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ABSTRACT. Let L1
cb(G) (respectively L1

M(G)) denote the closure of the quan-
tum group algebra L1(G) of a locally compact quantum group G, in the space
of completely bounded (respectively bounded) double centralizers of L1(G).
In this paper, we study quantum group generalizations of various results from
Fourier algebras of locally compact groups. In particular, left invariant means
on L1

cb(G)∗ and on L1
M(G)∗ are defined and studied. We prove that the set of

left invariant means on L∞(G) and on L1
cb(G)∗ (L1

M(G)∗) have the same car-
dinality. We also study the left uniformly continuous functionals associated
with these algebras. Finally, for a Banach A-bimodule X of a Banach algebra
Awe establish a contractive and injective representation from the dual of a left
introverted subspace of A∗ into BA(X∗). As an application of this result we
show that if the induced representation Φ : LUCcb(G)∗ → BL1

cb(G)(L∞(G)) is

surjective, then L1
cb(G) has a bounded approximate identity. We also obtain a

characterization of co-amenable quantum groups in terms of representations
of quantum measure algebras M(G).
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INTRODUCTION

Let G be a locally compact group and A(G) be the Fourier algebra of G,
introduced by Eymard in [8]. We denote the completion of A(G) with respect
to the multiplier (cb-multiplier) norm by AM(G) (respectively Acb(G)), and refer
the reader to [6], [9], [12] for more details on these algebras. It is well known that
G is amenable if and only if A(G) has a bounded approximate identity. Unlike
the Fourier algebra, Acb(G) can have a bounded approximate identity even if G
is non-amenable; see [6], [12]. This characterizes the weakly amenable groups,
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i.e. groups for which A(G) has an approximate identity which is bounded in
cb-multiplier norm. Forrest and Miao in their recent work [11] showed that
when G is weakly amenable, the algebras AM(G) and Acb(G) have properties
that are characteristic of the Fourier algebra of an amenable group. Moreover,
they proved that the cardinality of the set of topologically invariant means on
A(G)∗ = VN(G) is equal to the cardinality of the set of topologically invariant
means on Acb(G)∗ and on AM(G)∗.

One of the purposes of this work is to establish that these assertions hold for
arbitrary locally compact quantum groups G. In fact, the quantum group algebra
L1(G) embeds canonically into the algebra of completely bounded (bounded)
double centralizers on L1(G). We denote the completion of L1(G) with respect to
the cb-multiplier (multiplier) norm by L1

cb(G) (respectively L1
M(G)).

The paper is organized as follows: we recall relevant definitions and intro-
duce some notation in the next section. In Section 2, we focus on left invariant
means and show that there is a bijection between left invariant means on L∞(G)
and on L1

cb(G)∗. We then use this to characterize amenability of G in terms of
the existence of a left invariant mean on L1

cb(G)∗. We prove that L1
cb(G) is a two-

sided ideal in its second dual space if and only if G is compact. We also obtain a
number of results about the Arens regularity of L1

cb(G). The same results can be
shown to hold for L1

M(G).
In Section 3, for a Banach A-bimodule X we introduce the left introverted

subspace LX(A) of A∗ and establish a contractive injection Φ : LX(A)∗ →
BA(X∗). We show that if LX(A)∗ is isomorphic to the Banach algebra BA(X∗),
then X has a bounded right approximate identity inA. We then use these ideas to
give various characterizations for the existence of a bounded approximate iden-
tity in L1(G), L1

cb(G) or L1
M(G).

1. PRELIMINARIES

A locally compact quantum group G is a quadruple (L∞(G),Γ,ϕ,ψ), where
L∞(G) is a von Neumann algebra, Γ : L∞(G)→ L∞(G)⊗L∞(G) is a co-associative
co-multiplication, and ϕ, ψ are, respectively, left and right invariant normal semifi-
nite faithful Haar weights on L∞(G); see for example [17], [18]. The reduced
C∗-algebra of G is denoted by C0(G), which is a weak∗ dense C∗-subalgebra of
L∞(G). Let L1(G)=L∞(G)∗ be the predual of L∞(G). Then the pre-adjoint of Γ

induces on L1(G), a completely contractive Banach algebra product

? = Γ∗ : h⊗ h′ ∈ L1(G)⊗̂L1(G) 7→ h ? h′ = (h⊗ h′)Γ ∈ L1(G).

Since the multiplication ? is a complete quotient map from L1(G)⊗̂L1(G) onto
L1(G), we get

L1(G) = 〈L1(G) ? L1(G)〉 = span{ f ? g : f , g ∈ L1(G)}.
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In the case where L∞(G) is VN(G) for a locally compact group G, the algebra
L1(G) is the Fourier algebra A(G). Let L2(G, ϕ) and L2(G, ψ) be the Hilbert
spaces obtained from the GNS-constructions for ϕ and ψ, respectively. One can
show that L2(G, ϕ) ∼= L2(G, ψ). We denote this Hilbert space by L2(G). We also
write M(G) := C0(G)∗, the dual space of C0(G), and define the completely con-
tractive product ? on M(G) by

〈ω ? ν, x〉 = (ω⊗ ν)(Γx) (x ∈ C0(G), ω, ν ∈ M(G))

whence (M(G), ?) is a completely contractive Banach algebra and contains L1(G)
as a norm closed two-sided ideal; see [17].

We recall from [15] that a linear map µ on L1(G) is called a left (respectively
right) centralizer of L1(G) if it satisfies

µ( f ? g) = µ( f ) ? g (µ( f ? g) = f ? µ(g)) ( f , g ∈ L1(G)).

A pair of maps (µl, µr) on L1(G) is a double centralizer if

f ? µl(g) = µr( f ) ? g ( f , g ∈ L1(G)).

