3
of [29]).

(iii)⇒ (iv) is trivial.
(v)⇒ (i) Let Φ = S0

ϕ; thus, Φ is a completely positive linear map on S0(κ).
By Theorem 3.16 and Lemma 3.12 of [24], Φ can be extended to a completely posi-
tive map Φ1 on the operator system S0(κ) +CI. By Arveson’s extension theorem,
there exists a completely positive map Ψ1 : K(H) + CI → B(H) extending Φ1.
The restriction Ψ of Ψ1 to K(H) is then a completely positive extension of Φ. Let
Ψ̃ : B(H) → B(H) be the completely positive weak* continuous extension of Ψ

whose existence is guaranteed by Lemma 2.2(iii). Let Φ̃ be the restriction of Ψ̃ to
S(κ); thus, Φ̃ is a weak* continuous extension of Φ, and since Φ is a D-bimodule
map, the same holds true for Φ̃. We now have that Ψ̃ is a completely positive
extension of Φ̃; by Exercise 7.4 of [20], Ψ̃ is a D-bimodule map. By Theorem 4.1,
there exists ψ ∈ S(X) such that Ψ̃ = Sψ; the function ψ is the desired positive
extension of ϕ.

If κ is a positivity domain and ϕ : κ → C is a Schur multiplier, we call ϕ
positive if the equivalent conditions of Theorem 4.8 are satisfied.

The next theorem is a measurable version of one of the main results of [21]
concerning positive completions of partially positive matrices. Recall that the
projective tensor product

T (X) = L2(X)⊗̂L2(X)

can be canonically identified with the predual of B(H). Indeed, each element

h ∈ T (X) can be written as a series h =
∞
∑

i=1
fi ⊗ gi, where

∞
∑

i=1
‖ fi‖2

2 < ∞ and

∞
∑

i=1
‖gi‖2

2 < ∞, and the duality pairing is then given by

〈T, h〉 =
∞

∑
i=1

(T fi, gi), T ∈ B(H).

It follows [1] that h can be identified with a complex function on X × X, defined

up to a marginally null set, and given by h(x, y) =
∞
∑

i=1
fi(x)gi(y). The positive

cone T (X)+ consists of all functions h ∈ T (X) that define positive functionals

on B(H), that is, functions h of the form h =
∞
∑

i=1
fi ⊗ f i, where

∞
∑

i=1
‖ fi‖2

2 < ∞. It

is well-known that a function ϕ ∈ L∞(X × X) is a Schur multiplier if and only if
ϕh is equivalent (with respect to the product measure) to a function contained in
T (X) for every h ∈ T (X) (see [22]).
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THEOREM 4.9. Let κ be a positivity domain. The following are equivalent:
(i) every partially positive Schur multiplier ϕ : κ → C has a positive extension;

(ii) S(κ)+ = [S+1 (κ)]
w∗

;

(iii) S0(κ)
+ = [S+1 (κ)]

‖·‖
.

Proof. Assume (i) holds. We establish (ii) and (iii) simultaneously. It is clear

that [S+1 (κ)]
‖·‖
⊆ S0(κ)

+. To show that the two cones are equal, it suffices by the
Hahn–Banach theorem to prove that if h ∈ T (X) is such that 〈A, h〉 > 0 for all
A ∈ [S+1 (κ)], then 〈A, h〉 > 0 for all A ∈ S(κ)+.

Thus, suppose that

〈A, h〉 > 0, A ∈ [S+1 (κ)].

Then
〈ξ ⊗ ξ∗, h〉 > 0, whenever ξ ∈ L2(X) and ξ ⊗ ξ∗ ∈ S1(κ),

that is (see Proposition 3.2),

〈ξ ⊗ ξ∗, h〉 > 0, whenever (supp ξ)× (supp ξ) ⊆ω κ.

Suppose first that the measure µ is finite and h ∈ S(X); recall that Sh de-
notes the corresponding bounded weak* continuous map on B(H), defined in
(4.1). For every η ∈ L2(X), we have

(Sh(ξ ⊗ ξ∗)η, η) =
∫

X×X

h(x, y)ξ(y)η(y)ξ(x)η(x)dxdy = 〈(ξη)⊗ (ξη)∗, h〉 > 0

whenever (supp ξ)× (supp ξ) ⊆ω κ. It follows that Sh(ξ ⊗ ξ∗) > 0 for every rank
one operator ξ ⊗ ξ∗ that belongs to S(κ)+; thus, h|κ is a partially positive Schur
multiplier. By assumption, h|κ has an extension to a positive Schur multiplier h̃
on X× X. We thus have

(4.2) (Sh̃(A)χX , χX) > 0 for all A ∈ B(H)+

(note that χX ∈ L2(X) since µ is finite). We claim that if A ∈ S(κ) then

(4.3) (Sh̃(A)χX , χX) = 〈A, h〉.