If (µl, µr) is a double centralizer of L1(G), then µl is a left centralizer and µr is
a right centralizer of L1(G). Let Cl(L1(G)), Cr(L1(G)) and C(L1(G)) denote the
spaces of left, right and double centralizers of L1(G), respectively. As norm closed
subalgebras of B(L1(G)) and B(L1(G))op, respectively, Cl(L1(G)) and Cr(L1(G))
are Banach algebras. The norm on C(L1(G)) is given by

‖µ‖M = ‖(µl, µr)‖M = max{‖µl‖M, ‖µr‖M}

and the multiplication is given by

(µl, µr) ? (νl, νr) = (µl ◦ νl, νr ◦ µr).

Similarly, using the natural operator space structure on L1(G)∗ = L∞(G), let
Ccb(L1(G)) be the set of completely bounded double centralizers of L1(G). Then
Ccb(L1(G)) is a completely contractive Banach algebra with multiplication de-
fined as above and the operator space matrix norm ‖ · ‖cb defined by

‖µ‖cb = ‖(µl, µr)‖cb = max{‖µl‖cb, ‖µr‖cb} ((µl, µr) ∈ Mcb(L1(G))).

For each ω ∈ M(G), we obtain a pair of completely bounded maps

ωl( f ) = ω ? f ωr( f ) = f ? ω ( f ∈ L1(G))

on L1(G) with ‖(ωl, ωr)‖cb 6 ‖ω‖. It turns out that the pair (ωl, ωr) is a com-
pletely bounded double centralizer of L1(G). Since the multiplication on L1(G)
(respectively M(G)) is faithful (see Proposition 1 of [14] and Proposition 2.2 of
[13]) we obtain the natural inclusions

L1(G) ↪→ M(G) ↪→ Ccb(L1(G)) ↪→ C(L1(G)).
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Therefore, L1(G) (respectively M(G)) can naturally be identified with a two-
sided ideal in both Ccb(L1(G)) and C(L1(G)). Moreover, for each f ∈ L1(G)
we have

‖ f ‖1 = ‖ f ‖M(G) > ‖ f ‖cb > ‖ f ‖M.

By Proposition 3.1 of [13] if G is co-amenable, i.e. L1(G) has a bounded right
(equivalently, left or two-sided) approximate identity, then we have

M(G) = Ccb(L1(G)) = C(L1(G)).

However, in the non-co-amenable case, these algebras are typically not equal. In
fact, in the general case ‖ · ‖M and ‖ · ‖cb need not to be equivalent to ‖ · ‖1. For a
locally compact quantum group G we let

L1
cb(G)

def
= L1(G)

‖·‖cb ⊆ Ccb(L1(G)) and L1
M(G)

def
= L1(G)

‖·‖M ⊆ C(L1(G)).

Clearly, L1
cb(G) and L1

M(G) are Banach algebras under the multiplication ? de-
fined as above and both contain L1(G) as a norm dense two-sided ideal.

Let A be a Banach algebra. Then X = A∗ is a Banach right A-module by
the following module action

〈x · µ, ν〉 = 〈x, µ ? ν〉 (x ∈ A∗, µ, ν ∈ A),

where ? stands for the multiplication in A. We define the space of left uniformly
continuous functionals on A as follows

LUC(A∗) := 〈A∗ · A〉‖·‖A∗ ,

where 〈A∗ · A〉 denotes the linear span of A∗ · A. It is known that there are two
multiplications � and ♦ on the second dual A∗∗ of A, called, respectively, the
left and the right Arens products, each extending the multiplication on A. The
left Arens product � is induced by the left A-module structure on A. That is, for
m, n ∈ A∗∗, x ∈ A∗ and µ ∈ A we have

〈m�n, x〉 = 〈m, n · x〉, 〈n · x, µ〉 = 〈n, x · µ〉.

Similarly, one can define the right Arens product.
A Banach rightA-submodule X ofA∗ is called left introverted if m · x ∈ X for

all m ∈ X∗ and x ∈ X. In this case, X∗ is a Banach algebra with the multiplication
induced by the left Arens product � inherited from A∗∗. Examples of left intro-
verted subspace ofA∗ are WAP(A∗), the space of weakly almost periodic functionals
on A; that is, those functionals x ∈ A∗ such that the set {x · µ : µ ∈ A, ‖µ‖ 6 1}
is relatively weakly compact in A∗, and the space LUC(A∗). For brevity, we use
the following notations:

LUC(G) := LUC(L∞(G)), WAP(G) := WAP(L∞(G)),

LUCcb(G) := LUC(L1
cb(G)∗), WAPcb(G) := WAP(L1

cb(G)∗),

LUCM(G) := LUC(L1
M(G)∗), WAPM(G) := WAP(L1

M(G)∗).
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2. COMPLETION OF QUANTUM GROUP ALGEBRA AND AMENABILITY

We start this section with the next definition which is the main object of the
section.

DEFINITION 2.1. Let A be L1(G), L1
cb(G) or L1

M(G) and let X be a Banach
right A-submodule of A∗ containing the identity operator 1 in A∗. Then m ∈ X∗

is called a left invariant mean (LIM) on X if ‖m‖ = m(1) = 1 and 〈m, x · µ〉 =
µ(1)〈m, x〉 for all x ∈ X and µ ∈ A. We denote the set of all left invariant means
on X by LIM(X∗).

Right invariant and (two-sided) invariant means are defined similarly. Re-
call that a locally compact quantum group G is called amenable if there exists a left
invariant mean on L∞(G). Note that the existence of a right invariant and of an
invariant mean on L∞(G) is equivalent to the amenability of G [5]. In the sequel,
we will restrict our attention to L1

cb(G). We note that all results below remain
valid if we replace L1

cb(G) by L1
M(G), except perhaps Theorem 2.17.

Recall that L∞(G) is naturally a Banach L1
cb(G)-bimodule with the module

actions given by

〈x · µ, f 〉 = 〈x, µ ? f 〉, 〈µ · x, f 〉 = 〈x, f ? µ〉

for all x ∈ L∞(G), µ ∈ L1
cb(G) and f ∈ L1(G), noticing that L1(G) is a two-

sided ideal in L1
cb(G). Let ι : L1(G) → L1

cb(G) be the canonical embedding of
L1(G) into L1

cb(G). Then ι is an injective Banach L1
cb(G)-bimodule morphism. So

are ι∗∗ : L∞(G)∗ → L1
cb(G)∗∗ and ι∗ : L1

cb(G)∗ → L∞(G), since ι has a dense
range. It is straightforward to see that ι∗ is in fact the restriction map. Therefore,
we can identify L1

cb(G)∗ with a subset of L∞(G) and L∞(G)∗ with a subset of
L1

cb(G)∗∗. We have the following proposition, but omit the details of the proof as
the argument can easily be adapted from Proposition 3.3 of [11].

PROPOSITION 2.2. Let G be a locally compact quantum group. Then the following
hold:

(i) L∞(G) · L1
cb(G) ⊆ LUC(G);

(ii) ι∗(LUCcb(G)) ⊆ LUC(G);
(iii) if L1

cb(G) has a bounded approximate identity, then L∞(G) · L1
cb(G) = LUC(G);

(iv) x · f , f · x ∈ ι∗(L1
cb(G)∗) for all x ∈ L∞(G) and f ∈ L1(G).

Before giving the next result, let us first note that for each m ∈ L1
cb(G)∗, we

can define a bounded linear map mL on L∞(G) by

mL : L∞(G) 3 x 7→ m · x ∈ L∞(G),

where the product m · x ∈ L∞(G) is given by 〈m · x, f 〉 = 〈m, x · f 〉 for all
f ∈ L1(G), noticing that L∞(G) · L1(G) ⊆ ι∗(L1

cb(G)∗). This map is (completely)
bounded, with ‖mL‖ 6 ‖m‖ (‖mL‖cb 6 ‖m‖).
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THEOREM 2.3. Let G be a locally compact quantum group. Then we have that
ι∗∗(LIM(L∞(G)∗))⊆LIM(L1

cb(G)∗∗). Furthermore, the map ι∗∗ : LIM(L∞(G)∗)→
LIM(L1

cb(G)∗∗) is a bijection.

Proof. We prove that ι∗∗(LIM(L∞(G)∗)) ⊆ LIM(L1
cb(G)∗∗). In fact, for each

m ∈ LIM(L∞(G)∗) and µ ∈ L1
cb(G), there is a sequence ( f j) in L1(G) for which

‖ f j − µ‖cb → 0. Thus,

f j(1)→ µ(1), ‖x · f j − x · µ‖L1
cb(G)∗ → 0

for all x ∈ L1
cb(G)∗. Therefore,

〈ι∗∗(m), x · µ〉 = lim
j→∞
〈ι∗∗(m), x · f j〉 = lim

j→∞
〈m, ι∗(x) · f j〉

= lim
j→∞

f j(1)〈m, ι∗(x)〉 = µ(1)〈ι∗∗(m), x〉.

Hence, ι∗∗(LIM(L∞(G)∗)) ⊆ LIM(L1
cb(G)∗∗). Obviously ι∗∗ is injective.

We now claim that ι∗∗ is surjective. In fact, suppose that m∈LIM(L1
cb(G)∗∗).

Then, for each x ∈ L∞(G) and f , g ∈ L1(G), since x · f ∈ ι∗(L1
cb(G)∗) by Proposi-

tion 2.2(iv), we have

〈mL(x), f ? g〉 = 〈m, (x · f ) · g〉 = g(1)〈mL(x), f 〉.
Therefore,

〈mL(x), f ? g〉 = 0 (x ∈ L∞(G), f ∈ L1(G), g ∈ I0(G)),

where I0(G) = {g ∈ L1(G) : g(1) = 0}. Since the linear span of L1(G) ? I0(G) is
dense in I0(G) ([1], Theorem 4.4), we get that mL(x)|I0(G) = 0 for all x ∈ L∞(G).
By the fact that f ? g− g ? f ∈ I0(G), we conclude

〈m, x · ( f ? g)〉 = 〈m, x · (g ? f )〉 ( f , g ∈ L1(G)).

Given a state f0 ∈ L1(G), define m̃ ∈ L∞(G)∗ by

m̃(x) := 〈m, x · f0〉 (x ∈ L∞(G)).

By Proposition 2.2(iv), the functional m̃ is well defined. It follows from above that

m̃(x · f ) = f (1)m̃(x) (x ∈ L∞(G), f ∈ L1(G)).

Moreover, ‖m̃‖ 6 1 and m̃(1) = f0(1)m(1) = 1; that is, m̃ ∈ LIM(L∞(G)∗).
Finally, for each y ∈ L1

cb(G)∗ we have

〈ι∗∗(m̃), y〉 = 〈m̃, ι∗(y)〉 = 〈m, ι∗(y) · f0〉 = 〈m, y〉.
This shows that ι∗∗(m̃) = m, as claimed.

For each n ∈ LUC(G)∗, define a bounded linear map nL from L∞(G) into
L∞(G) by

〈nL(x), f 〉 = 〈n, x · f 〉
for all x ∈ L∞(G) and f ∈ L1(G).
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THEOREM 2.4. Let G be a locally compact quantum group. Then the restriction
mapR : LIM(L∞(G)∗)→ LIM(LUC(G)∗) is a bijection.