Indeed, suppose that k ∈ L2(κ). Then

(Sh̃(Tk)χX , χX) =
∫

X×X

h̃(x, y)k(y, x)dµ(x)dµ(y)

=
∫
κ

h(x, y)k(y, x)dµ(x)dµ(y) = 〈Tk, h〉,

so (4.3) holds if A is a Hilbert–Schmidt operator. Since Sh̃ is weak* continuous
and the Hilbert–Schmidt operators are dense in S(κ), (4.3) is established. It now
follows that if A ∈ S(κ)+, then 〈A, h〉 > 0.
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Next, relax the assumption that the measure µ be finite, but continue to
suppose that h ∈ S(X). Let (Xn)n∈N be an increasing sequence of measurable
sets of finite measure such that X =

⋃
n∈N

Xn. By (4.3),

(Sh̃(A)χXn , χXn) = 〈P(Xn)AP(Xn), h〉 > 0

whenever A ∈ S(κ)+. Passing to the limit as n→ ∞, we conclude that 〈A, h〉 > 0
whenever A ∈ S(κ)+.

Finally, relax the assumption that h be a Schur multiplier and write h =
∞
∑

i=1
fi ⊗ gi where

∞
∑

i=1
‖ fi‖2

2 < ∞ and
∞
∑

i=1
‖gi‖2

2 < ∞. For each N ∈ N, let

XN =
{

x ∈ X :
∞

∑
i=1
| fi(x)|2 6 N

}
and YN =

{
y ∈ X :

∞

∑
i=1
|gi(y)|2 6 N

}
.

Then X \ (⋃N∈N XN) and X \ (⋃N∈N YN) have measure zero. Let ZN = XN ∩
YN , N ∈ N. Then X \ (⋃N∈N ZN) has measure zero and, by Theorem 4.1, the
restriction of h to ZN × ZN is a Schur multiplier. By the previous paragraphs,
〈P(ZN)AP(ZN), h〉 > 0 whenever A ∈ S(κ)+, and passing to the limit as N → ∞
shows that 〈A, h〉 > 0 for all A ∈ S(κ)+.

(iii)⇒ (i) and (ii)⇒ (i) follow from Proposition 4.5 and Theorem 4.8.

We note that, by Theorem 4.9, if a positivity domain admits positive ex-
tensions of partially positive Schur multipliers, then it necessarily satisfies the
equivalent conditions of Theorem 3.6.

5. EXTENDING POSITIVE DEFINITE FUNCTIONS

In this section, we apply the results obtained previously to some questions
arising in abstract harmonic analysis. We assume, throughout the section, that
G is a locally compact second countable amenable group, unless G is discrete,
in which case no countability restriction is required. We denote by m the left
Haar measure on G. We formulate sufficient conditions for unital symmetric sub-
sets E ⊆ G which guarantee that every positive definite function defined on E
can be extended to a positive definite function defined on the whole group G.

Let A(G) (respectively B(G)) be the Fourier (respectively the Fourier–
Stieltjes) algebra of G (see [10] for the definition and basic properties of these
algebras). Recall that T (G) = L2(G)⊗̂L2(G) and let P : T (G) → A(G) be the
contractive surjection given by

P(ξ ⊗ η) = η ∗ ξ̌ ξ, η ∈ L2(G)

(here ∗ denotes the usual convolution of functions and ξ̌(s) = ξ(s−1), s ∈ G). Let
A(G)+ (respectively B(G)+) be the canonical positive cone of A(G) (respectively
B(G)). Recall that a function f : G → C is called positive definite if for all finite
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subsets {s1, . . . , sn} ⊆ G, the matrix ( f (sis−1
j ))i,j is positive; it is well-known that

B(G)+ coincides with the cone of all continuous positive definite functions on
G. More generally, if E ⊆ G is a symmetric set (that is, E−1 = E) containing
the neutral element e of G, we say that a function f : E → C is positive definite
if the matrix ( f (sis−1

j ))i,j is positive for any s1, . . . , sn ∈ G with sis−1
j ∈ E for

1 6 i, j 6 n. We say that f : G → C is positive definite on E if f |E is positive
definite.