Proof. It is easy to see that the restriction map R : LIM(L∞(G)∗) →
LIM(LUC(G)∗) is well-defined and is injective. We need to prove that R is sur-
jective. Let n∈LIM(LUC(G)∗). Consider the functional ñ∈L∞(G)∗ defined by

ñ(x) = 〈nL(x), f0〉 (x ∈ L∞(G)),

where f0 is a state in L1(G). Since f0(1) = 1, we conclude that

ñ(1) = n(1) = 1.

From this and the fact that ‖ f0‖1 = 1, we obtain that ‖ñ‖ = 1. Now, for each
x ∈ L∞(G) and f , g ∈ L1(G) we have

〈nL(x), f ? g〉 = 〈n, (x · f ) · g〉 = g(1)〈nL(x), f 〉.

Therefore,

〈nL(x), f ? g〉 = 0 (x ∈ L∞(G), f ∈ L1(G), g ∈ I0(G)).

Since the linear span of L1(G) ? I0(G) is dense in I0(G) ([1], Theorem 4.4), this
implies that nL(x)|I0(G) = 0 for all x ∈ L∞(G). By the fact that f ? f0 − f0 ? f ∈
I0(G) for all f ∈ L1(G), we get

〈ñ, x · f 〉 = 〈nL(x), f ? f0〉 = 〈nL(x), f0 ? f 〉 = 〈n, (x · f0) · f 〉 = f (1)〈ñ, x〉.

This shows that ñ ∈ LIM(L∞(G)∗). Moreover, for each y ∈ LUC(G),

ñ(y) = 〈n, y · f0〉 = 〈n, y〉;

that is,R(ñ) = n. Hence,R is surjective.

LEMMA 2.5. Let G be a locally compact quantum group. Then x · f ∈ LUCcb(G),
for all x ∈ L∞(G) and f ∈ L1(G). Moreover, ‖x · f ‖L1

cb(G)∗ 6 ‖x‖L∞(G)‖ f ‖1 and

LUCcb(G) = 〈L∞(G) · L1(G)〉
‖·‖L1

cb(G)∗ .

Proof. By Proposition 2.2, x · f ∈ ι∗(L1
cb(G)∗) for all x ∈ L∞(G) and f ∈

L1(G). Further, it is easy to check that ‖x · f ‖L1
cb(G)∗ 6 ‖x‖L∞(G)‖ f ‖1. We claim

that x · f ∈ LUCcb(G). To prove this, note that for each ε > 0 there exist gi, hi ∈
L1(G) (i = 1, . . . , n) such that∥∥∥ n

∑
i=1

gi ? hi − f
∥∥∥

1
< ε.

Moreover, we have x · g ∈ LUCcb(G), where g =
n
∑

i=1
gi ? hi. Therefore,

‖x · g− x · f ‖L1
cb(G)∗ 6 ‖x‖L∞(G)‖g− f ‖1 < ε‖x‖L∞(G).
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This shows that x · f ∈ LUCcb(G) and so we have the inclusion

〈L∞(G) · L1(G)〉
‖·‖L1

cb(G)∗ ⊆ LUCcb(G).

For the reverse inclusion, note that if ( fn) is a sequence in L1(G) which converges
to some µ in L1

cb(G), then x · fn → x · µ in the ‖ · ‖L1
cb(G)∗ -norm for all x ∈ L1

cb(G)∗.
This implies that

LUCcb(G) = 〈L1
cb(G)∗ · L1

cb(G)〉
‖·‖L1

cb(G)∗ = 〈L1
cb(G)∗ · L1(G)〉

‖·‖L1
cb(G)∗

⊆ 〈L∞(G) · L1(G)〉
‖·‖L1

cb(G)∗ ,

as required.

As an application of Lemma 2.5, we record the LUC version of Theorem 2.3
for later use. The proof is left to the reader.

THEOREM 2.6. Let G be a locally compact quantum group. Then we have that
ι∗∗(LIM(LUC(G)∗))⊆LIM(LUCcb(G)∗). Furthermore, the map ι∗∗ : LIM(LUC(G)∗)
→ LIM(LUCcb(G)∗) is a bijection.

As an immediate consequence of Theorems 2.3, 2.4 and 2.6 we obtain the
following result on the cardinality of the sets of left invariant means. In what
follows, |Y| stands for the cardinality of a set Y.

COROLLARY 2.7. Let G be a locally compact quantum group. Then we have

|LIM(LUCcb(G)∗)| = |LIM(LUC(G)∗)| = |LIM(L∞(G)∗)| = |LIM(L1
cb(G)∗∗)|.

We now present our main result in this section.

COROLLARY 2.8. Let G be a locally compact quantum group. Then the following
statements are equivalent:

(i) G is amenable;
(ii) there is a left invariant mean on L1

cb(G)∗;
(iii) there is a left invariant mean on LUC(G);
(iv) there is a left invariant mean on LUCcb(G).

REMARK 2.9. For co-amenable quantum groups G, Runde showed that G
is amenable if and only if there is a left invariant mean on LUC(G) ([25], The-
orem 3.6). This equivalence was later generalized by Crann and Neufang ([3],
Theorem 4.2) and independently by the author ([22], Theorem 4.1) to arbitrary
locally compact quantum groups.

It is well known that a Banach algebra A is an ideal in A∗∗ if and only if,
for every µ ∈ A, the operators `µ : ν 7→ µ ? ν and rµ : ν 7→ ν ? µ are weakly
compact [7].

PROPOSITION 2.10. Let G be a locally compact quantum group. Then L1
cb(G) is

an ideal in its second dual if and only if G is compact.
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Proof. Suppose that L1
cb(G) is an ideal in its second dual. Therefore, for

every µ ∈ L1
cb(G), the operator `µ : ν 7→ µ ? ν is weakly compact on L1

cb(G). Now,
let f ∈ L1(G) be such that f = g ? µ for some g, µ ∈ L1(G). Let ( fn) be a bounded
sequence in L1(G). Then ( fn) is also bounded in L1

cb(G). Therefore, there exists a
subsequence ( fnj) of ( fn) such that (`µ( fnj)) converges weakly in L1

cb(G). Now,
we observe that x · g ∈ L1

cb(G)∗ for all x ∈ L∞(G). This shows that the sequence
(`g?µ( fnj)) converges weakly in L1(G); that is, the operator ` f : h 7→ f ? h is
weakly compact on L1(G). Since the linear span of L1(G) ? L1(G) is dense in
L1(G), we conclude that for every f ∈ L1(G), the operator ` f : L1(G)→ L1(G) is
weakly compact. Similarly, we can show that for every f ∈ L1(G), the operator
r f : L1(G) → L1(G) is weakly compact. Equivalently, L1(G) is an ideal in its
second dual. Therefore, G is compact by Theorem 3.8 of [24].

To prove the converse, suppose that G is compact. Then for each g ∈ L1(G),
the operator `g : L1(G) → L1(G) is weakly compact ([24], Corollary 3.5). Let
(µn) be a bounded sequence in L1

cb(G) and let µ ∈ L1
cb(G) be such that µ = g ? h

for some g, h ∈ L1(G). Then (h ? µn) is a bounded sequence in L1(G) and so
by weak compactness of `g there is a subsequence (h ? µnj) of (h ? µn) such that
(g ? h ? µnj) converges weakly in L1(G). Therefore (µ ? µnj) converges weakly
in L1

cb(G). Since the linear span of L1(G) ? L1(G) is ‖ · ‖cb-dense in L1
cb(G), it

follows that for every µ ∈ L1
cb(G), the operator `µ : L1

cb(G) → L1
cb(G) is weakly

compact. Similarly, one can check that the operator rµ : L1
cb(G) → L1

cb(G) is
weakly compact. Therefore, L1(G) is an ideal in its second dual.

EXAMPLE 2.11. Let G be a locally compact group and Acb(G) be the com-
pletion of the Fourier algebra A(G) with respect to the cb-multiplier norm. It is
known that when L∞(G) = VN(G), the compactness of G is equivalent to G be-
ing discrete. So G is discrete if and only if Acb(G) is an ideal in its second dual by
Proposition 2.10.

The proof of the following result is similar to that of the proof of Proposi-
tion 4.6 in [25], but we provide the details for the convenience of the reader.

PROPOSITION 2.12. Let G be an amenable, locally compact quantum group. Then
there is a unique left invariant mean on WAPcb(G) that is automatically right invariant.

Proof. As G is amenable, there is a (two-sided) invariant mean m on L∞(G).
It follows from Theorem 2.3 that ι∗∗(m) is a (two-sided) invariant mean on
L1

cb(G)∗. It is easy to check that m0 := ι∗∗(m)|WAPcb(G) is an invariant mean
on WAPcb(G). Now, let n be any left invariant mean on WAPcb(G). Since the two
Arens products � and ♦ on WAPcb(G)∗ coincide; see Proposition 3.11 of [4], we
conclude the following, as required:

m0 = n(1)m0 = n�m0 = n♦m0 = m0(1)n = n.
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Recall that a Banach algebraA is called Arens regular if the left and the right
Arens products coincide on A∗∗ or, equivalently, by [23], WAP(A∗) = A∗; see
also Theorem 3.14, Proposition 5.7 of [4].

COROLLARY 2.13. Let G be an amenable locally compact quantum group such
that L1(G) is separable. If L1

cb(G) is Arens regular, then G is compact.

Proof. Suppose that L1
cb(G) is Arens regular. Then WAPcb(G) = L1

cb(G)∗.
Now, if m is a left invariant mean on L1

cb(G)∗, then Proposition 2.12 yields that
m is unique. Therefore, there is a unique left invariant mean m̃ on L∞(G) by
Corollary 2.7. Since L1(G) is separable and it is an F-algebra, we conclude from
Proposition 4.15(b) of [19] that m̃ is in L1(G). This implies that G is compact by
Proposition 3.1 of [2].

COROLLARY 2.14. Let G be an amenable locally compact quantum group such
that L1(G) is separable. If LUCcb(G) ⊆WAPcb(G), then G is compact.

Proof. Suppose that LUCcb(G) ⊆ WAPcb(G). From Corollary 2.7, Proposi-
tion 2.12 and the fact that G is amenable, we conclude that there is a unique left
invariant mean on L∞(G). As in the proof of Corollary 2.13, we obtain that G is
compact.

LEMMA 2.15. Let G be a locally compact quantum group. Then L1
cb(G) ⊆ M(G)

if and only if L1(G) = L1
cb(G).

Proof. We need to prove the necessity part of the lemma. Suppose that

L1
cb(G) ⊆ M(G) and µ ∈ L1

cb(G)
‖·‖M(G) . Then there is a sequence (µn) in L1

cb(G)
such that ‖µn − µ‖M(G) → 0. Since ‖ · ‖cb 6 ‖ · ‖M(G), it is easy to check that
µ ∈ L1

cb(G). Therefore, L1
cb(G) is closed in M(G). So the norms ‖ · ‖cb and

‖ · ‖M(G) are equivalent on L1
cb(G) and hence on L1(G), by the open mapping

theorem. Thus, L1
cb(G) = L1(G).

REMARK 2.16. For a locally compact group G, it is known from Losert [21]
that G is amenable, or equivalently A(G) has a bounded approximate identity
whenever A(G) = Acb(G). However, the question whether this is true for gen-
eral locally compact quantum groups is still open.