For a subset E ⊆ G, let

E∗ = {(s, t) ∈ G× G : ts−1 ∈ E},

and for a function f : E→ C, let N( f ) : E∗ → C be given by

N( f )(s, t) = f (ts−1), (s, t) ∈ E∗.

It is well-known that N maps B(G) isometrically onto the set Sinv(G) of all in-
variant Schur multipliers, that is, the Schur multipliers ϕ : G × G → C with the
property that, for each r ∈ G, ϕ(sr, tr) = ϕ(s, t) for marginally almost every
(s, t) ∈ G × G (see [5]), and that the image of B(G)+ under N consists of the
positive elements of Sinv(G).

Since the sets of the form E∗ play an important role in positive definiteness,
we first provide a description of when they are positivity domains (Theorem 5.2).
We need an extra technical condition on the group G, known as Lebesgue density.
If G is a locally compact group equipped with a metric, we say that t ∈ G is a point
of density for a Borel set α ⊆ G if lim

ε→0

m(α∩B(t,ε))
m(B(t,ε)) = 1, where B(t, ε) is the open ball

with centre t and radius ε. We say that G satisfies the Lebesgue density theorem
if there exists a left invariant metric on G which induces its topology, such that
for every Borel set α, the subset

α0 = {s ∈ α : s a point of density for α}

has full measure in α. The classical Lebesgue density theorem states that the real
line R satisfies this condition; it is also fulfilled for the groups Tn, Rm and their
products.

LEMMA 5.1. Let G be a locally compact group that satisfies the Lebesgue density
theorem, and let E ⊆ G be a Borel set. Suppose that α and β are non-null Borel subsets
of G such that βα−1 ⊆ E. Let α0 (respectively β0) be the subset of α (respectively β)
consisting of its points of density. Then β0α−1

0 ⊆ int(E).

Proof. We may assume that α and β have finite measure. For t ∈ G, we have

(5.1) P(χα ⊗ χβ)(t) =
∫
G

χβ(s)χ̌α(s−1t)ds = m(β ∩ tα).

Let

(5.2) U := {t ∈ G : m(β ∩ tα) > 0}.



POSITIVE EXTENSIONS OF SCHUR MULTIPLIERS 63

Since P(χα ⊗ χβ) is a continuous function, (5.1) implies that U is an open set.
Note that t ∈ βα−1 if and only if β ∩ tα 6= ∅. We show that

(5.3) β0α−1
0 ⊆ U.

To this end, suppose that t ∈ β0α−1
0 , and write t = yx−1, where x ∈ α0 and y ∈ β0.

Suppose that m(β ∩ tα) = 0; then m(y−1β ∩ x−1α) = 0. Thus, for every ε > 0,

m((y−1β) ∩ B(e, ε)) + m((x−1α) ∩ B(e, ε)) 6 m(B(e, ε))

and so

2 = lim
ε→0

m((y−1β) ∩ B(e, ε))

m(B(e, ε))
+ lim

ε→0

m((x−1α) ∩ B(e, ε))

m(B(e, ε))
6 1,

a contradiction. Thus, (5.3) holds true. On the other hand, clearly U ⊆ E; since U
is open, we have that β0α−1

0 ⊆ int(E).

THEOREM 5.2. If G is a locally compact group satisfying the Lebesgue density
theorem and E ⊆ G is a Borel subset of positive measure, then

(5.4) intω(E∗) ∼= int(E)∗ and clω(E∗) ∼= cl(E)∗.

In particular, if E is closed in G, then E∗ is a positivity domain if and only if E is a
symmetric set, e ∈ E, and E is the closure of its interior. Moreover, if E∗ is a positivity
domain, then E∗ is generated by squares if and only if E∗ contains a non-null square, if
and only if E contains a symmetric open neighbourhood of e.