Completely bounded right, left, and double multipliers over locally com-
pact quantum groups have been studied in [16]. Recall that the algebra Mr

cb(L1(G))

of completely bounded right multipliers of L1(G), introduced by Junge, Neufang,
and Ruan [16], is defined to be the set of all q ∈ L∞(Ĝ)′ such that ρ(L1(G))q ⊆
ρ(L1(G)) and the induced map

mr
q : f ∈ L1(G)→ ρ−1(ρ( f )q) ∈ L1(G)
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is in Cr
cb(L1(G)), where Ĝ is the dual quantum group of G, L∞(Ĝ)′ is the com-

mutant of L∞(Ĝ) in B(L2(G)), and ρ : L1(G) → L∞(Ĝ)′ is the right regular
representation of G.

Similarly, Ml
cb(L1(G)) denotes the completely bounded left multiplier algebra of

L1(G) corresponding to the left regular representation λ : L1(G) → L∞(Ĝ). We
can identify Ml

cb(L1(G)) with UMl
cb(L1(G))U∗, the subalgebra of L∞(Ĝ)′ con-

sisting of all p ∈ L∞(Ĝ)′ such that pρ(L1(G)) ⊆ ρ(L1(G)) and the induced map

ml
p : f ∈ L1(G)→ ρ−1(pρ( f )) ∈ L1(G)

is in Cl
cb(L1(G)). It was shown in Theorem 3.2 of [13] that each (S, T)∈Ccb(L1(G))

is uniquely associated with an element q of

Mcb(L1(G)) := (UMl
cb(L1(G))U∗) ∩mr

cb(L1(G)) ⊆ L∞(Ĝ)′

via (S, T) = (ml
q, mr

q). We let Mcb(L1(G) denote the set of completely bounded
multipliers of L1(G). Therefore, we have Mcb(L1(G)) ∼= Ccb(L1(G)), completely
isometrically and algebraically. Equivalently, Mcb(L1(G)) can be defined as

Ml
cb(L1(G)) ∩ (U∗mr

cb(L1(G))U) ⊆ L∞(Ĝ).

THEOREM 2.17. Let G be a locally compact quantum group. Then ι∗(LUCcb(G))
= LUC(G) if and only if L1(G) = L1

cb(G).

Proof. Let ι∗(LUCcb(G)) = LUC(G) and set θ := ι∗|LUCcb(G). Then

θ∗ : LUC(G)∗ → LUCcb(G)∗

is an isomorphism. Therefore, if µ ∈ L1
cb(G) ⊆ LUCcb(G)∗, then we may find ν ∈

LUC(G)∗ for which θ∗(ν) = µ. Furthermore, we can identify L1
cb(G) with a sub-

algebra of L∞(Ĝ) via the completely isometric algebra isomorphism Mcb(L1(G))
∼= Ccb(L1(G)) defined as above. Let λ̂ : L1(Ĝ) → L∞(G) be the left regular

representation of Ĝ. Since C0(G) ⊆ LUC(G) and C0(G) = λ̂(L1(Ĝ))
‖·‖L∞(G)

,
under the identification L1(Ĝ) ∼= λ̂(L1(Ĝ)), we can consider µ as a bounded
linear functional on C0(G). This shows that µ ∈ C0(G)∗ = M(G). Therefore,
L1(G) = L1

cb(G) by Lemma 2.15. The converse is trivial.

3. OPERATORS WHICH COMMUTE WITH MODULE ACTIONS AND CO-AMENABILITY

In this section, for a Banach algebra A we shall focus on the Banach algebra
BA(X) of bounded right A-module maps on a Banach A-bimodule X. When a
rightA-module X is the dual space of a given Banach space, we let Bσ

A(X) denote
the subalgebra of BA(X) consisting of weak*-weak* continuous maps in BA(X).
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Suppose now that X is a Banach rightA-module. For each φ ∈ X∗ and ξ ∈ X

define the functional φ ◦ ξ ∈ A∗ by

〈φ ◦ ξ, µ〉 = 〈φ, ξ · µ〉 (µ ∈ A)

and put

LX(A) := 〈X∗ ◦X〉‖·‖A∗ .

Then, it is clear that

(φ ◦ ξ) · µ = φ ◦ (ξ · µ), µ · (φ ◦ ξ) = (µ · φ) ◦ ξ

for all φ ∈ X∗, ξ ∈ X and µ ∈ A. Thus, LX(A) is a sub-A-bimodule of A∗. Now
let X be a left introverted subspace of A∗ such that LX(A) ⊆ X. Then, it is easily
verified that X∗ is a left X∗-module with the following module action

m • φ(ξ) = m(φ ◦ ξ) (m ∈ X∗, φ ∈ X∗, ξ ∈ X).

Moreover, for each φ ∈ X∗ the map

X∗ → X∗, m 7→ m • φ

is weak*-weak* continuous; see for example Proposition 4.2 of [26]. We note that
LX(A) is itself a left introverted subspace of A∗. Indeed, for each m ∈ A∗∗,
φ ∈ X∗ and ξ ∈ X, we have

m · (φ ◦ ξ) = (m • φ) ◦ ξ.

By the above notions, it is not hard to see that, if X is a Banach A-bimodule, then
the map

Φ : LX(A)∗ → BA(X∗), m 7→ mL

is a weak*-weak* continuous, contractive, injective algebra homomorphism,
where mL is given by

mL(φ) = m • φ (φ ∈ X∗).

THEOREM 3.1. Let A be a Banach algebra and let X be a Banach A-bimodule.
Consider the following statements:

(i) Φ : LX(A)∗ → BA(X∗) is surjective.
(ii) idX∗ ∈ Φ(LX(A)).

(iii) X has a bounded right approximate identity in A.
Then (i)⇒ (ii)⇔ (ii).

Proof. That (i) implies (ii) is trivial. Now suppose that (ii) holds. Then there
exists E ∈ LX(A)∗ such that Φ(E) = idX∗ . We extend E to a functional Ẽ on A∗
with the same norm. By Goldstine’s theorem, there is a net (µγ) in A such that

µγ
w∗→ Ẽ and ‖µγ‖ 6 ‖Ẽ‖ for all γ. Therefore, for each φ ∈ X∗ and ξ ∈ X we have

〈φ, ξ〉 = 〈idX∗(φ), ξ〉 = 〈E • φ, x〉 = 〈E, φ ◦ ξ〉 = 〈Ẽ, φ ◦ ξ〉 = lim
γ
〈φ, ξ · µγ〉.
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This shows that (µγ) is a bounded weak right approximate identity for X in A.
Applying Mazur’s theorem, we obtain a bounded right approximate identity for
X in A.

Suppose that (iii) holds. Let (µγ) be a bounded right approximate identity
for X in A and let Ẽ be any weak∗ cluster point of (µγ) in A∗∗. If E := Ẽ|LX(A),
then it is easily verified that Φ(E) = idX∗ .

In the sequel, for a locally compact quantum group G, we consider the alge-
bras L1(G), L1

cb(G) and L1
M(G), and attempt to describe when X has a bounded

approximate identity in A, where A and X are chosen from above algebras pro-
vided that X is naturally a Banach A-bimodule.

EXAMPLE 3.2. Let G be a locally compact quantum group.
(i) Let A be L1(G), L1

cb(G) or L1
M(G). Considering X = A as a Banach A-

bimodule with the module action being given by the product of A, we have
LX(A) = LUC(A∗). For example if A = L1

cb(G), then LX(A) = LUCcb(G).
(ii) Let A be L1(G) and X be L1

cb(G). Then, using the definition of these alge-
bras, X is naturally a Banach A-bimodule. Note that in this case

LX(A) = 〈L1
cb(G)∗ · L1

cb(G)〉
‖·‖L∞(G)

= 〈L1
cb(G)∗ · L1(G)〉

‖·‖L∞(G) ⊆ LUC(G).

(iii) Let A be L1
cb(G) and X be L1(G). If we regard L1(G) as a Banach L1

cb(G)-
bimodule with the module action being given by the product of L1

cb(G) on L1(G),
then by Lemma 2.5 we conclude that

LX(A) = 〈L∞(G) · L1(G)〉
‖·‖L1

cb(G)∗ = LUCcb(G).

The following result generalizes a result of Forrest ([10], Proposition 1) to
the quantum group context.

PROPOSITION 3.3. Let G be a locally compact quantum group. Then L1(G) has
an approximate identity that is bounded in the ‖ · ‖cb-norm if and only if L1

cb(G) has a
bounded approximate identity.

Proof. Suppose that L1(G) has an approximate identity ( fγ) with

C = sup ‖ fγ‖cb < ∞.

Let µ ∈ L1
cb(G) and ε > 0. Then there exists f ∈ L1(G) such that ‖ f − µ‖cb < ε.

We can find γ0 such that if γ0 6 γ, then

‖ f − f ? fγ‖cb 6 ‖ f − f ? fγ‖1 < ε.

Thus, for each γ0 6 γ we have

‖µ− µ ? fγ‖cb 6 ‖ f − µ‖cb + ‖ f − f ? fγ‖cb + ‖ f ? fγ − µ ? fγ‖cb < ε(2 + C).

This shows that ( fγ) is a bounded left approximate identity for L1
cb(G). Similarly,

we can show that ( fγ) is a bounded right approximate identity for L1
cb(G), as

required.
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Conversely, suppose that ( fγ) is a bounded approximate identity for L1
cb(G).

As L1(G) is dense in L1
cb(G), we can assume that ( fγ) ⊆ L1(G). Let f ∈ L1(G)

and ε > 0 be given. Since the linear span of L1(G) ? L1(G) is dense in L1(G),

there exist gi, hi ∈ L1(G) (i = 1, . . . , n) such that
∥∥∥ n

∑
i=1

gi ? hi − f
∥∥∥

1
< ε. Thus

‖ f − f ? fγ‖1 6
∥∥∥ f −

n

∑
i=1

gi ? hi

∥∥∥
1
+
∥∥∥ n

∑
i=1

gi ? hi −
n

∑
i=1

gi ? hi ? fγ

∥∥∥
1

+
∥∥∥( n

∑
i=1

gi ? hi

)
? fγ − f ? fγ

∥∥∥
1

< ε(1 + C) +
n

∑
i=1
‖gi‖1 ‖hi − hi ? fγ‖cb,

where C = sup ‖ fγ‖cb. This shows that lim sup
γ
‖ f − f ? fγ‖1 6 ε(1 + C) and

consequently ( fγ) is an approximate identity for L1(G) which is bounded in the
‖ · ‖cb-norm.

Before stating the next result, we recall that every locally compact quantum
group G has a canonical co-involution R, called the unitary antipode of G. That is,
R : L∞(G) → L∞(G) is a ∗-anti-homomorphism satisfying R2 = id and Γ ◦ R =
σ(R⊗ R) ◦ Γ, where σ is the flip map on L2(G)⊗ L2(G); see [18]. Then R induces
a completely isometric involution on L1(G) defined by

〈x, f ′〉 = 〈 f , R(x∗)〉 (x ∈ L∞(G), f ∈ L1(G)).

Hence, L1(G) becomes an involutive Banach algebra.