Proof. If U ⊆ E is open then U∗ is an open, and hence an ω-open, subset of
E∗, and so int(E)∗ ⊆ω intω(E∗). Conversely, suppose that α × β is a rectangle,
marginally contained in E∗. After deleting sets of measure zero from α and β, we
may assume that α× β ⊆ E∗. Let α0 (respectively β0) be the set of all points of
density in α (respectively β). By assumption, α \ α0 and β \ β0 have measure zero.
By Lemma 5.1, (β0α−1

0 )∗ ⊆ int(E)∗, and since α0 × β0 ⊆ (β0α−1
0 )∗, we have that

α × β ⊆ω int(E)∗. It follows that intω(E∗) ∼= int(E)∗. This easily implies that
clω(E∗) ∼= cl(E)∗.

Note that from (5.4), we can conclude that E∗ is ω-closed if and only if E is
closed.

If E ⊆ G is closed, the characterisation of E∗ being a positivity domain fol-
lows immediately from the previous paragraph and the definition of a positivity
domain. To complete the proof, assume first that E∗ is generated by squares.
Since E∗ is non-null, E∗ contains a non-null square, say α× α. Let U be the open
set defined in (5.2), where we have taken β = α. By the left invariance of the
Haar measure, U is symmetric, and it clearly contains the neutral element of G.
Conversely, suppose that U ⊆ E is symmetric, open and contains e. Since G is
second countable, it admits a left invariant metric [14], say ρ. Let δ > 0 be such
that B(e, δ) ⊆ U. Letting V = B(e, δ/2), we have that V × V ⊆ U∗ (indeed, if
s, t ∈ V then ρ(e, ts−1) 6 ρ(e, t) + ρ(t, ts−1) = ρ(e, t) + ρ(e, s−1) < δ). It follows
that (Vr) × (Vr) ⊆ U∗ for all r ∈ G and, letting R ⊆ G be a countable dense
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set, we have that ∆ ⊆ ⋃
r∈R

(Vr)× (Vr). Thus, ∆ ⊆ω sqintω(E∗), and Theorem 3.6

implies that E∗ is generated by squares.

We are now in a position to show that the operator systems of the form S(κ),
where κ is a positivity domain, do not always contain positive rank one operators
(see the paragraph after Definition 3.4).

COROLLARY 5.3. There exists a positivity domain κ such that S(κ) does not con-
tain a positive rank one operator.

Proof. Realise the group of the circle T as the interval (−1, 1], equipped with
addition modulo 2 and (normalised) Lebesgue measure; set H = L2(−1, 1). Let
(tn)∞

n=1 ⊆ (0, 1) be a strictly decreasing sequence converging to zero and set

E = {0} ∪
∞⋃

n=1

([t2n, t2n−1] ∪ [−t2n−1,−t2n]).

It is clear that E does not contain a (symmetric) neighbourhood of 0. By Theo-
rem 5.2, E∗ is a positivity domain and it does not contain a non-null square. By
Proposition 3.2(i), S(E∗) does not contain a positive rank one operator.

We will need the following result by Lau [17]. It will be used in the proof of
Proposition 5.5, and is the reason we require the assumption that G be amenable
in most of the subsequent results.

LEMMA 5.4. Let G be a locally compact amenable group. Then there exists a net
(ξi) ⊆ L2(G) of (positive) functions of norm one, such that the net (P(ξi ⊗ ξ i)) is an
approximate identity of A(G).

If E ⊆ G is a set that is the closure of its interior, we set

B(E) = {u|E : u ∈ B(G)}.

If E is in addition symmetric and contains the neutral element of G, we set

B(E)+ = {u|E : u ∈ B(G)+}.

We next prove an invariant version of Proposition 4.3 and Theorem 4.8.

PROPOSITION 5.5. Let G be a locally compact amenable group satisfying the
Lebesgue density theorem, E ⊆ G be a set that is the closure of its interior and u : E→ C
be a measurable function. The following hold:

(i) N(u) is a Schur multiplier if and only if u is equivalent to a function that lies in
B(E);

(ii) if E is moreover symmetric and e ∈ E, then N(u) is a positive Schur multiplier if
and only if u is equivalent to a function that lies in B(E)+.

Proof. (i) Suppose that u is equivalent to a function u′ in B(E). We have that
u′ is the restriction to E of a function v ∈ B(G); thus, N(u′) is the restriction to E∗

of the Schur multiplier N(v) on G × G. By (5.4) in Theorem 5.2, E∗ is generated
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by rectangles, and by Proposition 4.3, N(u′) is a Schur multiplier. Since N(u) ∼
N(u′), we conclude that N(u) is a Schur multiplier.

Conversely, suppose that N(u) is a Schur multiplier on E∗. By Proposi-
tion 4.3 and Theorem 5.2, there is a Schur multiplier ϕ : G × G → C whose re-
striction to E∗ is equivalent to N(u). Let (ξi) ⊆ L2(G) be the net from Lemma 5.4,
and ψi = ξi ⊗ ξ i; thus, ψi ∈ T (G)+. We have that ϕψi ∈ T (G) for all i. Set
vi = P(ϕψi); thus, (vi)i ⊆ A(G). Note that

‖vi‖A(G) = ‖P(ϕψi)‖A(G) 6 ‖ϕψi‖T (G) 6 ‖ϕ‖S(G)‖ψi‖T (G) = ‖ϕ‖S(G),

for every i. Without loss of generality, we may assume that the net (vi) converges
to a function v ∈ B(G) in the weak* topology of B(G) (here we view B(G) as the
dual of the C∗-algebra C∗(G) of G, see [10]).

By Lemma 2.3 of [26], for almost every t ∈ E, we have

vi(t) =
∫
G

ϕ(t−1s, s)ψi(t−1s, s)ds = u(t)
∫
G

ψi(t−1s, s)ds→ u(t),

since (P(ξi⊗ ξ i)) converges to the constant function 1 uniformly on compact sets.
Let U ⊆ E be open. Denoting by λ the left regular representation of L1(G)

on L2(G), for every f ∈ Cc(G) with support contained in U, we have∫
G

vi f dm = 〈λ( f ), vi〉 −→ 〈λ( f ), v〉 =
∫
G

v f dm.

On the other hand, by the Lebesgue dominated convergence theorem,∫
G

vi f dm −→
∫
G

u f dm

and hence ∫
G

v f dm =
∫
G

u f dm.

Since this holds for every f ∈ Cc(G) supported on U, we conclude that v = u
almost everywhere on U, and since U was an arbitrary open subset of E, we have
that v = u almost everywhere on E. It follows that u is equivalent to a function
from B(E).

(ii) By Theorem 5.2(i), E∗ is a positivity domain. If u ∈ B(E)+ then u is the
restriction to E of a function v ∈ B(G)+. Thus, N(v) is a positive Schur multiplier
on G× G and N(u) is its restriction to E∗. It follows that N(u) is a positive Schur
multiplier.

Conversely, suppose that N(u) is a positive Schur multiplier. By Theo-
rem 4.8, there exists ϕ ∈ S(G)+ whose restriction to E∗ is equivalent to N(u).
But then (letting as above vi = P(ϕψi)), we have that vi ∈ A(G)+ for all i and
hence the weak* cluster point v of the net (vi) is a positive definite function. As
in (i), we conclude that u is equivalent to the restriction of v to E.
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The next result gives a sufficient condition for the existence of positive def-
inite extensions in operator-theoretic terms and is one of the main results of this
section.

THEOREM 5.6. Let G be a locally compact amenable group satisfying the Lebesgue
density theorem. Let E ⊆ G be a symmetric set which is the closure of its interior and
contains the neutral element of G. Suppose that every positive operator in S(E∗) is a
weak* limit of sums of rank one positive operators in S(E∗). If u ∈ B(G) is positive
definite on E then there exists a positive definite function v ∈ B(G) such that v|E = u|E.

Proof. Let u0 : E → C be the restriction of u and ϕ = N(u0). By Proposi-
tion 5.5, ϕ is a Schur multiplier. We claim that ϕ is partially positive. Indeed,
suppose first that α ⊆ G is a compact subset such that α × α ⊆ E∗. Since
ϕ|α×α = N(u0)|α×α, we have that ϕ|α×α is a continuous positive definite func-
tion. It follows that ϕ|α×α is a positive Schur multiplier (see the discussion pre-
ceding Theorem 4.8 of [29] and the proof of that theorem). If α ⊆ G is in-
stead a measurable set of finite measure with α × α ⊆ E∗ then, by the regu-
larity of the Haar measure, there exists an increasing sequence (αk)k∈N of com-
pact subsets of α such that

⋃
k∈N

αk has full measure in α. We have that Sϕ(T) =

SOT-lim
k→∞

Sϕ(P(αk)TP(αk)) for every T ∈ B(P(α)H); it thus follows that ϕ|α×α is a

positive Schur multiplier. Finally, if α ⊆ G is an arbitrary measurable set such
that α× α ⊆ E∗ then by the σ-finiteness of the Haar measure, α is the union of an
increasing sequence of sets of finite measure and it follows as before that ϕ|α×α is
a positive Schur multiplier.