COROLLARY 3.4. Let G be a locally compact quantum group and letA be L1(G),
L1

cb(G) or L1
M(G). Then the map

Φ : LUC(A∗)∗ → BA(A∗)

is surjective if and only if A has a bounded approximate identity.

Proof. We give the proof for the case where A = L1
cb(G). The proofs of the

other cases are similar. Consider X = A as a natural Banach A-bimodule. By Ex-
ample 3.2(i) we have that LX(A) = LUCcb(G). Moreover, if Φ is surjective, then
L1

cb(G) has a bounded right approximate identity by Theorem 3.1. Now, the proof
of Proposition 3.3 shows that L1(G) has a right approximate identity ( fγ) that is
bounded in the cb-multiplier norm. Since the unitary antipode R of G induces
a completely isometric involution on L1(G), we can construct a left approximate
identity ( f ′γ) from ( fγ) for L1(G) that is bounded in the cb-multiplier norm. It is
then easily seen that ( fγ + f ′γ − fγ ? f ′γ) is an approximate identity for L1(G) that
is bounded in the ‖ · ‖cb-norm. Thus, L1

cb(G) has a bounded approximate identity
by Proposition 3.3.
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Now, suppose that A = L1
cb(G) has a bounded approximate identity (νγ).

Let E be any weak∗ cluster point of (νγ) in A∗∗. Then E is a right identity in
(A∗∗,�). For T ∈ BA(A∗) if we put m := T∗(E)|LUCcb(G), then we show that
Φ(m) = T. In fact, for each x ∈ A∗ and µ ∈ A, we have

〈Φ(m)(x), µ〉 = 〈mL(x), µ〉 = 〈m, x · µ〉 = 〈T∗(E), x · µ〉
= 〈T(x), µ�E〉 = 〈T(x), µ〉.

This shows that Φ(m) = T and consequently Φ is surjective.

COROLLARY 3.5. Let G be a locally compact quantum group. Then the map

Φ : LL1
cb(G)(L1(G))∗ → BL1(G)(L1

cb(G)∗)

is surjective if and only if G is co-amenable.

Proof. First note that by Example 3.2(ii) we have

LL1
cb(G)(L1(G)) = 〈L1

cb(G)∗ · L1
cb(G)〉

‖·‖L∞(G) ⊆ LUC(G).

If Φ is surjective, then it follows from Theorem 3.1 that L1
cb(G) has a right ap-

proximate identity in L1(G) which is bounded in the ‖ · ‖1-norm. Hence, G is
co-amenable by Theorem 3.1 of [2].

For the converse, note that if G is co-amenable, then L1(G) = L1
cb(G) and

the result follows from Corollary 3.4.

COROLLARY 3.6. Let G be a locally compact quantum group. If the map

Φ : LUCcb(G)∗ → BL1
cb(G)(L∞(G))

is surjective, then L1
cb(G) has a bounded approximate identity.

Proof. This follows by combining the same argument as that given in the
proof of Corollary 3.4 and Example 3.2(iii).

Let G be a locally compact quantum group. Then we have the canonical
M(G)-bimodule actions on C0(G) given by

ω · x = (id⊗ω)Γ(x), x ·ω = (ω⊗ id)Γ(x) (x ∈ C0(G), ω ∈ M(G)).

It was shown in Proposition 2.2 of [13] that

C0(G) = 〈M(G) · C0(G)〉‖·‖L∞(G) .

We also note that the inclusion C0(G) → L∞(G) is an M(G)-bimodule map.
Therefore, if we regard C0(G) as a sub-L1(G)-bimodule of L∞(G), then we have

LL1(G)(C0(G)) = C0(G) ⊆ L∞(G).

This implies that the map Φ : M(G) → BL1(G)(M(G)), ω 7→ ωL induces a con-
tractive, injective algebra homomorphism, where ωL is given by ωL(ν) = ω ? ν
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for all ν ∈ M(G). Finally, since ω ? ν = ω�ν = ω♦ν for all ω, ν ∈ M(G), we
have Φ(M(G)) ⊆ Bσ

L1(G)
(M(G)).

COROLLARY 3.7. Let G be a locally compact quantum group. Then the map

Φ : M(G)→ Bσ
L1(G)(M(G))

is surjective if and only if G is co-amenable.

Proof. Suppose that Φ is surjective. Replacing X and A in Proposition 3.1
by C0(G) and L1(G), respectively, and noticing that idM(G) ∈ Bσ

L1(G)
(M(G)), we

conclude that C0(G) has a bounded right approximate identity ( fγ) in L1(G).
Let µ0 be a weak∗ cluster point of ( fγ) in C0(G)∗ = M(G). A routine calculation
shows that µ0 is a left identity for M(G). Therefore, M(G) is unital, since C0(G) =

〈M(G) · C0(G)〉‖·‖L∞(G) ; see Proposition 2.2 of [13]. Thus, G is co-amenable by
Theorem 3.1 of [2].

For the converse, note that if G is co-amenable, then M(G) has an identity
element, say µ0, by Theorem 3.1 of [2]. Now let T ∈ Bσ

L1(G)
(M(G)) and ν ∈ M(G).

Since L1(G) is weak*-dense in M(G), there is a net ( fγ) in L1(G) such that fγ
w∗→ ν

and hence
T(µ0 ? fγ) = T(µ0) ? fγ

w∗→ T(µ0) ? ν.

In particular, for each x ∈ C0(G), by weak*-weak* continuity of T, we have

〈Φ(T(µ0))(ν), x〉 = 〈T(µ0) ? ν, x〉 = lim
γ
〈T(µ0 ? fγ), x〉 = 〈T(ν), x〉.

Therefore, Φ(T(µ0)) = T for all T ∈ Bσ
L1(G)

(M(G)).
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