We have thus shown that ϕ is a partially positive Schur multiplier. By The-
orem 5.2, E∗ is a positivity domain and, by Theorem 4.9, there exists a positive
Schur multiplier ψ : G × G → C extending ϕ. Now Proposition 5.5 implies the
existence of a positive definite function v ∈ B(G) such that v|E = u0. The proof is
complete.

We note that the function u in the statement of Theorem 5.6 does not need
to be defined on the whole of G but just on the subset E, and it suffices that it
possess an extension to a function from B(G).

We now turn our attention to discrete groups; the assumption on the second
countability will be dropped for the rest of the section.

DEFINITION 5.7. Let G be a discrete group. A subset E ⊆ G will be called
a chordal subset of G if E is a symmetric set containing the neutral element e with
the following property: if n > 4 and s1, . . . , sn ∈ E with sn · · · s2s1 = e, then there
exist i, k ∈ {1, . . . , n} with 2 6 k− i 6 n− 2 so that sk−1sk−2 · · · si ∈ E.

LEMMA 5.8. Let G be a discrete group and E ⊆ G be a symmetric subset contain-
ing the neutral element. The following are equivalent:

(i) E is a chordal subset of G;
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(ii) the set E∗ is chordal.

Proof. (i)⇒ (ii) Suppose that n > 4 and consider a cycle

(x1, x2), . . . , (xn−1, xn), (xn, x1) ∈ E∗.

Setting

s1 = x2x−1
1 , . . . , sn−1 = xnx−1

n−1 and sn = x1x−1
n ,

we see that s1, . . . , sn ∈ E and sn · · · s2s1 = e. By the chordality of E, there exist
i, k ∈ {1, . . . , n} with 2 6 k − i 6 n − 2 so that xkx−1

i = sk−1 · · · si+1si ∈ E, so
(xi, xk) ∈ E∗ is a chord in the given cycle.

(ii) ⇒ (i) Suppose that n > 4 and s1, . . . , sn ∈ E with sn · · · s2s1 = e. The
edges

(e, s1), (s1, s2s1), (s2s1, s3s2s1), . . . , (sn−1 · · · s1, e)

form a cycle of E∗, which we label as (x1, x2), . . . , (xn−1, xn), (xn, x1). Since E∗ is
chordal, there exist 1 6 i, k 6 n with 2 6 k − i 6 n− 2 so that (xi, xk) ∈ E∗, so
xkx−1

i = sk−1 · · · si+1si ∈ E. Hence E is a chordal subset of G.

As an application of our results on positive extensions of Schur multipliers,
we now provide a different approach to the main result of [4].

THEOREM 5.9. If E is a chordal subset of a discrete amenable group G, then every
positive definite function u : E → C has a positive definite extension to a function
v : G → C.

Proof. Let u : E→ C be positive definite and ϕ(s, t) = N(u)(s, t) = u(ts−1),
(s, t) ∈ E∗. We note that ϕ is a Schur multiplier. Indeed, for every finite set
F ⊆ G, let ϕF be the restriction of ϕ to E∗ ∩ (F × F). Then the map SϕF acts
on S(E∗ ∩ (F × F)). Since E is chordal, ϕF has a positive extension to a Schur
multiplier ψF on F× F, and hence

‖SϕF‖ 6 ‖SψF‖ = ‖SψF (I)‖ = max
s∈F
|ϕF(s, s)| = u(e).

It follows that the Schur product by ϕ is a well-defined map from S(E∗) into
B(H), and hence ϕ is a Schur multiplier.

Note that if α ⊆ G, then α× α ⊆ E∗ if and only if αα−1 ⊆ E. The positive
definiteness of u now implies that ϕ is a partially positive Schur multiplier.

By Lemma 5.8 and Theorem 2.5, ϕ has an extension to a positive Schur mul-
tiplier ψ : G × G → C. By Proposition 5.5, there exists a positive definite exten-
sion v of u.

As an illustration of Theorem 5.9, note that every symmetric arithmetic pro-
gression E ⊆ Z containing 0 is a chordal set; thus, Theorem 5.9 applies and gives
the well-known fact that every positive definite function u : E→ C has a positive
definite extension to a function v : Z→ C (see Theorem 4.8 of [11]).
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